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Abstract. We investigate some computational aspects of an innovative class of PDE-regularized5
statistical models: Spatial Regression with Partial Differential Equation regularization (SR-PDE).6
These physics-informed regression methods can account for the physics of the underlying phenomena7
and handle data observed over spatial domains with nontrivial shapes, such as domains with con-8
cavities and holes or curved domains. The computational bottleneck in SR-PDE estimation is the9
solution of a computationally demanding linear system involving a low-rank but dense block. We10
address this aspect by innovatively using Sherman–Morrison–Woodbury identity. We also investigate11
the efficient selection of the smoothing parameter in SR-PDE estimates. Specifically, we propose ad12
hoc optimization methods to perform Generalized Cross-Validation, coupling suitable reformulation13
of key matrices, e.g., those based on Sherman–Morrison–Woodbury formula, with stochastic trace14
estimation, to approximate the equivalent degrees of freedom of the problem. These solutions permit15
high computational efficiency also in the context of massive data.16
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1. Introduction. This paper deals with some computational aspects of a novel20

class of statistical models: Spatial Regression with Partial Differential Equation regu-21

larization (SR-PDE) [see, e.g., the review in Sangalli, 2021]. These models can handle22

spatial and functional data with possibly complicated shapes, observed over multi-23

dimensional domains. SR-PDE constitutes a new addition to an extremely versatile24

category of semiparametric and nonparametric methods, extensively used in appli-25

cations, and based in turn on smoothers such as univariate and multivariate splines,26

thin-plate splines and spherical splines [see, e.g., the textbooks by Wahba, 1990,27

Green and Silverman, 1994, Ruppert et al., 2003, Wood, 2017, Wang, 2019, and refer-28

ences therein], and more recently on soap film smoothing [Wood et al., 2008] and on29

bivariate-splines over triangulations [Lai and Schumaker, 2007, Baramidze et al., 2006,30

Lai and Wang, 2013, Wang et al., 2020]. The essential form of the estimation problem31

considered by these methods consists in the minimization of a regularized least-square32

functional, where the regularization involves suitable (partial) differential operators.33

In particular, the regularizing term in SR-PDE involves a partial differential equation34

that encodes the available problem-specific information about the phenomenon under35

study. Such PDE is defined over the spatial domain over which the data are observed,36

which may display a non-trivial geometry and non-Euclidean features, such as con-37

cavities and holes, or a folded nature. Figure 1, for instance, illustrates the modeling38

of a neuroimaging signal observed over the cerebral cortex. Here the cortex, repre-39

sented by a two-dimensional Riemannian manifold and suitably approximated by a40

triangular mesh, constitutes the domain over which the data, i.e., the neuroimaging41

signal, are observed. The method is designed to provide estimates in the context of42

massive datasets over domains approximated by meshes having thousands of nodes43

(as for instance the mesh representing the cortical surface of the brain, involving44
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approximately 32000 nodes). This makes computational tractability a crucial issue.45

To tackle this problem, we here propose various solutions that drastically reduce the46

computational cost of SR-PDE estimation. These computationally efficient solutions47

are implemented in the package fdaPDE [Arnone et al., 2022], a R/C++ library released48

through The Comprehensive R Archive Network R Core Team [2021], and available49

at http://CRAN.R-project.org/package=fdaPDE.50

Fig. 1: The figure on the left represents the cortical surface of the brain’s left hemi-
sphere, represented by a triangular mesh with approximately 32000 nodes; the area
highlighted in yellow is the cuneus. The figure on the right represent a functional
connectivity map, with respect to the cuneus, for an healthy subject; this map, ex-
tracted from a functional magnetic resonance imaging scan, indicates the regions of
the cortex more highly connected with the cuneus. SR-PDE permits to analyse this
signal, appropriately accounting for the non-trivial geometry of the cortical surface.

We first focus on efficient solutions for SR-PDE estimation problems. This prob-51

lem is discretized by means of finite elements over triangular meshes that approximate52

the spatial domain of interest. After discretization, the estimation problem reduces to53

the solution of a linear system, which may involve a low-rank but dense block, when54

covariates are included in the model. In particular, numerical simulations show that55

the cost of this operation is approximately linear in the number of mesh nodes when56

a purely nonparametric model is considered (i.e., in the absence of covariates), but is57

super-linear when a semiparametric model is used to account for covariate information.58

Standard techniques, such as those usually employed in classical semiparametric con-59

texts, based for instance on smoothing splines and thin-plate splines [see, e.g., Wahba,60

1990, Hastie and Tibshirani, 1990, Green and Silverman, 1993, Wood, 2017], exploit61

the band-limited representations of the key matrices involved in these splines repre-62

sentations. Unfortunately, the usage of finite elements in SR-PDE produces sparse63

but not intrinsically banded systems. In general, the sparsity degree of the system64

matrix and the pattern of its non-zero entries depends on the geometry of the mesh65

and on node ordering. For this reason, here we derive ad hoc efficient solutions to66

address semiparametric SR-PDE problems. These are based on numerical linear alge-67

bra methods, such as appropriate reformulations of the estimation problem based on68

Sherman–Morrison–Woodbury (SMW) formula [Sherman and Morrison, 1950, Wood-69

bury, 1950]. These solutions dramatically decrease the computational cost, enabling70

the use of SR-PDE with massive datasets and large meshes.71

We hence focus on an efficient selection of the smoothing parameter that trades72

off data fidelity and regularity of SR-PDE estimates. An appropriate selection of this73
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smoothing parameter is indeed crucial to obtain meaningful estimates. The value74

of the smoothing parameter is here selected via minimization of Generalized Cross-75

Validation (GCV ), a well-established performance criterion for automatic parameter76

tuning, first conceived by Craven and Wahba [1978/79] and Golub et al. [1979], in clas-77

sical smoothing settings. Unfortunately, the evaluation of GCV is computationally78

demanding. Indeed, it requires the computation of the trace of the so-called smooth-79

ing matrix, whose expression in turns involves the inversion of a large and partly80

dense matrix. The trace estimation problem has been investigated in the classical81

context of smoothing spline regression [see, e.g., Bates and Wahba, 1983, Hutchinson82

and de Hoog, 1985, 1986/87, Utreras, 1981], but always taking advantage of band-83

limited representations of spline matrices, which are instead unavailable for SR-PDE.84

Inspired by the work of Hutchinson [1989], we here propose to estimate the trace of85

the smoothing matrix via Monte-Carlo approximation. In particular, we managed86

to combine the Hutchinson estimator with the SMW reformulation of the estimation87

problem, thus drastically reducing the time required for the calculation of GCV . The88

resulting algorithm is then incorporated in a Newton-type optimization based on finite89

differences. This automatizes the selection of the smoothing parameter and efficiently90

locates the optimal one.91

The present paper is structured as follows. Section 2 provides a self-contained92

description of the fundamental SR-PDE estimation problem. For simplicity of expo-93

sition, we focus here on the most basic formulation of SR-PDE; we briefly discuss the94

numerical discretization of the estimation problem and the resulting linear system95

whose solution produces the SR-PDE estimator. Section 3 studies numerical linear96

algebra solutions, based on SMW matrix identity, to speed up the resolution of the97

system presented in Section 2. The differences in execution times are highlighted98

in Section 4, where we compare the proposed approach based on the identity of the99

SMW matrix with the standard solution to the estimation problem based on sparse100

LU decomposition, as well as to solution based on iterative methods. The following101

sections focus on GCV computation. Section 5 introduces the concept of equivalent102

degrees of freedom (edf) for GCV evaluation and proposes an innovative SMW-based103

stochastic estimator to speed up their computation. Section 6 reports a simulation104

study that shows the performance of the method proposed in Section 5. In Section 7105

we apply SR-PDE to the study of neuronal connectivity on the cerebral cortex, show-106

ing the high level of complexity that the methodology is able to consider, thanks to107

the computationally efficient strategies investigated in this work. Section 8 briefly108

outlines some more complex SR-PDE estimation problems; such modeling extensions,109

for instance, to space-time data, are already implemented in the fdaPDE library, and110

exploit the efficient computational techniques here described, suitably adapted to111

these more general model settings.112

2. Background. Let Ω be a two-dimensional domain, and, for simplicity of113

exposition, assume Ω ⊂ R2, with boundary ∂Ω ∈ C2. We will later comment on the114

case where Ω is a two-dimensional manifold. Let {pi = (xi, yi)}ni=1 ∈ Ω be a finite115

set of known locations. At each point pi, a noisy evaluation zi ∈ R of a variable116

of interest is available. Moreover, a q-dimensional vector of deterministic covariates117

wi = (wi1, . . . , wiq)
⊤ is also observed. We assume that the data generation process118

satisfies a semiparametric model with additive error:119

zi = w⊤
i β + f(pi) + εi, i = 1, . . . , n,120
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where β ∈ Rq is a vector of regression coefficients, f : Ω → R is a twice-differentiable121

deterministic field, and {εi}ni=1 are independent random errors, also called residuals,122

with zero mean and constant variance σ2. Both β and f are unknown, and their123

estimation is ill-posed without further assumptions. The SR-PDE approach proposes124

to estimate the couple (f,β) by minimizing the following penalized sum-of-square-125

error functional, trading off data-fidelity and model-fidelity:126

(2.1) Jλ (β, f) =

n∑
i=1

(
zi −w⊤

i β − f(pi)
)2

+ λ

∫
Ω

(Lf − u)2,127

where λ > 0 is a tuning parameter. The regularizing term involves a PDE, Lf = u,128

that encodes the available problem-specific information. In particular, L is a second-129

order, linear differential operator with known, smooth, bounded coefficients, possibly130

spatially varying in Ω, of the form:131

Lf = −div(K∇f) + b · ∇f + cf.132

K ∈ R2×2 is a bounded symmetric and positive definite diffusion tensor, b ∈ R2 is a133

bounded transport vector and c ≥ 0 a reaction factor. The PDE parameters K and b134

are convenient tools to model anisotropic effects. Moreover, they can vary over Ω, thus135

modeling nonstationarity. Further flexibility is enabled by the forcing term u ∈ L2(Ω).136

The problem-specific information may also concern the conditions that f satisfies at137

the boundary of the domain: Bcf = γ on ∂Ω. Bc indicates the linear operator that138

implements Dirichlet, Neumann or Robin boundary conditions, or a combination of139

the three [see, for a complete treatment of boundary conditions, Azzimonti et al.,140

2014]. The higher the parameter λ, the stronger the PDE regularization. Conversely,141

if λ is chosen small, the solution is more adapted to the data. When no knowledge on142

the phenomenon under investigation is available, isotropic smoothing can be obtained143

by setting L = ∆ (the Laplacian operator) and u = 0.144

Let H2(Ω) denote the Sobolev space of twice differentiable functions with two
distributional derivatives in L2(Ω). We estimate (β, f) minimizing Equation (2.1) in
Rq × Vγ(Ω), where Vγ(Ω) is a suitable subset of H2(Ω), made of functions compliant
with the boundary conditions:

Vγ(Ω) =
{
f ∈ H2(Ω) : Bcf = γ

}
.

The estimation problem is formalized as follows.145

Problem 2.1. Find (f̂ , β̂) ∈ Vγ(Ω)× Rq such that146

(f̂ , β̂) = argmin
(f,β)∈Vγ(Ω)×Rq

Jλ (β, f).147

We denote by z = (z1, . . . , zn)
⊤ the vector of observations at the locations and148

by 1n the vector of Rn composed of ones. Then, we define the design matrix W =149

[wij ] ∈ Rn×q, whose i-th row is w⊤
i . We assume q < n and that W is full-rank. We150

also assume that 1n ̸∈ Range(W ). This condition is standard in the semiparametric151

regression framework since the constant term, i.e., the intercept of the regression152

model, is already included in the nonparametric term f . Let H be the projection153

matrix onto the image of W , Im(W ), and Q the projector onto Im(W )⊥, i.e.,154

(2.2) H =W (W⊤W )−1W⊤, Q = In −H,155
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where In is the n × n identity matrix. Note that W⊤W is invertible thanks to the156

fact that q < n and W is full-rank.157

The minimization problem is well posed under mild regularity conditions on the158

differential operator L and the boundary conditions [see, e.g., Azzimonti et al., 2014],159

and f̂ satisfies the following fourth-order variational problem:160

(2.3) v⊤
nQf̂n + λ

∫
Ω

(Lv)(Lf̂) = v⊤
nQz+

∫
Ω

u(Lv), ∀v ∈ V (Ω),161

where f̂n = (f̂(p1), . . . , f̂(pn))
⊤ and vn = (v(p1), . . . , v(pn))

⊤ are the vectors ob-162

tained evaluating f̂ and v at the n data locations.163

Here, we have introduced SR-PDE, assuming Ω is a two-dimensional planar do-164

main. However, Lila et al. [2016], Ettinger et al. [2016], Wilhelm and Sangalli [2016]165

extended the methodology to the case where Ω is a two-dimensional Riemannian man-166

ifold embedded in a 3D space, such as in the case of the neuroimaging data in Figure167

1, where Ω is the cortical surface. In this case, the estimation functional to be mini-168

mized is similar to the one in Equation (2.1), with the regularizing term replaced by169

λ
∫
Ω
(∆Ωf(p))

2
, where ∆Ω is the Laplace-Beltrami operator associated with Ω [see,170

e.g., Sario et al., 1977, Chapter 2]. The Laplace-Beltrami operator is the most natural171

generalization of the concept of Laplacian for fields defined over surfaces embedded172

in a 3D space. Its involvement in the regularizing term is meant to penalize the local173

curvature of f , in a way that complies with the curved nature of the domain and is174

independent from the specific coordinate system used to describe it. The discretiza-175

tion of the estimation problem is analogous to the case of the planar domain [see, e.g.,176

Lila et al., 2016]. For this reason, in the following, we will, for simplicity, continue177

the exposition assuming Ω is a planar domain.178

2.1. Discretization of the estimation problem. To approximate the solu-179

tion, we resort to numerical discretization. To this end, we characterize Equation (2.3)180

using lower-order expressions. For clarity of exposition, we present the discretization181

for homogeneous Neumann boundary conditions, that is Bcf = ∂f
∂n = 0 on ∂Ω. Nev-182

ertheless, we point out that fdaPDE library also implements homogeneous Dirichlet,183

nonhomogeneous Dirichlet and mixed conditions, as detailed in Azzimonti et al. [2014].184

First, we decouple (2.3) as an equivalent second-order variational system [see, e.g.,185

Azzimonti et al., 2014]. Let a be the following bilinear form associated with operator186

L: a(f, v) =
∫
Ω
[K∇f · ∇v + (b · ∇f)v + cfv]. The mixed weak formulation of (2.3)187

becomes: let V = [V (Ω) ∩ C0(Ω)]×H1(Ω) and find (f̂ , ĝ) ∈ V such that188 {
v⊤
nQf̂n + λa(f̂ , v) = v⊤

nQz ∀v ∈ V,

−
∫
Ω
(ĝw) + a(f̂ , w) =

∫
Ω
(uw) ∀w ∈ V.

189

190

Let T be a triangulation of Ω and let ΩT be the union of the triangles in T .191

We denote by Pr the space of polynomials of maximal order r ∈ N0 with r ≥ 1,192

and we consider the finite element space of globally continuous, piecewise polynomial193

functions:194

V r
T (Ω) =

{
vh ∈ C0(ΩT ) : vh|T ∈ Pr,∀T ∈ T

}
.195

Let ψ = (ψ1, . . . , ψN )⊤ be the set of Lagrangian basis functions associated with196

the nodes {ξ1, . . . ξN} of ΩT . Clearly, V r
T (Ω) = span{ψ}, therefore, any vT ∈ V r

T (Ω)197

can be expressed as vT (p) = ψ(p)
⊤v, where v = (v1, . . . , vN )⊤ ∈ RN is a vector that198
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collects the projections of vT onto the basis. In particular, due to the Lagrangian199

property, we have vi = vT (ξi).200

Let Ψ = [Ψij ] = [ψj(pi)] be the matrix n×N whose entry ij -th is the evaluation201

of the j-th basis function at the i-th spatial location. Moreover, let us consider the202

N ×N matrices203

R0 =

∫
ΩT

ψψ⊤ and R1 =

∫
ΩT

(
∇ψ⊤Kψ +∇ψ⊤bψ⊤ + cψψ⊤

)
,204

and the vector u =
∫
ΩT

uψ ∈ RN . The regularity conditions on the operator L205

ensure that R1 is semi-positive with ker(R1) ⊆ span(1N ). These conditions are for206

example satisfied when L is the Laplacian or the Laplace-Beltrami operator and the207

boudary conditions are homogeneous Neumann [see, e.g., Azzimonti et al., 2014, for208

the details].209

There exists a unique pair of estimators (β̂, f̂T ) ∈ Rq × V r
T (Ω) that solves the210

discretized counterpart of the estimation problem [see, e.g., Azzimonti et al., 2014,211

Sangalli, 2021]. Furthermore,212

(2.4) β̂ = (W⊤W )−1W⊤(z− f̂n),213

where f̂n = Ψf̂ , f̂T = f̂⊤ψ, and f̂ is obtained by solving the regularized saddle-point214

problem.215

(2.5) MS

[
f̂
ĝ

]
= bS ,216

where217

(2.6) MS =

[
−Ψ⊤QΨ λR⊤

1

λR1 λR0

]
and bS =

[
−Ψ⊤Qz
λu

]
.218

In Equation (2.5), the penalization coefficient λ > 0 is taken as given.219

Theorem 2.2. The matrix MS is non-singular.220

Proof. We show that under the stated conditions ker(MS) = {0}. Set S =221

Ψ⊤QΨ. Note that S is semi-positive definite. Let v = [v1,v2] ∈ R2N and222

MSv = 0 ⇒

{
−Sv1 + λR⊤

1 v2 = 0N

λR1v1 + λR0v2 = 0N

223

where 0N is the vector of RN composed of zeroes. We multiply the first equation by224

−v⊤
1 , the second by v⊤

2 and sum member by member to obtain225

v⊤
1 Sv1 + λv⊤

2 R0v2 = 0.226

Since R0 is symmetric positive definite and S is semi-positive definite, we have that227

v2 = 0N . Consequently, we also have228

(2.7) v⊤
1 Sv1 + λv⊤

1 R1v1 = 0.229

If R1 is positive definite, we immediately obtain that v1 = 0N , which concludes the230

proof. If instead the kernel of R1 contains the constant vectors, we need to show that231

1N ̸∈ ker(S). We first note that, by the partition of unity property of finite element232

shape functions, Ψ1N = 1n, so the requirement is equivalent to 1n ̸∈ ker(Q).233

However, 1n ∈ ker(Q) implies, by the definition of Q, that W (W⊤W )−1W⊤1n = 1n,234

in contradiction with the given hypothesis 1n ̸∈ RangeW . This concludes the proof.235
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We will see in Section 5 how an optimal value may be obtained by using GCV. To236

this end, it is useful to introduce the following factorization ofMS , which will be used237

for the GCV calculation. Since R0 is non-singular and λ > 0, MS can be factorized238

as:239

(2.8) MS =

[
IN R⊤

1 R
−1
0

ON IN

] [
−T ON

λR1 λR0

]
,240

with ON the N ×N matrix with all elements equal to zero, and241

(2.9) T = Ψ⊤QΨ+ λR⊤
1 R

−1
0 R1.242

T is clearly non-singular under the same hypothesis of Theorem 2.2, since it is a243

Schur complement. Therefore, f̂ is the solution of T f̂ = Ψ⊤Qz+λR⊤
1 R

−1
0 u, and then244

(2.10) f̂n = Ψf̂ = Sz+ λΨT−1R⊤
1 R

−1
0 u,245

where246

(2.11) S = ΨT−1Ψ⊤Q.247

Thanks to Equation (2.4), Equation (2.10) and Equation (2.11), we can find the fitted248

values ẑ =W β̂ + f̂n as249

ẑ = SQz+ r,250

where r = λQΨT−1R⊤
1 R

−1
0 u and251

(2.12) SQ = H +QS252

is a symmetric and positive definite matrix that we shall name smoothing matrix, in253

analogy to more classical linear semiparametric regression models [see, e.g., Eubank,254

1999, Green and Silverman, 1993].255

3. System solving. To compute the solution of the problem we solve directly256

Equation (2.5), without resorting to Equation (2.9). This allows us to obtain the257

misfit of the PDE ĝ, together with f̂ . This section investigates how to deal with258

Equation (2.5) efficiently. We start by investigating the structure of the system matrix259

MS . We recall thatMS is a 2N×2N matrix, where N is the number of mesh nodes. In260

real applications, N is often chosen large to improve the quality of the final estimate.261

Furthermore, each block of MS shows a different degree of sparsity. The north-west262

block is the most critical. If we consider a model with covariates, Q is not sparse, and263

consequently, the north-west block ofMS becomes dense. Instead, if we study a purely264

nonparametric model without covariates, Q = In, and the north-west block is sparse.265

The remaining blocks of the system matrix are always sparse, with a mesh-dependent266

sparsity pattern. Thus, in the absence of covariates, the whole matrix MS is sparse,267

and Equation (2.5) can be solved by resorting, for instance, to a sparse LU solver like268

the one in the SuiteSparse library suite1. The computational cost of this operation269

depends on the fill-in. However, the simulations reported in this paper show that270

it can easily be less than quadratic in N . The semiparametric case is more critical.271

Sparse solvers prove ineffective since MS has a dense block. Similarly, dense solvers272

cannot exploit the partial sparsity of MS and display at least O(N3) complexity.273

1https://people.engr.tamu.edu/davis/suitesparse.html
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We here propose a technique based on SMW decomposition to reduce the com-274

puting times when covariates are present. This choice proves valuable to distribute275

the computational cost of a single inefficient inversion (that of MS) on a cascade of276

sparse factorizations. In analogous settings, SMW approach was proposed by Eubank277

et al. [2004] to address smoothing spline estimation in varying-coefficient models and278

by Lai and Vemuri [1997] for PDE-penalized surface smoothing.279

In SR-PDE, we start by exploiting the projection propertyH+Q = In to factorize280

the system matrix additively281

MS =

[
−Ψ⊤Ψ λR⊤

1

λR1 λR0

]
+

[
Ψ⊤HΨ ON

ON ON

]
,282

where ON is the N ×N zero matrix. We define the 2N × 2N matrices283

(3.1) A =

[
−Ψ⊤Ψ λR⊤

1

λR1 λR0

]
and B =

[
Ψ⊤HΨ ON

ON ON

]
.284

The matrix A is sparse. Indeed, it coincides with the system matrix of a nonparametric285

SR-PDE problem, with the same data, but without covariates. In turn, B has just286

one dense block, the north-west block, which has a rank of at most min{N,n, q}. It287

should now be noticed that in practical applications q is typically in the order of units288

or at most tens, so that q ≪ min{N,n} and rank(B) = q. We can hence exploit the289

small rank of the matrix B to propose an efficient solver for the system. We propose290

an efficient decomposition of MS that takes advantage of the SMW matrix identity291

[see Woodbury, 1950, Sherman and Morrison, 1950]. Assume that MS and A are292

invertible. If we have some matrices U ∈ R2N×q, C ∈ Rq×q and V ∈ Rq×2N , with C293

invertible, such that MS = A+ UCV , then, according to the SMW identity, we have294

the following:295

(3.2) M−1
S = (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.296

To exploit the SMW formula, we are left to express B as a suitable UCV product.297

From Equation (2.2), we can write298

Ψ⊤HΨ = Ψ⊤W︸ ︷︷ ︸
Ũ

(W⊤W )−1︸ ︷︷ ︸
C̃

W⊤Ψ︸ ︷︷ ︸
Ṽ

.299

Setting Ũ = Ψ⊤W ∈ RN×q, C̃ = (W⊤W )−1 ∈ Rq×q and Ṽ = W⊤Ψ ∈ Rq×N , we300

derive B = UCV with the following definition:301

(3.3) U =

[
Ũ
ON

]
∈ R2N×q, C = C̃ ∈ Rq×q, V =

[
Ṽ ON

]
∈ Rq×2N .302

The following algorithm synthesizes how to make efficient use of the SMW de-303

composition to solve Equation (2.5).304
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Algorithm 3.1 System solution via SMW decomposition

Require: Ψ,W,R1, R0,bS , λ
1: Build A from R0, R1,Ψ and λ, as in Equation (3.1);
2: SparseLU factorize A and store its factorization;
3: if ∃W then
4: Compute and store U, V as in Equation (3.3);
5: Solve Ay = bS ;
6: Solve AY = U ;
7: Compute G =W⊤W + V Y ;
8: Factorize G and store its factorization;
9: Solve Gθ = V y;

10: Solve Aυ = Uθ;
11: x = y − υ.
12: else
13: Solve Ax = bS .
14: end if

Ensure: x =

[
f̂
ĝ

]
such that MSx = bS

In synthesis, due to the SMW formula applied to Equation (2.5), we can replace305

the inefficient inversion of the partially dense matrix MS with the cheaper inversions306

of the sparse matrix A (for which we can use, e.g., a sparse LU solver) and of the307

dense, yet very small, G ∈ Rq×q. Simulations show that this leads to great advantages308

in computing times.309

SMW decomposition proves valuable also for storage reasons. Indeed, it allows310

us to completely avoid storing the partially dense 2N × 2N matrix MS or the dense311

n×n matrix Q. In turn, it requires only the sparse matrix Ψ and the full, but smaller,312

n× q matrix W (we recall that q ≪ n). Furthermore, since some inversions are to be313

performed more than once, fdaPDE implementation automatically factorizes A and G314

and stores the factors in memory for reuse.315

4. Numerical experiment with the SMW decomposition. We wish to316

compare the time required to solve Equation (2.5) with the SMW decomposition with317

respect to standard solvers to verify the computational advantage represented by the318

novel approach. In particular we compare the proposed approach with a standard319

sparse LU solver with sparsity preserving reordering [Davis, 2004, Amestoy et al.,320

2004, Eaton et al., 2022], and with two iterative solvers: the BIconjucate Gradient321

STABilzed (BICGSTAB) method and the Generalized Minimal Residual (GMRES)322

method [van der Vorst, 1992, Saad and Schultz, 1986, Saad, 2003, Eaton et al., 2022].323

In order to improve the performances of the two iterative solvers, we employ as a324

preconditioner the matrix A defined in (3.1). Indeed, without a preconditioner, the325

two iterative solvers do not converge in a reasonable number of iterations.326

We consider a square regular domain: Ω = [0, 1] × [0, 1]. We sample the n data327

points {zi}ni=1 according to zi = β1w1i + β2w2i + f(pi) + εi; see Section 2 for the328

notation. The spatial field f is chosen with sharp oscillations,329

f(x, y) = sin{2π[(0.5 sin(5πy) exp(−1) + 1)x cos(1) + y sin(1)]}
· cos{2π[(0.5 sin(5πy) exp(−1) + 1)x sin(1)− (0.5 sin(5πx) exp(−1) + 1)y]}.330

We consider q = 2 stochastic covariates: w1 is a Gaussian random variable of null331
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Fig. 2: Top-left: true field f . Top-right: field estimated from data sampled in the
first repetition of Simulation 1, using SR-PDE on a regular mesh with 302 nodes.
Bottom-left: data sampled at mesh nodes. Bottom-right: data sampled at locations
randomly scattered over the domain.

mean, and standard deviation 0.05 while w2 comes from an exponential distribution332

of mean 0.1. We set β1 = 2, β2 = 0.5. We sampled ε as the realization of a Gaussian333

random variable with zero mean and standard deviation of 5% of the data range, that334

is, equal to 0.05(r2−r1), where (r1, r2) is the range of the total signal {β1w1+β2w2+335

f(pi))}ni=1.336

To address the estimation problem, we consider SR-PDE with Laplacian regular-337

ization (i.e., L = ∆ and u = 0 in Equation (2.1)). The smoothing parameter λ is kept338

fixed at a value selected by the minimization of GCV, as described in Section 5.339

4.1. Simulation 1: increasing number of observations n, increasing340

number of mesh nodes N . We consider meshes with increasing refinement, with341

N nodes on regular square lattices, and N takes values 302, 402, . . . , 902. For each342

value of N , we sample n = N observations. We examine two scenarios: sampling an343

observation at each mesh node or sampling the observations at locations randomly344

scattered over the domain. In both cases, we measure the average time employed345

by fdaPDE library to solve the problem over 30 replicas of each experimental setting,346

with four different solution methods:347

1. LU: standard sparse LU solver;348

2. BICGSTAB: the preconditioned BICGSTAB solver;349
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3. GMRES: the preconditioned GMRES solver;350

4. SMW: sparse LU solver, with SMW decomposition.351
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Fig. 3: Simulation 1: increasing number of observations n, increasing number of
mesh nodes N ; average computing time, over 30 simulation replicates, with the four
considered solvers. Left: data locations at mesh nodes, as in the bottom-left panel
of Figure 2. Right: data locations randomly scattered over the domain, as in the
bottom-right panel of Figure 2.

We start with the first setting: locations coincident with the mesh nodes. Figure 3,352

left, shows that the comparison of the computing times for the four methods, strongly353

favors the proposed SMW approach. Indeed, SMW shows a significantly lower CPU354

time, for all the considered dimensions. Moreover, LU times display a rate of growth,355

with respect to N , of order between 2 and 3, while the order for iterative approaches356

and SMW is between 1 and 2. The reason behind the inefficiency of the standard LU357

sparse solver is that it applies the sparse solver to MS , which has a N ×N full north-358

west block. Table 1 reports the mean CPU times over the 30 repetitions (and the359

standard deviations of CPU times in brackets) for all considered solvers and meshes360

dimensions, on a Intel Core i7-4510U, 2.6 GHz, 8 GB RAM machine.361

Table 2 and the right panel of Figure 3 report the CPU times for the second362

setting, in which the number of locations n is still equal to the number of nodes N ,363

but the coordinates of the locations do not coincide with the coordinates of the mesh364

nodes. We observe that, generally, the methods employ a longer time to solve the365

system. However, iterative approaches and SMW maintain a computing time of an366

order less than quadratic, while LU is largely affected by the lower sparsity of Ψ, and367

displays an order that is at least cubic.368

4.2. Simulation 2: increasing number of observations n, fixed number369

of mesh nodes N . We fix the number of nodes N = 8100 and we progressively370

increase the amount of observations n, by uniformly sampling on the square domain.371

We perform 30 repetitions of each experimental setting.372

We compare the average computing times with the four methods considered in373

the previous simulation. Table 3 reports the CPU times for all the methods. Figure 4,374

left, shows the relationship between times and observations. SMW approach is always375

faster than the other methods; however, the computational cost increases with n. This376

is to be expected since the number of data influences the sparsity Ψ and hence the377

overall sparsity of the north-west block ofMS . This fact lowers the efficiency gained by378

the SMW method, but the decomposition still proves more effective than the standard379

This manuscript is for review purposes only.



12 E. ARNONE, C. DE FALCO, L. FORMAGGIA, G. MERETTI AND L. M. SANGALLI

Mesh nodes LU BICGSTAB GMRES SMW
900 0.29 (0.063) 0.04 (0.022) 0.03 (0.009) 0.01 (0.002)
1600 1.24 (0.157) 0.12 (0.036) 0.06 (0.010) 0.02 (0.003)
2500 3.52 (0.139) 0.17 (0.033) 0.13 (0.021) 0.04 (0.005)
3600 8.20 (0.299) 0.46 (0.085) 0.25 (0.048) 0.06 (0.012)
4900 18.05 (0.582) 0.83 (0.171) 0.57 (0.253) 0.09 (0.023)
6400 35.57 (1.278) 2.26 (0.642) 1.45 (0.431) 0.40 (0.265)
8100 75.06 (5.402) 2.97 (0.263) 2.15 (0.462) 0.70 (0.462)

Table 1: Simulation 1: increasing number of observations n, increasing number of
mesh nodes N , locations at mesh nodes. Mean time in seconds taken to solve the
system (2.5) over the 30 simulation replicates. In brackets, the standard deviation
of the employed time. The errors associated with the computed solutions is of order
10−4 for BICGSTAB and 10−9 for the other methods.

Mesh nodes LU BICGSTAB GMRES SMW
900 0.41 (0.092) 0.03 (0.008) 0.03 (0.012) 0.02 (0.004)
1600 3.52 (0.530) 0.09 (0.006) 0.07 (0.004) 0.04 (0.005)
2500 16.39 (1.526) 0.21 (0.046) 0.17 (0.028) 0.08 (0.014)
3600 61.40 (3.918) 0.39 (0.074) 0.35 (0.067) 0.16 (0.032)
4900 203.52 (10.477) 0.82 (0.152) 0.65 (0.132) 0.33 (0.104)
6400 593.44 (35.205) 1.11 (0.151) 1.04 (0.212) 0.50 (0.155)
8100 1902.60 (219.087) 2.03 (0.494) 2.39 (0.665) 1.07 (0.372)

Table 2: Simulation 1: increasing number of observations n, increasing number of
mesh nodes N , locations randomly scattered. Mean time in seconds taken to solve
the system (2.5) over the 30 simulation replicates. In brackets the standard deviation
of the employed time. The errors associated with the computed solutions is of order
10−5 for BICGSTAB and 10−8 for the other methods.

methodology. Computing times grow less linearly with n in the SMW case.380

4.3. Simulation 3: fixed number of observations n, increasing number381

of mesh nodes N . We sample n = 1125 data, whose locations are randomly selected382

in the unit square, and gradually increase the number of mesh nodes N .383

The comparison again favors the SMW method, which, on average, outperforms384

the LU by an order of magnitude and shows the same order of BICGSTAB and385

GMRES but always with a lower CPU time.386

From all the simulations, we can conclude that the the preconditioner considered387

for the iterative methods performs very well for the problem at hand, since BICGSTAB388

and GMRES exhibit the same order of magnitude of the SMW approach. However,389

we also have evidence that proposed SMW approach outperforms both the iterative390

methods, as well as the standard sparse LU solver.391

5. Estimation of λ by GCV . An appropriate choice of the smoothing param-392

eter λ > 0 is crucial to appropriately balance the data-fidelity and model-fidelity393

terms in Equation (2.1). We may evaluate a candidate λ by means of Generalized394

Cross-Validation (GCV ), a performance criterion originally conceived by Craven and395

Wahba [1978/79], Golub et al. [1979]. GCV provides computational advantages with396
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Observations LU BICGSTAB GMRES SMW
512 4.77 (1.010) 0.36 (0.093) 0.34 (0.076) 0.29 (0.069)
1024 29.47 (2.162) 0.56 (0.075) 0.51 (0.062) 0.37 (0.043)
2048 151.67 (8.982) 0.78 (0.143) 0.80 (0.246) 0.42 (0.090)
4096 386.77 (20.155) 1.37 (0.306) 1.63 (0.608) 0.54 (0.186)
8192 443.60 (100.019) 2.77 (0.384) 2.49 (0.608) 1.05 (0.329)

Table 3: Simulation 2: increasing number of observations n, fixed number of mesh
nodes N . Mean time in seconds taken to solve the system (2.5) over the 30 simulation
replicates. In brackets the standard deviation of the employed time. The errors
associated with the computed solutions is of order 10−4 for BICGSTAB and 10−8 for
the other methods.
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Fig. 4: Left: Simulation 2: increasing number of observations n, fixed number of nodes
N (data locations randomly scattered over the domain); average computing time
with the four considered solvers. Right: Simulation 3: fixed number of observations
n, increasing number of mesh nodes N (data locations randomly scattered over the
domain); average computing time with the four considered solvers.

respect to other popular statistical loss functions such as, e.g., the Akaike Informa-397

tion Criterion, Bayesian Information Criterion, or Mallows’ Cp (see, e.g., Konishi and398

Kitagawa [2007]). Indeed, it does not require the knowledge of the residual variability399

σ2. In turn, GCV evaluation is based on the computation of the so-called equivalent400

degrees of freedom of the model, defined as401

(5.1) edf = tr(SQ) = q + tr(S)402

where S and SQ are given in Equation (2.11) and Equation (2.12) respectively.403

The equivalent degrees of freedom are the sum of two contributions: the number404

of regressors q ∈ N in the parametric part of the model, and tr(S) ∈ R, the degrees405

of freedom associated with the estimate of f , the non-parametric part of the model.406

The GCV function to be minimized is then derived as:407

GCV (λ) = n

n∑
i=1

(
zi − ẑi
n− edf

)2

.408

We consider different methods to efficiently estimate edf . In particular, we develop409

two alternative strategies: exact computation and stochastic approximation.410
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Mesh nodes LU BICGSTAB GMRES SMW
100 0.01 (0.004) 0.01 (0.005) 0.01 (0.012) 0.01 (0.001)
400 0.04 (0.002) 0.01 (0.001) 0.01 (0.001) 0.01 (0.001)
900 0.39 (0.046) 0.04 (0.006) 0.03 (0.004) 0.02 (0.002)
1600 4.14 (0.501) 0.11 (0.012) 0.09 (0.011) 0.06 (0.008)
2500 7.83 (0.386) 0.15 (0.025) 0.13 (0.017) 0.07 (0.008)
3600 17.34 (1.119) 0.26 (0.046) 0.21 (0.036) 0.11 (0.014)
4900 28.95 (1.358) 0.37 (0.050) 0.33 (0.062) 0.19 (0.028)
6400 39.95 (2.994) 0.50 (0.056) 0.42 (0.057) 0.27 (0.039)
8100 50.69 (3.793) 0.61 (0.123) 0.54 (0.060) 0.38 (0.035)

Table 4: Simulation 3: fixed number of observations n, increasing number of mesh
nodes N . Mean time in seconds taken to solve the system (2.5) over the 30 simulation
replicates. In brackets the standard deviation of the employed time. The errors
associated with the computed solutions is of order 10−6 for BICGSTAB and 10−9 for
the other methods.

5.1. Exact computation of GCV . We now study how to efficiently compute411

S, in order to extract its trace, for the computation of the edf in Equation (5.1).412

Note that S is not explicitly computed for the solution of the estimation problem.413

Indeed, to solve the estimation problem, we consider the full system Equation (2.6)414

(see Section 3). Here, instead, we directly resort to the definition of S and T in415

Equation (2.9). As we can see from Equation (2.11), the most critical step in the def-416

inition of S is the factorization and inversion of the N ×N matrix T . Unfortunately,417

since T = T (λ), S has to be recomputed every time we investigate a different level418

of smoothing. Moreover, T is dense, thus, it requires a computationally demanding419

inversion for large N . The first inversion involved in the definition of T is the one420

of R0. This operation is made less computationally demanding by resorting to mass421

lumping. Indeed, R0 is a finite element mass matrix and we can safely use its di-422

agonal approximation. Moreover, R = R⊤
1 R

−1
0 R1 is independent from λ. Thus, its423

computation has to be performed just once, also when assessing different smoothing424

levels.425

Since S = ΨT−1Ψ⊤Q and Ψ⊤Q is a N × n matrix, the computation of S is426

relatively efficient whenever n ≪ N , with a cost of approximately O(Nγn) and γ ∈427

[2, 3]. We can simplify computations with some algebraic manipulations. For instance,428

if the locations are a subset of the nodes, Ψ becomes a binary matrix with a single429

one per row. Then, premultiplying T−1Ψ⊤Q by Ψ reduces to the permutation of its430

columns. Also, the left multiplication by Q can be made more efficient thanks to431

Algorithm 5.1.

Algorithm 5.1 Left multiplication by Q

Require: W,x
1: Compute, factorize and store Υ =W⊤W for possible reuse;
2: Compute υ =W⊤x;
3: Solve Υy = υ;
4: Output x−Wy.

Ensure: Qx

432
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Note that W ∈ Rn×q and q ≪ n. Suppose x ∈ Rn, in the worst-case scenario,433

a simple multiplication by Q is O(n2), while Algorithm 5.1 is O(nq + q3). Observe434

that Algorithm 5.1 does not require the storage of Q. Moreover, thanks to the cyclic435

property of the trace operator, the same algorithm is used in the computation of436

tr(S) = tr(ΨT−1Ψ⊤Q) = tr(QΨT−1Ψ⊤).437

5.2. Stochastic approximation of GCV . An alternative to speed up the com-438

putation of GCV is to approximate edf by a stochastic technique. Recalling that edf439

is the trace of a matrix, we consider the stochastic trace estimation first proposed440

by Girard [1989] and later improved by Hutchinson [1989]. In particular, Hutchin-441

son suggests approximating the trace of a symmetric matrix S ∈ RN×N exploiting442

the formula tr(S) = E[u⊤
SSuS/(u

⊤
SuS)], where uS is a vector of N independent443

samples from a Rademacher distributed random variable. An unbiased estimator of444

edf , denoted by êdf , is then proposed resorting to a Monte Carlo approximation.445

Hutchinson also proves that the choice of Rademacher distribution for uS makes êdf446

satisfy the minimum variance criterion among the unbiased estimators of tr(S), with447

Var[u⊤
S SuS ] = 2

∑
i ̸=j S

2
ij .448

Applications of Hutchinson’s estimator to edf approximation have already been449

proposed, e.g., by Golub and von Matt [1997] in the context of classical Tikhonov450

regularization models. To optimize edf estimation in SR-PDE, we combine Hutchin-451

son’s approach with SMW decomposition, as seen in Section 3. From Equation (2.11)452

we write tr(S) = E[u⊤
S SuS ] = E[u⊤

SΨT
−1Ψ⊤QuS ]. In particular, considering Equa-453

tion (5.1), we have454

(5.2) edf = q + E[u⊤
SΨT

−1Ψ⊤QuS ].455

Passing to Monte Carlo estimators, we approximate edf by456

(5.3) edf ≈ q +
1

r

r∑
i=1

u⊤
i ΨT

−1Ψ⊤Qui,457

where {ui = (ui[1], . . . , ui[n])
⊤}ri=1 are r i.i.d. samples of vector uS , and the Monte458

Carlo mean approximates the expected value in Equation (5.2); in particular, all the459

components of ui follow independent Rademacher distributions, to be simulated, e.g.,460

via Bernoulli samples.461

In order to make the computation more efficient, we take advantage of the SMW462

system solution presented in Section 3. In this case, different from what was done in463

the computation of the exact GCV, we do not compute T−1 explicitly; instead, we464

work directly with the whole system Equation (2.6). In particular, as summarized465

in Algorithm 5.2, we exploit simultaneous calculations collecting all the {ui}ri=1 in466

a n × r matrix US = [u1, . . . ,ur], and we solve a linear system MS = BS with the467

right-hand side BS ∈ R2N×r defined in line 3 of Algorithm 5.2.468

The number of stochastic realizations r for the Monte Carlo mean in Equa-469

tion (5.3) trades off accuracy and computational complexity. We know that the higher470

r, the better the edf approximation. The library fdaPDE uses r = 100 as the default471

value for the number of realizations; this default value has been checked to provide472

good approximations in different experimental settings. The user may set different473

values, still getting strong computational savings, especially when dealing with mas-474

sive datasets and problems with large mesh sizes N . Indeed, the construction of the475

2N × r dense matrix US is less demanding than building T . Similarly, the construc-476

tion of BS is favored by the sparsity of Ψ and the use of Algorithm 5.1 for the left477
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Algorithm 5.2 Stochastic SMW edf computation

Require: Ψ,W,R0, R1

1: Obtain US using Bernoulli distributions;
2: Compute and store U, V as in Equation (3.3);

3: Build and store BS =

[
Ψ⊤QUS

ON

]
and Y =

[
U⊤
S Ψ
ON

]
for possible reuse;

4: Solve MSX = BS using SMW decomposition;

5: Compute êdf i = q + Y i ·Xi, i = 1, . . . , r
where Y i denotes the i-th row of Y and Xi the i-th column of X;

6: Compute êdf = 1
r

r∑
i=1

êdf i.

Ensure: êdf

multiplication by Q. Note that Lines 1-3 are in Algorithm 5.2 and do not depend on478

λ. Hence, if a user needs to compute edf for more than a single λ, BS is available for479

reuse.480

Line 4 of Algorithm 5.2 is the bottleneck of the algorithm, but the SMW decom-481

position makes it rather efficient. In fact, SMW decomposition takes advantage of the482

sparsity pattern of A to make the computing times approximately O(N). Moreover,483

still in Line 4, we solve the system applying SMW decomposition with a right-hand484

side BS , of size 2N × r. In the worst case scenario, this operation costs as solving485

r times a system like (2.5), one for each column of BS as the right-hand side. We486

compare this step with the bottleneck of the exact algorithm: the inversion of T .487

Equation (2.9) shows that T is dense and thus expensive to factorize in terms of488

computing time and memory. Moreover, the usage of T in Equation (2.11) costs as489

solving a dense system with a N × n right-hand side.490

Now consider a fixed number of data points n. We want to evaluate the degrees491

of freedom for a vector of m with different values of the smoothing parameter. From492

tests performed with fdaPDE library, we observe that the computational cost of the493

stochastic strategy proves approximately O(Nmr) in the average case scenario, while494

the cost of the exact method is O(Nγmn), with γ = γ(n) ∈ [2, 3]. Since generally495

r ≪ n, the stochastic approach proves to be much more effective than the exact496

counterpart, especially in the context of large datasets.497

5.3. GCV optimization. Exploiting the convexity of GCV (λ), fdaPDE per-498

forms its minimization by a Newton method. Each iteration of Newton optimization499

takes advantage of the optimized techniques described in Subsection 5.1 and Subsec-500

tion 5.2, to evaluate edf(λ). Unfortunately, each Newton step requires the first and501

second derivatives of edf(λ). These terms are rather straightforward to compute using502

exact methods, but their stochastic estimates are too unreliable. For convenience in503

fdaPDE we have resorted to approximating the derivatives with second-order finite504

differences.505

fdaPDE can hence rely on either an exact Newton or a stochastic three-points506

finite-differences Newton optimization. Simulation studies show that the results pro-507

duced by the stochastic method generally have a high degree of accuracy. Moreover,508

the number of iterations required by the two approaches is comparable and, in par-509

ticular, it is always in the order of units in non-pathological cases.510
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6. Simulation 4: cost of edf computation. We aim to compare the methods511

described in Section 5 in terms of accuracy and computing time. We consider the512

same experimental setting discussed in Subsection 4.3. For a fixed value of λ, we513

want to compute both the solution to the estimation problem and GCV (λ). We fix514

n = 1225, and we progressively increase the mesh refinement from 900 to 4900 nodes.515

We consider 30 replicas of each experimental setting, with three different methods to516

compute edf :517

1. standard : without SMW decomposition and with standard edf computation.518

This method explicitly computes the north-west block of M−1
S , uses it to519

evaluate S and then extracts edf .520

2. exact : SMW system solution and GCV calculated as in Subsection 5.1.521

3. stochastic: SMW system solution and GCV computed as in Subsection 5.2,522

based on r = 100 realizations.523

1000 3000 5000

N

T
im

e

Standard

Exact

Stochastic

O(N)

O(N 
2
)

O(N 
3
)

1

10

100

1000

0.1

Fig. 5: Simulation 4: cost of edf computation, fixed number of observations n, increas-
ing number of mesh nodes N ; computing time with the standard solution (Standard),
with SMW system solution and GCV computed as in Subsection 5.1 (Exact) and with
SMW system solution and GCV computed as in Subsection 5.2 based on r = 100 re-
alizations (Stochastic).

We start from an analysis in terms of execution time. Figure 5 shows that the524

exact method is generally ten times faster than the standard one. Unfortunately,525

it still displays a super-linear (almost cubic) trend in the number of mesh nodes.526

Conversely, the stochastic approach exhibits a linear trend in N . This is because527

Algorithm 5.2 is conceived to bypass the slow inversion of T in the formula S =528

ΨT−1Ψ⊤Q and, instead, it repeatedly exploits SMW-based system solutions with529

different right-hand-sides. Indeed, we recall that Algorithm 5.2 does not only apply530

SMW decomposition for system solution but also for edf estimation. Moreover, the531

method avoids computing S explicitly, and instead only estimates its trace.532

It is difficult to evaluate a priori the relative efficiency of the exact and the533

stochastic approaches since this usually depends on the number of mesh nodes. When534

N is very small, the exact technique might be more effective. Conversely, in a big data535

framework, the stochastic algorithm compares more favorably, with a discrepancy that536

increases as N increases. Accordingly, stochastic edf evaluation is chosen as fdaPDE537

default option for λ selection.538

We now want to inspect the accuracy of stochastic edf estimation. Let us consider539

the case with N = 1600. Despite the variability of the stochastic approach, Figure 6,540
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Fig. 6: Simulation 4: cost of edf computation. Left: 20 stochastic GCV replicas,
r = 100. Right: RMSE.

left, shows that the edf estimation is able to reproduce the GCV curve with high541

accuracy. In particular, stochasticity is almost negligible in terms of the selection of542

the optimal λ when r = 100. Consider also the right panel of Figure 6. This plot543

shows the value of the Root Mean Square Error (RMSE) between the predicted ẑ544

and the noise-filtered data, z− ε. This is the error we would ideally like to minimize.545

Comparing the two plots in the figure, we observe that the minimization of the GCV546

provides a good criterion for the automatic selection of the smoothing parameter, as547

it suggests a value close to the miminimizer of RMSE. Moreover, the variability548

introduced by the stochastic approximation is irrelevant with respect to the error549

made by minimizing the GCV instead of the unknown RMSE.550

7. Case study: analysis of neural connectivity. We here show a more com-551

plex example where we exploit the techniques illustrated in the preceding sections552

to analyze neuroimaging data. The recent development of noninvasive neuroimaging553

techniques represents a great challenge for the scientific community. Modern imag-554

ing techniques are now able to guarantee effective visualization of the human brain555

structure, function, and connectivity, with high resolution. Neuroscientists agree (see,556

e.g., Glasser et al. [2013] and its references) that a fair amount of the neural activity557

captured by brain scans is due to the cerebral cortex: a thin layer of gray matter558

with a highly folded geometry. As such, the cortex can be represented as a complex559

bidimensional Riemannian manifold, embedded in a 3D space. Still, nowadays, many560

neuroimaging studies are carried out neglecting this spatial structure, exploiting 3D561

methods that rely on the Euclidean distance. This choice is inappropriate since ar-562

eas of the cortex having different functionalities may be close in terms of Euclidean563

distance, due to the highly convoluted anatomy of the cortex. In turn, studies based564

on 2D geodesic distances along the surface are more likely to capture the intrinsic565

geometry of the cortex. This has encouraged the development of new statistical mod-566

els designed to fit complex spatial regression problems where data are located on567

convoluted domains or surfaces [see, e.g., Chung et al., 2014, Lila et al., 2016]. As568

mentioned in Section 2, SR-PDE naturally encompasses such a feature, being able to569

handle data observed over two-dimensional Riemannian manifolds.570

In this illustrative case study, we analyze a high-dimensional neuroimaging sig-571

nal on the brain cortex. Here we consider data collected by the Human Connectome572

Project [Glasser et al., 2013], obtained from functional Magnetic Resonance Imag-573

ing (fMRI), on a healthy subject in a resting state. The fMRI signal captures the574
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neural activity on the cerebral cortex, measuring the changes in the concentration of575

deoxy-hemoglobin in the blood. The preprocessing pipeline of the Human Connec-576

tome Project automatically performs an anatomic alignment of the signal to a freely577

available template of cerebral cortex anatomy, obtained by averaging the cortical sur-578

face of several healthy adult volunteers. In particular, we consider the left hemisphere579

of the template cortex, represented by a triangular mesh with about 32000 nodes; see580

Figure 1. The preprocessed fMRI data set consists of a time series for each node of581

this triangular mesh.582

We show an analysis of the Functional Connectivity (FC) obtained from the583

fMRI signal. The FC maps allow us to explore the degree of interconnection between584

different regions of the cortex. These maps are computed starting from the pairwise585

correlation between the signals referred at each node and the average time series on586

a selected Region Of Interest (ROI). Since the correlation is restricted to the interval587

[−1, 1], the so-called Fisher’s r-to-z transformation [see, e.g., Fisher, 1915] is hence588

applied to obtain an unconstrained signal, leading to the FC map. This map highlights589

the areas of the cortex that are more closely related to ROI. In Figure 1, we consider590

as ROI the cuneus, a small portion of the occipital lobe of the brain, which is involved591

in several basic visual processes. Resting-state cuneus activity allows neuroscientists592

to detect, for example, some forms of depression or severe gambling addiction. The593

right panel of Figure 1 highlights the cuneus, whilst the left panel shows the FC with594

respect to the cuneus, for a healthy subject at resting state.595

7.1. SR-PDE analysis. We consider here a nonparametric approach: zi =596

f(pi) + εi where zi is the FC sampled at each node, f is the true FC and εi are597

random errors. We address the problem of identifying a proper smoothing level, using598

the stochastic GCV approach seen in Algorithm 5.2. Figure 7, left panel, reports ten599

stochastic GCV functions, obtained setting different random seeds, sampling each600

time r = 100 realizations. As in the simulation studies, we observe that the GCV is601

quite stable. Setting the tolerance to 1e−03, the minimum is reached after only six602

iterations. In particular, the cost of a single stochastic Newton step is relatively small603

(approximately 19 seconds on a i7-6700HQ, 2.60 GHz, 8 GB RAM machine).604

In contrast with the stochastic finite-differences Newton approach, exact edf eval-605

uation is not able to run on a 16 GB RAM machine, since the computational burden606

imposed by a 32k nodes mesh makes the process abort. As a consequence, also the607

standard edf computation, mentioned Section 6 and used as a default strategy be-608

fore conceiving the exact/stochastic methods, is not viable. This is a crucial result609

because it highlights the two key contributions of the stochastic approach: it is able610

to save time at the price of negligible losses in terms of precision; moreover, there are611

situations where the stochastic GCV is the only computationally viable option.612

Figure 7, right panel, shows the estimate f̂ , obtained with the value of λ selected613

with stochastic GCV , minimized with Newton method. We observe that the method614

is able to choose an appropriate level of smoothing, producing a smooth estimate615

that captures the main features of the signal. The analysis could be also enriched616

by the inclusion of space-varying covariates in the model, such as for instance the617

cerebral cortex thickness. We point out that smoothing is a crucial step for subsequent618

analysis, and it enables the use of functional data analysis techniques for these complex619

data [see, e.g., Ferraty and Vieu, 2006, Ramsay and Silverman, 2008, Kokoszka and620

Reimherr, 2017, for introductions to functional data analysis].621

8. Extension to more complex SR-PDE problems. The previous sections,622

for simplicity of exposition, have focused on a basic formulation of SR-PDE. However,623
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Fig. 7: Analysis of neuroimaging data in Figure 1. Left panel: ten stochastic GCV
functions; right panel: an estimate of f .

SR-PDE is a rich class of techniques that includes various other more articulated mod-624

els, already implemented in the fdaPDE library [see, e.g., the review in Sangalli, 2021].625

The efficient techniques described in this work are appropriately adapted to deal with626

these more complex model settings. In some of these contexts, the strategies described627

here are indeed vital, since the estimation problem has to be solved recursively, as in628

the case of generalized linear SR-PDE, or for large spatio-temporal discretization, as629

for space-time SR-PDE. This section briefly outlines these two models extensions.630

The generalized linear version of SR-PDE, developed in Wilhelm and Sangalli631

[2016], allows to consider response variables that have any distribution within the632

exponential family, thus significantly broadening the possible applications of these633

methods. Let Z1, . . . , Zn be independent responses coming from a distribution in the634

exponential family and assume that635

g(E[Zi]) = θi(β, f) = w⊤
i β + f(pi), i = 1, . . . , n,636

where E[Zi] is the expected value of the response variable Zi, conditionally on the co-637

variates, and g is a known link function, determined by the specific distribution of the638

response. The two unknowns, β and f , are estimated minimizing a functional likewise639

(2.1), but where the first term is replaced by
∑n

i=1 l(zi; θi), with l(·; θi) the negative640

log-likelihood of the response. This problem is computationally more demanding than641

minimization of Equation (2.1) since the new functional is no longer quadratic. The642

minimization is tackled with Functional Penalized Iterative Reweighted Least Squares643

(F-PIRLS); see Wilhelm and Sangalli [2016]. Each F-PIRLS step requires solving a644

weighted least-squares optimization problem of the type (2.1), and is solved using645

the SMW decomposition described in Section 3, suitably adapted to account for the646

presence of the diagonal weight matrix in the least square term. The selection of the647

smoothing parameter is currently performed by minimization of the GCV on a grid648

of candidate values, with the GCV evaluated post-convergence of F-PIRLS. Possi-649

ble future extensions shall involve the introduction of optimization methods, possibly650

performed at each F-PIRLS step, as done, for instance, by Gu [1992], Wood [2000,651

2004].652

SR-PDE is also able to handle spatio-temporal problems. In this case, the data are653

sampled in a spatio-temporal domain Ω×T, where T is a finite time interval of interest.654

Bernardi et al. [2017] and Arnone et al. [2019] considers two different estimation655

functionals: the former involves two penalty terms, to regulate the smoothness of the656
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spatio-temporal field in space and in time, the latter entails a unique penalty that657

involves a parabolic PDE. The spatio-temporal problem is discretized using finite658

elements in space and either splines or finite differences in time; it is thus reduced659

to a system having the same structure as (2.5), but with larger blocks, that involve660

the bases in both space and in time [see, e.g. Sangalli, 2021, Arnone et al., 2021].661

Thanks to the similar structure of the problem system, it is possible also in this case662

to resort to SMW decomposition, as well as to stochastic GCV approximation. These663

strategies are indeed of crucial importance in this setting, as the dimension of the664

space-time estimation problem may be very large.665

9. Conclusions. In this work,, we investigated the computational tractability of666

SR-PDE. An appropriate use of SMW identity permits us to significantly decrease the667

time and memory consumption required to solve an SR-PDE problem. The simulation668

study of Section 4 displays a computational cost between O(N) and O(N2), where N669

is the number of mesh nodes, with a gain of one magnitude order over the standard670

sparse LU solution of the estimation problem.671

Particular attention has also been devoted to the automated selection of the672

smoothness parameter, via minimization of the GCV criterion. The selection of an673

appropriate value of the smoothing parameter is in fact a crucial aspect of the method-674

ology but is computationally highly demanding. The simulation study in Section 6675

shows a significant reduction in the computational cost of selecting the smoothing676

parameter when using the proposed SMW-based stochastic trace estimation tech-677

nique, to evaluate the edf needed for computation of the GCV index. Stochastic edf678

estimation is also shown to scale approximately linearly with N .679

Finally, this work has focused on a basic formulation of SR-PDE estimation, but680

we briefly outlined in Section 7 the broad applicability of this class of models, which681

have proven to be highly valuable for dealing with a variety of complex estimation682

problems.683
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