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Unmapped tent pitching schemes by
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Gabriele Ciaramella, Martin J. Gander and Ilario Mazzieri

1 Introduction

The mapped tent pitching algorithm (MTP) is a very advanced domain de-
composition strategy for the parallel solution of hyperbolic problems. MTP
was introduced in [4] and computes the solution by iteratively constructing
new polygonal space-time subdomains, called tents, in a way that the hy-
perbolic problem can be solved exactly within them. Due to the polygonal
space-time structure of the subdomains, the numerical solution is obtained
by a process that maps the tents into space-time cylinders (rectangles for
1D spatial problems), computes the solution in the transformed subdomains,
and maps it back into the original tents. Due to the tent mapping leading to
singularities, special time integrators are needed to mitigate order reduction.

To avoid this, we introduce a new, unmapped tent pitching algorithm
(UTP), based on a conceptual idea from Nievergelt in 1964 [5]: “In numeri-
cal analysis, one has always tried to speed up computation by reducing the
amount of work to be done, not by performing redundant computations.” In-
troducing redundant computations, we eliminate the mapping process from
the MTP with a Schwarz waveform relaxation method (SWR). We present
our new UTP for the model problem

∂ttu(x, t) = c2∂xxu(x, t) for (x, t) ∈ Ω × (0, T ),

u(x, 0) = g0(x) and ∂tu(x, 0) = g1(x) for x ∈ Ω,
u(0, t) = u(1, t) = 0 for t ∈ [0, T ],

(1)
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where Ω = (0, 1), T > 0, and g0 and g1 are sufficiently regular functions.
We first explain in Section 2 the classical MTP process for the solution of
(1) and characterize the corresponding advancing front in case of a uniform
space decomposition. Then, in Section 3, we introduce a red-black Schwarz
waveform relaxation method (RBSWR) and prove a particular relation be-
tween RBSWR and MTP. This relation leads us very naturally to introduce
our UTP in Section 4.

2 The mapped tent-pitching algorithm (MTP)

To describe the MTP algorithm introduced in [4] for the solution of (1),
consider a set Ω0 = {xj}Nj=0 ⊂ Ω of nodes 0 = x0 < x1 < · · · < xN = 1.
The core of MTP is the strategy used to pitch tents at the nodes and define
the advancing front of the computed exact solution. In our one-dimensional
setting, a tent is a hat-function φj with value 1 at the node xj and zero
at the remaining nodes of Ω0. The advancing front (at iteration k ∈ N) is
a continuous functions τMTP

k : Ω → R, which is linear in the subintervals
(xj , xj+1). The MTP iteration is initialized with τMTP

0 ≡ 0 and at the k-
th iteration a new advancing front τMTP

k is computed from τMTP
k−1 with the

property that τMTP
k (x) ≥ τMTP

k−1 (x) for all x ∈ Ω. The process terminates

when an iteration k = K > 0 is reached with τMTP
K ≡ T . To obtain τMTP

k

one needs to pitch a new tent on the front τMTP
k−1 , that means to select an

appropriate node xj in Ω0 and a vkj > 0, and update the advancing front as

τMTP
k (x) := τMTP

k−1 (x) + vkj φj(x). (2)

The node xj and the value vkj are computed to ensure that |(τMTP
k )′(x)| ≤ 1

c

for all x ∈ Ω \ Ω0. This is a CFL condition [2] and since τMTP
k is piecewise

linear, it is equivalent to1

|τMTP
k (x`)− τMTP

k (x˜̀)|
|x` − x˜̀| ≤ 1

c
for all ` = 0, . . . , N and ˜̀∈ N`, (3)

where N` denotes the set of indices of the neighboring nodes to x`. Now,
since φj is zero on Ω0 \ {xj}, one has that τMTP

k (x`) = τMTP
k−1 (x`) for all

x` ∈ Ω0 \ {xj}. Thus, given a τMTP
k−1 satisfying (3), the new tent must be

pitched in a way that τMTP
k satisfies (3) as well, that is

|τMTP
k−1 (xj) + vkj φj(xj)− τMTP

k−1 (x˜̀)|
|xj − x˜̀| ≤ 1

c
for all ˜̀∈ Nj . (4)

1 In [4], condition (3) appears with an additional constant depending on the shape
regularity of the decomposition. This constant is 1 in our one-dimensional framework.
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Algorithm 1 Mapped Tent Pitching (sequential)

Require: A decomposition Ω0.
1: Set k = 0 and initialize τMTP

k ≡ 0.
2: while τMTP

k 6≡ T do
3: Compute the set Jk.
4: Select an index j ∈ Jk, the corresponding node xj and set vkj = wkj .

5: Update the advancing front: τMTP
k (x) := τMTP

k−1 (x) + vkj φj(x).

6: Solve (1) in the domain between τMTP
k and τMTP

k−1 (below the new tent).
7: Update k = k + 1.
8: end while

Since vkj φj(x) ≥ 0, τMTP
k−1 satisfies (3), and φj(xj) = 1, (4) becomes

vkj ≤ min˜̀∈Nj( |xj−x ˜̀|
c + τMTP

k−1 (x˜̀) − τMTP
k−1 (xj)

)
. To satisfy this condition

and maximize the advancement of the front, we define

wk` := min

(
T − τMTP

k−1 (x`), min˜̀∈N`
( |x` − x˜̀|

c
+ τMTP

k−1 (x˜̀)− τMTP
k−1 (x`)

))
(5)

for ` = 1, . . . , N , and the set of admissible values vkj as Jk := {` ∈
{1, . . . , N} : wk` > 0}. Thus, at the k-th iteration MTP selects any node
xj with j ∈ Jk and pitches a tent of height vkj = wkj . Once a new tent is
pitched, MTP solves the problem within this new tent by a mapping process
that transforms the tent into a cylinder (a rectangle in this one-dimensional
setting). The overall MTP procedure is given in Algorithm 1. This is the se-
quential version of MTP. A parallel version can be easily obtained by pitching
multiple tents at each iteration, namely by modifying Step 4 and Step 5:

4: Select a set Sk ⊂ Jk of all indices j ∈ Sk such that the corresponding
nodes are not neighbors. Pick all nodes xj with j ∈ Sk and set vkj = wkj .

5: Update the advancing front: τMTP
k (x) := τMTP

k−1 (x) +
∑
j∈Sk v

k
j φj(x).

We illustrate the parallel MTP procedure with an example using a space
decomposition of 7 points (xj , j = 0, . . . , 6), see Fig. 1, top left. The MTP
is initialized with τMTP

0 ≡ 0. For k = 1 all nodes can be potentially selected,
that is J1 = {0, . . . , 6}, but not all of them can be simultaneously selected.
Thus, we assume that the nodes x1, x3 and x5 are selected and three tents
are pitched on τMTP

0 . The new resulting front is τMTP
1 , which is represented

by the red line in Fig. 1, top left. Notice that the slopes of τMTP
1 are lower

or equal to the slopes of the characteristic curves, because of condition (5)
and the fact that the decomposition considered is nonuniform2. Once τMTP

1

is obtained, the set of admissible nodes is J2 = {0, 2, 4, 6}. These can be all
selected and give rise to the hat-functions (multiplied by the corresponding
values vkj ) represented by the blue dashed lines in Fig. 1, top right. The new

front τMTP
2 (blue line in Fig. 1, top right) is then obtained by summing all

2 For uniform decompositions, tents are always pitched along characteristic lines.
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Fig. 1 Top row, left: MTP iteration 1: τMTP
1 (red) and τMTP

0 (black). The tents
v1jφj coincide with the red lines. The cross on the top right gives the slopes of the

characteristic lines. Top row, right: MTP iteration 2: τMTP
2 (blue), τMTP

1 (red),
new tents v2jφj (blue dashed). Middle row, left: MTP iteration 3: τMTP

3 (magenta),

τMTP
2 (blue), new tents v3jφj (magenta dashed). Middle row, right: MTP iteration

4: τMTP
4 (black), τMTP

3 (magenta), new tents v4jφj (black dashed). Bottom row,
left: Full decomposition constructed by MTP. Bottom row, right: First three iter-
ations of SWR. The gray areas are the regions where the exact solution is computed.

these functions to τMTP
1 . Repeating this process at iterations 3 and 4 leads to

the fronts τMTP
3 (magenta line in Fig. 1, middle left) and τMTP

4 (black line in
Fig. 1, middle right). At convergence, we obtain the decomposition shown in
Fig. 1, bottom left, which is not uniform since the initial space decomposition
Ω0 is not uniform. It is finer (in time) where the space decomposition is finer,
and the front advances more slowly there. Note also that at each iteration
the MTP process solves the problem below characteristics, and the conditions
used to pitch new tents are satisfied when exact data is available on the lower
boundary of the new tent and can be propagated into it. We now characterize
the behavior of the advancing front for a uniform decomposition.

Lemma 1 (MTP advancing front for uniform decompositions)

Let the decomposition Ω0 be uniform with h := xj−xj−1 for j = 1, . . . , N .
Consider any interior subinterval I = [xL, xR], with R ∈ N even and L = R−
1. Assume that the (parallel) MTP selects alternatingly odd and even nodes
of Ω0 at odd and even iterates, respectively. Then, starting from τMTP

0 ≡ 0,
we have that τMTP

1 (xL) = h
c and τMTP

1 (xR) = 0, and for any n > 0 that
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τMTP
2n (xL) = (2n− 1)h/c τMTP

2n (xR) = 2nh/c, (6a)

τMTP
2n+1(xL) = (2n+ 1)h/c, τMTP

2n+1(xR) = 2nh/c. (6b)

Proof Denote by N` the set of neighboring nodes of x`. The proof works by
induction and uses (2) and (5). We begin with the base case n = 0. Since
τMTP
0 ≡ 0, using (5) we compute v1L = h

c . Thus, (2) leads to τMTP
1 (xL) = h

c
and τMTP

1 (x`) = 0 for all ` ∈ NL, and then τMTP
1 (xR) = 0. Now, we consider

the induction step. Thus, assuming that (6a) and (6b) hold, we use (2) to
write τMTP

2n+2(x`) = τMTP
2n+1(x`) + v2n+2

R φR(x`) for ` ∈ {R,L}. Using (5) with
the fact that the decomposition is uniform, we obtain for ` ∈ NR that

v2n+2
R =

h

c
+ τMTP

2n+1(x`)− τMTP
2n+1(xR) =

h

c
+ (2n+ 1)

h

c
− 2n

h

c
= 2

h

c
,

and thus τMTP
2n+2(xL) = (2n+1)hc and τMTP

2n+2(xR) = (2n+2)hc . Now, (2) implies

that τMTP
2n+3(x`) = τMTP

2n+2(x`) + v2n+2
L φL(x`) for ` ∈ {R,L}, and (5) allows us

to compute v2n+2
L = 2hc . Hence, we get that τMTP

2n+3(xL) = (2n + 3)hc and

τMTP
2n+3(xR) = (2n+ 2)hc , and the claim follows. �

3 Red-black Schwarz waveform relaxation (RBSWR)

Consider a decomposition of Ω into N − 1 subdomains Ij = (xj , xj+2), j =
0, . . . , N − 2, where xj are the nodes in Ω0. This is a decomposition with
generous overlap. Let R = {0, 2, 4, . . . } and B = {1, 3, 5, . . . } be two subsets
of {0, 1, . . . , N−2}. RBSWR is defined by solving in parallel the subproblems

∂ttu
k
j (x, t) = c2∂xxu

k
j (x, t) in Ij × (0, T ), (7)

ukj (x, 0) = g0(x) and ∂tu
k
j (x, 0) = g1(x) for x ∈ Ij , (8)

ukj (xj , t) = uk−1j−1 (xj , t) for t ∈ [0, T ], (9)

ukj (xj+2, t) = uk−1j+1 (xj+2, t) for t ∈ [0, T ], (10)

where k is the iteration index, and j ∈ R for k odd and j ∈ B for k even.
Moreover, the exterior boundary conditions have to be appropriately replaced
for j = 0 at x0 and for j = N − 2 at xN−1. Now, we assume that the decom-
position Ω0 is uniform and denote the overlap by δ = xj−xj−1. Convergence
of (7) was proved in [3, Theorem 1], where it is shown that the exact solution
is obtained for k ≥ Tc

δ . The convergence behavior depends on the propaga-
tion of the exact solution in the overlap; see [3, Figure 1] and Fig. 1, bottom
right. In particular, it is possible to show that at odd iterations k = 2n+ 1,
n = 0, 1, 2, . . . , the exact solution is computed in the overlap below the char-
acteristic curve intersecting the interface {xL} × (0, T ) at (2n+ 1) δc , cf. Fig.
. 1, bottom right. Similarly, at even iterations k = 2n, n = 1, 2, . . . , the exact
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Fig. 2 First four iterations of the red-black SWR for a 5-subdomain case. The gray
areas are the regions where the exact solution is computed.

solution is computed in the overlap below the characteristic curve intersecting
the interface {xR} × (0, T ) at 2n δc , cf. Fig. . 1, bottom right. Thus, we can
define a RBSWR advancing front, denoted by τRBSWR

k (x), as the function
lying on the characteristic curves and such that below its graph the method
has already computed the exact solution, independently of the initial guess
u0. An example of the first 4 iterations of RBSWR is given in Fig. 2. The
fronts τRBSWR

k (x) are red and black lines delimiting the gray regions where
the exact solution has been computed.

The RBSWR advancing front is characterized in the next lemma, whose
proof can be deduced from Fig. 1, bottom right, and Fig. 2.

Lemma 2 (RBSWR advancing front)

Assume that the decomposition Ω0 is uniform with h = xj − xj−1 for
j = 1, . . . , N . Consider any interior subinterval I = [xL, xR], with R ∈ N
even and L = R − 1. Consider the RBSWR with overlap δ = xR − xL and
initialized with any (sufficiently regular) function u0 such that τRBSWR

0 ≡ 0.
The advancing front τRBSWR

k satisfies τRBSWR
1 (xL) = δ

c , τRBSWR
1 (xR) = 0,

and, for any n = 1, 2, . . . , the relations

τRBSWR
2n (xL) = (2n− 1)δ/c, τRBSWR

2n (xR) = 2nδ/c, (11a)

τRBSWR
2n+1 (xL) = (2n+ 1)δ/c, τRBSWR

2n+1 (xR) = 2nδ/c. (11b)

The relation between MTP and RBSWR arises immediately by comparing
Lemma 1 and Lemma 2 and it is stated in the following theorem.

Theorem 1 (RBSWR and MPT for uniform decompositions)

Consider a uniform decomposition Ω0 with h = xj−xj−1 for j = 1, . . . , N .
Assume that the (parallel) MTP selects alternately odd and even nodes of Ω0

at odd and even iterates, respectively. Further, notice that the overlap is δ = h.
Then, for any initial guess u0 such that τRBSWR

0 ≡ 0, the fronts τMTP
k and

τRBSWR
k coincide in all interior nodes of Ω0, thus in all interior subintervals.
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Fig. 3 First four iterations of UTP on a 5 subdomain decomposition. Red and black
boxes are the space-time subdomains constructed by UTP at odd and even iterations.
The black lines correspond to the tents that MTP constructs. The blue hatched
regions are the portions of the domain where UTP computes the exact solution.

4 Unmapped tent-pitching

Theorem 1 suggests that the mapping process is not necessary to obtain the
exact solution below the tents. This process can be avoided by using SWR
on appropriately defined space-time subdomains, even though few redundant
computations need to be performed. The key idea is to consider rectangular
space-time subdomains having the same height of the tents pitched on the
space subdomains and width equal to the length of the space subdomains
themselves. The space-time subdomains can be considered as rectangular
tents, in which the solution can be computed directly, using, e.g., a time-
stepping method, without the need of mapping the tent into a rectangular
box (the subdomain is already a rectangular tent!). We call this approach the
unmapped tent pitching (UTP) algorithm, and describe it in detail for a uni-
form space decomposition Ω0 and for a parallel MTP selecting alternatingly
odd and even nodes. Extensions to nonuniform decompositions and higher
dimensions are possible, but beyond the scope of this short manuscript. They
will be presented in the future work [1]. The UTP process begins by selecting
the odd nodes of Ω0 and computing the heights v0j of the tents that the MTP
would pitch. Instead, rectangular space-time subdomains Tj are pitched, and
one RBSWR iteration is performed restricted on them. This step is shown in
Fig. 3, top left, where the three (red) subdomains are represented together
with the tents that the parallel MTP would pitch. RBSWR computes the
exact solution below the tents, as represented by the blue hatched regions in
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Algorithm 2 Unmapped Tent Pitching by RBSWR

Require: A decomposition Ω0 of N nodes and an initial guess function u0.
1: Set k = 1 and v0j = 0 for all j = 1, . . . , N .

2: while ∃j ∈ {0, 1, . . . , N − 1} : vk−1
j 6= T do

3: Set Jk = {1, 3, . . . } if k is odd and Jk = {2, 4, . . . } if k is even.

4: Use (5) to compute the heights vkj = wkj + vk−1
j for all j ∈ Jk.

5: For each j ∈ Jk pitch a rectangular subdomain Tj := [xj−1, xj+1]× [vk−1
j , vkj ].

6: Solve (7) to get uk+1
j in Tj for all j ∈ Jk, and extend them by u0 above Tj .

7: Update k = k + 1.
8: end while

Fig. 3, top right. However, wrong approximations are computed in the areas
above the tents, which correspond to the regions where redundant compu-
tations are performed. The second iteration of the UTP is shown in Fig. 3,
top right. Here, the new pitched rectangular subdomains are depicted in
black. Within them one RBSWR iteration is performed. The exact solution
is obtained below the classical MTP tents, while redundant computations
are performed above them. As a result, the exact solution is computed in the
blue hatched area depicted in Fig. 3, bottom left. By repeating this process
iteratively one obtains the subdomains and the exact solution areas shown in
Fig. 3 for k = 3 and k = 4. The overall UTP Algorithm 2 terminates when
the exact solution is computed in the entire space-time domain.

To conclude, our new unmapped tent pitching algorithm computes to the
mapped tent pitching algorithm equivalent approximations, using redundant
computations. It is however cheaper, since it does not have to compute the
tent mappings, and the volume of the redundant computations is also present
in the tents after the mapping. Its implementation is also straightforward,
and one can use standard time integrators, since there is no danger of order
reduction without the tent mapping.
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