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Abstract 

Impaired cardiac function has been described as a frequent complication of COVID-19-related pneumonia. To 

investigate possible underlying mechanisms, we represented the cardiovascular system by means of a lumped-

parameter 0D mathematical model. The model was calibrated using clinical data, recorded in 58 patients 

hospitalized for COVID-19-related pneumonia, to make it patient-specific and to compute model outputs of 

clinical interest related to the cardiocirculatory system. We assessed, for each patient with a successful 

calibration, the statistical reliability of model outputs estimating the uncertainty intervals. Then, we performed 

a statistical analysis to compare healthy ranges and mean values (over patients) of reliable model outputs to 

determine which were significantly altered in COVID-19-related pneumonia. Our results showed significant 

increases in right ventricular systolic pressure, diastolic and mean pulmonary arterial pressure, and capillary 

wedge pressure. Instead, physical quantities related to the systemic circulation were not significantly altered. 

Remarkably, statistical analyses made on raw clinical data, without the support of a mathematical model, were 

unable to detect the effects of COVID-19-related pneumonia, thus suggesting that the use of a calibrated 0D 

mathematical model to describe the cardiocirculatory system is an effective tool to investigate the impairments 

of the cardiocirculatory system associated with COVID-19. 

Introduction 

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV-

2) primarily affects the respiratory system, even if it does not spare other organs as it occurs for the 

cardiovascular system at large [1, 2, 3]. In severe COVID-19-related pneumonia, impairment of heart function 

seems to be mainly driven by right ventricle involvement, while consequences on the left ventricle appear to be 

less common [4]. Right ventricle dilation, diminished right ventricular function and elevated pulmonary arterial 

systolic pressure have been described and are associated with mortality in severe COVID-19 [5, 6]. Respiratory 

failure with shortening of oxygen supply represents the main clinical picture of the disease. Hypoxemia is 

associated with a huge increase in intrapulmonary shunt due to alveolar fluid filling/consolidations. In fact, the 

pulmonary shunt fraction (measuring the percentage of blood that does not oxygenate in the lungs) is in 

physiological conditions below 5% [7], whereas it reaches values up to 60% in patients with ongoing COVID-19 
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infection [8, 9]. Endothelial damage with diffuse micro-thrombosis has been widely described in histological 

studies in COVID-19 pneumonia patients and is associated with an increase in dead space in lungs and thus in 

non-oxygenated blood [10]. On the other hand, such an increase in intrapulmonary shunt has been postulated 

to depend also on an impairment of hypoxic pulmonary vasoconstriction that should restrict pulmonary flow to 

hypo-ventilated lung areas [11]. These mechanisms do not seem to be correlated with each other and seem to 

coexist to varying degrees in COVID-19 pneumonia patients [12]. 

In this context, physics-based mathematical models are an effective and accurate tool for making predictions 

through virtual scenarios and for providing clinical answers in terms of impairments of the cardiovascular 

function associated with COVID-19 [13, 14, 15]. In this respect, we previously studied, by means of a 

computational lumped-parameter (i.e., 0D) model, possible effects in terms of, e.g., cardiac output and pressures 

[16]. However, this previous study did not integrate clinical data into the analysis in a systematic manner. 

The main novelty of this paper is to assimilate, by means of a calibration method, clinical data coming from 

measurements on COVID-19 patients regarding, e.g., cardiac volumes and vascular pressures, into the 

computational model proposed in [17] to make it patient-specific and then to use such calibrated model for 

making predictions on the impairments of the cardiovascular function associated with the ongoing infection. To 

do this, we first substituted the 3D left ventricle with a 0D component as in [16] and we improved the model of 

[16] by adding further compartments representing systemic and pulmonary micro-vasculatures. In this work, we 

focused on reproducing the blunted hypoxic pulmonary vasoconstriction, that is among the causes of the 

reduction in blood oxygenation, by means of the calibration of the model, thus neglecting the possible increase 

in pulmonary resistance associated to diffuse micro-thrombosis. 

Our final goal is to study possible associations between the ongoing infection of COVID-19 and the impairments 

on the cardiocirculatory system by estimating physical quantities of clinical interest not available as measured 

clinical data and by performing a statistical analysis on these quantities. 

Results 

The modified lumped-parameter model consists of a system of ODEs that has to be numerically solved to allow 

the computation of different model outputs of clinical interest. We calibrated the model to fit some clinical data 

of patients hospitalized for severe COVID-19-related pneumonia in the Internal Medicine ward of Ospedale Luigi 

Sacco in Milan Italy between March and April 2020.  

The dataset consists of 58 patients, 29 of which were represented by the model after the calibration (56 ± 18 

years). All the patients required oxygen supplementation but none of them was on mechanical ventilation. 

Patients did not present symptoms or signs of heart failure or substantial structural cardiac disease; 10 out of  

29 were older than 64 years; 6 patients had arterial hypertension, 1 had diabetes and 4 showed the association 

of hypertension and diabetes. 

The echocardiography of each patient was performed early after the admission to the hospital. Examinations 

were performed at bedside using a Philips CX-50 portable device by expert operators. Measures were defined 

according to the latest European and American Echocardiography Society guidelines [18, 19]. We identified four 

groups of quantities, taken from the dataset or obtained as an output of the calibrated model:  

i) the clinical data used for the model calibration, obtained from clinical measurements and referring 

to physical quantities (PQ1), as, for example, the maximal left atrial volume (LAVmax) and the systolic 

systemic pressure (SAPmax); 
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ii) the inputs of the model (heart rate HR and body surface area BSA) and of the calibration procedure 

(right ventricular fractional area change RVFAC and tricuspid annular plane systolic excursion TAPSE), 

provided by other clinical measurements; 

iii) the parameters of the model (e.g., resistances and compliances) determined through a calibration 

procedure, from now on referred to as calibrated parameters; 

iv) the outputs of the numerical simulation of the model (e.g., flow rate and mean pressure), from now 

on referred to as model outputs. Some of them (MO1) referred to physical quantities (PQ1) that were 

also measured (clinical data), for example, LAVmax and SAPmax. Other model outputs (MO2) referred 

to physical quantities (PQ2) that were not measured but quantified only by means of the 

computational model. Examples of the latter are the mean left atrial pressure (LAPmean) and indexed 

right ventricular end diastolic volume (RVI-EDV). The complete list of PQ1 and PQ2 is reported in Table 

1 and Table 2, respectively.  

We remark that the indexed value of volumes of a patient can be computed dividing the volumes by the BSA of 

that patient. In what follows, an “I-” that precedes a subscript of a volume means that the volume is indexed (for 

example, LVI-EDV is the indexed left ventricular end diastolic volume). 

The statistical reliability of the model outputs for which we did not have at disposal any measurement (i.e., MO2) 

was analysed for each patient through an estimation of the uncertainty interval, resulting from the measurement 

errors on clinical data. If, for a patient, the estimation of a certain model output was found to be not reliable, 

then this output was not used for the subsequent analysis (see Methods – Uncertainty intervals for further 

details). 

We performed a statistical analysis on clinical data or model outputs MO2 (referring to physical quantities PQ1 

and PQ2, respectively) to check whether their mean was significantly increased or decreased with respect to the 

corresponding healthy range [7, 18, 19, 20] (see Table 1 for PQ1 and Table 2 for PQ2), to highlight the 

impairments of the cardiocirculatory system associated with COVID-19 pneumonia. If the sample mean, 

calculated over all patients, of a given physical quantity fell inside the healthy range (see Table 1 for PQ1 and 

Table 2 for PQ2) we did not consider the physical quantity altered in association with COVID-19 infection, 

otherwise we performed z-tests on the sample mean. If the sample mean was less than the lower bound of the 

healthy range, the null hypothesis was that the mean was greater or equal than the lower bound of the healthy 

range, whereas the alternative hypothesis was that the mean was smaller than the lower bound of the healthy 

range. If we accepted the null hypothesis, then the corresponding physical quantity was considered not altered 

in association with the infection of COVID-19; otherwise, we considered the physical quantity altered in 

association with COVID-19. If, instead, the sample mean was greater than the upper bound of the healthy range, 

we proceeded similarly.  

Notice that for group PQ1 the statistical analysis was carried out directly using the clinical data and not the MO1 

values. Accordingly, the clinical data were used in a twofold way:  

i) to statistically compare PQ1 clinical measures with healthy ranges independently of the application 

of the proposed lumped-parameter model (test I); 

ii) to calibrate the lumped-parameter model for the patients at hand thus allowing to obtain MO2 that 

are statistically compared with healthy ranges (test II). 

For the sake of clarity, we reported in Figure 1 the diagram flowchart of the followed procedure. 

Time transients of model outputs. To perform a qualitative analysis, in Figure 2 we reported the time-dependent 
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Figure 1. Diagram flowchart of the procedure used in this study. Top: calibration; mid: statistical analysis of 

measured physical quantities; bottom: statistical analysis of computed physical quantities.  

Calibration: the mathematical model required as inputs HR and BSA of a specific patient. The model computed 

MO1 using an initial setting of parameters (that could need to be calibrated, so they are highlighted in red). If 

MO1 were close enough to the clinical data the model was considered calibrated (the parameters are highlighted 

in green); if not, the calibration method was iteratively applied to the parameters using RVFAC and TAPSE as 

inputs. If the parameters were not modified the calibration failed; if not, MO1 were recomputed by using the 

new setting of parameters and the previous steps were repeated.  

Statistical analysis 1: we performed test I on clinical data.  

Statistical analysis 2: HR and BSA were used as inputs of the calibrated model for every patient with a successful 

calibration, the model computed the MO2 and we checked the statistical reliability of MO2. We collected the 

reliable MO2 from every patient and we performed test II on the reliable MO2 of all the patients. 
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Figure 2. Time transients of model outputs during a cardiac cycle. In green, the reference healthy ranges of the 
corresponding PQ2 (the name reported above each graph) are highlighted. In red boxes the model outputs that 
possibly lie significantly outside of the healthy range are reported. The duration of a heartbeat was normalized 
to 1 s. Notice the different sample size of the plots depending on the corresponding discarded patients. The 
model outputs plotted are the left atrial and ventricular pressures (pLA and pLV), the indexed right atrial and 
ventricular volumes (VI−RA and VI−RV), the right atrial and ventricular pressures (pRA and pRV), the pulmonary 

arterial and venous pressures (pAR
PUL and pVEN

PUL ). 

model outputs (by normalizing the heartbeat duration) together with the healthy ranges (in green) related to the 

following physical quantities among PQ2: maximal, minimal and mean left atrial pressures (LAPmax, LAPmin and 

LAPmean), maximal and minimal left ventricular pressures (LVPmax and LVPmin), indexed maximal right atrial volume 

(RAI-Vmax), indexed right ventricular end diastolic and systolic volumes (RVI-EDV and RVI-ESV), maximal, minimal and 

mean right atrial pressures (RAPmax, RAPmin and RAPmean), maximal and minimal right ventricular pressures (RVPmax 

and RVPmin), minimal and mean pulmonary arterial pressures (PAPmin and PAPmean) and the minimal and mean 

pulmonary wedge capillary pressures (PWPmin and PWPmean). Notice that, for each graph, only patients such that 

the corresponding model output had been found to be statistically reliable (on the basis of the estimated 

uncertainty interval, see Methods-Uncertainty intervals section) were reported. We point out that, from Figure 

2, some sample sizes were too small to analyse the corresponding model output (e.g., RVPmin). For the remaining 

model outputs, we moved on to the statistical analysis to study the impairments of the cardiocirculatory system 

associated with COVID-19, as detailed in the next paragraph. 

Statistical analysis of PQ1 (clinical data, test I) and PQ2 (test II). We analysed the PQ1 using the clinical data 

(test I - Table 1), namely: the maximal left atrial volume (LAVmax), the left ventricular end diastolic and end systolic 

volumes (LVEDV and LVESV), the left ventricular ejection fraction (LVEF), the maximal right atrioventricular pressure 

gradient (max ∇prAV), the systolic and diastolic systemic pressures (SAPmax and SAPmin) and the systolic pulmonary 

pressure (PAPmax). There was no statistical evidence that the clinical data related to PQ1 were altered in asso- 
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PQ1 Healthy range Mean ± std dev 
LAI-Vmax [mL/m2] 
(LAVmax [mL]) 

[16,34] [18] 
  

32.7 ± 13.7 (n = 56) 
(59.1 ± 26.2) 

LVI-EDV [mL/m2] 
(LVEDV [mL]) 

[50,90] [20] 
 

56.5 ± 11.6 (n = 58) 
(101.5 ± 24.1) 

LVESV [mL] [18,52]  [18] 36.8 ± 15.3 (n = 57) 

LVEF [%] [53,73]  [18] 64.5 ± 7.5 (n = 58) 

max ∇prAV [mmHg] - 23.0 ± 5.9 (n = 42) 

SAPmax [mmHg] [-,140]  [18] 120.6 ± 14.7 (n = 58) 

SAPmin [mmHg] [-,80]  [18] 71.0 ± 11.4 (n = 58) 

PAPmax [mmHg] [15,28]  [20] 27.9 ± 5.1 (n = 40) 

Table 1. Statistics of clinical data. The mean and standard deviation of the samples are provided together with 
the sizes in brackets. Notice that the sample sizes of the clinical data are different due to heterogeneous samples. 
The hypothesis tests were not performed because the mean of the samples lied in the respective healthy range. 
Test I. 

ciation with COVID-19-related pneumonia because the mean of the samples lied in the corresponding healthy 

ranges. 

Instead, we analysed the PQ2 using the model outputs MO2 (test II - Table 2), obtaining the following outcomes: 

I. For RVPmax, PAPmin, PAPmean, PWPmin and PWPmean we rejected the null hypothesis and thus these physical 

quantities resulted significantly increased with respect to the healthy ranges; 

II. For left ventricular stroke volume (LVSV), cardiac index (CI) and thus the cardiac output (CO), LAPmax, 

LAPmean, LVPmax, RAI-Vmax, RVI-EDV, right ventricular ejection fraction (RVEF), systemic and pulmonary vascular 

resistances SVR and PVR, we did not reject the null hypothesis, thus there was no statistical evidence 

that these physical quantities were altered in association with COVID-19-related pneumonia; 

III. The sample sizes of LAPmin, LVPmin, RVI-ESV, RAPmax, RAPmin, RAPmean, RVPmin and the Shunt Fraction were too 

small to perform the hypothesis tests. 

Discussion 

This study addressed the association between COVID-19-related pneumonia and the impairments of the 

cardiovascular system. This has been faced by analysing clinical measures and model outputs computed through 

a calibrated lumped-parameter cardiocirculatory mathematical model. To the best of our knowledge, the current 

study is the first that used clinical measures and calibrated models to infer the cardiovascular physical quantities 

significantly altered in association with COVID-19-related pneumonia.  

We start by discussing the available clinical data measured at Ospedale Luigi Sacco in Milan and related to 

cardiovascular physical quantities for COVID-19 pneumonia patients. We found that none of the measured 

physical quantities (i.e., PQ1) was altered in association with COVID-19-related pneumonia (Table 1). See also 

[21] for another analysis of the same dataset of clinical measures. 

Regarding the analysis of MO2, we noticed from Figure 2 that some of the related physical quantities (among 

PQ2) lied within healthy ranges (e.g., LVPmax), whereas other physical quantities lied outside them (e.g., RVPmax). 

For the remaining physical quantities, we could not infer from Figure 2 if they were altered or not in association 

with COVID-19-related pneumonia (e.g., PWPmean or RAPmean). Therefore, to significantly assess the alterations 

associated with COVID-19, we resorted to hypothesis tests. 
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PQ2 Healthy range Mean ± std dev (HP1) 

test II  
(p-value) 

COVID-19 literature values 

I) Rejected 
null 
hypothesis 

RVPmax [mmHg] [15,28]  [20] 33.7 ± 6.8 (n = 29) 2.62E-06 [30,46] [22] 

PAPmin [mmHg] [5,16]  [20] 23.6 ± 6.2 (n = 29) 3.06E-11 [15,26] [11] 

PAPmean [mmHg] [10,22]  [20] 27.1 ± 6.5 (n = 29) 9.97E-06 [25,33]  [11] 

PWPmin [mmHg] [1,12]  [20] 17.1 ± 5.2 (n = 28) 1.04E-07 - 

PWPmean [mmHg] [6,15]  [20] 17.5 ± 5.1 (n = 28) 5.35E-03 [11,18]  [11] 

II) Not 
rejected 
null 
hypothesis 

LVSV [mL] [30,80]  [18] 74.0 ± 10.7 (n = 29) - [68,105]  [11] 

CI [L/min/m2] 
(CO [L/min]) 

[2.8,4.2]  [20] 

  

3.2 ± 0.5 (n = 29) 
(5.9 ± 1.0) 

-  
[2.7,4.5]  [11] / [1.98,3.32] [23] 
([4.4,6.3] [24]) 

LAPmax [mmHg] [6,20]  [20] 12.8 ± 3.2 (n = 25) - - 

LAPmean [mmHg] [4,12]  [20] 10.2 ± 2.8 (n = 27) - - 

LVPmax [mmHg] [90,140]  [20] 124.4 ± 13.3 (n = 29) - - 

RAI-Vmax [mL/m2] [10,36]  [18] 31.8 ± 8.0 (n = 28) - [15,29]  [11] / [14,25]  [23] 

RVI-EDV [mL/m2] [44,80] [19] 75.4 ± 12.4 (n = 29) - - 

RVEF [%] [44,71]  [19] 53.6 ± 5.3 (n = 29) - - 

SVR [mmHg min/L] [11.3,17.5]  [20] 15.9 ± 3.3 (n = 29) - [8.1,13.0]  [11] 

PVR [mmHg min/L] [1.9,3.1]  [20] 3.0 ± 1.4 (n = 28) - [3.1,4.7]  [11] 

III) Sample 
size too 
small 

LAPmin [mmHg] [-2,9]  [20] 7.4 ± 2.2 (n = 22) - - 

LVPmin [mmHg] [4,12]  [20] 6.2 ± 1.4 (n = 12) - - 

RVI-ESV [mL/m2] [19,46]  [19] 33.1 ± 8.4 (n = 14) - - 

RAPmax [mmHg] [2,14]  [20] 11.7 ± 3.3 (n = 9) - - 

RAPmin [mmHg] [-2,6]  [20] 4.4 ± 2.9 (n = 10) - - 

RAPmean [mmHg] [-1,8]  [20] 7.0 ± 2.6 (n = 23) - - 

RVPmin [mmHg] [0,8]  [20] 3.0 ± 2.6 (n = 5) - - 

Shunt Fraction [%] [0,5] [7] 3.7 ± 0.8 (n = 9) - - 

Table 2. Statistics of MO2. The mean and the standard deviation of samples are provided together with the sizes 
in brackets. If there is statistical evidence of impairments of the cardiocirculatory system associated with COVID-
19 the p-value is highlighted in red. If the mean of a sample lied in the healthy range, the hypothesis test was not 
performed. The sample sizes too small to perform the hypothesis tests are highlighted in orange. For some of 
the physical quantities with a big sample size, we report the COVID-19 values taken from literature. Test II. 

We found that the pulmonary resistances (PVR), did not significantly increase in association with COVID-19-

related pneumonia (Table 2). Nonetheless, we highlighted a slightly large value of PAPmax (Table 1) that was 

accompanied by a significant increase not only in PAPmin, PAPmean and RVPmax, but also in PWPmin and PWPmean 

(Table 2). These results seem to be in line with previous evidence reported in COVID-19-related pneumonia 

patients studied with cardiac catheterization [11]. In this study, patients did not show an increase in PVR but the 

mild increase in pulmonary arterial pressure was associated with an increase in wedge pressure. The authors 

hypothesized that a hyperdynamic state not accompanied by an increased in hypoxic-driven vasoconstriction 

could determine (especially in their population of old and often hypertensive patients) an increase in wedge 

pressure related to an increase of LV filling pressure. In our population a substantial percentage of patients were 

old (34% were older than 64 years), with arterial hypertension and/or diabetes, conditions that could be in line 

with this interpretation, taking into account that the mean value of cardiac output computed by the model was 

rather large (5.9 ± 1.0 L/min, Table 2). 
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There was no statistical evidence that the maximal and mean left atrial pressures increased (Table 2). This could 

be due to limitations of the lumped-parameter model in representing the atria. Unfortunately, the sample size 

of LVPmin was too small to infer any interpretation.  

In what follows, we refer to clinical literature of patients affected by COVID-19 for a comparison with the 

outcomes of our mathematical model (the model outputs MO2) [11, 22, 23, 24] (see Table 2). If the mean of our 

samples lied in the intervals identified in clinical literature, we considered them in accordance one another. We 

noticed from Table 2 that the sample mean of some of the physical quantities (RVPmax, PAPmin, PAPmean, PWPmean, 

LVSV and CO) agreed with the COVID-19 literature, whereas the means of RAI-Vmax and SVR were slightly larger and 

PVR slightly lower than the values of literature, although still lying inside the healthy range. 

We emphasise that the statistical analysis of raw clinical data did not allow us to infer alterations in the 

cardiovascular system in association with COVID-19 infection (Table 1). Instead, thanks to the computational 

model we proposed, suitably calibrated by using the clinical data, we were able to identify some specific physical 

quantities related to pulmonary circulation (i.e., RVPmax, PAPmin, PAPmean, PWPmin and PWPmean) which were 

significantly altered in association with COVID-19, in the sense that there was a statistically relevant discrepancy 

with respect to the healthy ranges.  This showed the importance of combining clinical data and computational 

models as an effective strategy to give meaningful insights about the impairments of the cardiocirculatory system 

associated with COVID-19 on cardiovascular physical quantities, which was not possible with raw clinical data 

and non-calibrated computational tools.   

We now discuss the limitations of this study. First, notice that we did not have at disposal a control group to 

perform hypothesis tests in tests I-II, so we took a conservative approach comparing the mean of our samples 

with the lower and upper bounds of healthy ranges found in literature to infer the impairments of the 

cardiovascular system in association with the infection of COVID-19. The sample means of physical quantities 

significantly outside the corresponding healthy range highlight a clear impairment of a compartment of the 

cardiocirculatory system in association with COVID-19 infection. Nevertheless, we do not exclude that small 

changes in some physical quantity could indicate an impairment in the cardiocirculatory system as well. 

Second, although being able to capture the considerable haemodynamic features, the lumped-parameter model 

is rather simple in comparison to other models for the study of the cardiac function (see e.g. [25, 26, 27, 28]). 

Improvements of the computational model will allow also to use other clinical measurements not used in this 

work (such as those based on partial pressures of oxygen and carbon dioxide). 

Third, to quantify the uncertainty in the estimation of the model outputs, we adopted a rather simple approach 

in terms of independence in the selection of the parameter configurations used to computationally generate the 

model outcomes. More sophisticated strategies that account for a selective choice of the new parameter 

configuration starting from the previous ones (e.g., Markov chain Monte Carlo methods [29]), which nevertheless 

entail a larger computational cost, could be considered in further developments of this work. 

Possible improvements of the present work are also related to the clinical measurement acquisition. Other 

clinical measurements, when available, could be added to the framework of the present work to improve the 

outcomes. It may be of particular interest having a measure of the shunt fraction, that gives information on the 

pulmonary capillaries, to avoid the a priori assumption between micro-thrombosis and blunted hypoxic 

pulmonary vasoconstriction. As a limitation, in this work we neglected the contribution of micro-thrombosis [10]  

and we focused only on the study of blunted hypoxic pulmonary vasoconstriction in the increase of non-

oxygenated blood [11].  
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Methods 

Mathematical model. The cardiovascular system was studied by means of a lumped-parameter (0D) 

mathematical model that splits the system into compartments (e.g. right atrium, systemic arteries/veins) and, 

for each of them, the time evolution of model outputs (pressures, flow rates and cardiac volumes) is modelled 

by a system of ODEs [30, 31]. The lumped-parameter model is described through an electrical circuit analogy: 

the current represents the blood flow through vessels and valves; the electric potential the blood pressure; the 

electric resistance plays the role of the resistance to blood flow; the capacitance represents the vessel 

compliance; the inductance the blood inertia; the increase of elastance the cardiac contractility. 

There are different possible choices and number of compartments, depending on the purpose of the study, for 

the construction of a lumped-parameter model (e. g. [16, 17, 32, 33]). We considered the computational model 

introduced in [17], wherein the four heart chambers, the systemic and pulmonary circulations, with their arterial 

and venous compartments were included, and we substituted the 3D left ventricle with a 0D component and we 

added two new compartments accounting for systemic and pulmonary capillaries. The pulmonary capillary 

circulation was also split in two compartments accounting for oxygenated and non-oxygenated capillaries (Figure 

3). 

The system of ODEs associated with the lumped-parameter model is formed by the equations representing 

continuity of flow rates at nodes and of pressures in the compartments, and its numerical solution allows to 

compute several model outputs as functions of time: the left and right atrial and ventricular volumes (𝑉LA, 𝑉LV, 

𝑉RA and 𝑉RV), the systemic and pulmonary arterial, capillary and venous pressures (𝑝AR
SYS, 𝑝C

SYS, 𝑝VEN
SYS , 𝑝AR

PUL, 𝑝C
PUL 

and 𝑝VEN
PUL), the systemic and pulmonary arterial and venous blood fluxes (𝑄AR

SYS, 𝑄VEN
SYS , 𝑄AR

PUL and 𝑄VEN
PUL). 

Starting from these functions, it is possible to compute the pressures of the four cardiac chambers (𝑝LA, 𝑝LV, 
𝑝RA and 𝑝RV), the blood fluxes through the valves (𝑄MV, 𝑄AV, 𝑄TV and 𝑄PV), through the systemic capillaries 

(𝑄C
SYS) and through oxygenated and non-oxygenated pulmonary capillaries (𝑄C

PUL and 𝑄SH), and all the model 

outputs referring to PQ1 and PQ2. 

We considered reference values of the parameters (such as resistances and compliances) such that all the model 

outputs were in the reference healthy ranges of the corresponding physical quantities taken from the literature  

[7, 18, 19, 20] for an ideal individual with HR equal to 80 bpm (beats per minute) and BSA equal to 1.79 m2. We 

did not consider model outputs computed starting from the flow rates, because they are not uniquely defined 

depending on the tract of the compartment where they are measured, from  𝑝C
SYS, due to the heterogeneity of 

the pressures of systemic capillaries among tissues, and from 𝑝VEN
SYS , even if we recovered the value of central 

venous pressure, that coincides with the right atrial pressure [20]. 

The lumped-parameter model was numerically discretized by means of Dormand-Prince method [34] (adaptive 

stepsize Runge-Kutta) which was implemented in Python using the Jax library [35]. 

Calibration. The lumped-parameter model was characterized by parameters representing the functional 
properties of the compartments (e.g., resistances). To properly select such values for a specific compartment 
and patient, a calibration procedure was needed [29, 36]. 

The calibration of the model relies on the method we presented in [29], that is aimed to reduce the sum of 

squared relative errors between the model outputs MO1 and clinical data, modifying the parameters of the 

model in suitable bounded intervals Ii, for i = 1, … , Np, where Np is the number of parameters independent of 

the patient, built starting from the reference values of parameters mentioned before. 
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The calibration was based on clinical measurements of COVID-19 patients that were provided by Ospedale Luigi 
Sacco in Milan and referred to HR and BSA, which were used as inputs for the lumped-parameter model, RVFAC 
and TAPSE, which determined the bounded interval Ii̅ used during the calibration, with i ̅the index referring to 
the right ventricular active elastance, and the clinical data, given by a subset of the pressures and volumes 
involved in the cardiac circulation. 

To provide further mathematical details, we indicate with 𝐩 a configuration of parameters of the 

cardiocirculatory model. The calibration method aimed to find the configuration of parameters 𝐩̅j which 

minimized the loss function for the specific patient 𝑗, that reads: 

Figure 3. Lumped-parameter cardiocirculatory model. The unknown 
pressures and flow rates are in red and blue, respectively, whereas the 
model parameters are in black. Notice in the green boxes the new 
compartments with respect to [16] featuring this work. 
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𝐿j(𝐩) = ∑ (
𝑞mj(l)

j (𝐩) − 𝑑l
j

𝑑l
j

)

2
Nj

l=1

 ,         (1) 

where 𝑁j is the number of available clinical data for patient 𝑗, 𝑑l
j
 is the value of the l-th clinical data of patient 𝑗 

and 𝑞mj(l)
j

 is the value of the model output related to the l-th clinical data of patient 𝑗. The index 𝑚 of 𝑞m
j

 lies in 

{1, … , 𝑁q} where 𝑁q is the number of both MO1 and MO2. We considered the model calibrated for a specific 

patient if the loss function was below 10−3. Notice that, for some patients, the calibration procedure could fail, 

if, for example, it reaches the minimum of the loss function that is above the required threshold. 

During the calibration procedure the parameters 𝐩 could vary in suitable intervals. Notice that, to reproduce the 

hypoxic pulmonary vasoconstriction condition, the resistance of non-oxygenated pulmonary capillaries (RSH) 

could decrease in such a way the shunt fraction could reach values up to 70% in the worst-case scenario. 

Moreover, to improve the robustness of the calibration procedure, we repeated, for every patient, the 

calibration three times, with different initial configurations of parameters, and we considered the calibrated 

setting of parameters that returned the lowest loss function. 

The loss function (1) was minimized by the Quasi-Newton method L-BFGS-B [37] implemented in Scipy by 

computing its gradient by means of automatic differentiation (reverse mode gradient) included in the library Jax 

[35]. 

Uncertainty intervals. For every patient 𝑗 calibrated with a loss function below 10−3, a configuration of 

parameters 𝐩̅j was at disposal. The loss function was computed using the clinical data provided by Ospedale Luigi 

Sacco, which were related to measurement errors, that also affected the uncertainty of the model outputs 𝐪j. 

We needed to determine, for every patient, if the related model outputs were reliable or not, so we proceeded 

along two steps: 

1. Build a sample of candidate model outputs 𝐪j,k for 𝑘 = 1, . . . , 𝑛 (𝑛 was 100); 

2. Determine, by employing a simple statistical analysis, whether the mean of the model outputs was 

reliable. 

Regarding step 1, for every provided clinical data 𝑑l
j
 of patient 𝑗, we built an interval Ml

j
 centred in the value of 

the clinical data with width equal to two times the measurement error. Then, we built the samples 𝐪j,k by 

following the subsequent procedure: 

a) Choose a relative width 𝑤 (𝑤 was 12.5%); 

b) Build an interval centred at 𝑝̅i
j
 and with width 2𝑤𝑝̅i

j
 for every 𝑖 = 1, … , 𝑁p. If this interval is not included 

in the parameter interval Ii used for the calibration, then cut off its overflowing extremities.  

c) Perturb every parameter of the calibrated patient sampling from a uniform distribution in the 

corresponding interval built at point b) thus obtaining 𝑝i
j
; 

d) Run a simulation of the cardiocirculatory model with parameters 𝐩j; 

e) Check if the model output 𝑞mj(l)
j

 generated at point d) lie in the intervals Ml
j
. If they do, save the new 

configuration of acceptable model outputs 𝐪j, otherwise reject it; 

f) Repeat from point c) until 𝑛 iterations are performed; 
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g) Check if the acceptance ratio (ratio between the number of saved configurations and the number of 

iterations) is within [0.1,0.15]. If it does, repeat from point c) to e) until 𝑛 configurations are accepted 

because at this step the sample size of candidate model outputs is small (with 𝑛 = 100, the size is 

between 10 and 15), otherwise increase or decrease 𝑤 to retrieve the condition on the acceptance ratio, 

discard the previous configurations and repeat from point b). 

Once the above procedure was concluded, we proceeded with step 2 by using the 𝑛 samples of acceptable model 

outputs 𝐪j,k for 𝑘 =  1, … , 𝑛 generated at the previous step, for every specific patient 𝑗. If the standard deviation 

of the sample of a model output of patient 𝑗 was lower than 5% of its mean, we considered the mean reliable 

and we used it for the hypothesis tests. In this way, for every model output we built a sample of accepted values 

(depending on the patient), where sample size depended on the considered model output.  

Prediction intervals could have been used for this analysis, but, if the sample was not normally distributed, a link 

function would be needed to retrieve normality [38]. We checked, for every patient 𝑗 and for every model output, 

if the sample of that model output was normally distributed by means of a chi-squared test. It turned out that 

the sample is not normally distributed for all patients. Thus, since we wanted to use the same statistical approach 

for every patient, we resorted to this heuristic approach based on standard deviation instead of prediction 

intervals. 

Statistical analysis. If the sample mean of a clinical data or MO2 lied outside the corresponding healthy range 

we performed z-tests to check whether the mean of the model output lied significantly (p-value below 0.01) 

outside the healthy ranges of the corresponding physical quantity [7, 18, 19, 20] to investigate the impairments 

of the cardiovascular system in association with COVID-19 infection. 

For each clinical datum, we computed the mean and the standard deviation of its sample without resorting to 

the mathematical model. The sample sizes were large enough to use one-tailed z-tests (assuming the variance 

equal to the unbiased sample variance) comparing their means to the nearest bound of the healthy range (test 

I). The tests were left or right tailed if the sample mean lied at the left or at the right of the healthy range of the 

related physical quantity, respectively. 

For every MO2 we computed the mean and the standard deviation of its sample. We performed a chi-squared 

test and not every sample was normally distributed, so we opted for one-tailed z-tests (assuming the variance 

equal to the unbiased sample variance) only if the sample had more than 25 elements comparing their means 

to the nearest bound of the healthy range (test II). The tests were left or right tailed if the sample mean lied at 

the left or at the right of the healthy range of the related physical quantity, respectively. 

Data availability 

The datasets generated and/or analysed are available from the corresponding author upon reasonable request. 
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