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Abstract

We introduce a novel Fictitious Domain (FD) unfitted method for interface problems that achieves
optimal convergence without the need for adaptive mesh refinements nor enrichments of the Finite
Element spaces. The key aspect of the proposed method is that it extends the solution into the fictitious
domain in a way that ensures high global regularity. Continuity of the solution across the interface is
enforced through a boundary Lagrange multiplier. The subdomains coupling, however, is not achieved by
means of the duality pairing with the Lagrange multiplier, but through an L2 product with the H1 Riesz
representative of the latter, thus avoiding gradient jumps across the interface. Thanks to the enhanced
regularity, the proposed method attains an increase, with respect to standard FD methods, of up to
one order of convergence in energy norm. The Finite Element formulation of the method is presented,
followed by its analysis. Numerical tests demonstrate its effectiveness.

Keywords: Interface problems, Fictitious Domain method, Unfitted methods, Generalized saddle-point
problems, Optimal convergence rate.

1 Introduction

Interface problems, which occur in various application fields, involve the interaction between two subdomains
that share a common interface. These subdomains are characterized by differential problems featuring dis-
tinct operators and/or coefficients, coupled through suitable conditions at the interface, which typically
express conservation principles (e.g., conservation of mass and momentum). Illustrative instances of inter-
face problems include heat transfer problems with discontinuous coefficients and fluid-structure interaction
problems.

The numerical approximation of such problems is often based on meshes that are fitted to the interface
[4, 16, 25, 50]. In many cases, however, the fitted approach is not suitable or appropriate, and unfitted
approaches in which the interface is allowed to cross mesh elements are preferable, e.g. when the domains
have a complicated shape or when the interface is moving. As a motivating example we consider fluid-
structure interaction problems, in which the motion of the solid domain would necessitate, if fitted methods
were used, continuous (and time-consuming) remeshing, or the deformation of a preconstructed mesh, as
in Arbitrary Eulerian-Lagrangian (ALE) methods [7, 17, 34], which however places severe limitations on
the range of displacements that can be treated. Because of the low regularity of the solution across the
interface, however, the Finite Element method (FEM) applied to meshes that are not fitted at the interface
leads to suboptimal convergence rates [4], unless ad hoc expedients are introduced into the method [37],
such as modifying or enriching the basis functions with special elements that satisfy the interface conditions
[38–40, 51] or discontinuous elements possibly in combination with Nitsche’s method [1, 23, 33], in the spirit
of CutFEM (cut Finite Element Method) [18, 19] or XFEM (extended Finite Element Method) [42].

An attractive approach to interface problems, which falls into the family of unfitted methods, is the
Fictitious Domain (FD) method, which consists of extending the solution defined on one subdomain to
the other subdomain, the latter being often enclosed into the former, and on defining a new differential
problem whose solution, if restricted to the external subdomain, coincides with the one of the original
problem. FD domain methods (also known as domain embedding methods) were introduced to deal with
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differential problems defined in complex geometries, by embedding the computational domain in geometries
of simpler shape [30, 35, 45]. Moving from the Immersed Boundary Method for fluid-structure interaction
problems [44], the FD method has been applied to the treatment of interface problems [11, 14]. Typically,
the solution defined in the external subdomain is extended so that it coincides with the solution defined in
the internal subdomain, a constraint that is imposed by distributed Lagrange multiplier (DLM), leading to
the so–called DLM/FD method [3, 12, 13, 31, 48, 49]. Such method is particularly suitable in the context
of fluid-structure problems, whereby the fluid can be solved on a fixed Eulerian mesh, without the need of
following the movement of the structure, which is solved on an independent Lagrangian mesh. However, the
DLM/FD method gives no guarantee that the solution of the extended problem is smooth; indeed, because
of the way such an extension is constructed, the solution typically features discontinuities in the normal
derivatives across the interface, thus limiting the order of convergence [3, 4]. To overcome this issue, in
the context of domain embedding, in [9] an adaptive solution method is proposed that relies on a nested
inexact preconditioned Uzawa iteration. A current trend to alleviate accuracy problems of the DLM/FD
method relies on cutFEM or XFEM, namely on enriching or duplicating degrees of freedom at the interface
[27, 46, 47]. Compared with standard FD methods, however, these methods come at the price of some
computational challenges, related e.g., to the need of tracking the interface position and its intersections
with mesh elements [1, 26, 41], as well as a certain implementation effort or intrusive changes in existing
software packages [1]. An alternative to the DLM/FD method is to extend the solution by imposing only the
continuity at the interface, through a boundary Lagrange multiplier (BLM) [2, 5, 15]. However, the Lagrange
multiplier induces a jump in the conormal derivative of the solution across the interface, thus making the
BLM/FD method suffer from similar convergence issues to the DLM/FD method [2].

The aim of this work is to propose an unfitted FD method for interface problem, that is able to achieve,
in case of regular data, optimal convergence order, without resorting, as for existing approaches, to adaptive
mesh refinements or modifications and/or enrichments of the FEM space, with their consequent compu-
tational and implementation challenges. The idea behind the proposed method is to extend the solution
into the fictitious domain in a way that yields high global regularity. Unlike the DLM/FD method, the
extension of the external domain solution is not forced to coincide with the internal domain solution, but
only continuity at the interface is imposed through a BLM. However, unlike the BLM/FD method, we do
not impose consistency with respect to the original problem directly through the duality pairing with the
Lagrange multiplier, but rather through the L2 product with an additional distributed field. Such field
is in fact the H1 Riesz representative of the Lagrange multiplier composed with the trace operator, and
is obtained by introducing an additional equation in the internal domain, namely a Poisson problem with
reaction. Remarkably, the proposed method can be easily implemented in standard FEM software packages.

The outline of this paper is as follows. In Section 2, we introduce the class of interface problems that
are addressed in this work. In Section 3, we present existing FD formulations to approximate the problems
introduced above. Then, in Section 4, we introduce our proposed FD formulation. In Section 5, we introduce
its Finite Element formulation and we carry out its analysis. Finally, in Section 6, we present some numerical
tests.

Concerning the notation, in this work we denote by ∥ · ∥s,Ω the usual norm in the Sobolev space Hs(Ω).
In particular, ∥ · ∥0,Ω denotes the L2(Ω) norm. Similarly, we denote by (·, ·)s,Ω the inner product in the
Sobolev space Hs(Ω). We denote the lines of grouped equations by subscript roman cardinal numbers. For
example, the lines of equation (1) are referred to as (1)I, (1)II, and so on.

2 Interface problems

Let Ω ∈ Rd (for d = 2, 3) be a bounded domain, partitioned into two non-overlapping subdomains Ω1 and
Ω2 (i.e. Ω = Ω1 ∪ Ω1 and Ω1 ∩ Ω2 = ∅). In this paper we will assume for simplicity that one of the two
subdomains (namely Ω2) does not touch the boundary of Ω (see Fig. 1), although the results are easily
generalized without this assumption. Then, we will refer to Ω1 and to Ω2 as the external and internal
subdomains respectively, and we will denote by Γ = ∂Ω2 the interface between the two subdomains. We
assume that both ∂Ω and Γ are sufficiently regular (for simplicity, let us consider C∞ regularity). We denote
by ni, for i = 1, 2, the unit vector, normal to the boundary and pointing outward from Ωi. Finally, let us
consider a partition of the external boundary ∂Ω into the non-overlapping (possibly empty) subsets ΓD and

2



Figure 1: Computational domain Ω partitioned into the subdomains Ω1 and Ω2. The red curve represents
the interface Γ. The boundary of Ω is split into ΓD and ΓN.

ΓN.
We consider the following general form of interface problem:

L1ũ1 = f1 in Ω1,

L2ũ2 = f2 in Ω2,

ũ1 = ũ2 on Γ,

∂L1
n1
ũ1 + ∂L2

n2
ũ2 = 0 on Γ,

ũ1 = 0 on ΓD,

∂L1
n1
ũ1 = 0 on ΓN,

(1)

where Li are second order differential operators (for i = 1, 2), and ∂Li
n are their conormal derivatives in

direction n, while fi ∈ L2(Ωi) denote forcing terms. We consider homogeneous Dirichlet and Neumann
boundary conditions on the subsets ΓD and ΓN, respectively.

A paradigmatic example is when both Li are associated with the Laplace operator, albeit with different
coefficients (µ1 ̸= µ2) in the two subdomains:

Liu = −µi∆u,

∂Li
n u = µi∇u · n.

(2)

In this case, the operator Li is associated with the following bilinear form, defined on the set V ⊆ Ω:

aVi (u,w) =

∫
V

µi∇u · ∇w.

Generally speaking, we denote by aVi , for i = 1, 2 the bilinear forms associated with the operators Li, such
that aΩi = aΩ1

i + aΩ2
i and for which the Green formula holds (with E ∈ {Ω,Ω1,Ω2}):∫

E

(Liu) v = aEi (u, v)− ⟨∂Li
n u, v⟩∂E .

With the symbol ⟨·, ·⟩∂E we denote the duality pairing between H1/2(∂E) and its dual H−1/2(∂E), where
the trace operator applied to the second argument is left implicit. Then, it is well-known that the weak
formulation of (1) reads as follows.

Problem 1. Find ũ ∈ H1
0,ΓD

(Ω) = {ṽ ∈ H1(Ω), ṽ
∣∣
ΓD

= 0} such that

aΩ1
1 (ũ, ṽ) + aΩ2

2 (ũ, ṽ) =

∫
Ω1

f1ṽ +

∫
Ω2

f2ṽ ∀ ṽ ∈ H1
0,ΓD

(Ω). (3)

Then, set ũi = ũ
∣∣
Ωi
, for i = 1, 2.
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3 Fictitious Domain formulations

The FD formulation of the interface problem (1) envisages two unknowns, namely u1, an extension of ũ1
to the whole Ω, and u2, which coincides with ũ2. We introduce thus the spaces V 1 = H1

0,ΓD
(Ω) and

V 2 = H1(Ω2), for the unknowns u1 and u2, respectively. Moreover, we conveniently extend the forcing term
f1 to the whole Ω (with a little abuse of notation, we keep the name f1). Notice that also the trivial zero
extension is possible.

3.1 DLM/FD formulation

We consider the following DLM/FD formulation, in which the extension is obtained by imposing, through
the distributed Lagrange multiplier p, the constraint u1 = u2 on Ω2 [3, 13, 48]. With (H1(Ω2))

∗ we denote
the dual space of H1(Ω2), and by ⟨·, ·⟩Ω2

the duality pairing between the two spaces.

Problem 2. Find u1 ∈ V 1, u2 ∈ V 2, p ∈ (H1(Ω2))
∗ such that

aΩ1 (u1, v1) + ⟨p, v1⟩Ω2
=

∫
Ω

f1v1 ∀ v1 ∈ V 1,

aΩ2
2 (u2, v2)− aΩ2

1 (u2, v2)− ⟨p, v2⟩Ω2 =

∫
Ω2

(f2 − f1)v2 ∀ v2 ∈ V 2,

⟨q, u1 − u2⟩Ω2
= 0 ∀ q ∈ (H1(Ω2))

∗.

(4)

The well-posedness of Problem 2, as well as the equivalence to Problem 1, are studied e.g. in [3, 13]. The
equivalence shall be intended through the identification ũ1 = u1

∣∣
Ω1

and ũ2 = u2.

To state the Finite Element approximation of Problem 2, we introduce a family T 1
h of regular meshes

in Ω and a family T 2
h of regular meshes in Ω2, and the Finite Element spaces V 1

h ⊂ V 1, V 2
h ⊂ V 2 and

Λh ⊂ (H1(Ω2))
∗.

Problem 3. Find uh1 ∈ V 1
h , uh2 ∈ V 2

h , ph ∈ Λh such that
aΩ1 (uh1, wh1) + ⟨ph, wh1⟩Ω2

=

∫
Ω

f1wh1 ∀wh1 ∈ V 1
h ,

aΩ2
2 (uh2, wh2)− aΩ2

1 (uh1, wh2)− ⟨ph, wh2⟩Ω2
=

∫
Ω2

(f2 − f1)wh2 ∀wh2 ∈ V 2
h ,

⟨qh, uh1 − uh2⟩Ω2
= 0 ∀ qh ∈ Λh.

(5)

Optimal convergence estimates for Problem 3 have been proved (see [3] for Laplace equation and [13] for
FSI problems), in the following form, where C > 0 is a suitable constant:

∥u1 − uh1∥1,Ω + ∥u2 − uh2∥1,Ω2

≤ C

[
inf

vh1∈V 1
h

∥u1 − vh1∥1,Ω + inf
vh2∈V 2

h

∥u2 − vh2∥1,Ω2 + inf
qh∈Λh

∥p− qh∥(H1(Ω2))∗

]
.

(6)

The best-approximation errors at the right-hand side are typically constrained by the regularity of the
solution. In particular, for piecewise polynomials of order r we have, for s ≥ 1:

inf
vh1∈V 1

h

∥u1 − vh1∥1,Ω ≤ hmin(r,s−1)|u1|s,Ω .

However, because of the way the extension of ũ1 is constructed, the solution u1 of Problem 2 coincides with
the solution ũ of Problem 1, which features low regularity. For example, in the case of the Laplace equation
(see (2)) with µ1 ̸= µ2, we have u1 ∈ Hs(Ω1) for some s ∈ (1, 3/2) [4, 21, 36]. Hence, we can achieve at most
convergence of order 1/2 in (6), regardless the polynomial order.

Remark 1. We notice that, thanks to the constraint (4)III, the term aΩ2
2 (u2, v2) in (4)II can be replaced by

aΩ2
2 (u1, v2) (see e.g. [49]). These two formulations are clearly equivalent at the continuous level, but not at

the discrete one, and they can yield different results, as we show in Section 6.
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3.2 BLM/FD formulation

Having established that extending ũ1 so that it coincides with ũ2 in Ω2 places limitations on the global
regularity of u1, and thus on the order of convergence of the Finite Element approximation, it is natural
to consider alternative extensions of ũ1. One possibility is to employ a BLM rather than a DLM [2, 5, 6,
15]. Hence, we introduce the space Q = H−1/2(Γ), namely the dual of H1/2(Γ). We consider the following
BLM/FD formulation.

Problem 4. Find u1 ∈ V 1, u2 ∈ V 2, λ ∈ Q such that
aΩ1 (u1, v1) + ⟨λ, v1⟩Γ =

∫
Ω

f1v1 ∀ v1 ∈ V 1,

aΩ2
2 (u2, v2)− aΩ2

1 (u1, v2)− ⟨λ, v2⟩Γ =

∫
Ω2

(f2 − f1)v2 ∀ v2 ∈ V 2,

⟨µ, u1 − u2⟩Γ = 0 ∀µ ∈ Q.

(7)

The equivalence to Problem 1 can be proved similarly as for the DLM/FD formulation [2]. However, also
the solution u1 of Problem 4 has low global regularity. Indeed, by applying the Green formula, we get:

aΩ1 (u1, v1) = aΩ1
1 (u1, v1) + aΩ2

1 (u1, v1)

=

∫
Ω1

(L1u1) v1 +

∫
Ω2

(L1u1) v1 + ⟨∂L1
n1
u1

∣∣
Ω1
, v1⟩Γ + ⟨∂L1

n2
u1

∣∣
Ω2
, v1⟩Γ + ⟨∂L1

n1
u1, v1⟩∂ΓN .

(8)

Hence, by (7)I, it follows that the Lagrange multiplier plays the role of jump of conormal derivative across
Γ:

∂L1
n1
u1

∣∣
Ω1

+ ∂L1
n2
u1

∣∣
Ω2

= −λ.

Therefore, similarly as for the DLM/FD formulation, u1 is not regular unless λ ≡ 0, which is of course a
very special, and mostly uninteresting, case.

4 Augmented formulation (A-BLM/FD)

To improve the convergence rate of the FD Finite Element formulation, we design a smooth extension of ũ1
inside Ω2, in particular by requiring that u1 ∈ H2(Ω). Clearly, this goal makes sense only if the original
problem (1) has a regular solution inside the subdomains Ωi, otherwise the order of convergence would be
low even for fitted methods that approximate Problem 1. This is the rationale for our assumption that ∂Ω
and Γ are regular, and for the same reason we shall always assume that the forcing terms fi are also regular.

4.1 A-BLM/FD formulation for the model problem

Let us first consider for simplicity the case Liu = −µi∆u and ΓD = ∂Ω. We consider a trivial extension
for f1, namely f1 ≡ 0 on Ω2). In order to achieve global H2 regularity, the following matching conditions
should be satisfied on the interface Γ:

[[u1]] = u1
∣∣
Ω1

− u1
∣∣
Ω2

= 0,

[[∇u1]] = ∇u1
∣∣
Ω1

· n1 +∇u1
∣∣
Ω2

· n2 = 0.
(9)

These conditions not only are necessary to have u1 ∈ H2(Ω2), but are also sufficient, knowing that u1 ∈
H1

0,ΓD
(Ω1) ∩H2(Ω1) ∩H2(Ω2). Indeed, let us take a test function ϕ ∈ D(Ω). By definition of distributional
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derivative and by the Green formula, from (9) it follows

D′(Ω)⟨∆u1, ϕ⟩D(Ω) =

∫
Ω

u1 ∆ϕ =

∫
Ω1

u1 ∆ϕ+

∫
Ω2

u1 ∆ϕ

= −
∫
Ω1

∇u1 · ∇ϕ−
∫
Ω2

∇u1 · ∇ϕ+

∫
Γ

∇ϕ · n1[[u1]]

=

∫
Ω1

∆u1 ϕ+

∫
Ω2

∆u1 ϕ− ⟨[[∇u1]], ϕ⟩Γ +

∫
Γ

∇ϕ · n1[[u1]]

=

∫
Ω1

∆u1 ϕ+

∫
Ω2

∆u1 ϕ.

Since ∆u1
∣∣
Ωi

∈ L2(Ωi) for i = 1, 2, we have ∆u1 ∈ L2(Ω). Moreover, as the application u 7→ ∥∆u∥0,Ω is a

norm in H2(Ω) ∩H1
0,ΓD

(Ω), it follows that u1 ∈ H2(Ω) [24].
A differential problem defining the extension of ũ1 must therefore be at least of the fourth order, as

we need to impose the two independent conditions (9) on the interface Γ. Thus, we consider the following
bi-harmonic problem that defines the extension û1 ∈ H2(Ω2) of ũ1 to the domain Ω2:

µ1∆
2û1 − µ1∆û1 = 0 in Ω2,

û1 = ũ1
∣∣
Ω1

on Γ,

∇û1 · n2 = ∇ũ1
∣∣
Ω1

· n2 on Γ.

As it is better suited to a Finite Element formulation, we rewrite the bi-harmonic problem in mixed formu-
lation, by introducing an additional variable z:{

− µ1∆û1 + z = 0 in Ω2,

−∆z + z = 0 in Ω2.
(10)

This leads to the following problem, namely a BLM/FD formulation augmented by the distributed field z,
henceforth called augmented BLM/FD formulation (A-BLM/FD):

Problem 5. Find u1 ∈ V 1, u2 ∈ V 2, z ∈ V 2, λ ∈ Q such that

∫
Ω

µ1∇u1 · ∇v1 +
∫
Ω2

z v1 =

∫
Ω1

f1v1 ∀ v1 ∈ V 1,∫
Ω2

(µ2∇u2 − µ1∇u1) · ∇v2 −
∫
Ω2

z v2 =

∫
Ω2

f2v2 ∀ v2 ∈ V 2,∫
Ω2

∇z · ∇s+
∫
Ω2

zs = ⟨λ, s⟩Γ ∀ s ∈ V 2,

⟨µ, u1 − u2⟩Γ = 0 ∀µ ∈ Q.

(11)

4.2 Well-posedness, equivalence and regularity

We now study the well-posedness of Problem 5, its equivalence to Problem 1, and the regularity of its
solution.

Theorem 1. Assume fi ∈ Hk+1(Ωi) for i = 1, 2 and for some k ≥ 0. Then, Problem 5 admits a solution
(u1, u2, z, λ), unique in terms of u1

∣∣
Ω1

and u2 (that is to say, any other solution (u′1, u
′
2, z

′, λ′) satisfies

u′i = ui on Ωi, for i = 1, 2). Moreover, u1 ∈ H2(Ω), u2 ∈ Hk+3(Ω2), z ∈ Hk+1(Ω2) and λ ∈ Hk− 1
2 (Γ).

Furthermore, Problem 1 and Problem 5 are equivalent, with the identification ũ
∣∣
Ω1

= u1
∣∣
Ω1

and ũ
∣∣
Ω2

= u2.

Proof. Let u1 ∈ V 1, u2 ∈ V 2 be a solution of Problem 5. Thanks to (11)IV, the traces of u1 and u2 on Γ
coincide. Therefore, the function ũ = u11Ω1

+ u21Ω2
belongs to H1(Ω). By taking test functions such that

v2 = v1
∣∣
Ω2

and summing together (11)I–(11)II, we get (3).
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Conversely, let ũ ∈ H1(Ω) be the solution of Problem 1. By standard regularity results, ũ
∣∣
Ωi

∈ Hk+3(Ωi),

for i = 1, 2 [4, 21, 36]. It follows that the Γ-traces g1 = ũ and g2 = ∇ũ
∣∣
Ω1

· n2 satisfy g1 ∈ Hk+ 5
2 (Γ) and

g2 ∈ Hk+ 3
2 (Γ). Let now û1 be the solution of the differential problem

µ1∆
2û1 − µ1∆û1 = 0 in Ω2,

û1 = g1 on Γ,

∇û1 · n2 = g2 on Γ,

(12)

which reads, in weak form: find û1 ∈ {v ∈ H2(Ω2), such that v = g1 and ∇û1 · n2 = g2 on Γ} such that:∫
Ω2

µ1∆û1 ∆ψ +

∫
Ω2

µ1∇û1 · ∇ψ = 0 ∀ψ ∈ H2
0 (Ω2). (13)

The solution û1 exists, is unique, and by regularity results, it belongs Hk+3(Ω2) [29]. We define:

u2 = ũ
∣∣
Ω2
, u1 =

{
ũ
∣∣
Ω1

on Ω1,

û1 on Ω2.

It follows that u2 ∈ Hk+3(Ω2), and that, thanks to (12)II–(12)III, u1 ∈ H2(Ω) . Moreover, we define

z = −L1û1 = µ1∆û1 ∈ Hk+1(Ω2) and λ = ∇z · n2 ∈ Hk− 1
2 (Γ). Our aim is now to prove that (u1, u2, z, λ)

is a solution of (11).
It is easy to check that the last two equations of (11) are satisfied. To prove the remaining two equations,

we notice that, by definition of z, we have z +L1u1 = 0 in Ω2. Hence, by applying the Green formula, with
v1 ∈ V 1:

−
∫
Ω2

zv1 =

∫
Ω2

(L1u1) v1 = aΩ2
1 (u1, v1)− ⟨∂L1

n2
u1

∣∣
Ω2
, v1⟩Γ. (14)

Moreover, by applying the Green formula to (3), we have for any v1 ∈ V 1:∫
Ω1

(L1u1) v1 + ⟨∂L1
n1
u1

∣∣
Ω1
, v1⟩Γ +

∫
Ω2

(L2u2) v1 + ⟨∂L2
n2
u2, v1⟩Γ =

∫
Ω1

f1v1 +

∫
Ω2

f2v1.

By taking test functions with compact support in Ω1, it follows L1u1 = f1 in Ω1 the sense of distributions.
Hence, by taking v1 ∈ V 1:∫

Ω1

f1v1 =

∫
Ω1

(L1u1) v1 = aΩ1
1 (u1, v1)− ⟨∂L1

n1
u1

∣∣
Ω1
, v1⟩Γ. (15)

By summing (14) and (15), we get

aΩ1 (u1, v1) +

∫
Ω2

zv1 − ⟨∂L1
n2
u1

∣∣
Ω2
, v1⟩Γ − ⟨∂L1

n1
u1

∣∣
Ω1
, v1⟩Γ =

∫
Ω1

f1v1. (16)

Thanks to (12)III, the two boundary terms cancel, thus yielding (11)I. Finally, by subtracting (11)I from (3),
we get (11)II. Therefore, (u1, u2, z, λ) is a solution of (11). By the uniqueness of the solution of Problem 1,
the solution of (11) is unique in terms of u1

∣∣
Ω1

and u2.

4.3 A-BLM/FD formulation in the general case

So far we have introduced the A-BLM/FD formulation for the Laplace equation. Let us now consider a
general interface problem in the form (1). Then, the extension problem (10) generalizes to:{

L1û1 + z = f1 in Ω2,

−∆z + z = 0 in Ω2,
(17)

where f1 has been conveniently extended into Ω2. The A-BLM/FD formulation reads as follows.
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Problem 6. Find u1 ∈ V 1, u2 ∈ V 2, z ∈ V 2, λ ∈ Q such that

aΩ1 (u1, v1) +

∫
Ω2

z v1 =

∫
Ω

f1v1 ∀ v1 ∈ V 1,

aΩ2
2 (u2, v2)− aΩ2

1 (u1, v2)−
∫
Ω2

z v2 =

∫
Ω2

(f2 − f1)v2 ∀ v2 ∈ V 2,∫
Ω2

∇z · ∇s+
∫
Ω2

zs = ⟨λ, s⟩Γ ∀ s ∈ V 2,

⟨µ, u1 − u2⟩Γ = 0 ∀µ ∈ Q.

(18)

We now show that, by formally proceeding, we recover the interface problem (1) from (18). By using (8),
from (18)I it follows ∫

Ω1

(L1u1) v1 +

∫
Ω2

(L1u1) v1 + ⟨∂L1
n1
u1

∣∣
Ω1
, v1⟩Γ + ⟨∂L1

n2
u1

∣∣
Ω2
, v1⟩Γ

+ ⟨∂L1
n1
u1, v1⟩∂Ω +

∫
Ω2

z v1 =

∫
Ω1

f1v1 +

∫
Ω2

f1v1.

(19)

By taking test functions with compact support in Ω1 and Ω2, we get respectively

L1u1 = f1 in Ω1, (20)

L1u1 + z = f1 in Ω2. (21)

Now, combining (19)-(20)-(21), we get

∂L1
n1
u1

∣∣
Ω1

+ ∂L1
n2
u1

∣∣
Ω2

= 0 on Γ, (22)

∂L1
n1
u1 = 0 on ∂Ω.

Then, we apply Green formula to (18)II:∫
Ω2

(L2u2) v2 + ⟨∂L2
n2
u2, v2⟩Γ −

∫
Ω2

(L1u1) v2 − ⟨∂L1
n2
u1

∣∣
Ω2
, v2⟩Γ −

∫
Ω2

z v2 =

∫
Ω2

(f2 − f1)v2. (23)

By exploiting (21) and by taking test functions with compact support in Ω2, we get

L2u2 = f2 in Ω2, (24)

and then
∂L2
n2
u2 − ∂L1

n2
u1

∣∣
Ω2

= 0 on Γ, (25)

which, combined with (22) gives
∂L2
n2
u2 + ∂L1

n1
u1

∣∣
Ω1

= 0 on Γ.

5 Finite Element approximation

We consider a family T 1
h of regular meshes in Ω and a family T 2

h of regular meshes in Ω2. We also introduce
a family T Γ

h of regular meshes for the interface Γ. One possibility, albeit not the only one, is to define T Γ
h as

the set of boundary faces of T 2
h . Let us denote by h1, h2 and hΓ the mesh element size of the three meshes.

For simplicity, we consider a single parameter h > 0, and we assume that there exist positive constants c1,1,
c2,1, c1,2, c2,2, c1,Γ, c2,Γ, such that

c1,1h ≤ h1 ≤ c2,1h, c1,2h ≤ h2 ≤ c2,2h, c1,Γh ≤ hΓ ≤ c2,Γh.

We consider the Finite Element spaces V 1
h ⊂ V 1, associated with T 1

h , V
2
h ⊂ V 2, associated with T 2

h , and
Qh ⊂ Q, associated with T Γ

h . Then, the Finite Element counterpart of Problem 6 reads:
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Problem 7. Find uh1 ∈ V 1
h , uh2 ∈ V 2

h , zh ∈ V 2
h , λh ∈ Qh such that

aΩ1 (uh1, wh1) +

∫
Ω2

zh wh1 =

∫
Ω

f1wh1 ∀wh1 ∈ V 1
h ,

aΩ2
2 (uh2, wh2)− aΩ2

1 (uh1, wh2)−
∫
Ω2

zh wh2 =

∫
Ω2

(f2 − f1)wh2 ∀wh2 ∈ V 2
h ,∫

Ω2

∇zh · ∇sh +

∫
Ω2

zhsh = ⟨λh, sh⟩Γ ∀ sh ∈ V 2
h ,

⟨µh, uh1 − uh2⟩Γ = 0 ∀µh ∈ Qh.

(26)

5.1 Theory of generalized saddle-point problems

To analyze Problem 7, we leverage the theory of generalized saddle-point problems [8, 43]. We report here
the main results in this regard, and we refer to [8, 43] for further details.

In this section, V and Q denote two Hilbert spaces. Let a : V× V → R and bi : V×Q → R, for i = 1, 2,
be continuous bilinear forms, and f ∈ V∗. The generalized saddle-point problem reads as follows.

Problem 8. Find u ∈ V, λ ∈ Q such that{
a(u,w)− b1(w, λ) = V∗⟨f, w⟩V ∀w ∈ V,
b2(u, µ) = 0 ∀µ ∈ Q.

(27)

Let us now consider a family of discrete spaces Vh ⊂ V and Qh ⊂ Q, and the continuous bilinear forms
ah : Vh ×Vh → R and bih : Vh ×Qh → R (for i = 1, 2). Then, we consider the following discrete counterpart
of Problem 8:

Problem 9. Find uh ∈ Vh, λh ∈ Qh such that{
ah(uh, wh)− b1h(wh, λh) = V∗⟨f, wh⟩V ∀wh ∈ Vh,

b2h(uh, µh) = 0 ∀µh ∈ Qh.
(28)

We define, for i = 1, 2, the kernels of the bilinear forms bi and b
i
h:

Ki = Kern(bi) = {v ∈ V : bi(v, µ) = 0 ∀µ ∈ Q}.
Ki

h = Kern(bih) = {vh ∈ Vh : b
i
h(vh, µh) = 0 ∀µh ∈ Qh}.

Notice that, in general, we do not have Ki
h ⊂ Ki. The analysis of Problem 9 is based on some hypothesis.

First, we assume that, for any h > 0, there exists a constant αh,1 > 0 such that

∀uh ∈ K2
h sup

wh∈K1
h

ah(uh, wh)

∥wh∥V
≥ αh,1∥uh∥V, (29)

∀wh ∈ K1
h \ {0} sup

uh∈K2
h

ah(uh, wh) > 0. (30)

Moreover, we assume that, for i = 1, 2 and h > 0, there exists a constant βh,i > 0 such that

∀µh ∈ Qh sup
vh∈Vh

bih(vh, µh)

∥vh∥V
≥ βh,i∥µh∥Q (31)i

Finally, we denote by γh the norm of ah:

γh = sup
uh∈Vh,vh∈Vh

ah(uh, uh)

∥uh∥V∥vh∥V
.

We have the following fundamental result.
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Theorem 2. [8, Corollary 2.2] Assume that (29), (30), (31)i (i = 1, 2) hold true. Then, Problem 9 has a
unique solution (uh, λh). Moreover, uh satisfies the following stability estimate:

∥uh∥V ≤ α−1
h,1∥f∥V∗ .

Moreover, we have the following convergence result.

Theorem 3. [8, Theorem 2.2] Assume that that the hypothesis (29) holds. Then, the solution (u, λ) of
Problem 8 and the solution (uh, λh) of Problem 9 satisfy the following estimate, for some constant C > 0:

∥u− uh∥V ≤ C(1 + α−1
h,1)

[
(1 + γh) inf

vh∈K2
h

∥u− vh∥V

+ inf
vh∈Vh

(
(1 + γh)∥u− vh∥V + sup

wh∈Vh

(a− ah)(vh, wh)

∥wh∥V

)
+ inf

µh∈Qh

(
∥λ− µh∥Q + sup

wh∈Vh

(b1 − b1h)(wh, µh)

∥wh∥V

)]
.

(32)

The first term on the right-hand side of (32) can be estimated as follows.

Theorem 4. [8, Proposition 2.1] Suppose that the hypothesis (31)i holds. then, for any v ∈ Ki we have

inf
wh∈Ki

h

∥v − wh∥V ≤ C(1 + β−1
h,i ) inf

vh∈Vh

[
∥v − vh∥V + sup

µh∈Qh

(bi − bih)(vh, µh)

∥µh∥Q

]
.

Clearly the optimality of the estimate (32) depends on the behavior of αh,1, βh,i and γh when h → 0. In
particular, optimality could be hindered when these constants tend to zero with h.

5.2 Analysis of the A-BLM/FD Finite Element formulation

We now go back to the analysis of Problem 7. As a matter of fact, its continuous counterpart (namely
Problem 6) can be recast into the framework of generalized saddle-point problems. For this purpose, let us
introduce the product space V = V 1 × V 2, and we write u = (u1, u2) ∈ V. The space V is endowed with the
norm ∥u∥V = (∥u1∥21,Ω +∥u2∥21,Ω2

)1/2. Rewriting Problem 6 as a generalized saddle-point problem is possible

by elimination of the unknown z. Let us introduce the map Ψ: Q→ V 2, such that we have z = Ψ(λ), with
λ ∈ Q, if and only if

(z, s)1,Ω2
= ⟨λ, s⟩Γ ∀ s ∈ V 2. (33)

In other terms, z is the Riesz representative in H1(Ω2) of the functional λ ◦ τΓ : V
2 → R, namely the

composition of λ with the trace operator τΓ : V
2 → H1/2(Γ).

Then, Problem 6 can be rewritten in the form of Problem 8, having defined the bilinear form a : V×V → R

a(u, v) = aΩ1 (u1, v1) + aΩ2
2 (u2, v2)− aΩ2

1 (u1, v2)

= aΩ1
1 (u1, v1) + aΩ2

2 (u2, v2) + aΩ2
1 (u1, v1 − v2),

the right-hand side f ∈ V∗

V∗⟨f, v⟩V =

∫
Ω

f1v1 +

∫
Ω2

(f2 − f1)v2,

and the two bilinear forms bi : V×Q→ R, for i = 1, 2

b1(u, λ) =

∫
Ω2

Ψ(λ) (u1 − u2),

b2(u, λ) = ⟨λ, u1 − u2⟩Γ.

Let us now move to the discrete formulation. We introduce the product space Vh = V 1
h × V 2

h , and we use
the notation uh = (uh1, uh2) ∈ Vh. Moreover, we introduce the discrete counterpart of the map Ψ, that is
Ψh : Qh → V 2

h , defined so that we have zh = Ψh(λh), if and only if

(zh, sh)1,Ω2
= ⟨λh, sh⟩Γ ∀ sh ∈ V 2

h .

10



Then, we introduce the discrete counterpart of b1, defined as

b1h(uh, λh) =

∫
Ω2

Ψh(λh) (uh1 − uh2).

Hence, it is possible to rewrite Problem 7 as follows.

Problem 10. Find uh ∈ Vh, λh ∈ Qh such that{
a(uh, wh)− b1h(wh, λh) = V∗⟨f, wh⟩V ∀wh ∈ Vh,

b2(uh, µh) = 0 ∀µh ∈ Qh.

Problem 10 is of course a particular case of Problem 9, where ah = a and b2h = b2. When it is useful
to clarify the domain of definition, we will still use b2h instead of b2. We are then within the framework of
Theorem 2 and Theorem 3. Therefore, in what follows we shall find conditions that ensure the hypotheses
of these results.

We first consider the inf-sup condition associated with b2. To prove this result, we assume that the pair
V 1
h –Qh is inf-sup stable, in the sense of the Ladyzhenskaya-Babuška-Brezzi (LBB) condition [10], that is

there exists C > 0, independent of h, such that

∀µh ∈ Qh \ {0} sup
wh1∈V 1

h

⟨µh, wh1⟩Γ
∥wh1∥1,Ω∥µh∥− 1

2 ,Γ

≥ C. (34)

Examples of pairs V 1
h –Qh satisfying the inf-sup condition (34) have been widely studied in the literature [6,

22, 28, 32]. Typically, (34) holds true under a condition of the type h1 ≤ K hΓ (for some constant K > 0).
Then, we have the following result.

Lemma 5. Suppose that the pair V 1
h –Qh is inf-sup stable (i.e. (34) holds true). There exists β2 > 0 such

that

∀µh ∈ Qh \ {0} sup
wh∈Vh

b2(wh, µh)

∥wh∥V∥µh∥− 1
2 ,Γ

≥ β2. (35)

Proof. The thesis follows by restricting the sup on the subset wh = (wh1, 0).

We then consider the inf-sup condition associated with b1h. As will become apparent later, for the purpose
of proving convergence of the solution uh, in (31)i we need not have βh,1 independent of h. This translates
into weaker assumptions. Specifically, we assume that the pair V 2

h –Qh satisfies the kernel condition

∀µh ∈ Qh \ {0} ∃wh2 ∈ V 2
h ⟨µh, wh2⟩Γ > 0. (36)

This condition on the pair V 2
h –Qh is weaker than the inf-sup stability that we have assumed for the pair

V 1
h –Qh (see (34)). Indeed, examples of pairs V 2

h –Qh satisfying the kernel condition (36) are easily obtained
by taking Qh to be the space of traces of V 2

h or a subset of the latter.
Moreover, on the space V 2

h , we assume the inverse inequality

∀wh1 ∈ V 2
h ∥∇wh1∥0,Ω2 ≤ CIh

−1
1 ∥wh1∥0,Ω2 , (37)

for some constant CI > 0.

Lemma 6. Suppose that the pair V 2
h –Qh satisfies the kernel condition (36), and that the inverse inequality

(37) holds on the space V 2
h . Then, for any h > 0, there exists βh,1 > 0 such that

∀µh ∈ Qh \ {0} sup
wh∈Vh

b1h(wh, µh)

∥wh∥V∥µh∥− 1
2 ,Γ

≥ βh,1. (38)
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Proof. The application Sh : Qh → (V 2
h )

∗ defined as

(V 2
h )∗⟨Shµh, wh2⟩V 2

h
= ⟨µh, wh2⟩Γ

is injective by (36). Hence, the inverse of Sh is well-defined on its image and, since Qh is finite dimensional,
it is bounded. It follows that there exists a constant Ch > 0, possibly dependent of h, such that

∥µh∥− 1
2 ,Γ

≤ Ch∥Shµh∥(V 2
h )∗ = Ch sup

wh2∈V 2
h

⟨µh, wh2⟩Γ
∥wh2∥1,Ω2

.

By definition of Ψh, for any wh2 ∈ V 2
h , we have

⟨µh, wh2⟩Γ =

∫
Ω2

∇Ψh(µh) · ∇wh2 +

∫
Ω2

Ψh(µh)wh2 = (Ψh(µh), wh2)1,Ω2
.

Clearly, the supremum

sup
wh2∈V 2

h

(Ψh(µh), wh2)1,Ω2

∥wh2∥1,Ω2

is attained for wh2 = Ψh(µh). It follows

∥µh∥− 1
2 ,Γ

≤ Ch∥Ψh(µh)∥1,Ω2
≤ Ch(1 + C2

Ih
−2
2 )

∥Ψh(µh)∥20,Ω2

∥Ψh(µh)∥1,Ω2

,

where we have used the inverse inequality (37). Finally, we bound the right-hand side as follows

∥µh∥− 1
2 ,Γ

≤ Ch(1 + C2
Ih

−2
2 ) sup

wh2∈V 2
h

∫
Ω2

Ψh(µh)wh2

∥wh2∥1,Ω2

≤ Ch(1 + C2
Ih

−2
2 ) sup

wh∈Vh

∫
Ω2

Ψh(µh) (uh1 − uh2)

∥wh2∥1,Ω2

= Ch(1 + C2
Ih

−2
2 ) sup

wh∈Vh

b1h(wh, µh)

∥wh∥V
.

Concerning the discrete inf-sup condition for a, we assume that the constant αh,1 does not depend of h,
that is to say there exists a constant α1 > 0 such that

∀uh ∈ K2
h sup

wh∈K1
h

a(uh, wh)

∥wh∥V
≥ α1∥uh∥V. (39)

This condition clearly depends on the particular interface problem considered, as it involves the bilinear
forms a1 and a2. Hence, at this stage, we keep (39) as an assumption. We will address this topic again in
Section 5.3.

Finally, we assume that there exists a constant γ > 0 such that

∀uh ∈ Vh, vh ∈ Vh a(uh, uh) ≤ γ∥uh∥V∥vh∥V (40)

This is an immediate consequence of the continuity of the original bilinear forms a1 and a2. We are now
ready to state and prove the main result.

Theorem 7. Suppose that the pair V 2
h –Qh satisfies the kernel condition (36), the pair V 1

h –Qh satisfies the
inf-sup condition (34), and that the inverse inequality (37) holds on the space V 2

h . Moreover, assume that
(39) and (40) hold true. Then, Problem 7 admits a unique solution (uh1, uh2, z, λh). Moreover, there exists
a constant C > 0, independent of h, such that, if (u1, u2, z, λ) is a solution of Problem 6, we have

∥u1 − uh1∥1,Ω + ∥u2 − uh2∥1,Ω2 ≤ C

[
inf

vh1∈V 1
h

∥u1 − vh1∥1,Ω + inf
vh2∈V 2

h

∥u2 − vh1∥1,Ω2

+ inf
µh∈Qh

∥λ− µh∥− 1
2 ,Γ

+ inf
sh∈V 2

h

∥z − sh∥1,Ω2

] (41)
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Proof. By Lemma 6 and Lemma 5, the kernels of the transpose of b1h and b2h are trivial, that is Kern((bih)
T ) =

{0} for i = 1, 2. Hence, we have dimK1
h = dimK2

h [10, Cor. 3.1.2], that is equivalent, in finite dimension, to
(30) [8, Eq. (2.21)]. Therefore, thanks also to Lemma 6 and to Lemma 5, all the hypotheses of Theorem 3
are satisfied. By combining Theorem 4 with Theorem 3, we have:

∥u− uh∥V ≤ C(1 + α−1
1 )

[
(1 + γ)(2 + β−1

2 ) inf
vh∈Vh

∥u− vh∥V

+ inf
µh∈Qh

(
∥λ− µh∥− 1

2 ,Γ
+ sup

wh∈Vh

(b1 − b1h)(wh, µh)

∥wh∥V

)]
.

We now estimate the term involving b1 − b1h:

(b1 − b1h)(wh, µh) =

∫
Ω2

(Ψ(µh)−Ψh(µh)) (wh1 − wh2)

≤ ∥Ψ(µh)−Ψh(µh)∥0,Ω2
∥wh1 − wh2∥0,Ω2

.

We notice that

∥wh1 − wh2∥0,Ω2 ≤ ∥wh1∥1,Ω + ∥wh2∥1,Ω2 ≤
(
2∥wh1∥21,Ω + 2∥wh2∥21,Ω2

)1/2
=

√
2∥wh∥V.

Moreover, by the Céa Lemma

∥Ψ(µh)−Ψh(µh)∥1,Ω2 ≤ inf
sh∈V 2

h

∥Ψ(µh)− sh∥1,Ω2

≤ inf
sh∈V 2

h

∥Ψ(µh)−Ψ(λ) + Ψ(λ)− sh∥1,Ω2

≤ ∥Ψ(µh)−Ψ(λ)∥1,Ω2
+ inf

sh∈V 2
h

∥Ψ(λ)− sh∥1,Ω2
.

By standard arguments, from (33) it follows that

∥Ψ(µh)−Ψ(λ)∥1,Ω2
≤ Ctr∥µh − λ∥− 1

2 ,Γ
,

where we have used the trace inequality

∀v2 ∈ V 2 ∥v2∥1/2,Γ ≤ Ctr∥v2∥1,Ω2
.

Hence

inf
µh∈Qh

(
∥λ− µh∥− 1

2 ,Γ
+ sup

wh∈Vh

(b1 − b1h)(wh, µh)

∥wh∥V

)
≤ inf

µh∈Qh

(
∥λ− µh∥− 1

2 ,Γ
+
√
2

(
Ctr∥µh − λ∥− 1

2 ,Γ
+ inf

sh∈V 2
h

∥Ψ(λ)− sh∥1,Ω2

))
≤ (1 +

√
2Ctr) inf

µh∈Qh

∥λ− µh∥− 1
2 ,Γ

+
√
2 inf
sh∈V 2

h

∥Ψ(λ)− sh∥1,Ω2
.

Therefore, recalling that Ψ(λ) = z, we have

∥u− uh∥V ≤ C(1 + α−1
1 )

[
(1 + γ)(2 + β−1

2 ) inf
vh∈Vh

∥u− vh∥V

+ (1 +
√
2Ctr) inf

µh∈Qh

∥λ− µh∥− 1
2 ,Γ

+
√
2 inf
sh∈V 2

h

∥z − sh∥1,Ω2

]
.

Finally, the thesis follows by noticing that

inf
vh∈Vh

∥u− vh∥V ≤ inf
vh1∈V 1

h

∥u1 − vh1∥1,Ω + inf
vh2∈V 2

h

∥u2 − vh1∥1,Ω2 .
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Remark 2. Apparently, the convergence estimate (41) is not significantly different than the estimate (6) and,
in a sense, they are both optimal. The big difference is played by the behavior for h → 0 of the term

inf
vh1∈V 1

h

∥u1 − vh1∥1,Ω .

Indeed, if u1 is not regular (as for the DLM/FD and BLM/FD formulations), the convergence rate is
typically low. The A-BLM/FD method, instead, thanks to the higher global regularity of u1 achieves faster
convergence rates.

5.3 A numerical test for the condition (39)

Among the assumptions of Theorem 7, the only one we have not yet analyzed thus far is condition (39).
First, we notice that this condition can be equivalently rewritten in the inf-sup form

inf
uh∈K2

h

sup
wh∈K1

h

a(uh, wh)

∥wh∥V∥uh∥V
≥ α1.

Here and in the rest of the paper, we implicitly assume that the inf is taken by excluding uh = 0, which
would make the argument undefined. We notice that, for standard point-saddle problems (i.e., when b1 = b2
and b1h = b2h), such inf-sup condition is a consequence of the uniform coercivity of a on the kernel K1

h = K2
h,

or, a fortiori, on the whole space Vh. For generalized point-saddle problems, however, the uniform coercivity
of a does not imply the inf-sup condition (39), since the two arguments uh and wh must be taken in different
spaces, K2

h and K1
h respectively (unless K2

h ⊆ K1
h, but this condition is not met in our case).

Unlike for the conditions (35) and (38), the validity of the condition (39) depends on the interface problem
at hand (and thus on the form of a1 and a2), as well as on the choice of spaces V 1

h , V
2
h and Qh. In this

section, we illustrate a test that allows one to perform, for a specific interface problem and for a choice of
spaces V 1

h , V
2
h and Qh, a numerical verification of the validity of the condition (39).

Let us denote by ni = dimV i
h the dimension of the Finite Element subspaces of V i, for i = 1, 2. We

then introduce nu = dimVh = n1 + n2 and nq = dimQh. In what follows, we use bold symbols to denote
the algebraic counterparts of Finite Element functions. Specifically, we denote by ui ∈ Rni the vector
collecting the degrees of freedom associated with uhi, for i = 1, 2, and by u = (u1,u2) ∈ Rnu the algebraic
counterpart of uh = (uh1, uh2) ∈ Vh. Similarly, we denote by µ ∈ Rnq the vector collecting the degrees of
freedom associated with µh. We introduce then the matrices Ah ∈ Rnu×nu and Bi

h ∈ Rnu×nq , the algebraic
counterparts of the bilinear forms a and bi, for i = 1, 2, respectively, defined through the relationships

a(uh, wh) = wTAhu, b1h(uh, µh) = µTB1
hu, b2(uh, µh) = µTB2

hu,

for any uh, wh ∈ Vh and µh ∈ Qh. Moreover, we define the matrix Nh ∈ Rnu×nu

Nh =

(
M1

h + K1
h

M2
h + K2

h

) 1
2

,

where Mi
h ∈ Rni×ni and Ki

h ∈ Rni×ni are the mass and stiffness matrices, respectively, associated with V i
h

for i = 1, 2. The matrix Nh allows us to relate the V-norm of uh with its algebraic counterpart u:

∥uh∥V = ∥Nhu∥2,

where ∥ · ∥2 denotes the euclidean norm.
To derive an algebraic counterpart of condition (39) that is easy to verify in practice, we perform two

steps. First, we represent the solution in a new coordinate system, namely by ũ = Nhu ∈ Rnu , so that
∥ũ∥2 = ∥uh∥V. In this coordinate system, the operators a and bi, for i = 1, 2, are associated with the

matrices Ãh = N−T
h AhN

−1
h and B̃i

h = Bi
hN

−1
h , respectively.

Second, we restrict the action of ah to K2
h × K1

h ⊂ Vh × Vh. For this purpose, for i = 1, 2, let Ψi
h ∈

Rnu×(nu−nq) be a matrix whose columns are an orthonormal basis of Kern B̃i
h. In practice, the matrix Ψi

h

can be obtained by extracting the last nu − nq columns from V, where UΣVT = B̃i
h is the singular value
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decomposition of B̃i
h. With the help of Ψi

h, we perform a second change of coordinates, and we write, for

i = 1, 2, elements of Kern B̃i
h as ũ = Ψi

hû, where û ∈ Rnu−nq . We remark that, being the columns of Ψi
h

orthonormal, this transformation preserves the norm, that is ∥û∥2 = ∥ũ∥2 = ∥uh∥V.
In summary, uh ∈ Ki

h = Kern bih if and only if u ∈ KernBi
h, that is equivalent to the condition u =

N−1
h Ψi

hû for some û ∈ Rnu−nq . If follows that

inf
uh∈K2

h

sup
wh∈K1

h

a(uh, wh)

∥wh∥V∥uh∥V
= inf

û∈Rnu−nq

sup
ŵ∈Rnu−nq

(
N−1

h Ψ1
hŵ

)T
Ah

(
N−1

h Ψ2
hû

)
∥Ψ2

hû∥2∥Ψ
1
hŵ∥2

= inf
û∈Rnu−nq

sup
ŵ∈Rnu−nq

ŵT Âhû

∥û∥2∥ŵ∥2
,

(42)

where we have defined the matrix Âh ∈ R(nu−nq)×(nu−nq) as

Âh = (Ψ1
h)

TN−T
h AhN

−1
h Ψ2

h.

We have thus rephrased condition (39), that involves the interaction between the bilinear form a and the

kernels of b1h and b2h, into an algebraic conditions involving a single algebraic object, that is the matrix Âh.

Remarkably, the right-hand side of (42) coincides with the lowest singular value of Âh, that we denote by

σmin(Âh). In conclusion, condition (39) can be equivalently rewritten as: there exists a constant α1 > 0,
such that, for any h > 0

σmin(Âh) ≥ α1.

In practice, to test whether condition (39) holds true for a particular interface problem and for a particular
triplet of Finite Element spaces V 1

h , V
2
h and Qh, we shall consider meshes of increasing refinements, and look

at the trend of σmin(Âh). In the case of σmin(Âh) → 0 when h → 0, then condition (39) will not be verified;

if, on the other hand, σmin(Âh) shows to be bounded from below by a constant, then condition (39) will be
deemed valid (at least for the range of h used, which in practice is most often what is needed).

This test, albeit not being a demonstration, makes it possible to test quickly and easily whether or not
the Finite Element spaces chosen may constitute a good choice, in the spirit of other similar tests used in
the literature [20].

6 Numerical results

In this section we present some numerical tests in a two-dimensional domain, aimed at verifying the theo-
retical results of this paper and at comparing the proposed method with existing ones.

6.1 Problem setting

We consider Ω ⊂ R2 to be the open unit square centered in the origin, and we define Ω2 as a circular domain
with radius 0.3 centered in the origin as well (see Fig. 2). We consider the following differential problem:

− µ1∆ũ1 + ũ1 = f in Ω1,

− µ2∆ũ2 + ũ2 = f in Ω2,

ũ1 = ũ2 on Γ,

µ1∇ũ1 · n1 + µ2∇ũ2 · n2 = 0 on Γ,

µ1∇ũ1 · n1 = 0 on ∂Ω,

(43)

with the forcing term f(x, y) = sin(πx) + tanh(y). In the following sections, we consider different values for
the pair (µ1, µ2). Specifically, we consider four cases, namely (10, 1), (2, 1), (1, 2), and (1, 10). We identify
each case through the ratio µ2/µ1 ∈ {0.1, 0.5, 2, 10}.

For the numerical approximation of (43), we consider and compare the following methods (see Table 1
for a summary).
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Method Weak formulation Unknowns Mesh

FEM-fit Problem 1 ũ ∈ V 1 = H1
0,ΓD

(Ω) T fit
h

FEM-unfit Problem 1 ũ ∈ V 1 = H1
0,ΓD

(Ω) T 1
h

DLM/FD-diag Problem 2 u1 ∈ V 1 = H1
0,ΓD

(Ω) T 1
h

DLM/FD-tria u2 ∈ V 2 = H1(Ω2) T 2
h

p ∈ (H1(Ω2))
∗ T 2

h

BLM/FD Problem 4 u1 ∈ V 1 = H1
0,ΓD

(Ω) T 1
h

u2 ∈ V 2 = H1(Ω2) T 2
h

λ ∈ Q = H−1/2(Γ) T Γ
h

A-BLM/FD Problem 6 u1 ∈ V 1 = H1
0,ΓD

(Ω) T 1
h

u2 ∈ V 2 = H1(Ω2) T 2
h

λ ∈ Q = H−1/2(Γ) T Γ
h

z ∈ V 2 = H1(Ω2) T 2
h

Table 1: Numerical methods considered in this work. For each method we report the corresponding weak
formulation, the unknowns of the weak formulation and the computational mesh used for their discretization.

• The standard Finite Element formulation based on Problem 1. In this case, we will consider either a
computational mesh that is fitted to Γ (called T fit

h ) or an unfitted mesh (namely T 1
h ). We will refer to

the two methods as FEM-fit and FEM-unfit, respectively.

• The Finite Element formulation of Problem 2. As anticipated in Section 3.1, the first term of (4)II can
be set equal either to aΩ2

2 (u2, v2) or to a
Ω2
2 (u1, v2). The corresponding matrix Ah is, respectively, block

diagonal and block lower-triangular. For this reason, we will refer to the two methods as DLM/FD-
diag and DLM/FD-tria, respectively.

• The Finite Element formulation of Problem 4, called BLM/FD method.

• Our proposed A-BLM/FD method (see Problem 7).

Among the six methods compared, the FEM-fit method benefits from an advantage, as it is built on
a mesh fitted to the interface Γ. Therefore, we consider it as a benchmark, since it allows us to give an
indication of the error that would be possible to obtain, for a given differential problem and mesh resolution,
with a fitted method. We then assess how the five unfitted methods perform, in comparison with FEM-fit.

We consider regular triangular meshes T fit
h , T 1

h and T 2
h with different resolutions. For the four FD methods

considered (namely DLM/FD-diag, DLM/FD-tria, BLM/FD, A-BLM/FD), we investigate the impact of the
ratio h2/h1 (we consider three cases: h2/h1 ∈ {0.5, 1, 2}). We define the interface mesh T Γ

h as the union of
the boundary segments of T 2

h . Example of computational meshes are reported in Fig. 2.
To define the spaces V 1

h , V
2
h , Λh, we focus in this work on P1 and P2 continuous Finite Elements defined

on the corresponding meshes. For the space Qh, we consider globally continuous piecewise polynomials
defined on T Γ

h with order either 1 (P1 elements) or 2 (P2 elements). For simplicity, we only consider the case
of equal order spaces, namely either P1/P1/P1 elements or P2/P2/P2, with reference to the three spaces
used (that is V 1

h /V
2
h /Λh for the DLM/FD-diag and DLM/FD-tria methods; V 1

h /V
2
h /Qh for the BLM/FD

and A-BLM/FD methods).

6.2 Numerical verification of condition (39)

In this section, we apply the test described in Section 5.3 to the example problem (43), to numerically
check condition (39). Specifically, we consider meshes with increasing resolution. For each combination of

µ2/µ1 ∈ {0.1, 0.5, 2, 10} and of h2/h1 ∈ {0.5, 1, 2}, we assemble the matrix Âh and we compute its minimum

singular value σmin(Âh). Finally, we plot the trend of σmin(Âh) with respect to h.
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Computational domain

Figure 2: Computational domain and some examples of computational meshes. First line: computational
domain; mesh T 1

h (used in the FEM-unfit method); mesh T fit
h (used in the FEM-fit method). In the second

line, we show the three meshes T 1
h , T 2

h and T Γ
h for three different values of h2/h1 (reported below).

The results are reported in Fig. 3, both for P1/P1/P1 elements and P2/P2/P2 elements. In the case

µ2/µ1 < 1 with P1/P1/P1 elements, the test is clearly passed, since σmin(Âh) is virtually constant with
respect to h, for every choice of µ2/µ1 and for every choice of h2/h1. In the other cases the value of

σmin(Âh) is more variable; still, in almost all the cases, despite the small fluctuations, σmin(Âh) do not show
a decreasing trend. The only exceptions occur in the case µ2/µ1 > 1 with P1/P1/P1 elements, where, for
some values of h2/h1, a decreasing trend is noticeable, albeit with a rather low rate (approximately between
h1/4 and h1/2). Nevertheless, the results suggest that, provided a sufficiently large h2/h1 ratio is chosen, it

is possible to obtain a lower bounded σmin(Âh) also in the case µ2/µ1 > 1.

6.3 Comparison of numerical solutions

In Fig. 4 we report the numerical solutions obtained, for P1 elements and with a very fine mesh (210 elements
per side of the square, and a ratio h2/h1 = 1), using the different numerical methods. As the figure clearly
shows, the different FD methods considered in this paper are based on a different type of solution extension
to the subdomain Ω2. In particular, the two DLM/FD (DLM/FD-tria and DLM/FD-diag) methods extend
ũ1 to the whole Ω in a way that is coincident to ũ2. In this way, the solution u1 inherits the gradient jumps
of the solution ũ, which clearly emerge from the figure near the interface Γ, where we observe the contour
lines breaking. We notice that, the higher the ratio µ2/µ1, the more pronounced are the discontinuities.
Also the solution u1 obtained by the BLM/FD method is irregular near the interface Γ, and has even
more pronounced gradient discontinuities than for the DLM/FD methods. In contrast, as expected, the A-
BLM/FD formulation yields a smooth u1, as seen from the contour lines that cross the Γ interface without
being bent. We notice that the largest differences between the u1 obtained by the three methods occur (for
this test case) in the case µ2/µ1 > 1, that is in the case for which the gradients of the ũ solution have larger
jumps. This will have consequences when we evaluate the errors of the numerical solutions.
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Figure 3: Minimum singular value of the matrix Âh as a function of h. Each column corresponds to a
different ratio µ2/µ1, each row to a different polynomial order (see titles).
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Figure 4: Numerical solutions to (43) obtained, using different numerical methods, with P1 elements on a
very fine mesh (210 elements per side of the square, and a ratio h2/h1 = 1). White lines are contour lines.
Each column corresponds to a different ratio µ2/µ1, reported on top. In the first line, we show the solution ũ
obtained with the FEM-fit method. We do not report the solution obtained with the FEM-unfit method, as
it is very similar to that of the FEM-fit method (at least for very fine meshes). The second line reports the
solution u1 obtained with the DLM/FD-tria method. The solution obtained with the DLM/FD-diag method
is conceptually similar to the latter, even if in some cases it exhibits spurious oscillations, as shown later.
In the third and fourth line we show the solution u1 obtained with the BLM/FD and A-BLM/FD methods,
respectively. Finally, in the last line we show the solution u2 obtained with the A-BLM/FD method. We do
not report the solution u2 obtained with the other FD methods, as it is virtually coincident with the latter.
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6.4 Convergence tests

To numerically test the accuracy and convergence of the different methods, we consider the errors, in L2 and
H1 norm, with respect to a reference solution obtained through the FEM-fit method on a much finer mesh.
All errors reported in this work are normalized with respect to the solution norm.

Let us first consider the case of elements of order 1 (P1 for the FEM-fit and FEM-unfit methods,
P1/P1/P1 for the four FD methods). The trend of the errors in norm H1 and L2 is shown in Fig. 5 and
Fig. 6, respectively. First, we observe that, as expected, the FEM-fit method shows an optimal convergence
rate (namely linear in H1 norm and quadratic in L2 norm). The FEM-unfit method, instead, because of the
low global regularity of the solution (ũ ∈ Hs(Ω) with s ∈ (1, 3/2) [4]), features a limited convergence rate
(we observe order 1/2 in H1 norm and order 1 in L2 norm). Because of the low-regularity of the extension
of ũ1, the DLM/FD-tria, DLM/FD-diag and BLM/FD methods exhibit the same convergence order as the
FEM-unfit method. Finally, concerning the A-BLM/FD method, the numerical tests confirm the theoretical
results of this work: thanks to the underlying smooth extension, we recover optimal convergence rates.

Special attention should be given to the case of µ2/µ1 = 0.1. First, we notice that, in this case, the
DLM/FD-diag method exhibits oscillations in the error trend and, for h2/h1 ≥ 1, no convergence of the
error is observed. As a matter of fact, as shown in Fig. 7, spurious oscillations are present in the numerical
solution. This is not surprising, as – to the best of our knowledge – the ellipticity on the discrete kernel
for the DLM/FD-diag method has been proven only in the case µ2/µ1 > 1 [3]. Second, we observe that, in
the case µ2/µ1 = 0.1, the numerical errors obtained with the FEM-unfit and DLM/FD-tria are surprisingly
small (even smaller than those of the A-BLM/FD method). This is due to the fact that, as it is apparent
from Fig. 4, the solution of the full problem ũ is “less irregular” than in the other cases (gradient jumps are
less pronounced). This leads to low-magnitude errors and a faster convergence rate in the pre-asymptotic
regime; nonetheless, for h → 0, the error curve bends and approaches the suboptimal order h1/2 in H1 norm
and h in L2 norm. The errors obtained with the BLM/FD method are much larger in magnitude, because
of the low regularity of the solution (see again Fig. 4), and the observed convergence rates are suboptimal.
The A-BLM/FD method, instead, achieves the optimal convergence rates.

In Fig. 8 and Fig. 9, we show the errors, in H1 and L2 norm respectively, obtained by using second order
Finite Elements. We recall that the solution u1 has regularity Hs(Ω) with s ∈ (1, 3/2) for the DLM/FD-tria,
DLM/FD-diag, BLM/FD methods; with s ∈ (2, 5/2) for the A-BLM/FD method. Therefore, in the energy
norm H1 we can expect at most order 3/2 for the A-BLM/FD method, and 1/2 for the other FD methods.
Numerical results confirm these expectations, in the case µ2/µ1 > 1. The case µ2/µ1 < 1 requires, as for
P1 Finite Elements, a more careful analysis. First, we again observe the non-convergence of the DLM/FD-
diag method, if µ2/µ1 is sufficiently small and/or h2/h1 are sufficiently large. This time, the DLM/FD-tria
method also exhibits similar issues, albeit in a less pronounced way. Finally, the A-BLM/FD method shows a
slight reduction in the order of convergence, approaching order 1 (still higher than the order 1/2 observed for
the other unfitted methods). Regarding the error in norm L2, we observe, notwithstanding some fluctuation,
that the A-BLM/FD method achieves convergence of order 2 like the benchmark FEM-fit method, while all
other unfitted methods exhibit convergence of order 1.

We complement our analysis by considering different boundary conditions on the outer frontier ∂Ω, to
test the generality of the observations made. In particular, we consider the case of Dirichlet boundary
conditions ũ1 = sin(πx) + tanh(y) on ∂Ω. In Fig. 10 and Fig. 11, we show the errors obtained by using
Finite Elements of order 1, in H1 and L2 norm, respectively. Looking at the figures, we can draw the same
conclusions as in the case of Neumann boundary conditions. In particular, the A-BLM/FD method exhibits
optimal convergence rate in both norms and in all cases considered, while all other unfitted methods feature
a suboptimal convergence rate. The advantage of the A-BLM/FD method over the other unfitted methods
in terms of error magnitude is even more pronounced tha with Neumann boundary conditions, also in the
case µ2/µ1 = 10.

Thus far we have compared the methods by considering the errors as a function of mesh size h. However,
given the same mesh size h, the different methods have different numbers of unknowns (see Table 1). In
particular, the proposed A-BLM/FD method is the one with the largest number of unknowns. Compared
to the DLM/FD methods, which have one unknown defined on T 1

h and two defined on T 2
h , the A-BLM/FD

method has one more unknown defined on T Γ
h . Nonetheless, the latter mesh, being associated with a domain

of codimension 1, typically possesses a much smaller number of elements than T 1
h and T 2

h , which are of
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Figure 5: Relative errors in H1 norm versus h, obtained for problem (43) with Finite Elements of order 1
with the six different numerical methods considered in this work (see legend). Each column corresponds to
a different ratio h2/h1, reported on top. Each row corresponds to a different ratio µ2/µ1, reported on the
left.
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Figure 7: Numerical solution obtained through the DLM/FD-diag method for µ2/µ1 = 0.1, h2/h1 = 2, P1
elements on a grid with 240 element per edge of Ω.

codimension 0. To perform a quantitative analysis, we consider the error versus the total number of degrees
of freedom (Ndof), instead of versus the mesh size h. For the sake of brevity, we report only the H1 errors
for Finite Elements of order 1, for µ2/µ1 ∈ {0.5, 2} and h2/h1 ∈ {0.5, 1, 2} (see Fig. 12). As can be seen
from the figure, despite the slightly higher number of degrees of freedom than for the other FD methods, the
A-BLM/FD method, thanks to the higher order of convergence, achieves higher accuracy in the considered
tests not only for a given h, but also for a given Ndof .

7 Conclusions

We have proposed a new FD method for interface problems that allows to achieve higher convergence rates
than standard FD methods. The proposed method extends the solution into the fictitious domain in a
smoother way than existing FD methods do, thus improving accuracy of the Finite Element approximation,
even with meshes that are not fitted to the interface. This is achieved thanks to a novel weak formulation
in which the subdomain coupling is enforced neither through an H−1(Ω2) duality (as for the DLM/FD
method) nor through a H−1/2(Γ) duality (as for the BLM/FD method), but through an L2(Ω2) product
with an additional regular distributed field. In this manner, no gradient discontinuity is introduced in the
analytical solution. Specifically, the additional distributed field is the H1 Riesz representative of the BLM
that enforces the solution continuity across the interface.

We have analyzed, by leveraging the theory of generalized saddle-point problems [8, 43], the well-
posedness of the proposed FD formulation, thus proving an optimal error estimate. The result is based
on a discrete inf-sup condition that depends on the interface problem at hand. To test the validity of the
latter condition in a purely computational manner, we have proposed a test that consists in computing the
lowest singular value of a suitable matrix, for increasing mesh refinements.

Numerical test, performed on a model problem with a simple geometry, confirm the theoretical results,
thus showing that the proposed method allows to improve the convergence rate of standard FD approaches
when the solution of the original problem is regular enough.
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Figure 8: Relative errors in H1 norm versus h, obtained for problem (43) with Finite Elements of order 2
with the six different numerical methods considered in this work (see legend). Each column corresponds to
a different ratio h2/h1, reported on top. Each row corresponds to a different ratio µ2/µ1, reported on the
left.
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Figure 9: Relative errors in L2 norm versus h, obtained for problem (43) with Finite Elements of order 2
with the six different numerical methods considered in this work (see legend). Each column corresponds to
a different ratio h2/h1, reported on top. Each row corresponds to a different ratio µ2/µ1, reported on the
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Figure 10: Relative errors inH1 norm versus h, obtained for problem (43) with Dirichlet boundary conditions
on the external boundary ∂Ω, with Finite Elements of order 1 with the six different numerical methods
considered in this work (see legend). Each column corresponds to a different ratio h2/h1, reported on top.
Each row corresponds to a different ratio µ2/µ1, reported on the left.
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Figure 11: Relative errors in L2 norm versus h, obtained for problem (43) with Dirichlet boundary conditions
on the external boundary ∂Ω, with Finite Elements of order 1 with the six different numerical methods
considered in this work (see legend). Each column corresponds to a different ratio h2/h1, reported on top.
Each row corresponds to a different ratio µ2/µ1, reported on the left.
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