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Summary

We propose a highly scalable solver for a two-dimensional depth-integrated fluid
dynamic model in order to simulate flow-like landslides, such as debris or mud flows.
The governing equations are discretized on quadtree meshes by means of a two-
step second-order Taylor-Galerkin scheme, enriched by a suitable flux correction in
order to avoid spurious oscillations, in particular near discontinuities and close to the
wetting-drying interface. A mesh adaptation procedure based on a gradient-recovery
a posteriori error estimator allows us to efficiently deal with a discretization of the
domain customized to the phenomenon under investigation. Moreover, we resort to
an adaptive scheme also in time to prevent filtering out the landslide dynamics, and
to an interface tracking algorithm to avoid an excessive refinement in non-interfacial
regions while preserving details along the wetting-drying front. Finally, after verify-
ing the performance of the proposed numerical framework on idealized settings, we
carry out a scalability analysis of the code both on idealized and real scenarios, to
check the efficiency of the overall implementation.
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quadtree mesh, parallel computing, space-time adaptation, Taylor-Galerkin scheme, depth-integrated
model, flow-like landslides

1 INTRODUCTION AND MOTIVATION

Hydrogeological instability is among the effects of climate change with the highest impact on the safety of people and of the built
environment. In particular, landslides are responsible for significant human and economic losses worldwide1,2. The capability
to predict landslides and to assess the risk connected with extreme events is of paramount importance to the safety of people and
infrastructures3, especially in densely populated urban areas located in landslide-prone regions4. The dynamics of a landslide
is characterized by a broad range of velocity scales, each being dominant in a particular phase of the event, from the steady
creeping slip to a catastrophic avalanche, passing through the intermittent rapid slip. During these phases, the landslide displays
different mechanical behaviours. In particular, during the triggering phase, the landslide behaves roughly like a rigid body and
the driving process is the pore-pressure diffusion that causes the intermittent slipping of the involvedmaterial. Once the landslide
is initiated, various behaviours take place, in particular a flow-like motion is typical of debris and mud flows, where the landslide
follows a visco-plastic behaviour and the overall process becomes advection-dominated.
In this paper, we focus on the “rapid” movement of flow-like landslides, i.e., a movement characterized by a relatively large

velocity. In other words, we assume that the mass has lost its equilibrium and we primarily analyze the associated run-out.
We propose an efficient implementation of a two-dimensional depth-integrated fluid dynamic model able to simulate such kind
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of landslides. Following previous works5,6,7, the landslide model equations are numerically solved by using a Taylor-Galerkin
method8,9. We implement a parallelized version of the two-step Taylor-Galerkin scheme10 on ℎ-adaptive quadtree meshes, in
order to handle the different length-scales characterizing a landslide dynamics, while ensuring a reasonable computational bur-
den. The spatial mesh adaptation is carried out via a metric-based iterative algorithm driven by a recovery-based a posteriori
estimator for the discretization error11,12. Successively, we enrich the spatial adaptation with an adaptive choice also of the time
step, following13. The quadtree data structure14 allows us to easily manage both the coarsening and the refinement of the mesh.
Moreover, quadtree configurations provide an ideal setting to implement very efficient algorithms for mesh traversal, partition-
ing and balancing in order to have applications that properly scale on large-scale distributed-memory systems. The possibility to
be deployed on large clusters and to fully exploit the computing power represents a key requirement for the applicability of the
proposed solver. Indeed, the main use case we have in mind is the integration of the code within a full system for environmental
risk monitoring, which combines physics-based numerical simulations with a statistical data analysis, in order to predict catas-
trophic events and to assess the associated risk level15. In this framework, a large number of simulation runs may be needed
on each scenario, either to evaluate the possible outcome of a specific event or to continuously calibrate the model parameters
with respect to observations, e.g., in a data assimilation process. For all these reasons, the algorithm design process we pursue
is driven by the need to achieve maximum parallel efficiency.
The numerical framework adopted in this work has been implemented in a parallel in-house developed code, bim++16,17,

written in C++, which implements partial differential operator discretization, recovery–based error estimators and metric-based
mesh refinement and coarsening procedures on quadtree meshes. In particular, mesh refinement, coarsening, balancing and
partitioning in bim++ make use of functionalities offered by the library p4est 18.
The paper is organized as follows. We present the governing equations for fast flowing landslide modeling in Section 2,

while Section 3 gathers all the numerical tools used to approximate the selected model. In particular, Section 3.1 introduces the
discrete spaces on balanced quadtree meshes with hanging nodes. Section 3.2 defines the two-step Taylor-Galerkin discretization
algorithm. Section 3.3 provides details on the procedure used to track the wetting–drying interface. Finally, Sections 3.4 and 3.5
furnish the error estimator together with the metric-based adaptation procedure used to select both the spatial and the temporal
computational mesh. In Section 4, we carry out the numerical assessment. In order to verify the perfomance of the proposed
discretization setting, we compare discrete with corresponding analytical solutions. Moreover, we execute a scalability analysis,
both in case of idealized and real configurations, in order to check the actual efficiency of the overall implementation. Finally,
in Section 5, we draw some conclusions and offer perspectives for possible future developments of the current approximation
framework.

2 DEPTH-AVERAGED MODELING OF FLOW-LIKE LANDSLIDES

In this section, we introduce the governing equations used to model the fast landslide material. Inside a Cartesian domain
Ω ⊂ ℝ2, we consider a wet region, Ωw, i.e., the landslide material domain. Region Ωw is implicitly defined as the portion of
Ω where the depth ℎ of the landslide material is greater than zero. Of course, the extension of such an area varies in space and
time. In particular, the model here adopted is reliable as long as the substrate is not too slanted.
In Ωw, the material depth ℎ and the horizontal mass flux U = [Ux, Uy] obey the de Saint-Venant equations, to be supplemented
by proper initial and boundary conditions (we refer, e.g., to19,20,7,21 for a complete derivation), so that the system to be solved
in Ωw × (0, T ] is
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where g is the gravitational acceleration, � is the density of the material, fB = [fBx , f
B
y ]

⊤ denotes the bed friction, � is the
deviatoric part of the Cauchy stress tensor, with components [�xx, �xy, �yy], andZ describes the orography profile. In particular,
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the bed friction is defined by the Voellmy rheology, so that

fB = −
(

pB tan �
1
|v|

+ �g
|v|
�

)

v, (2)

where pB is the bed pressure given by the Stevino law, being pB = pS + �gℎ, with pS the atmospheric pressure, � is the bed
friction angle, v = [vx, vy]⊤ = U∕ℎ is the horizontal depth-averaged velocity, and � is a turbulence friction coefficient with the
same dimension as for the acceleration.
Law (2) turns out to be particularly suited in the modeling of debris flows or rock avalanches22,23. We also remark that, as
proposed in other works24,25,26, the bed friction angle should be considered time dependent due to consolidation processes.
However, we consider � as a constant since the main goal of the paper is to assess the scalability performance of the proposed
implementation rather than focusing on modeling aspects that do not affect the performance of the overall framework.
Concerning the choice for �, we employ a depth-integrated visco-plastic Bingham stress model, i.e.

� =
(

�Y
√

I2
+ 2�

)

D, (3)

where �Y is the yield shear stress, � is the fluid viscosity, D denotes the horizontal strain rate tensor defined component-wise by
Dij =

1
2
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for i, j = 1, 2, with x1 = x, x2 = y, v1 = vx, v2 = vy, and where I2 =
1
2
D̄ ∶ D̄ represents the second

invariant of the three-dimensional depth-averaged strain rate tensor
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component D̄33 being computed via the incompressibility constraint. In particular, following7, we evaluate I2 under the
hypotheses of steady state, laminar, simple shear flow, so that the depth-integrated rate of deformation tensor along the normal
direction, z, is identified by relations

)zvi =
3

2 + �
vi
ℎ
, (4)

for i = 1, 2, where � = �Y ∕�B , with � ∈ [0, 1] and �B the bed friction. Now, the relation between v and � ,

|v| =
�B
6�
(1 − � )2(2 + � ), (5)

results in the third-degree polynomial
�3 − (3 + a)� + 2 = 0, (6)

in the unknown � , being a = (6�|v|)∕(ℎ�Y ). By applying the best second approximation of a third-degree polynomial which
provides a maximum error equal to 1∕32, we obtain the equation

3
2
�2−

(

114
32

+ a
)

� + 65
32

= 0 (7)

that can be solved in a closed form. Once the equation is solved for � , we can compute quantities (4) (i.e., the two components
D̄13 = D̄31 and D̄23 = D̄32) and, consequently, the invariant I2.

3 THE NUMERICAL FRAMEWORK

To simplify the discussion, we rewrite system (1) as a generic nonlinear system of conservation laws, i.e., as

)tq + ∇ ⋅ F + ∇ ⋅ D = r, in Ω × (0, T ], (8)

to be supplemented with proper initial and boundary conditions. Here, q = q(x, t) is the vector of the conserved variables, being
x = (x, y) ∈ Ω ⊂ ℝ2 and t ∈ (0, T ], F = F(q) and D = D(∇q) denote the tensor of the transport and of the diffusive fluxes
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respectively, while r = r(q) is the reaction term.
In particular, with reference to system (1), it turns out that q = [ℎ,U]⊤, tensor F(q) = [Fx(q),Fy(q)] has components defined by
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the diffusive flux D(∇q) = [Dx(∇q),Dy(∇q)] is characterized by the components
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while the reaction term coincides with

r(q) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

1
�
fBx − gℎ)xZ

1
�
fBy − gℎ)yZ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

In the sequel, we deal with the space-time discretization scheme adopted to approximate problem (8) (i.e., (1)), endowed
with a wetting-drying interface tracking algorithm. In particular, both the spatial and the temporal discretizations of the domain
Ω × (0, T ) will be driven by a mesh adaptation procedure detailed in Sections 3.4 and 3.5.

3.1 Discrete Spaces on Hierarchically Refined Cartesian Quadtree Meshes
To offer a sharp description of the solution in wet regions and, at the same time, to prevent a smearing of the solution near wet-
dry interfaces, we resort to a spatial mesh adaptation procedure. In more detail, we carry out an isotropic spatial adaptation on
quadtree meshes, with the constraint to have adjacent cells whose size differs at most by a factor equal to two. The quadtree
data structure easily enables both coarsening and refinement although it leads to non-conformal meshes characterized by the
presence of hanging nodes. A mesh refinement consists in replacing an element with four children of equal size (see Fig. 1, top),
while coarsening occurs when removing four children and replacing them with a parent (see Fig. 1, bottom).
Concerning the update of the discrete variables on adapted meshes, we compute the solution on the new grid by means of

a bilinear interpolation of the solution computed on the previous mesh, while the orography characterizing the source term is
recomputed directly on the input orography, i.e., via the Digital Terrain Model (DTM), associated with a regular quadrilateral
grid. In particular, we update the slope since the source term of the momentum equation involves the terrain slant, both along the
x- and y-direction. Thus, for each DTM cell, we compute, once and for all, the terrain slope along both the Cartesian directions
with the divergence theorem, by considering as integration walk the diamond-shape path joining the centroids of the four cells
sharing an edge with the considered DTM cell. Successively, at each quadtree element, we assign a unique slope value coinciding
with the value taken by the orography at the centroid of the quadtree cell. We observe that this procedure is consistent with the
case of a planar orography. Moreoever, in view of a discrete setting, it corresponds to approximate the integrals involved in the
weak formulation of problem (8) with a midpoint quadrature rule.
Following16, the presence of the hanging nodes is handled by modifying the discrete space instead of adding new degrees of

freedom (see Fig. 1), with the goal of preserving the partition of unity property. To this aim, we introduce the standard space
ℚℎ
1 of the continuous piecewise bilinear polynomials associated with the regular quadtree mesh ℎ to discretize the material

depth as well as the two components of the mass flux27, Chapter 2. Then, we define the modified discrete space ℚ̃ℎ
1 ⊂ ℚℎ

1 , which
still collects continuous piecewise bilinear polynomials, where the value of the conservative quantities at the hanging nodes is
identified with the arithmetic mean of the values taken by the same quantities at the corresponding parent nodes.
Now, we assume to have a maximum levelM of uniform refinements. If we denote by {�(1),ℎ∕2

l

k , k = 1,…N (1)
l } the standard

finite element basis of ℚℎ∕2l
1 , for l = 0,… ,M , and by {�̃(1)i , i = 1,… Ñ (1)} the basis of ℚ̃ℎ

1 , we can identify two levels of
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FIGURE 1 Example of refinement (top) and coarsening (bottom) for a quadtree mesh. The dofs characterizing space ℚ̃ℎ
1 are

highlighted (notice that the hanging nodes do not enrich the space).

refinement, say l1 = 0,… ,M − 1 and l2 = l1 + 1, such that

�̃(1)i (x) =
N (1)
l1

∑

k=1
wk,l1�

(1),ℎ∕2l1
k (x) +

N (1)
l2

∑

k=1
wk,l2�

(1),ℎ∕2l2
k (x) (9)

for any x ∈ Ω. In particular, the weights wk,l1 , wk,l2 are determined by imposing the partition of unity property,
Ñ (1)
∑

i=1
�̃(1)i (x) = 1, (10)

for any x ∈ Ω, together with the Lagrangian property,

�̃(1)i (xj) = �ij , (11)

for i, j = 1,… , Ñ (1), with �ij the Kronecker delta.

3.2 Two-step Taylor-Galerkin Discretization on Quadtrees
Following7, we approximate system (8) by resorting to a two-step Taylor-Galerkin (TG2) method on a spatial quadtree mesh
characterized by a 2:1 balance ratio.
In more detail, to deal with the time discretization, we consider the Taylor series expansion of the conserved variable q around
a given time tn, which, when evaluated at time tn+1, is given by

qn+1 = qn + Δt )tqn +
Δt2
2
)2t q

n + (Δt3), (12)

with qj = q(v, tj) and j = n, n + 1. Thus, by neglecting the remainder, we have

qn+1 = qn + Δt )t
(

qn + Δt
2
)tqn

)

. (13)
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Now, after introducing an intermediate state, qn+
1
2 , we can formalize the semi-discrete two-step temporal scheme
⎧

⎪

⎨

⎪

⎩

qn+
1
2 = qn + Δt

2
)tqn,

qn+1 = qn + Δt )tq
n+ 1

2 .
(14)

Concerning the spatial discretization, we employ standard finite elements, based on a quadtree partition, ̃ℎ, ofΩ. We associate
different approximation spaces with the two temporal steps in (14). We use the spaceℚ0 of the continuous constant polynomials
to discretize the first step (i.e., to compute the intermediate state qn+

1
2 ), and the space ℚ̃ℎ

1 defined in Section 3.4 to discretize the
second step (i.e., to compute the final state qn+1).
Thus, the discrete counterpart of the two steps in (14) is provided by the equations

(qn+
1
2 , �(0)j ) = (q

n, �(0)j ) −
Δt
2
(∇ ⋅ Fn, �(0)j ) +

Δt
2
(rn, �(0)j ),

(qn+1, �̃(1)i ) = (q
n, �̃(1)i ) + Δt

[

(F∗,n+
1
2 ,∇�̃(1)i ) + (r

n+ 1
2 , �̃(1)i ) + (D

n,∇�̃(1)i )
]

− Δt∫
)Ω

(F∗,n+
1
2 n + Dnn) �̃(1)j d�, (15)

by properly varying indices j and i, where qn, qn+1 ∈ ℚ̃ℎ
1 , q

n+ 1
2 ∈ ℚ0, and where Fn, Dn are the transport and the diffusive

fluxes at time tn, {�(0)j }i and {�̃
(1)
i }j denote the set of the basis functions for spacesℚ0 and ℚ̃ℎ

1 , respectively, (⋅, ⋅) is the standard
scalar product in L2(Ω), F∗,n+

1
2 represents the numerical flux discussed below at time tn+

1
2 , and n coincides with the outward

unit normal to the boundary )Ω. We remark that the diffusive term is neglected in the intermediate state. This is due to the fact
that D depends on the gradient of q and the gradient is not computable in ℚ0. Vice versa, the diffusive contribution becomes
computable in ℚ̃ℎ

1 . For this reason, the final state comprehends the diffusive term although it is evaluated at time tn, since no
corresponding approximation is available at the intermediate time tn+

1
2 . This choice only mildly affects the convergence rate in

time of the whole numerical procedure, consistently with what observed in7. We observe that the TG2 scheme can be conceived
as a combination between the explicit Euler scheme, used to discretize the diffusion term, and a second order Taylor method to
approximate the transport and the reaction contributions.
Concerning the boundary conditions closing problem (15), we note that the effect of the boundary data on the actual flow is

not relevant as far as the wetting front does not reach the boundary )Ω. Therefore, we employ non reflecting boundary conditions
for the transport contribution, while we impose null diffusive interface fluxes.
Finally, from a computational viewpoint, we avoid the expensive consistent mass matrix inversion associated with the second

step in (15) by adopting a mass lumping technique28. This turns out to be a strategical choice in view of a parallel implementation
of the numerical procedure. Indeed, we can avoid to build a global linear system, thus skipping expensive communications
among processors.
The TG2 scheme in (15) is a second order space-timemethod. Nevertheless, forF∗,n+

1
2 = Fn+

1
2 , the scheme is neithermonotone

nor positive preserving10. Here, we are interested in setting up a numerical scheme able to avoid spurious oscillations near
discontinuities while ensuring mass conservation. This requires the implementation of suitable flux limiter techniques, like the
Flux Corrected Transport (FCT) (we refer the interested reader to29,30,31 for further details). In particular, we resort to a first
order monotone numerical flux (i.e., a “low-order” flux), weighted by a flux correction function that guarantees a first order
accuracy near discontinuities, in accordance with the Godunov theorem. We use a Lax-Friedrichs “low-order” numerical flux
with Rusanov correction in order to modify the truncation error only, thus enabling for independent space and time adaptation.
Let us focus on a single mesh element Q, with resolution Δx × Δy. We define the Lax-Friedrichs anti-diffusive contribution
with Rusanov correction,

�FnQ = max
(

Δx
Δt
, Δy
Δt

)

1
Δt
(∇qn, �(0)Q ), (16)

with �(0)Q the generic ℚ0-basis function associated with the element Q. The L2(Ω)-product in (16) leads us to deal with a linear
function of the ratios Δx∕Δt and Δy∕Δt for both the x- and the y-component. Now, since such ratios are upper bounded by the
CFL condition, the maximum in (16) is reached when replacing Δx∕Δt and Δy∕Δt with the maximum simple wave speed with
respect to both the Cartesian directions and in the considered element, this yielding the Rusanov anti-diffusive flux recipe32.
Thus, according to the classical FCT strategy29,30,31, the numerical flux associated with the cell Q reads,

F
∗,n+ 1

2
Q = (F

n+ 1
2

Q − �FnQ) + �Q�F
n
Q, (17)
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with F
n+ 1

2
Q the restriction to Q of the transport flux F at time tn+

1
2 , and where �Q ∈ [0, 1] denotes the elementwise constant cor-

rection coefficient. We adopt the Zalesak multidimensional flux correction, as described in the corresponding seminal paper29.
The main steps leading to this specific definition of �Q are here summarized for completeness.
For each mesh node i and for each component z of the conserved variable q, we compute the low-order updated solution zn+1,lowi
at time tn+1 coinciding with the quantity between brackets in (17). We define now the set,i, of the elements sharing the node
i, by including also the elements such that at least one hanging node has node i as a parent. Then, the corrected updated solution
at node i at time tn+1 is given by

zn+1i = zn+1,lowi + Δt
mi

∑

Q∈i

�Qf
z
Q,i (18)

where mi is the component of the lumped mass matrix associated with node i, while f zQ,i represents the component related to
z of the vector fQ,i = (�FnQ,∇�̃

(1)
i ), i.e., of the anti-diffusive contribution to node i from element Q. Now, to determine �Q,

according to31,33, we introduce the auxiliary quantities

P +i =
1

ΔtSi,xSi,y

∑

Q∈i

max{0, f zQ,i}, P −i =
1

ΔtSi,xSi,y

∑

Q∈i

min{0, f zQ,i},

W +
i = max

Q∈i

zn+1,lowi − zn+1,lowi , W −
i = min

Q∈i

zn+1,lowi − zn+1,lowi ,
(19)

which coincide with the sum of all the positive/negative anti-diffusive fluxes associated with node i and with the distance to the
local extrema33, respectively, Si,x and Si,y denoting the x- and the y-component of the maximum simple wave speed at the node
i associated with the updated low order solution. Finally, after introducing the nodal quantities,

R+i =

{

min {1,W +
i ∕P

+
i } if P +i ≠ 0

1 if P +i = 0,
R−i =

{

min {1,W −
i ∕P

−
i } if P −i ≠ 0

1 if P −i = 0,
(20)

we define the correction factor associated with the generic element Q, i.e.,

�Q = mini

⎧

⎪

⎨

⎪

⎩

R+i , if f zQ,i ≥ 0

R−i , if f zQ,i < 0,
(21)

which guarantees the maximum discrete principle.
To conclude, the numerical flux F∗,n+

1
2 in (15) is defined by collecting the elementwise contributions in (17).

3.3 Tracking of the Wetting-drying Interface
The discetization scheme in the previous section is enriched with the Lagrangian interface prediction strategy introduced in34

in order to accurately track the evolution of the wetting-drying interface. The spatial mesh adaptation procedure detailed in the
next section also will play a role in such a direction.
Thus, the wet region is discretized by setting a threshold, ℎmin, for the depth ℎ so that no momentum flux takes place under

this value. This threshold has to be chosen sufficiently small to prevent unrealistic behaviours, although not too small to avoid
the rise of numerical instabilities yielded by the division by ℎ in the definition of the transport fluxes.
The strategy we adopt to track the wetting-drying interface is very basic. At a given time tn, first we identify the wetting-

drying interface elements, coinciding with the cells which have, at least, a dry node (where the discrete material height is under
ℎmin) as well as a wet node (where the discrete value for ℎ is above ℎmin). For each interface element, QI , we compute the aver-
age velocity. Then, we identify the neighbouring cell containing the centroid of QI when advected by such an average field.
This localized search turns out to be possible by exploiting the CFL condition. Finally, the neighbouring element is marked for
refinement, up to a suitable refinement level (we refer to the next section, in particular to formula (27), for further details, and
to Fig. 2 for a sketch of the front-tracking procedure).
To avoid an excessive smearing of the solution when interpolating the physical quantities from one mesh to another, we avoid
coarsening the cells along the interface. Conversely, to contain the computational effort to track the interface, the user is
demanded to set a maximum number of mesh elements.
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Ω!(𝑡")

FIGURE 2 Tracking of the wetting-drying interface: wet domain at time tn with associated interface curve highlighted in blue.
The grey square corresponds to a cell marked for refinement since containing the centroid identified by the red cross when
advected by the corresponding average field.

3.4 Space Adaptation
The wetting-drying interface tracking process is complemented by an adaptive management of the spatial mesh, driven by an a-
posteriori error estimator. Among the several estimators for the discretization error available in the literature, we select a gradient
recovery approach11,35,12. One of the main strength of these estimators is the intrinsic independence from the problem at hand.
In particular, the estimators depend on the chosen discrete space but not on the equations governing the problem. Moreover,
other important properties are enjoyed, such as the computational effectiveness as well as the easiness of implementation.
Herein, we summarize the whole procedure we follow, for reader completeness. Starting from an assigned quadtree mesh,

̃n
ℎ, at time tn, we look for a size function, known as metric36, that specifies a new sizing for the mesh elements, so that a suitable

norm of the discretization error remains below a user-defined tolerance, �. In the original proposal by O.C. Zienkiewicz and J.Z.
Zhu, the chosen norm is theH1(Ω)-seminorm. In particular, we refer to theH1-seminorm of the discretization error associated
with the generic component z of the vector q in (8) at a given time tn, i.e., to

|ez,nℎ |

2
H1(Ω) = ∫

Ω

|∇zn − ∇znℎ|
2 dΩ, (22)

where zℎ denotes the discrete counterpart of z, while index n keeps trace of the selected time tn. In11,35,12, the authors derive
an error estimator for |ez,nℎ |H1(Ω) by replacing in (22) the exact gradient ∇zn with a computable quantity, known as recovered
gradient. In general, the recovered gradient is expected to provide an approximation to∇zn better than∇znℎ. Several methods are
available in the literature to recover∇zn (see, e.g.,37,38,39). In the sequel, we compute the recovered gradient∇Rznℎ by projecting,
componentwise, the discrete gradient ∇znℎ onto the bilinear space ℚ̃

ℎ
1 , so that ∇

Rznℎ ∈ [ℚ̃
ℎ
1 ]
2. For more details about the specific

projection algorithm, we refer the interested reader to16,17.
Thus, we can introduce the local recovery-based estimator for the discretization error, defined by

�2Q = ∫
Q

|(∇Rznℎ − ∇z
n
ℎ)|Q|

2 dQ, (23)

for each element Q ∈ ̃n
ℎ, and where the integral is computed via a suitable quadrature formula (in the numerical assessment

below, we employ the four point Gaussian quadrature rule). The global error estimator is consequently assembled as

�2 =
∑

Q∈̃n
ℎ

�2Q. (24)

Now, according to a metric-based approach16,17, we predict a new mesh size, ℎ∗Q, for each element Q of the grid ̃n
ℎ (which

constitutes the so-called background mesh, i.e., the grid where computations are actually performed). To this aim, we impose
that the global estimator �matches a user defined accuracy � (i.e., � = �), in combination with an error equidistribution criterion,
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so that
�2Q =

�2

N
, (25)

withN the cardinality of the background mesh ̃n
ℎ. Then, the local error estimator is scaled with respect to an area information,

by introducing the quantity �̃2Q = �2Q∕ℎ
2
Q. By exploiting the definition of the scaled estimator in (25), we can predict the new

elementwise size,
ℎ∗Q =

�

�̃Q
√

N
. (26)

Notice that, since we deal with a quadtree mesh, we need to express the geometric information in (26) as a number of levels
of refinement or coarsening. Actually, with each cell Q in ̃n

ℎ, we have to associate an integer number, lQ, which specifies the
number of refinement (if lQ > 0) or coarsening (if lQ < 0) levels (where lQ = 0 means that no action has to be taken on the cell
Q). Under the hypothesis of invariance of �̃Q with respect to possible changes in the mesh size, so that

�̃Q =
�Q
ℎQ

=
�∗Q
ℎ∗Q
,

with �∗Q the error estimator computed on themesh element identified by the predicted size ℎ∗Q, and since increasing the refinement
level reduces to halve the characteristic cell size lQ so that 2−lQ = ℎ∗Q∕ℎQ, we derive that the level of refinement/coarsening
coincides with

lQ =

⌈

log2

(

�Q
√

N
�

)⌉

. (27)

3.5 Time Adaptation
The possible heterogeneity in time characterizing the phenomena of interest justifies an adaptive choice of the time step. For a
certain time tn−1, the idea is to predict the next time step Δtn, namely the next time tn, by resorting to an a posteriori estimator
for the discretization error in time. When predicting both the space and the time discretization, it is rather standard to keep
distinct the space from the time error estimator in order to make the whole adaptation procedure more straightforward (see,
e.g.,40,41,42,43). Here, we adopt the same strategy. In particular, we refer the reader to Fig. 3 where a sketch of the coupling
between space and time mesh adaptation, together with the wetting-drying interface tracking procedure, is provided.
To drive the adaptive selection of the time step, we follow the approach proposed in13.

Consistently with Section 3.4, we refer to the generic component z of the vector q in (8).We denote by zℎ the discrete counterpart
of z, that we assume to be known at the times tj , for j ∈ {0, ..., n − 1}, with Δtj = tj − tj−1 the j-th time step in the temporal
window [0, T ]. To identify the next time stepΔtn, we again exploit a recovery-based a posteriori estimator for theH1-seminorm
of the time discretization error,

|ezℎ,t(x)|
2
H1(In−1)

= ∫
In−1

|)tz − )tzℎ|2 dt, (28)

with In−1 = [tn−1, tn] and for x ∈ Ω. To make computable the right-hand side in (28), we approximate the derivative of the
discrete solution by means of a standard finite difference scheme, so that

)tzℎ ≃
znℎ − z

n−1
ℎ

Δtn−1
(29)

with zjℎ = zℎ(x, tj), for x ∈ Ω and j ∈ {0, ..., n}. As far as the time derivative )tz is concerned, we replace the exact solution
z with the recovered solution z∗ computed by quadratically interpolating the pairs of values (tn−2, zn−2ℎ ), (tn−1, zn−1ℎ ), (tn, znℎ).
Thus, the square of the estimator in time associated with the interval In−1 turns out to coincide with

�2In−1(x) = T̃ ∫
In−1

|

|

|

|

)tz
∗(x) −

znℎ − z
n−1
ℎ

Δtn−1
|

|

|

|

2
dt, (30)

for x ∈ Ω, the scaling factor T̃ being introduced to make �In−1 dimensionally compatible with the space estimator in (23)-(24).
Notice that, the integral in (30) can be computed exactly since the derivative )tz∗ and the finite difference in (29) coincide with
a linear and with a constant polynomial, respectively.
Now, in order to have a unique quantifier of the error on the time interval In−1, first we evaluate estimator �In−1 at each vertex
v of the current grid ̃n−1

ℎ . Successively, we compute an average value, �In−1,Q , of the estimator on each element Q ∈ ̃n−1
ℎ ,
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FIGURE 3 Block diagram of the whole space-time adaptive procedure.

and, finally, we sum the elemental contributions throughout the mesh ̃n−1
ℎ . This allows us to define the time estimator for the

interval In−1 as
[�TIn−1]

2 =
∑

Q∈̃n−1
ℎ

�2In−1,Q with �2In−1,Q =
1
4
∑

v∈Q
�2In−1(v). (31)

Starting from (31), we are able predict the time step Δtn. To this end, we rewrite estimator �TIn−1 by applying a suitable scaling
with respect to the temporal dimension Δtn−1, being

[�TIn−1]
2 = T̃Δt2n−1[�̃

T
In−1
]2 (32)

with

[�̃TIn−1]
2 = 1

Δt2n−1

∑

Q∈̃n−1
ℎ

1
4
∑

v∈Q ∫
In−1

|

|

|

|

)tz
∗(v) −

znℎ − z
n−1
ℎ

Δtn−1
|

|

|

|

2
dt.

Then, we impose �TIn−1 = �
Δt, with �Δt a local tolerance, strictly dependent on the specific problem at hand. This choice, combined

with relation (32), allows us to derive the new time lenght as

Δtn =
�Δt

√

T̃ �̃TIn−1

. (33)

We observe that time adaptation can be carried out only after the second time step. Indeed, the interpolation underling the
definition of the recovered gradient in (30) involves the value of the discrete solution at three consecutive times. As a conse-
quence, the first two time steps, Δt0 and Δt1, are freely set by the user. Moreover, to increase the effectiveness of the adaptive
procedure, it is advisable to fix a minimum as well as a maximum value, Δtmin and Δtmax, for the time step in order to lower
and upper bound the time length predicted in (33). In the assessment below, we choose Δtmax starting from a numerical stability
analysis based on the CFL condition, and we assign Δt0 = Δt1 = Δtmax.

4 NUMERICAL RESULTS

In this section we pursue a twofold goal. First, we explore the reliability of the proposed discretization framework on an ideal
case study, taken from the literature7. Successively, we investigate the scalability performance of the implementation both on
an ideal configuration and on a real case study.
We identify the computational domain Ω with the rectangle (0, L) × (0,H)m2.
Concerning the tracking of the wetting/drying interface, we choose the threshold ℎmin equal to 10−5m, so that no momentum
flux takes place when the depth ℎ is below such a value.
As far as the recovery based error estimators is concerned, we choose the depth ℎ to drive both the space and the time adaptation.
In particular, we set the tolerance � in (26) to 10−5m, while, for the time adaptation, we choose the scaling factor in (30) as
T̃ = Δtn−1, while setting the control steps Δtmin and Δtmax to 10−6 and to the value provided by the CFL condition, respectively.



F. Gatti, M. Fois, C. de Falco, S. Perotto, L. Formaggia 11

4.1 Reliability Analysis: the Dam-break Problem
We verify the performance of the numerical setting in Section 3 on a benchmark scenario, whereΩ coincides with a square area,
so that L = H = 500m, in the presence of a flat and frictionless bed (i.e., r and D are null in (8)). These assumptions reduce
system (8) to the classical shallow water equations44. The simple configuration here considered allows us to have an analytical
solution taken as the target trend to be replicated.
We analyze two different setups, characterized by a fully wet and by a wetting/drying initial condition, respectively. In both

cases, we apply non-reflecting boundary conditions on the whole boundary, )Ω.
The grid resolution is set equal to 1∕12m for the interface regions and to 1∕6m for the wet areas, and a local tolerance �Δt = 100
for the time adaptivity. The spatial mesh adaptation procedure is performed every 10−3s, with a maximum number of elements
of the order of one million1.
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FIGURE 4 The dam-break problem (first scenario). Comparison between computed and analytical solution: height ℎ (left) and
mass flux Ux (right) at two different times (top-bottom).

Let us focus on the former configuration. At the beginning, the domain is entirely covered by material at rest, with a material
height equal to 70m in the left half of the bed and to 7m in the right part. The final time of interest coincides with T = 2.2s.
Figure 4 compares the analytical with the numerical solution along the line y = 250m, in terms of the elevation ℎ and of the
mass flux Ux, by highlighting a very good matching. We recognize a standard trend, i.e., the generation of a shock along the
downstream (i.e., on the right of the dam) direction, together with an upstream (i.e., on the left of the dam) rarefaction wave.

1The simulations in this section have been run with four ranks on a laptop with an Intel i7 CPU, 2.60 GHz clock frequency, 16GB RAM.
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We remark the effect of the flux limiter which allows us to avoid the generation, and consequently the propagation, of spurious
oscillations in correspondence with the wetting/drying interface, thus guaranteeing the maximum discrete principle.
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FIGURE 5 The dam-break problem (second scenario). Comparison between computed and analytical solution: height ℎ (left)
and mass flux Ux (right) at two different times (top-bottom).

We consider now the latter setting. The material column, with an initial height equal to 70m, is localized at the barycenter
of the domain. The final time T is set to 0.8s. The collapse of the material column, under the effect of the gravity, yields two
rarefaction waves of equal intensity but symmetric with respect to the associated transverse axis, thus generating two nonlinear
waves travelling along the same line but with an opposite direction.
In Figure 5, we provide the profile for the height and for the flux Ux at times t = 0.3s and t = 0.8s, both for the analytical and
the approximate solution. The correspondence between the two solutions is remarkable. In this case, the bed is initially dry so
the spatial adaptation, combined with the front-tracking technique, plays a crucial role to ensure a detailed preservation of the
interface in the wetting/drying zone. Figure 6 (left and center panel) highlights this feature. We focus on the bottom-left quarter
of the domain, i.e., on the set {(x, y) ∶ 0 ≤ x, y ≤ 250m}. The two plots show the material height distribution at two different
times, superimposed to the quadtree adapted mesh. It is evident the sharp detection of the wetting/drying front provided by the
spatial mesh adaptation as well as the correct tracking of the interface between the wet (in red) and the dry (in blue) zones. The
panel on the right in the same figure displays the evolution of the time step yielded by the temporal adaptation process. In the
very early stage of the simulation, the time step, initially set to 0.01s, drastically drops, in conjunction with the sudden collapse of
the dam. Successively, the time step is, on average, reduced until time 0.15s is reached. After this instant, Δtn slighlty increases
until it reaches a constant value, about equal to 0.0018s.
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FIGURE 6 The dam-break problem (second scenario). Colormap of the material height ℎ superimposed to the quadtree adapted
mesh at t = 0.3s (left) and t = 0.8s (center); temporal evolution of the time step (right).

Finally, in Figure 7 we provide a barplot for the percentage relative error characterizing the mass conservation at different
times. The interpolation step associated with the space adaptation does not introduce a significant mass loss, which remains
always below 0.01%. This is a relevant feature since, a priori, the interpolation is not a conservative operation in terms of mass.
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FIGURE 7 The dam-break problem (second scenario). Barplot of the percentage relative error associated with the mass
conservation, at different times.

4.2 Efficiency Analysis: Scalability Tests
Here, we assess the performance of the overall implementation by carrying out some intensive scalability tests, both on ideal
and real scenarios. In particular, for the ideal tests, we save the whole numerical solution every 0.1s, we switch on the spatial
adaptation every 0.04s, while the time adaptation is always activated. Finally, the maximum number of quadtree elements is set
equal to the order of ten millions.
The simulations of this section are run on the supercomputer CINECAGALILEO100 which is a new infrastructure co-funded by
the European ICEI (Interactive Computing e-Infrastructure) project and engineered by DELL. This supercomputer is composed
by 554 nodes, and each node has 384 GB RAM and two 24-cores processors Intel CascadeLake 8260 at 2.4 GHz. We compile
and link the application with gcc-10 suite and OpenMPI 4.1.1. Finally, all the floating-point operations are performed in double
precision.
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4.2.1 Ideal Scenarios
Two settings are considered in this section. The first one coincides with the radial dam break problem. In such a case, we deal
with the standard shallow water equations solved on a flat bottom, without any source term. We set the final simulation time T
to 1s. The computational domain is a square so that L = H = 5m, while the initial height ℎ is chosen as

ℎ(r, 0) =

{

2 if r ≤ 0.5
1 if r > 0.5

with r =
√

(x − L∕2)2 + (y − L∕2)2. (34)

The material is initially at rest. We consider a gravitational field g = 1m/s2 and we assign non-reflecting boundary conditions
on the whole boundary domain. Figure 8 shows the material height distribution in the top-right quarter of the domain, {(x, y) ∶
2.5 ≤ x, y ≤ 5m}, at three different times after the dam collapsing, when employing a minimum spatial resolution equal to
0.125 ⋅ 10−2m and a local tolerance �Δt = 1 to constrain the time adaptivity.
We perform a scalability test according to the algorithm described in18, by using a different number of cores, or likewise of

domain subdivisions, from 16 to 512. Figure 9 gathers the plot of the speed-up (on the left) and of the total simulation wall time
(on the right) in seconds, as a function of the ranks. In both the plots, the values are scaled with respect to the solution associated
with 16 ranks. It is evident that the numerical framework proposed in Section 3 scales rather efficiently, up to the maximum
number of cores we use. The total wall time employed with 16 ranks turns out to be approximately 27 times the one demanded
by 512 ranks, resulting in a parallel efficiency roughly equal to 80%.

FIGURE 8 The radial dam break. Colormap of the material height ℎ at t = 0.3s (left), t = 0.6s (center) and t = 1s (right).

As a second configuration, we consider a mass sliding along an inclined plane with bed friction, the gravitational field being
now selected as g = 9.81m/s2, and for a final simulation time T equal to 3s. The sliding mass, characterized by a density
� = 1400kg/m3, is initially placed at the center of the domain Ω = (0, 1000)2m2, with a height equal to

ℎ(x, 0) =
{

max{0,min{500x∕L − 200, 30}} for x ∈ W
0 otherwise,

(35)

with L = 1000 m, and where

W =
{

x = (x, y) ∈ ℝ2 ∶
(x − L∕2)2

L2
+
(x − L∕2)2

L2
≤
[

0.2 + 0.01 sin
(

10 (y − L∕2) �
L2

)]2
}

.

The material is initially at rest, while the plane has a slope of approximately 26◦ with respect to the horizontal axis, i.e. Z(x) =
500−500x. The simulation is carried out in the absence of surface pressure and with a turbulence coefficient � = 108 and a bed
friction angle � = 23◦. Non-reflecting boundary conditions are imposed on the whole boundary domain. The spatial resolution
is set equal to 0.1667m in the interface region, while we set a minimum spatial resolution equal to 0.25m in the wet areas. In
Figure 10 we show the distribution of the still level, i.e., the sum of the material height ℎ with the orographic surface Z, at the
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FIGURE 9 The radial dam break. Scalability test: speed-up in log2 scale (left) and total wall time in log-log scale (right) as
a function of the number of ranks.

initial and at the final time. The contourlines are very sharply detected thanks to the combined action between mesh adaptation
and wetting-drying interface tracking.
Now, we perform a scalability analysis by varying the number of ranks from 16 to 512. Figure 11 gathers the results of such

an investigation. In the left panel, we show the speed-up, scaled with respect to the solution obtained when using 16 ranks, as a
function of the number of processors. The right panel displays the trend of the total wall time after applying the same scaling,
and for an increasing number of ranks. The two plots confirm the efficiency characterizing the proposed numerical setting, up to
the tested number of cores. In this case, the total wall time characterizing the run with 16 ranks turns out to be approximately 22
times the wall time required by the simulation based on 512 processors, roughly resulting in a parallel efficiency equal to 70%.

FIGURE 10 The mass sliding along an inclined plane. Distribution of the still level at times t = 0s (left) and t = 3s (right).
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FIGURE 11 The mass sliding along an inclined plane. Scalability test: speed-up in log2 scale (left) and total wall time in
log-log scale (right) as a function of the number of ranks.

4.2.2 A Real Scenario: the Bindo-Cortenova Landslide
In this section we consider a real setting represented by a 1.2km2 wide translational landslide in Bindo-Cortenova, a small village
located in the northern of Italy, close to Lecco. The sliding material is formed by very large conglomeratic rock blocks, up to
100m in size, immersed in a gravely sand matrix. The toe of the slope underwent a catastrophic failure in December 2002 (with
a material volume about equal to 1.2 ⋅ 106m3), after a period of extremely heavy rainfall. For more details about the considered
scenario, we refer the interested reader, for instance, to45.
The input Digital Terrain Model (DTM), i.e., the input orography Z, coincides with a 5m-resolution raster. Figure 12 shows
the DTM (left), where the contour of the detached material is black-highlighted, together with the corresponding slope map (in
degrees), i.e., the distribution of the arctan |∇Z| (right). According to45, the average thickness of the sliding material is 38m,
and the mean slope is approximately 28◦. We consider a bed friction angle equal to the residual friction angle, i.e., 33.9◦, while
the material density � is set to 1291kg/m3, and, for simplicity, we consider a null surface pressure. Note that this assumption
only removes the offset in the bed friction, in case of a non null surface pressure.
Concerning the rheological model, since we are interested in simulating a debris flow, we pick the fluid viscosity � and the yield
shear stress �Y equal to 50Pa⋅s and 2 ⋅ 103Pa, respectively. The turbulence coefficient � in the Voellmy rheological model (2) is
chosen sufficiently large in order to prevent the time step numerically go to zero. In particular, via a trial-and-error approach, we
set � = 108m/s2. We observe that the presence of the source term, together with the diffusion contribution, plays an important
role in the numerical approximation, in terms of stability of the scheme. A possible remedy to this issue, although beyond the
specific goal of the paper, consists in resorting to a second order implicit treatment of the source term. According to46, this
approach does not affect the efficiency of the overall implementation.
To contain the memory effort, we adopt a saving time equal to 0.1s, we activate the spatial adaptation every 0.04s, while

keeping the time adaptation always switched on, using a local time tolerance �Δt = 10. The maximum number of quadtree mesh
elements is of the order of ten millions, as for the ideal simulations in the previous section. The final time is T = 10s, while the
computational domain coincides with a rectangle 820 × 870m2 (we refer to Figure 12 to identify the exact location of the area
with respect to the DTM data). We employ a spatial resolution equal to 0.1667m for the cells in the wetting-drying interface
region, while we set a minimum resolution equal to 0.25m for the wet regions. Finally, non-reflecting boundary conditions
complete the problem along the boundary.
Figure 13 shows the material height distribution at three different times, by highlighting the slipping of the material all around

the initial location of the landslide, with a non homogeneous advancement of the wetting-drying front which follows the com-
plex local orography.
Figure 14 gathers some information about the space-time adaptation procedure. The left panel shows the spatial adapted mesh,
superimposed to the material height distribution, at the final time T = 10s. The landslide front is sharply identified in the com-
putational mesh, with a thin refinement along the contour of the sliding material. The panel on the right displays the evolution
of the time step during the whole simulation. The temporal discretization step rapidly reduces due to the sudden change in
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FIGURE 12 The Bindo-Cortenova landslide. Colormap of the input orography (left) and of the slope magnitude (right).

the dynamics of the water column, before assuming almost a constant trend (Δtn stagnates around 0.25 ⋅ 10−3) when the land-
slide gradually extends. Analogously to the dam-break case study, the time step reaches a constant value, after an initial phase
when it gradually reduces (compare the right panels in Figures 6 and 14, respectively). This can be ascribed to the comparable
phenomenological trend characterizing the two scenarios.
Finally, in Figure 15 we show the results of the scalability analysis, when varying the number of processors from 16 to 512,

analogously to what done for the ideal simulation tests. The numerical framework in Section 3 scales rather efficiently also in
this more challenging configuration, at least up to the number of cores we tested. In more detail, we obtain a speed-up equal
to 12 for the case of 512 cores with respect to the 16 core configuration. Concerning the wall time, from the right panel in the
figure we derive that the total time associated with 16 ranks turns out to be approximately 23 times the time demanded when
using 512 ranks, resulting in a parallel efficiency of roughly 70%. All the values in the two plots of Figure 15 are scaled with
respect to the solution yielded by the run based on 16 processors, analogously to Figures 9 and 11.

5 CONCLUSIONS

We have proposed a scalable multi-processor depth-integrated finite element quadtree based numerical framework to efficiently
solve advection-dominated conservation laws, in particular for the simulation of fast landslides.We have numerically verified the
reliability of the proposed numerical framework, together with the effectiveness of a parallel implementation of the approach. A
suitable combination of a space-timemetric-based adaptation procedure with a tracking interface strategy guarantees a sharp and
efficient modeling both for ideal configurations and real test-case scenarios, with a parallel efficiency ranging between 70%-80%.
Among the possible future developments of this work, we mention the enrichment of the current simulation framework in

order to include the activation/intermittent phase of the landslide dynamic, i.e., the long-term time-scale dynamics. In such a
context, the landslide dynamics is governed by the pore-pressure diffusion, and the landslide material behaves roughly like a
rigid body. Another improvement is represented by the implicit treatment of the source term in order to avoid too restrictive
time steps to ensure the stability of the numerical approach (see46) thus enabling to perform uncertainty quantification, e.g., by
polynomial chaos expansion (see47).
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FIGURE 13 The Bindo-Cortenova landslide. Distribution of the material height at times t = 1s (left), t = 5s (center) and
t = 10s (right).
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FIGURE 14 The Bindo-Cortenova landslide. Adapted spatial mesh at the final time (left); temporal evolution of the time step
(right).
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