
MOX-Report No. 37/2023

Latent Dynamics Networks (LDNets): learning the intrinsic dynamics

of spatio-temporal processes

Regazzoni, F.; Pagani, S.; Salvador, M.; Dede’, L.; Quarteroni, A.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it

Latent Dynamics Networks (LDNets): learning the intrinsic

dynamics of spatio-temporal processes

Francesco Regazzoni1,∗, Stefano Pagani1, Matteo Salvador1,2, Luca Dede’1, Alfio Quarteroni1,3

1 MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
2 Institute for Computational and Mathematical Engineering, Stanford University, California, USA

3 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Professor Emeritus)

∗ Corresponding author (francesco.regazzoni@polimi.it)

Abstract

Predicting the evolution of systems that exhibit spatio-temporal dynamics in response to external
stimuli is a key enabling technology fostering scientific innovation. Traditional equations-based ap-
proaches leverage first principles to yield predictions through the numerical approximation of high-
dimensional systems of differential equations, thus calling for large-scale parallel computing platforms
and requiring large computational costs. Data-driven approaches, instead, enable the description of
systems evolution in low-dimensional latent spaces, by leveraging dimensionality reduction and deep
learning algorithms. We propose a novel architecture, named Latent Dynamics Network (LDNet), which
is able to discover low-dimensional intrinsic dynamics of possibly non-Markovian dynamical systems, thus
predicting the time evolution of space-dependent fields in response to external inputs. Unlike popular ap-
proaches, in which the latent representation of the solution manifold is learned by means of auto-encoders
that map a high-dimensional discretization of the system state into itself, LDNets automatically discover
a low-dimensional manifold while learning the latent dynamics, without ever operating in the high-
dimensional space. Furthermore, LDNets are meshless algorithms that do not reconstruct the output on
a predetermined grid of points, but rather at any point of the domain, thus enabling weight-sharing across
query-points. These features make LDNets lightweight and easy-to-train, with excellent accuracy and
generalization properties, even in time-extrapolation regimes. We validate our method on several test
cases and we show that, for a challenging highly-nonlinear problem, LDNets outperform state-of-the-art
methods in terms of accuracy (normalized error 5 times smaller), by employing a dramatically smaller
number of trainable parameters (more than 10 times fewer).

1 Introduction

Mathematical models based on differential equations, such as Partial Differential Equations (PDEs) and
Stochastic Differential Equations (SDEs), can yield quantitative predictions of the evolution of space-
dependent quantities of interest in response to external stimuli. Pivotal examples are given by fluid dynamics
and turbulence [46], wave propagation phenomena [42], the deformation of solid bodies and biological tis-
sues [57], molecular dynamics [14], price evolution of financial assets [61], epidemiology [34]. However, the
development of traditional modeling-and-simulation approaches carry several mathematical and computa-
tional challenges. Model development requires a deep understanding of the physical processes, the adoption
of physics first principles or empirical rules, and their translation into mathematical terms. The values of
parameters and of boundary and initial conditions required to close the model are often unknown, increas-
ing the intrinsic dimensionality of the solution space. Finally, the computational cost that accompanies the
(possibly many-query) numerical approximation of such mathematical models may be prohibitive and hinder
their use in relevant applications [48, 52].

In recent years, we are witnessing the introduction of a new paradigm, namely data-driven modeling [6, 15,
22, 47, 59, 62], as opposed to traditional physics-based modeling, enabled by recent advances in optimization,
high-performance computing, GPU-based hardware, artificial neural networks (NNs) and Machine/Deep
Learning in general. Data-driven modeling methods hold promise in overcoming the limitations of traditional

1

physics-based models, either as a replacement for them or in synergy with them [2]. On the one hand, data-
driven techniques are employed to learn a model directly from experimental data [15, 62]. On the other
hand, instead, they are used to build a surrogate for a high-fidelity model – the latter being typically based
on the numerical approximation of systems of differential equations – from a dataset of precomputed high-
fidelity simulation snapshots [2, 6]. This paradigm is successful in many-query contexts, that is when the
computational resources spent in the offline phase (generation of the training data and construction of the
data-driven surrogate model) are repaid by a large number of evaluations of the trained model (online phase),
as is the case of sensitivity analysis, parameter estimation and uncertainty quantification. Another case of
interest is when real-time responses are needed, like, e.g., in clinical scenarios [49].

Several methods have been recently proposed for automatically learning the dynamics of systems ex-
hibiting spatio-temporal behavior [25, 44, 59, 64]. Typically, these methods discretize the space-dependent
output field into a high-dimensional vector (e.g., by point-wise evaluation on a grid, or by expansion with
respect to a Finite Element basis or to a Fourier basis) and then compress it by means of dimensionality
reduction techniques, based e.g. on proper orthogonal decomposition (POD) of a set of snapshots [29, 30,
52, 63], on fully connected auto-encoders, or on convolutional auto-encoders [19, 26, 35, 41, 44, 64]. The
underlying assumption is that the dynamics can be represented by a limited number of state variables, called
latent variables, whose time evolution is learned either through NNs with recurrent structure (such as RNNs
[39], LSTMs [41, 64] or ODE-Nets [24]), dynamic mode decomposition [19], SINDy [17, 59], fully-connected
NNs (FCNNs) [26], or DeepONets [44].

When a high-fidelity model is available, there are also techniques for building reduced-order models by
exploiting knowledge of the equations [4, 8–10, 16, 31, 51]. These latter methods are however intrusive,
unlike the formers, which learn a model in a data-driven manner using only a dataset of input-output pairs.
Intrusive techniques are typically based on projecting the high-fidelity model into a low-dimensional space,
obtained by POD or by greedy algorithms. In the case of nonlinear models, however, such techniques require
special arrangements, such as the (discrete) empirical interpolation method [7, 21, 23], but this entails a
difficult trade-off between accuracy and computational cost. Furthermore, many problems feature a slow
decay Kolmogorov n-width, an index of the amenability of the solution manifold to be approximated by an
n-dimensional linear subspace [13, 20]. In many cases of interest, such as advection-dominated problems or
high Reynolds number flow equations, POD-based methods achieve reasonable accuracy only for high values
of n [35]. This limits their use in practical applications.

In this paper, we present a novel family of NNs, called Latent Dynamics Networks (LDNets), that can
effectively learn, in a data-driven manner, the temporal dynamics of space-dependent fields and predict
their evolution for unseen time-dependent input signals and unseen scalar parameters. LDNets automati-
cally discover a compact encoding of the system state in terms of (typically a few) latent scalar variables.
Remarkably, the latent representation is learned without the need of using an auto-encoder to explicitly
compress a high-dimensional discretization of the system state. Furthermore, LDNets are based on an
intrinsically space-dependent reconstruction of the output fields. Indeed, instead of yielding a discrete repre-
sentation of the fields (e.g. point values on a spatial mesh), LDNets are able to generate output fields defined
in any point of space, in a meshless manner. As a consequence, the (typically high-dimensional) discrete
representation of the output is never explicitly constructed. These features make the training of LDNets
extremely lightweight, and boost their generalization ability even in the presence of few training samples
and even in time-extrapolation regimes, that is for longer time horizons than those seen during training.

2 Methods

We introduce the notation used throughout this paper and we present the proposed method.

2.1 Notation

We denote by y : Ω × [0, T] → Rdy an output field we aim to predict, where Ω ⊂ Rd is the space domain
and T > 0 is the final time. The evolution of y is driven by the input u : [0, T] → Rdu , that is, a set of
time-dependent signals or constant parameters. Our goal is to unveil, starting from data, the laws underlying
the dependence of y on u.

2

More precisely, we denote input signals as u : [0, T] → U , taking values in the set U ⊆ Rdu , and we denote
by U ⊆ {u : [0, T] → U} the set of admissible input signals. Then, we denote by y : Ω× [0, T] → Y the output
(space-time dependent) field, with values in Y ⊆ Rdy . Finally, we denote by Y ⊆ {y : Ω × [0, T] → Y } the
space of possible outputs. We assume that the map u 7→ y is well defined (i.e. the output y is unambiguously
determined by the input u) and it is consistent with the arrow of time (i.e. y(x, t) depends on u(s)|s∈[0,t]

but not on u(s)|s∈(t,T]).
An important (albeit not exclusive) example is the case when the dynamics we aim to learn underlies a

differential model, that is when the map u 7→ y is defined as the composition of an observation operator and
the solution map u 7→ z of a partial differential equation (PDE) in the form of

∂tz(x, t) = F(z(x, t),u(t)) in Ω× (0, T]

y(x, t) = G(z(x, t),x) in Ω× (0, T]

z(x, 0) = z0(x) in Ω,

(1)

where z ∈ Z ⊆ {z : Ω × [0, T] → Z}, with Z ⊆ Rdz , is the state variable (typically, Z is a Sobolev space).
Here, z0 : Ω → Z is the initial state, F is a differential operator, and G is the observation operator. In
particular, LDNets can be also used for the model-order reduction of (1), by passing through data generated
via a numerical approximation of (1), e.g. by the Finite Element method, called full-order model (FOM).
Meaningful examples are provided in Sec. 3. Nonetheless, in this paper neither knowledge nor even the
existence of a model such as (1) is required: the training of an LDNet only requires input-output pairs.

Remark 1. The case when the output field y is determined not only by some time-dependent inputs u,
but also by some inputs that are time-independent (typically called parameters) is a special case of the one
considered here. Still, to keep the notation compact, we will use the same symbol u to collectively denote
time-dependent inputs (i.e. signals) and time-constant inputs (i.e. parameters).

Remark 2. The FOM (1) is an autonomous system. The non-autonomous case can be recovered as a special
case by setting u(t) · ek = t for some k, where ek is the k-th element of the canonical base of Rdu .

2.2 Training data

The training data are collected by considering a finite number of realizations of the map u 7→ y, each
one referred to as a training sample. For each training sample i ∈ Strain, we collect the following discrete
observations:

• ui(τ), for τ ∈ S i;

• yi(ξ, τ), for τ ∈ T i, ξ ∈ Pi
τ ;

where S i ⊂ [0, T], T i ⊂ [0, T] and Pi
τ ⊂ Ω are discrete sets of observations. We remark that the observation

times and points can be either shared among samples (i.e. S i ≡ S , T i ≡ T and Pi
τ ≡ P for any i and

for any τ) or be different from one sample to another.
Our goal is to learn the map u 7→ y, that is to infer the output y(x, t) corresponding to inputs u(t)

outside the training set.

2.3 LDNets

An LDNet consists of two sub-networks, NN dyn and NN rec, that is two FCNNs with trainable parameters
wdyn and wrec, respectively (see Fig. 1). The first NN, namely NN dyn, evolves the dynamics of the latent
variables s(t) ∈ Rds according to the differential equation

ṡ(t) = NN dyn(s(t),u(t);wdyn) in (0, T] (2)

with a prescribed arbitrary initial condition (in our numerical test, we set s(0) = 0). The inputs of NN dyn

are the latent states s(t) and the input signal u(t) at the current time t. Instead, the second NN, NN rec, is
used to reconstruct ỹ, an approximation of the output field y at any time t ∈ [0, T] and at any query point
x ∈ Ω:

ỹ(x, t) = NN rec(s(t),u(t),x;wrec) in Ω× (0, T] (3)

3

norm
alization

norm
alization

norm
alization

norm
alization

Figure 1: LDNet architecture. The network NN dyn receives the input u(t) and the latent state s(t) and
returns the time derivative of the latent state, thus defining its dynamics. The network NN rec, instead, is
evaluated only when an estimate of the output field y is sought. More precisely, an approximation of y(x, t)
is recovered by giving as an input to NN rec the latent state at time t and the query space coordinate x ∈ Ω.
In general, the reconstruction network NN rec might take as an input u(t) as well (see e.g. Sec. 3, Test Case
2); for simplicity, in the figure we represent the special case when NN rec does not depend on u(t).

We remark that the reconstruction network NN rec is independently queried for every point x ∈ Ω for which
the solution is sought.

Hence, the LDNet defines a map from a time-dependent input signal u ∈ U to a space-time dependent
field ỹ ∈ Y through the solution of the following system of ordinary differential equations (ODEs):

ṡ(t) = NN dyn(s(t),u(t);wdyn) in (0, T]

s(0) = 0

ỹ(x, t) = NN rec(s(t),u(t),x;wrec) for x ∈ Ω and t ∈ [0, T],

(4)

where s(t) ∈ Rds is the vector of latent states. The number of latent states ds is set by the user, and should
be regarded as an hyperparameter. We remark that, thanks to the hidden nature of s(t), we can assume
without loss of generality the initial condition s(0) = 0 (see [56] for a discussion on this topic in a similar
framework). In this work, we always consider hyperbolic tangent (tanh) activation functions.

Remark 3. The formulation (4) is the most general one. A special case is the one where NN rec does not
depend on u(t). Whether or not to include the latter dependency in NN rec is an architectural choice that
shall be regarded as a hyperparameter, possibly subject to selection via cross-validation. In many cases,
however, the choice can be driven by the physics of the underlying process. Specifically, we will leave an
explicit dependency whenever the output y(x, t) depends on the input u(t) instantaneously. The case where
the dependency is neglected is the one that we will mostly consider in our test cases, expect for Test Case
2, in which we will allow NN rec to depend on u(t) in a direct way.

In practice, the ODE system (4) is discretized by a suitable numerical method. In this work, we employ a
Forward Euler scheme with a uniform time step size ∆t, but other schemes could be considered as well (e.g.
time-adaptive Runge-Kutta schemes [53]). In case the observation times S i do not coincide with the discrete
times k∆t, for k = 1, . . . , we perform a re-sampling of u through a piecewise linear interpolation. Similarly,
to evaluate the predicted output ỹ in correspondence of the observation times τ ∈ T i, we interpolate the
discrete solution of s(t) at the time instants τ .

We denote with the symbol RNN dyn (to evoke its recurrent nature) the operator mapping the time series
of inputs {ui(τ)}τ∈S i associated with a given sample i to the latent state si evolution. More precisely, we

4

have, for any sample i and at any time t ∈ [0, T]:

si(t) = RNN dyn({ui(τ)}τ∈S i , t;wdyn)

With this notation, the LDNet output ỹi(x, t) is the result of the composition of NN rec with RNN dyn:

ỹi(x, t) = NN rec(RNN dyn({ui(τ)}τ∈S i , t;wdyn),ui(t),x;wrec). (5)

To train the LDNet, we define the loss function:

L(wdyn,wrec) =
∑

i∈Strain

∑
τ∈T i

∑
ξ∈Pi

τ

E(ỹi(ξ, τ),yi(ξ, τ)) + αdynR(wdyn) + αrecR(wrec),

where the symbol
∑

denotes the average operator (that is the sum over a set divided by the cardinality of
the set), and where ỹi(ξ, τ) are the outputs of the LDNet associated with the trainable parameters wdyn

and wrec as defined in (5). The discrepancy metric E is typically defined as

E(ỹ,y) = ∥ỹ − y∥2

y2norm
(6)

with ynorm being a normalization factor defined from case to case and where ∥ · ∥ denotes the euclidean
norm. The first term of L represents therefore the normalized mean square error between observations and
LDNet predictions. Moreover, to mitigate overfitting, suitable regularization terms on the NN weights could
be introduced, with weighting factors αdyn and αrec. In this work, we define R as the mean of the squares
of the NN weights (yielding the so-called L2-regularization or Tikhonov regularization).

Remark 4. The quadratic discrepancy metric (6), while being the most natural choice, is not the unique
one. For instance, it can be replaced by goal-oriented metrics (an example is given in Test Case 2).

Training an LDNet consists in employing suitable optimization methods to approximate the solution of
the following non-convex minimization problem:

(w∗
dyn,w

∗
rec) = argmin

wdyn,wrec

L(wdyn,wrec).

The two NNs are simultaneously trained. Thanks to the simultaneous end-to-end training of the two NNs,
the latent space is discovered at the same time as learning the dynamics of the system. This generalizes the
approach presented in [56] for the case of time signals as outputs.

2.4 Normalization layers

In order to facilitate training, we normalize the inputs and the outputs of the NNs. Specifically:

• We normalize the signals u, the output fields y and the space variables x, so that each entry approxi-
mately spans the interval [−1, 1]. We normalize each entry independently of the others. More precisely
we normalize each scalar variable α through the affine transformation α̃ = (α− α0)/αw where α0 is a
reference value and αw is a reference width. To define α0 and αw, we follow two different strategies.

1. If the variable takes values in a bounded interval [αmin, αmax], we set

α0 = (αmin + αmax)/2,

αw = (αmax − αmin)/2.

2. If the variable is sampled from a distribution with unbounded support (e.g., when α is normally
distributed), we set α0 equal to the sample mean and αw equal to three times the sample standard
deviation.

• We also normalize the time variable, by dividing the time steps by a characteristic time scale ∆tref .
The normalization constant ∆tref impacts the output of NN dyn, that is dimensionally proportional to
the inverse of time. Since finding a good value for ∆tref is in general not straightforward, we typically
consider it as a hyperparameter, tuned through a suitable automatic algorithm (see Section. 2.8).

5

• We do not normalize the latent states s, since their distribution is not known before training. Indeed,
when hyperparameters are well tuned, the training algorithm tends to generate models that produce
latent states with approximately normalized values.

In practice, normalization can be achieved either by modifying the training data accordingly, or by embedding
the two NNs between two normalization layers (namely, one input layer and one output layer) each. Formally,

the second approach consists in defining NN dyn and NN rec as follows, where we ÑN dyn and ÑN rec are two
FCNNs:

NN dyn(s,u;wdyn) = ∆t−1
ref ÑN dyn(s, (u− u0)⊘ uw;wdyn)

NN rec(s,u,x;wrec) = y0 + yw ⊙ ÑN rec(s, (u− u0)⊘ uw, (x− x0)⊘ xw;wrec)

where ⊙ and ⊘ denote the Hadamard (i.e. element-wise) product and division, respectively.

2.5 Imposing a-priori physical knowledge

The architecture of LDNets reflects certain features of the physics they are meant to capture. With respect
to the space variable, the representation is continuous, unlike methods that reconstruct a discretized solution
thus losing the correspondence between neighboring points. With respect to the time variable, the dynamics
is driven by a system of differential equations which makes LDNets consistent with the arrow of time (i.e.,
with the causality principle [56]). These features make it natural to introduce a-priori physical knowledge in
the construction and training of LDNets. In this regard, we distinguish between weak imposition and strong
imposition.

Weak imposition consists of introducing physics-informed terms [54] into the loss function, aimed at
promoting solutions that satisfy certain requirements (such as irrotationality of a velocity field, to make an
example). In this paper we do not show examples in this regard, but simply highlight that the continuous
representation of the output field used by LDNets makes the introduction of such terms very straightforward
through the use of automatic differentiation.

Strong imposition, on the other hand, consists of modifying the architecture of the LDNet components
in order to obtain models that automatically satisfy certain properties [5, 38]. In what follows, we provide
two examples of how this can be applied to ensure both temporal (acting on NN dyn) and spatial (acting on
NN rec) properties.

2.5.1 Equilibrium configuration imposition

In many real-life applications, data are collected starting from an equilibrium configuration. This entails
that the initial state should be an equilibrium for the latent dynamics as well, in virtue of the interpretation
of s as a compact encoding of the full-order system state. Therefore, we define the right-hand side of the
latent state evolution equation as follows, where ÑN dyn is a trainable FCNN and where ueq ∈ U is the input
at equilibrium:

NN dyn(s,u;wdyn) = ÑN dyn(s,u;wdyn)− ÑN dyn(0,ueq;wdyn)

As a consequence, the initial state s = 0 of the model is an equilibrium for any choice of the trainable
parameters wdyn.

2.5.2 Prescribed solution in subsets of the domain (e.g. Dirichlet boundary conditions)

The evolution of the output field is often unknown except on a subset of the domain Ω, such as for example a
portion ΓD of its boundary ∂Ω. This happens, e.g., when there is a FOM that features a Dirichlet boundary
condition like

y(x, t) = yD(x) on ΓD. (7)

In this case, the solution is constrained to satisfy (7) by defining NN rec as

NN rec(s,u,x;wrec) = ylift(x) + ÑN rec(s,u,x;wrec)ψ(x)

6

where ÑN rec is a trainable FCNN, ylift is the lifting of the boundary datum, that is an extension of yD to
the whole domain Ω, and ψ : Ω → R is a mask, that is a smooth function such that ψ(x) = 0 if and only
if x ∈ ΓD. See [58] for further details and [12] for a general approach to construct the mask ψ based on
approximate distance functions.

2.6 Error metrics

To evaluate the generalization accuracy of a trained LDNet, we test it on unseen data, that is on samples
belonging to a test set denoted by Stest. Specifically, we employ two metrics.

Normalized root mean square error (NRMSE) is obtained as the square root of the mean of the
squares of the normalized errors obtained on the testing set:

NRMSE =

√√√√ ∑
i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

∥ỹi(ξ, τ)− yi(ξ, τ)∥2

y2norm
.

Pearson dissimilarity (1− ρ) is defined from the Pearson correlation coefficient ρ:

ρ =

∑
i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

(ỹi(ξ, τ)− ỹ) · (yi(ξ, τ)− y)

√ ∑
i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

∥ỹi(ξ, τ)− ỹ∥2
∑

i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

∥yi(ξ, τ)− y∥2

where we denote the average outputs as

y =
∑

i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

yi(ξ, τ)

ỹ =
∑

i∈Stest

∑
τ∈T i

∑
ξ∈Pi

τ

ỹi(ξ, τ)

We remark that both metrics (RMSE and 1 − ρ) are robust with respect to multiplicative rescaling of the
outputs. For both of them, the smaller the value of the metric, the higher the accuracy of the predictions.

2.7 Training algorithm

To train the LDNet, we employ a two stage strategy. First, we perform a limited number of epochs (typically,
a few hundreds) with the Adam optimizer [33], starting with a learning rate of 10−2. Then, we switch to a
second-order accurate optimizer, namely BFGS [28]. BFGS is more accurate than Adam, but more prone to
get stuck in local minima, which is why it is useful to precede it with some Adam iterations, which provide
a good initial guess.

To evaluate the gradient of the loss function with respect to the trainable parameters, we combine back-
propagation-through-time for RNN dyn with back-propagation for NN rec [28]. To initialize the parameters
of the two NNs, we employ a Glorot uniform strategy for weights and zero values for the biases [28].

2.8 Hyperparameters tuning algorithms

The hyperparameters of the proposed method are the number of layers and neurons of NN dyn and NN rec,
the L2 regularization weights αdyn and αrec, the normalization time constant ∆tref and, whenever necessary
in the different test cases, the number of latent states ds. To automatically tune them, we employ the Tree-
structured Parzen Estimator (TPE) Bayesian algorithm [1, 11]. The hyperparameters search space is defined
as an hypercube, with a log-uniform sampling. We perform K-fold cross validation while monitoring the
value of the discrepancy metric in Eq. (6). We also employ the Asynchronous Successive Halving (ASHA)
scheduler to early terminate hyperparameters configurations that are either bad or not promising [36, 37].

7

We simultaneously train multiple NNs associated to different hyperparameters settings on a supercom-
puter endowed with several CPUs via Message Passing Interface (MPI). Each NN exploits Open Multi-
Processing (OpenMP) for Hyper-Threading, which allows for a speed-up in the computationally-intensive
tensorial operations involved during the training phase. For the implementation, we rely on the Ray Python
distributed framework [43].

3 Results

We demonstrate the effectiveness of LDNets through several test cases. First, we consider a linear PDE model
to analyze the ability of LDNets to extract a compact latent representation of models that are progressively
less amenable to reduction. Then, we consider the time-dependent version of a benchmark problem in fluid
dynamics. Finally, we compare LDNets with state-of-the-art methods in a challenging task, that is, learning
the dynamics of the Aliev-Panfilov model [3], a highly non-linear excitation-propagation PDE model used
in the field of cardiac electrophysiology modeling. We focus on synthetically generated data obtained by
numerical approximation of differential models, thus allowing us to test LDNet predictions against ground-
truth results.

3.1 Test Case 1: Advection-Diffusion-Reaction equation

We consider the linear advection-diffusion-reaction (ADR) equation on the interval Ω = (−1, 1):

∂z(x, t)

∂t
− µ1

∂2z(x, t)

∂x2
− µ2

∂z(x, t)

∂x
+ µ3z(x, t) = f(x, t) x ∈ (−1, 1), t ∈ (0, T]. (8)

This PDE is widely used, e.g., to describe the concentration z(x, t) of a substance dissolved in a channel [53].
The constant parameters µ1, µ2 and µ3 respectively represent diffusion, advection and reaction coefficients,
while the forcing term f(x, t) is a prescribed external source, defined as f(x, t) = A(t) cos(2πF (t)x− P (t)),
that is a sine wave with amplitude A(t), frequency F (t) and phase P (t). We consider an initial condition
z(x, 0) = z0(x) and periodic boundary conditions.

To generate the training dataset, we employ a high-fidelity FFT-based solver on 101 equally spaced grid
points, combined with an adaptive-time integration scheme for stiff problems [18, 50]. Then, we subsample
the time domain in 100 equally distributed intervals. We challenge LDNets in predicting the space-time
evolution of the target variable y(x, t) = z(x, t) by considering three cases of increasing complexity (Test
Cases 1a, 1b, 1c), in which the input u is associated either to the parameters µ1, µ2 and µ3, or to the forcing
term f(x, t). In all the test cases, we define ynorm as the difference between maximum and minimum value
taken by the output on the whole training set. In all the cases presented below, unless otherwise stated, we
set ∆t = 5 · 10−2.

3.1.1 Sampling of inputs

In order to generate training and testing data, we need to sample the space of inputs. This calls for a
probability distribution on the latter space. For the parameters (µ1, µ2 and µ3), we take for simplicity a
uniform distribution on a suitable hypercube. For the time-dependent signals (A(t), F (t) and P (t)), instead,
probability distributions on function spaces are needed. For A(t) and P (t), we consider a Gaussian Process
distribution [55] with mean µ and with the following covariance kernel

K(t1, t2) = σ2 exp

[
− (t1 − t2)

2

2τ2

]
,

characterized by standard deviation σ and characteristic time-scale τ . For what concerns F (t) instead, in
order to let it vary within a bounded set (fmin, fmax), we define it as

F (t) =
1

2

[
fmin + fmax + (fmax − fmin) tanh

(
3

5
γ(t)

)]
,

with γ(t) sampled from a Gaussian Process with mean µ = 0, standard deviation σ = 1 and prescribed
characteristic time-scale τ . The values of µ, σ and τ are indicated below for each test case.

8

3.1.2 Test Case 1a: finite latent dimension, constant parameters

First, we consider z0(x) = cos(πx) and f ≡ 0. We aim at predicting the evolution of z(x, t), depending on
the constant parameters u(t) ≡ (µ1, µ2, µ3). Due to the linearity of the equation, the solution is, at any time
t, a sine wave with period 2, and can be thus unambiguously identified by two scalars (namely, the wave
amplitude and phase, or equivalently, the real and imaginary part of the Fourier transform at frequency
0.5). In other terms, the intrinsic dimension of the solution manifold is strictly equal to 2. This provides
therefore an ideal testbed for the capability of LDNets to recognize and learn a low-dimensional encoding of
the system state from data.

To generate training and testing data, we employ a Monte Carlo sampling of the hypercube defined by
the bounds (µ1, µ2, µ3) ∈ [0, 0.05]× [−0.1, 0.1]× [0, 0.01]. We consider 100 training samples and 500 testing
samples. We select the hyperparameters according to the algorithm presented in Sec. 2.8. The ranges of
hyperparameter values used in the tuning algorithm are reported in Tab. 1, in the row tuning. The selected
values are instead reported in the row final.

In Tab. 2 we report the training and testing accuracy metrics obtained by training an LDNet with ds = 2
latent variables. In the table we show the accuracy achieved after 500, 5000 or 50000 epochs of BFGS (in
all the cases, we first run 200 epochs of Adam). The LDNet, trained on 100 samples, achieves an excellent
accuracy when tested on 500 unseen samples. Indeed, the NRMSE is 1.88 · 10−5 on the testing set, against a
training NRMSE of 1.81 · 10−5. Pearson dissimilarity is 3.30 · 10−9 on the testing set and 3.00 · 10−9 on the
training set. The very small differences in the accuracy metrics between training and testing sets provide
evidence that the trained LDNet reproduces the FOM dynamics with great fidelity and without overfitting,
that is with remarkably good generalization capabilities.

3.1.3 Test Case 1b: finite latent dimension, time-dependent inputs

We now consider the case of time-dependent inputs, with a forcing term f(x, t) = A(t) cos(πx−P (t)), where
u(t) = (A(t), P (t)) represents an input signal that can vary in time within a bounded set. We thus fix the
values of the parameters to µ1 = 0.05, µ2 = 0 and µ3 = 0.002. Similarly to Test Case 1a, the solution
manifold has dimension 2 (thanks to the equation being linear and to the forcing term having constant
frequency), but learning the dynamics becomes more challenging due to the presence of time-dependent
inputs. We let the amplitude A(t) and the phase P (t) vary in time, as described in Sec. 3.1.1. Specifically,
for A(t) we set µ = 2/5, σ = 2/15 and τ = 1, while for P (t) we set µ = 0, σ = 4/3 and τ = 1.

First, we consider 100 training samples and we set ∆t = 0.05. We tune the hyperparameters starting
from the ranges indicated in Tab. 1, and we select the optimal values reported in the same table. The
LDNets predictions ỹ for some test samples are displayed against reference outputs y in Fig. 2.

Now, we perform two tests. First, by keeping ∆t = 0.05, we vary the number of training samples in the
set {25, 50, 100, 200, 400}. Then, we let ∆t vary in the set {0.2, 0.1, 0.05, 0.02}, by keeping the number of
training samples equal to 100. In both the cases, we do not vary the hyperparameters reported in Tab. 1.
As desirable, the accuracy of predictions improves as the number of training samples increases and as the
time discretization step size is reduced (Fig. 3b).

Test Case 1b provides an ideal testbed to assess the capabilities of LDNets in discovering a compact
representation of the FOM state. The state of (8) indeed evolves on a two-dimensional manifold, being the
state fully characterized, at any time t, by two scalars. In other terms, provided that the forcing term is
defined as in Test Case 1b, the model (8) has an intrinsic latent dimension equal to 2. At any time t, in
fact, z(·, t) is a sine wave with frequency 0.5. Among the infinitely many equivalent parametrization, one is
given by the Fourier transform of z(·, t) at frequency 0.5, that is determined by its real and imaginary part,
respectively denoted by Re(ẑ(0.5)) and Im(ẑ(0.5)).

Our results show that, during the training process of an LDNet, the algorithm discovers a compact
representation of the solution field z(·, t), represented by the two latent variables s1(t) and s2(t). We now
investigate whether there is a relationship between the pairs (s1, s2) and (Re(ẑ(0.5)), Im(ẑ(0.5))). With
this goal, we train four different LDNets, starting from a different random initializations of the trainable
parameters. Then, we evaluate the trained LDNets on 24 test samples, and we collect the trajectories
in the latent space (s1, s2). Finally, we plot these trajectories by displaying each point with a color that
depends on the corresponding value of Re(ẑ(0.5)) computed from the reference solution, and we repeat the
same procedure by considering the values of Im(ẑ(0.5)). The results are shown in Fig. 4. We notice that

9

T
e
st

c
a
se
s

H
y
p
e
rp

a
ra

m
e
te
rs

T
ra

in
a
b
le

p
a
ra

m
e
te
rs

N
N

d
y
n

N
N

re
c

∆
t r
e
f

α
d
y
n
,
α
re
c

N
N

d
y
n

N
N

re
c

la
ye
rs

n
eu
ro
n
s

la
y
er
s

n
eu
ro
n
s

#
p
a
ra
m
.

#
p
a
ra
m
.

T
e
st

C
a
se

1
a

tu
n
in
g

2
3
–
3
0

2
3
–
1
5

[1
0
−
1
,1
0
1
]

0
fi
n
al

2
9

2
1
1

0
.5

0
1
6
4

1
8
8

T
e
st

C
a
se

1
b

tu
n
in
g

2
3
–
3
0

2
3
–
1
5

[1
0
−
1
,1
0
1
]

[1
0
−
6
,1
0
−
1
]

fi
n
al

2
10

2
7

2
.3

1
0−

5
1
8
2

9
2

T
e
st

C
a
se

1
c

tu
n
in
g

1
–
3

5
–
2
0

1
,2

4
–
1
5

[1
0−

1
,1
0
1
]

[1
0
−
5
,1
0
−
1
]

fi
n
e
tu
n
in
g

2
tw

ic
e
N
N

re
c

2
4
–
9

8
[2
·1
0
−
4
,2

·1
0
−
3
]

f m
a
x

d
s

0.
5

2
2

10
2

5
8

1
.9
5
·1
0
−
3

1
9
2

5
6

0.
5

3
2

16
2

8
8

2
.1
0
·1
0
−
4

4
3
5

1
2
1

0.
5

4
2

16
2

8
8

2
.1
0
·1
0
−
4

4
6
8

1
2
9

0.
5

5
2

16
2

8
8

2
.0
0
·1
0
−
4

5
0
1

1
3
7

1
2

2
12

2
6

8
1
.0
5
·1
0
−
3

2
5
4

7
3

1
3

2
14

2
7

8
4
.2
0
·1
0
−
4

3
5
3

9
9

1
4

2
16

2
8

8
2
.7
0
·1
0
−
4

4
6
8

1
2
9

1
5

2
16

2
8

8
3
.5
0
·1
0
−
4

5
0
1

1
3
7

2
2

2
14

2
7

8
6
.6
0
·1
0
−
4

3
2
4

9
2

2
3

2
16

2
8

8
3
.9
0
·1
0
−
4

4
3
5

1
2
1

2
4

2
16

2
8

8
2
.2
0
·1
0
−
4

4
6
8

1
2
9

2
5

2
16

2
8

8
2
.0
0
·1
0
−
4

5
0
1

1
3
7

T
ab

le
1:

T
es
t
C
as
e
1:

h
y
p
er
p
ar
am

et
er
s
ra
n
ge
s
an

d
se
le
ct
ed

va
lu
es
.
W
e
re
m
a
rk

th
a
t,
in

th
e
fi
n
e
tu
n
in
g
st
a
g
e
o
f
te
st

C
a
se

1
c,

w
e
se
le
ct

tw
ic
e
a
s
m
a
n
y

n
eu
ro
n
s
fo
r
N
N

d
y
n
as

fo
r
N
N

re
c
,
in

or
d
er

to
re
d
u
ce

th
e
n
u
m
b
er

o
f
in
d
ep

en
d
en
t
h
y
p
er
p
a
ra
m
et
er
s.

S
ee

te
x
t
fo
r
d
et
a
il
s.

10

BFGS epochs 500 5000 50000

Training time 8m 5s 1h 5m 10h 8m
NRMSEtrain 1.02 · 10−3 7.08 · 10−5 1.81 · 10−5

NRMSEtest 1.19 · 10−3 7.23 · 10−5 1.88 · 10−5

1− ρtrain 9.42 · 10−6 4.58 · 10−8 3.00 · 10−9

1− ρtest 1.33 · 10−5 4.87 · 10−8 3.30 · 10−9

Table 2: Test Case 1a: training and test accuracy metrics for LDNets trained with an increasing number of
BFGS training epochs (500, 5000 and 50000). Training time refer to a single-CPU standard laptop.

Figure 2: Test Case 1b. 100 testing samples, comparing the reference outputs y (left) with the LDNet
predictions ỹ (right). For each sample, the horizontal axis refers to space, and the vertical axis refers to
time.

11

25 50 100 200 400

num. training samples

4

6

10

×10−3 NRMSE

25 50 100 200 400

num. training samples

1

×10−3 1− ρ

0.20.10.050.02

∆t

5

6

7

8

9

×10−3 NRMSE

0.20.10.050.02

∆t

0.6

1.0

2.0
×10−3 1− ρ

2 3 4 5

num. latent states

1

10
×10−2 NRMSE

2 3 4 5

num. latent states

0.1

1

10

×10−2 1− ρ
fmax = 0.5
fmax = 1.0
fmax = 2.0

a

b

e f

c

−40

−20

0

20

−40

−20

0

20

40

fmax = 0.5 fmax = 1.0 fmax = 2.0

Figure 3: Results of Test Case 1. (a)-(b): Testing accuracy of Test Case 1b, as a function of the
number of training samples (with ∆t = 0.05) and of ∆t (with 100 training samples). For each setting we run
5 training runs with random weights initialization. Each dot corresponds to a training run, while the solid
line is the geometric mean. (c): FOM against LDNet predictions on 8 testing samples for Test Case 1b. The
abscissa corresponds to space and the ordinate to time. (d): Mapping from the latent space trajectories
and the Fourier space coefficients of the FOM solution for the testing samples of Test Case 1b. (e): Testing
accuracy of Test Case 1c as a function of the number of latent states and of the maximum input frequency
fmax. (f): FOM against LDNet predictions on 2 testing samples for Test Case 1c, obtained by employing 5
latent states, for different maximum input frequencies (reported above the figure).

12

−40

−20

0

20

R
e(
ẑ
(1
/
2
))

−40

−20

0

20

40

I
m

(ẑ
(1
/
2
))

Figure 4: Test Case 1b. Trajectories in the latent space (s1, s2) of 24 testing samples obtained with four
different LDNets, by starting from as many different initial guesses for the trainable parameters (each of
them corresponding to different columns). In the first (respectively, second) row, each point in the latent
space is colored according to the corresponding value of Re(ẑ(0.5)) (respectively, Im(ẑ(0.5))).

trajectories significantly differ among the four LDNets. This is not surprising, as latent states are internal
variables in the LDNet, hidden within the input-output relationship. Nonetheless, a common pattern emerges
in the connection between the latent states and the Fourier coefficients: each of the four trained LDNets
underlies a well-defined relation between (s1, s2) and (Re(ẑ(0.5)), Im(ẑ(0.5))). As a matter of fact, each
LDNet discovers a different compact encoding for the FOM state, each of which underlying a relationship
with the Fourier coefficients of the solution. In other terms, despite not being explicitly instructed to do
that, the LDNet discovers an operator that is equivalent to the Fourier transform of the state. At the same
time, the reconstruction NN (NN rec) discovers the inverse operator, as it is able to reconstruct the function
z(·, t) from the two scalars (s1, s2). Remarkably, this is obtained in a fully data-driven manner, without
explicitly using any prior Fourier-based feature extraction.

3.1.4 Test Case 1c: infinite latent dimension

Finally, we consider a forcing term f(x, t) = A(t) cos(2πF (t)x−P (t)), where u(t) = (A(t), F (t), P (t)) is the
time-dependent input signal. The forcing frequency F (t) varies within an interval [0.25, fmax]. Hence, the
solution manifold of (8) has a potentially infinite dimension, being z the superimposition of a continuum of
frequencies. Still, the results show that LDNets are able to discover effective low-dimensional encodings of
the state. Specifically, to sample F (t) we set τ = 1, fmin = 0.25 and fmax as indicated below; for A(t) we
set µ = 1, σ = 1/3 and τ = 1; for P (t) we set µ = 0, σ = 4/3 and τ = 1.

In this test case, we are interested in studying the impact of the number of latent states ds on the LDNet
accuracy, in three increasingly challenging cases, namely by setting fmax = 0.5, fmax = 1 and fmax = 2
(see Fig. 5). In all the cases, we consider ds ∈ {2, 3, 4, 5}. For each combination of fmax and ds, we
retune the hyperparameters, in order to compare the (in principle) best accuracy attainable. With this
purpose, we first run a preliminary hyperparameters tuning step, by considering a wide range of values
(see Tab. 1, row tuning). Then, we shrink the variability by selecting the most (generally with respect to
different combinations) promising area of the hyperparameter space, and we perform a fine tuning for each
combination of fmax and ds independently (row fine tuning). The selected hyperparameters are listed in
Tab. 1.

First, we set fmax = 0.5 and we train LDNets for increasing number of latent states, from 2 to 5.

13

Figure 5: Test Case 1c. 80 testing samples for each fmax value considered in this work (namely 0.5, 1 and 2),
comparing the reference outputs y (left) with the LDNet predictions ỹ (right), for ds = 5. For each sample,
the horizontal axis refers to space, and the vertical axis refers to time.

14

Remarkably, as the number of latent states increases, LDNets discover more effective encodings, that reflect
in an increasing prediction accuracy (Fig. 3e, blue line), with a saturation due to the relatively small training
set size (100 samples). By increasing fmax, the FOM state gets less prone to be represented by a compact
encoding; still, as the number of latent states increases, the accuracy is enhanced.

3.2 Test Case 2: Unsteady Navier-Stokes

The 2D lid-driven cavity is a well-known benchmark problem in fluid dynamics [66], which may exhibit
a wide range of flow patterns and vortex structures when increasing the Reynolds number. We challenge
LDNets in learning an unsteady version of the lid-driven cavity problem, where the velocity prescribed on the
top portion of the boundary (Γtop) is a time-dependent input u(t) (see Fig. 6a). In particular, as reported
in Sec. 3.1.1, we consider a Gaussian Process Distribution with mean µ = 0, standard deviation σ = 5 and
characteristic time-scale τ = 5. During the simulations, the Reynolds number varies over time by reaching
peaks of nearly 1500. This problem is challenging also because of discontinuities in the velocity field at the
two top corners. The goal here is to predict the velocity field (that is, we set y(x, t) = v(x, t)) for each
prescribed u(t):

ρ
∂v

∂t
+ ρ (v · ∇)v − µ∆v +∇p = 0 x ∈ Ω, t ∈ (0, T],

∇ · v = 0 x ∈ Ω, t ∈ (0, T],

v = u(t)ex x ∈ Γtop, t ∈ (0, T],

v = 0 x ∈ ∂Ω \ Γtop, t ∈ (0, T],

v = 0 x ∈ Ω, t = 0,

(9)

where the dependence of the velocity v and pressure p on space and time is understood. As shown in [58], a
simple quadratic loss function is not adequate for capturing small vortex structures, because of their small
impact, compared to medium- and large-scale structures, to the loss function. Therefore, we use the following
goal-oriented metric, where we denote by v and v̂ the reference and predicted velocities, respectively:

E(v, v̂) = ∥v − v̂∥2

v2norm
+ γ

∥∥∥∥ v

ϵ+ ∥v∥
− v̂

ϵ+ ∥v̂∥

∥∥∥∥2 (10)

with hyperparameters γ and ϵ≪ 1, and where vnorm is a reference velocity magnitude. Specifically, we pick
γ = 1 · 10−1 and ϵ = 1 · 10−4. The second term of the metric (10) allows to match the flow direction, even
in the regions of small flow magnitude.

We generate training data through a FEM-based solver of (9), on a 100×100 triangular grid, accounting
for nearly 91K degrees of freedom. We employ Taylor-Hood elements in the FEM solver, i.e. P2 Finite
Elements for v and P1 Finite Elements for p. We consider a semi-implicit time discretization with ∆t =
2 · 10−1. The training and validation datasets consist of 80 simulations with T = 20, where 200 points are
uniformly sampled in Ω = (0, 1)2. Regarding the testing data, we run 200 simulations with T = 40, a time
span that is twice as long as the one of the training set, and we uniformly take 400 points in space from the
domain Ω = (0, 1)2. To train LDNets, we take 100 evenly distributed snapshots in time, and we randomly
take 200 points in space for each time-step.

We train three LDNets, by increasing the number of latent states from 1 to 5 and 10. Specifically, we
fix the number of latent states and we perform hyperparameters tuning (see Sec. 2.8) by monitoring the
following goal-oriented loss function (10). We define in Tab. 3 the initial ranges and final values of the
hyperparameters for different numbers of latent states (1, 5 and 10).

We report in Tab. 4 the NRMSE and Pearson dissimilarity values on the testing set for ds = 1, ds = 5
and ds = 10. We notice that the size of both NN dyn and NN rec architectures increases while the testing
error of the LDNets decreases with respect to the number of latent states. Similarly to Test Case 1, as the
number of latent states increases the LDNets are more and more efficient in discovering an effective compact
representation of the system state and thus providing reliable predictions (Figs. 6b and 6c). Still, small
NRMSEs are attained even with a small number of latent states.

Furthermore, we challenge the trained LDNets in predicting the flow evolution even on a longer time
horizon than that considered in the training dataset (specifically, twice as long), that is for t ∈ (20, 40],

15

T
e
st

c
a
se
s

H
y
p
e
rp

a
ra

m
e
te
rs

T
ra

in
a
b
le

p
a
ra

m
e
te
rs

N
N

d
y
n

N
N

re
c

∆
t r
e
f

α
d
y
n
,
α
re
c

N
N

d
y
n

N
N

re
c

la
ye
rs

n
eu
ro
n
s

la
ye
rs

n
eu
ro
n
s

#
p
a
ra
m
.

#
p
a
ra
m
.

T
e
st

C
a
se

d
s
=

1
tu
n
in
g

1
–
6

5
–
3
5

1
–
6

5
–
3
5

[1
0−

1
,1
0
1
]

0
fi
n
al

2
7

4
2
4

5
.4

0
8
5

1
’9
7
0

T
e
st

C
a
se

d
s
=

5
tu
n
in
g

1
–
6

5
–
3
5

1
–
6

5
–
3
5

[1
0−

1
,1
0
1
]

0
fi
n
al

2
2
7

4
3
3

8
.6

0
1
’0
8
5

3
’7
3
1

T
e
st

C
a
se

d
s
=

10
tu
n
in
g

1
–
6

5
–
3
5

1
–
6

5
–
3
5

[1
0−

1
,1
0
1
]

0
fi
n
al

3
1
9

5
2
8

9
.2

0
1
’1
8
8

3
’6
9
8

T
ab

le
3:

T
es
t
C
as
e
2
:
h
y
p
er
p
a
ra
m
et
er
s
ra
n
g
es

a
n
d
se
le
ct
ed

va
lu
es
.
S
ee

te
x
t
fo
r
d
et
a
il
s.

16

Number of latent states 1 5 10

NRMSEtest (0 < t < 40) 4.08 · 10−3 1.94 · 10−3 1.39 · 10−3

NRMSEtest (0 < t < 20) 4.10 · 10−3 1.93 · 10−3 1.34 · 10−3

NRMSEtest (20 < t < 40) 4.07 · 10−3 1.95 · 10−3 1.44 · 10−3

1− ρtest (0 < t < 40) 5.14 · 10−3 1.16 · 10−3 6.01 · 10−4

1− ρtest (0 < t < 20) 5.48 · 10−3 1.23 · 10−3 6.00 · 10−4

1− ρtest (20 < t < 40) 4.81 · 10−3 1.11 · 10−3 6.02 · 10−4

Table 4: Test Case 2: test accuracy metrics for LDNets trained with an increasing number of latent states
(1, 5 and 10).

when the training samples are generated for t ∈ [0, 20]. Remarkably, we observe a negligible propagation of
the approximation error along the prolonged time frame, making the trained LDNets reliable also for time-
extrapolation (Figs. 6b and 6d, Tab. 4). This is a remarkable achievement, considering that the dynamical
system at hand does not present a periodic or quasi-periodic regime.

We depict in Fig. 7 the time evolution of the streamlines associated with a specific sample belonging to
the testing set, along with the corresponding input signal u(t). We see that the approximation provided by
LDNets with 10 latent variables has an excellent agreement with the FOM.

3.3 Test Case 3: Aliev-Panfilov electrophysiology model

We consider the Aliev-Panfilov (AP) model [3], a nonlinear system of PDEs describing the propagation of
the electrical potential z(x, t) in an excitable tissue. The AP model envisages a recovery variable w(x, t) that
tracks the refractoriness of the tissue by modulating the repolarization phase. The model, supplemented
with homogeneous Neumann boundary conditions (encoding electrical insulation) and zero initial conditions
for both the variables, reads

∂z

∂t
−D

∂2z

∂x2
= Kz(1− z)(z − α)− zw + Istim x ∈ (0, L), t ∈ (0, T],

∂w

∂t
=

(
γ +

µ1w

µ2 + z

)
(−w −Kz(z − b− 1)) x ∈ (0, L), t ∈ (0, T],

∂z(0, t)

∂x
=
∂z(L, t)

∂x
= 0 t ∈ (0, T],

z(x, 0) = w(x, 0) = 0, x ∈ (0, L).

(11)

with parameters D = 0.1mmms−1, K = 8, α = 0.1, γ = 0.02, µ1 = 0.2, µ2 = 0.3, b = 0.15, L = 100mm,
T = 500ms. Note that z is a non-dimensional potential (which can be mapped to its physiological values
by the relationship (100z− 80)mV) and the model is rescaled with respect to the time constant τ = 12.9ms
(for further details, see [27]).

The excitation-propagation process is triggered by an external stimulus Istim(x, t), applied at two stim-
ulation points, respectively located at x = 1/4L and x = 3/4L, and consisting of square impulses, to
mimic the action of a (natural of artificial) pacemaker. The input of the model is given by u(t) =
(Istim(x

stim
1 , t), Istim(x

stim
2 , t)). To generate the training samples, we randomly trigger the applied stim-

uli, either in correspondence of xstim1 , xstim2 or both points, by randomly picking the stimulation times. For
the approximation of the AP model, we employ the finite difference method both in space and time, on
a regular grid with 800 points in space and 105 time steps. Then, we subsample the space-time grid by
retaining 100 points in space and 500 time instants.

The AP model solution features the fast-slow dynamics of a cardiac action potential (steep depolarization
fronts followed by slow repolarization of the electrical potential to its resting value) and the wavefront
propagation in space generating collisions of waves from different stimulation points. These features make
this problem a challenging test case for comparing the proposed method against popular approaches to
learning space-time dynamics of complex systems.

17

a

b

c

d

1 5 10
10−3

2× 10−3

3× 10−3

4× 10−3

6× 10−3
NRMSE

t ∈ [0, 20]
t ∈ [20, 40]

1 5 10

num. latent states

10−3

10−2
1− ρ

t ∈ [0, 20]
t ∈ [20, 40]

−7.2
−6.0
−4.8
−3.6
−2.4
−1.2
0.0
1.2
2.4
3.6

v
x

−5.4
−4.5
−3.6
−2.7
−1.8
−0.9
0.0
0.9
1.8
2.7

v
y

0

2

4

v

−1.2
−0.6
0.0
0.6
1.2
1.8
2.4
3.0

v
x

−1.8
−1.5
−1.2
−0.9
−0.6
−0.3
0.0
0.3
0.6
0.9

v
y

0.0

0.5

1.0

1.5

v

Figure 6: Test Case 2. (a): Computational domain and equations of the FOM. (b): Error metrics
(NRMSE and Pearson dissimilarity) of LDNets for different number of latent variables (1, 5 and 10). The
training dataset consists of 80 simulations with T = 20, while the test dataset comprises 200 simulations
with T = 40. The blue lines refer to the testing error obtained in the interval t ∈ [0, 20] (that is the same
interval seen during training), while orange lines refer to the testing error in the interval t ∈ [0, 40]. (c): A
snapshot of the velocity field within the interval t ∈ [0, 20] (interpolation interval) of a testing sample. (d):
A snapshot of the velocity field within the interval t ∈ [20, 40] (extrapolation interval) of a testing sample.

18

a

b

0

1

2

3

0

2

4

6

0

2

4

6

0

2

4

0.0

0.5

1.0

1.5

0

2

4

0

1

2

3

0

1

2

0.0

0.1

0.2

0.3

0 5 10 15 20 25 30 35 40

t

−6

−4

−2

0

2

4

u
(t

)

Input signal over time

Figure 7: Test Case 2. (a): Streamlines of the velocity field v for one testing sample over time (t ∈ [0, 40]).
Horizontal and vertical axis refer to space in the domain Ω = (0, 1)2. For each subplot, the left one represents
the FOM while the right one represents the LDNet approximation for ds = 10. (b): Input signal u(t) over
time applied to the top portion of the boundary Γtop.

19

Hyperparameters
ds NN enc, NN dec NN dyn ∆tref αenc, αdec αdyn

layers neurons layers neurons

AE/ODE
tuning 4 – 12 1 – 4 4 – 80 1 – 10 4 – 40 [101, 103] [10−5, 10−2] [10−5, 10−1]
final 12 1 75 4 38 1.80 · 101 6.89 · 10−3 2.80 · 10−2

AE/LSTM
tuning 4 – 12 1 – 4 4 – 80 [10−5, 10−2] [10−5, 100]
final 12 1 75 6.89 · 10−3 4.81 · 10−1

Table 5: Test Case 3: hyperparameters ranges and selected values for the AE/ODE and AE/LSTM models.
For the encoder (respectively, the decoder) the number of neurons refers to the first (respectively, last) hidden
layer. In the other layers, the number of neurons is linearly varied to connect the first (respectively, last)
hidden layer to the layer of latent variables.

Hyperparameters
ds NN dyn NN rec ∆tref αdyn, αrec

layers neurons layers neurons

LDNet
tuning 4 – 12 1 – 3 4 – 15 1 – 5 4 – 20 [101, 103] [10−5, 10−2]
final 12 1 5 5 17 2.05 · 102 4.70 · 10−3

Table 6: Test Case 3: hyperparameters ranges and selected values for the LDNet.

We compare LDNets with state-of-the-art approaches in which dimensionality reduction is achieved by
training an auto-encoder (AE) on a discrete representation of the output z(·, t). Once trained, the encoder
is employed to compute the trajectories of the latent states throughout the training set, and the dynamics
in the latent space is learned either through an ODE-Net [24] or an LSTM [32]. We denote the resulting
models by AE/ODE and AE/LSTM, respectively. Then, we further train the NN that tracks the dynamics
of the latent states simultaneously with the decoder, that is in an end-to-end (e2e) fashion, and we denote
the resulting models by AE/ODE-e2e and AE/LSTM-e2e, respectively. Furthermore, we benchmark LDNets
against a classical method of model-order reduction of PDE models, namely the POD-DEIM method [45,
60]. These methods are described in detail in Appendix A.

We challenge LDNets and the above-mentioned methods in the task of predicting the space-time dynamics
of the target value y(x, t) = z(x, t), given the time series of impulses in the two stimulation points. In order
to ensure a fair comparison, for all the methods that require a choice of hyperparameters we use an algorithm
for their automatic tuning, as described in Sec. 2.8. The ranges used for tuning and the final hyperparameter
values are reported in Tab. 5 and 6. In this test case, we employ the technique described in Sec. 2.5.1 to
impose in a strong manner the equilibrium condition of the initial state when u(t) = 0. To achieve a
significant dimensionality reduction, we set a maximum number of 12 latent variables both for auto-encoder-
based methods and for LDNets. We notice that the hyperparameter tuning algorithm selects the maximum
number of latent states (i.e. ds = 12) for all the methods. For the POD-DEIM method, we test different
number ds of POD modes (i.e., basis functions) for the state and the nonlinear term, ranging from 12 to 60.

In Tab. 7 we report training and testing errors obtained for the different methods, along with the number
of trainable parameters. The results of this comparison are also reported in Figs. 8–9.

We observe that the results obtained with the POD-DEIM method using 12 modes are unsatisfactory,
compared to the other methods, confirming the importance of adopting nonlinear dimensional reduction
techniques for this class of traveling-front problems. Indeed, due to the presence of traveling fronts, this
problem features a slow decay of the Kolmogorov n-width [52], that reflects in a poor accuracy of the
electrical potential reconstruction given by the POD-DEIM method when 12 modes are used. Then, we
consider higher number of modes, namely 24, 36, 48 and 60. We report in Fig. 10, Fig. 11 and Tab. 7

20

0.0

0.5

1.0

so
lu

ti
o
n

b

10−3

10−2

10−1

100

a
b

so
lu

te
er

ro
r

c

0 500t

la
te

n
t

st
a
te

s

0 500t 0 500t 0 500t 0 500t 0 500t

d

0 100x

0.0

0.5

1.0

z
(x
,2

5
0
)

0 100x 0 100x 0 100x 0 100x 0 100x

e

0 100x

0.0

0.5

1.0

z
(x
,3

0
0
)

0 100x 0 100x 0 100x 0 100x 0 100x

f

0 100x

0.0

0.5

1.0

z
(x
,3

5
0
)

0 100x 0 100x 0 100x 0 100x 0 100x

Figure 8: Test Case 3: Methods comparison. We compare the results obtained with different methods
for a sample belonging to the test dataset. The left-most column reports the FOM solution of the AP model
(the abscissa denotes time, the ordinate denotes space). For each method we report: (a) the space-time
solution; (b) the space-time error with respect to the FOM solution; (c) the time-evolution of the 12 latent
variables; (d)-(e)-(f) three snapshots of the space-dependent output field at t = 250, 300 and 350, in which
we compare the predicted solution (red solid line) with the FOM solution (black dashed line).

21

NRMSE Number of trainable parameters
training testing NN enc NN dec, NN rec RNN dyn total

POD-DEIM (ds = 12) 4.05 · 10−1 3.92 · 10−1

POD-DEIM (ds = 24) 3.59 · 10−1 3.47 · 10−1

POD-DEIM (ds = 36) 1.71 · 10−1 1.62 · 10−1

POD-DEIM (ds = 48) 7.48 · 10−2 7.57 · 10−2

POD-DEIM (ds = 60) 2.97 · 10−2 2.90 · 10−2

AE/LSTM 1.90 · 10−1 1.98 · 10−1 8’562 8’651 720 17’933
AE/LSTM-e2e 2.05 · 10−2 5.87 · 10−2 8’562 8’651 720 17’933
AE/ODE 2.09 · 10−2 4.58 · 10−2 8’562 8’651 5’484 22’697
AE/ODE-e2e 1.78 · 10−2 3.37 · 10−2 8’562 8’651 5’484 22’697
LDNet 7.09 · 10−3 7.37 · 10−3 0 1’480 228 1’708

Table 7: Test Case 3: Training and testing errors obtained with the different methods and number of
trainable parameters.

P
O
D
-D

E
IM

A
E
/L

ST
M

A
E
/L

ST
M

-e
2e

A
E
/O

D
E

A
E
/O

D
E
-e
2e

LD
N
et

10−2

10−1

a
NRMSE

dataset

train

test

A
E
/L

ST
M

A
E
/L

ST
M

-e
2e

A
E
/O

D
E

A
E
/O

D
E
-e
2e

LD
N
et

0

5000

10000

15000

20000

25000

b
number of trainable parameters

dynamics

decoder/reconstruction

encoder

Figure 9: Results of Test Case 3. (a): Boxplots of the distribution of the testing (blue) and training
(light blue) errors obtained with each method. The red diamonds represent the average error on each dataset.
(b): Number of trainable parameters of each method. The bin encoder is present only for auto-encoder-
based methods, but not for LDNets. The bin dynamics refers to the NN that evolves the latent states. The
POD-DEIM method is not included, as it does not envisage a training stage.

22

0.0

0.5

1.0

so
lu

ti
o
n

b

10−3

10−2

10−1

100

a
b

so
lu

te
er

ro
r

c

0 100x

0.0

0.5

1.0

z
(x
,2

5
0
)

0 100x 0 100x 0 100x 0 100x 0 100x

d

0 100x

0.0

0.5

1.0

z
(x
,3

0
0
)

0 100x 0 100x 0 100x 0 100x 0 100x

e

0 100x

0.0

0.5

1.0

z
(x
,3

5
0
)

0 100x 0 100x 0 100x 0 100x 0 100x

Figure 10: We compare the results obtained with the POD-DEIM method, for an increasing number of
considered modes (reported in the titles), against the results obtained with our proposed method. The figure
shows the predictions obtained for a sample belonging to the test dataset. The left-most column reports the
FOM solution of the AP model (the abscissa denotes time, the ordinate denotes space). (a) the space-time
solution; (b) the space-time error with respect to the FOM solution; (c)-(d)-(e) three snapshots of the
space-dependent output field at t = 250, 300 and 350, in which we compare the predicted solution (red solid
line) with the FOM solution (black dashed line).

the results. By increasing the number of considered modes, the accuracy increases. With 60 modes, e.g.,
the POD-DEIM method is more accurate than auto-encoder-based methods with 12 latent variables, while
LDNets with 12 latent variables are still more accurate. Nonetheless, we observe that an increase of number
of modes in the POD-DEIM method is accompanied by a significant increase in the computational cost, since
the computational complexity scales with the cube of ds. In addition, the POD-DEIM model is solved on
the same temporal discretization as the high-fidelity one, which represents a strong limitation with respect
to the other methods described in this paper.

A better accuracy is achieved by both auto-encoder-based methods and by LDNets, thanks to their ability
to express a nonlinear relationship between the latent states and the solution. Still, LDNet outperforms the
other methods, with a testing NRMSE equal to 7 · 10−3 and with a much lower overfitting. The testing
NRMSE of auto-encoder-based methods is nearly 5 times larger than with LDNets or more. Remarkably, our
method achieves better accuracy with significantly fewer trainable parameters: auto-encoder-based methods
require more than tenfold the number of parameters. This testifies to the good architectural design of
LDNets.

23

POD-DEIM
(ds = 12)

POD-DEIM
(ds = 24)

POD-DEIM
(ds = 36)

POD-DEIM
(ds = 48)

POD-DEIM
(ds = 60)

LDNet
(ds = 12)

10−2

10−1

NRMSE

train

test

Figure 11: We compare the results obtained with the POD-DEIM method, for an increasing number of
considered modes, against the results obtained with our proposed method. Specifically, we report boxplots
of the distribution of the testing (blue) and training (light blue) errors obtained with each method. The red
diamonds represent the average error on each dataset.

Discussion

We have presented LDNets, a novel class of NNs that learn in a data-driven manner the evolution of systems
exhibiting spatio-temporal dynamics in response to external inputs. An LDNet is trained in a supervised
way from observations of input-output pairs, which can either come from experimental measurements or be
synthetically generated through the numerical approximation of mathematical models of which one seeks a
surrogate or reduced-order model. This latter case is the one considered in this manuscript to demonstrate
the capabilities of the proposed method.

LDNets provide a paradigm-shift from state-of-the-art methods based on dimensionality reduction (e.g.,
exploiting POD or auto-encoders) of a high-dimensional discretization of the system state. Specifically,
LDNets automatically discover a compact representation of the system state, without necessitating the
explicit construction of an encoder. This enables the training algorithm to select a compact representation
of the state that is functional not only in reconstructing the space-dependent field for each time instant,
but also in predicting its dynamics; an auto-encoder, conversely, when trained, extracts features on a purely
statistical basis, being agnostic of the importance of each feature in determining the evolution of the system.

Unlike standard approaches that reconstruct a high-dimensional discretization of the output, correspond-
ing e.g. to evaluations at the vertices of a computational mesh, our approach is in this sense meshless. The
reconstruction NN is indeed queried for each point in space independently. This design principle gives LD-
Nets several benefits. First, the meshless nature of LDNets combined with the automatic discovery of the
latent space allows them to operate in a low-dimensional space without ever going through a high-dimensional
discretization, as auto-encoder-based methods do. This makes LDNets very lightweight structures, easy to
train, and not prone to overfitting. The LDNet architecture enables the sharing of the trainable parameters
needed to evaluate the solution at different points (that is, the same weights are employed regardless of the
query point). The low overfitting of LDNets is thus not surprising, as weight-sharing is often the key of
good generalization properties of many architectures, such as CNNs and RNNs [28]. Second, it provides
a continuous representation of the output, and, thus, allows for additional and possibly physics-informed
terms to be introduced into the loss function [54], opening up countless possibilities for extending the purely

24

black-box method proposed in this paper to grey-box approaches. Third, the loss function can be defined by
stochastically varying the points in space at which the error is evaluated (see Test Case 2), thus lightening
the computational burden associated with training. Note that this is not possible when the model returns
the entire batch of observations. This aspect also opens up to multiple developments, such as stochastic,
minibatch-based training algorithms, or even adaptive refinements of the evaluation points, by sampling
more densely where the error is larger.

The time-dynamics of LDNets is based on a recurrent architecture that is consistent, by construction, with
the arrow of time. This differentiates LDNets from other approaches in which time is seen as a parameter
[26], or approaches, based e.g. on DeepONets, that take as input the entire time-history of u(t) with a
fixed length [40, 44]. The latter approaches do not easily allow for predictions over time frames longer than
those used during training, or allow for time-extrapolation only in periodic o quasi-periodic problems [65].
LDNets, on the other hand, allow predictions for arbitrarily long times. We remark that the reliability of
time-extrapolation is constrained by the characteristics of the problem at hand and the available training
data. For example, if the system is characterized by a divergent behavior such that, as time progresses,
the state enters regions increasingly distant from the initial condition, then the reliability of the predictions
is not guaranteed in time-extrapolation regimes. When the system state remains bounded, however, the
predictions of LDNets are significantly accurate even in time-extrapolation regimes, as showcased in Test
Case 2.

LDNets represent, as proved by the results of this work, an innovative tool capable of learning spatio-
temporal dynamics with great accuracy and by using a remarkably small number of trainable parameters.
They are able to discover, simultaneously with the system dynamics, compact representations of the system
state, as shown in Test Case 1 where the Fourier transform of a sinusoidal signal is automatically discovered.
Once trained, LDNets provide predictions for unseen inputs with negligible computational effort (order of
milliseconds for the considered Test Cases). LDNets provide a new flexible and powerful tool for data-driven
emulators that is open to a wide range of variations in the definition of the loss function (like, e.g., including
physics-informed terms), in the training strategies, and, finally, in the NN architectures. The comparison with
state-of-the-art methods on a challenging problem, such as predicting the excitation-propagation pattern of
a biological tissue in response to external stimuli, highlights the full potential of LDNets, which outperform
the accuracy of existing methods while still using a significantly lighter architecture.

Acknowledgements

FR, SP and LD are members of the INdAM research group GNCS. This project has been partially supported
by the INdAM GNCS Project CUP E55F22000270001. LD acknowledges the support of the FAIR (Future
Artificial Intelligence Research) project, funded by the NextGenerationEU program (Italy) within the PNRR-
PE-AI scheme (M4C2, investment 1.3, line on Artificial Intelligence).

Appendices

A Alternative methods

In this appendix, we describe alternative methods to LDNets, whose performance is compared in Sec. 2.
These methods are based on a space discretization of the solution field.

We consider hence a space-discretization operator A : Y → RNh , with Nh ≫ 1. The operator A typically
consists of a point-wise evaluation of y on a grid of points (e.g. the nodes of a computational mesh),
or of an expansion with respect to a Finite Element basis or to a Fourier basis. The subscript h refers
to the characteristic size associated with the discretization (e.g., the mesh element size for a mesh-based
discretization; the sampling period for a discretization based on the discrete Fourier transform). Hence, we
write Y(t) = A(y(·, t)) ∈ RNh . The space-discretization operator is typically accompanied by a discrete-to-
continuous operator A′ : RNh → Y, such that y(·, t) ≃ A′(Y(t)).

Let us consider, for simplicity, the case when the discretization operator is associated with the evaluation

25

of the output field on a grid of points ξ1, ξ2, . . . , ξNnodes
. Then we have

Yi(τ) = (yi(ξ1, τ),yi(ξ1, τ), . . . ,yi(ξNnodes
, τ)) for i ∈ Strain, τ ∈ T i

In this case, we have Nh = dyNnodes. We are thus restricting ourselves to the case when the training
dataset is such that Pi

τ ≡ P := (ξ1, ξ2, . . . , ξNnodes
). If, instead, observation points vary between samples

or between time steps, interpolation would be required.

A.1 Projection-based reduced-order models

Projection-based reduced-order models (ROMs) allow the efficient simulation of complex spatio-temporal
systems like (1) for many different queries of the input u(t) [4, 8–10, 31, 51]. They leverage Galerkin or Petrov-
Galerkin projection of the PDE system onto problem-specific linear manifolds to reduce the complexity of
high-fidelity discretization, deliberately rich in degrees of freedom for the sake of accurately approximating
the PDE solution. Here, to ease the notation, we only consider the case in which the model output coincides
with the FOM state (y ≡ z), that is the observation operator is the identity function. The case when the
operator differs from the identity is a straightforward generalization of the one considered here.

Projection-based ROMs are intrusive, as they require manipulation of the discretization of FOM (1).
Their construction first involves dimensionality reduction techniques applied to pre-computed samples of the
discretized FOM state:

Z(t) = A(z(·, t)) ∈ RNh ,

collected by numerically approximating the space-discrete counterpart of the FOM, for different samples of
the input u(t) in the training set:

d

dt
Z(t) = F(Z(t),u(t)) for t ∈ (0, T]

Z(t) = Z0 := A(z0),
(12)

where F is a suitable discretization of the differential operator F . Solution snapshots are stored into a matrix

Z = {A(zi(·, τ))}τ∈T i

i∈Strain
∈ RNh×Nsnapshots

from which ds ≪ Nh basis functions ϕk, k = 1, . . . , ds are extracted by proper orthogonal decomposition
(POD), or other linear dimensionality reduction techniques, like reduced-basis greedy algorithm [31, 52].
This allows expressing the discretized state compactly as

Z(t) ≈ V s(t) =

ds∑
k=1

sk(t)ϕk, (13)

where V = [ϕ1| . . . |ϕds
] is the transformation matrix, collecting the basis functions in its columns, and

s(t) = [s1(t), . . . , sds(t)]
T is the reduced state, a vector made of the coefficients sk associated with each basis

function. In this context, the solution manifold associated with the latent space is thus the column space of
the matrix V .

Given a test manifold spanned by ds basis functions {ψk}
ds

k=1 (collected into a matrixW = [ψ1| . . . |ψds
]),

the projection of the dynamical system (12) generates a system of ds equations for the reduced state of the
form: 

d

dt
s(t) =WTF(V s(t),u(t)) for t ∈ (0, T]

s(0) = s0 := V TZ0,
(14)

In this formulation, computational efficiency hinges on the form of the discretized operator F. In the linear
and affine cases, the dependence on the solution can be separated from the operator, generating a set or
pre-computable terms that ensure computational efficiency in the resolution.

In the case nonlinearities are present in the model, instead, F requires the reduced state to be projected
back onto the state space for its evaluation, before being projected onto the low-dimensional dynamics

26

of (14). This double projection makes the computational costs of (14) comparable to the ones of (12).
Hyper-reduction techniques based on interpolation and linear dimensionality reduction techniques provide
a computationally efficient alternative for evaluating nonlinearities [23, 31, 52]. In our test case, we first
separate the nonlinear part from the linear one:

F(s(t),u(t)) = Fnl(s(t),u(t)) + Fl(s(t),u(t)),

and we then rely on the discrete version of the empirical interpolation method (DEIM), which employs
an interpolation-based projection of the nonlinearity onto the span of sparsely sampled basis functions,
precomputed with POD [23]. Specifically, the non-linear term Fnl is approximated by

Fnl(s(t),u(t)) ≈ U(PTU)−1PTFnl(s(t),u(t)),

being U the transformation matrix, collecting POD basis functions of the nonlinear term, and P a sparse
matrix that samples Fnl on a subset of interpolation indices. Here, we denote this model-order reduction
method as POD-DEIM method.

The success and greatest limitation of projection-based ROM lies in being intrusively linked to high-
fidelity discretization via a linear subspace. This, on the one hand, ensures the ROM consistency, with a
reduced state directly mappable to the system state thanks to (13), and convergence to the FOM as the
dimensionality of the reduced manifold increases. On the other hand, if the solution of the parametric
problem entails large variability, as in the case of advection-dominated problems, the accuracy-efficiency
balance is compromised by the curse of dimensionality.

A.2 Methods based on auto-encoders

For the reasons above, many researchers have shifted to the development of reduced-order models based on
non-linear dimensionality reduction techniques, such as NN-based auto-encoders [19, 26, 35, 41, 44, 64]. In
this framework, to reduce the dimensionality of the discretized output field Y, we train an auto-encoder,
with latent code dimension ds, by considering the following minimization problem:

(w∗
enc,w

∗
dec) = argmin

wenc,wdec

∑
i∈Strain

∑
τ∈T i

∥NN dec(NN enc(Yi(τ);wenc);wdec)−Yi(τ)∥2Y

+ αencR(wenc) + αdecR(wdec)

where NN enc and NN dec (with trainable parameters wenc and wdec, respectively) are the encoder and the
decoder, respectively. For normalization purposes, to evaluate distances in the discrete space we employ the
rescaled euclidean norm ∥ · ∥2Y := ∥ · ∥2/(Nnodes y

2
norm).

Once the auto-encoder is trained, i.e. the parameters w∗
enc and w∗

dec are available, we compute the latent
codes associated with each training sample i ∈ Strain and each observation time τ ∈ T i, that we denote as

ŝi(τ) = NN enc(Yi(τ);w
∗
enc) ∈ Rds .

At this stage, we train a second model (denoted by RNN dyn, with trainable parameters wdyn) to predict
the dynamics of the latent codes ŝi(t) as a function of the inputs {ui(τ)}τ∈S i :

w∗
dyn = argmin

wdyn

∑
i∈Strain

∑
t∈T i

∥RNN dyn({ui(τ)}τ∈S i , t;wdyn)− ŝi(t)∥2 + αdynR(wdyn)

In this work, we consider two different architectures for RNN dyn, namely an ODE-Net [24] and an LSTM
[32]. In both cases, we employ normalization layers as described in Sec. 2.4.

Once both the auto-encoder NN dec ◦ NN enc and the dynamics network RNN dyn have been trained, the
predictions on the test set are obtained as follows, for i ∈ Stest and t ∈ T i:

Ỹi(t) = NN dec(RNN dyn({ui(τ)}τ∈S i , t;w∗
dyn);w

∗
dec),

and
ỹi(·, t) = A′(NN dec(RNN dyn({ui(τ)}τ∈S i , t;w∗

dyn);w
∗
dec)).

27

Here, we denote this method as AE/ODE and AE/LSTM, depending on the architecture employed for
RNN dyn.

We remark that the encoder NN enc is only instrumental to recover labeled data ŝi(τ) needed to train
RNN dyn and it is not used to predict the output during the testing phase. In other words, only RNN dyn

and NN dec are retained in the testing phase. The latter observation suggests a third training stage in which,
starting from the pre-trained values (w∗

dyn,w
∗
dec), we further train the RNN dyn and NN dec in a simultaneous

manner, that is in an end-to-end (e2e) way:

(w∗∗
dyn,w

∗∗
dec) = argmin

wdyn,wdec

∑
i∈Strain

∑
t∈T i

∥NN dec(RNN dyn({ui(τ)}τ∈S i , t;wdyn);wdec)−Yi(t)∥2Y

+ αdynR(wdyn) + αdecR(wdec)

To denote the models obtained after this third training stage, we employ the abbreviation AE/ODE-e2e and
AE/LSTM-e2e.

References

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. “Optuna: A Next-generation Hyperparameter
Optimization Framework”. In: Proceedings of the 25rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2019.

[2] M. Alber, A. Buganza Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikipati, G. Karniadakis,
W. W. Lytton, P. Perdikaris, L. Petzold, et al. “Integrating machine learning and multiscale model-
ing—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences”.
In: NPJ digital medicine 2.1 (2019), p. 115.

[3] R. R. Aliev and A. V. Panfilov. “A simple two-variable model of cardiac excitation”. In: Chaos, Solitons
& Fractals 7.3 (1996), pp. 293–301.

[4] A. C. Antoulas. Approximation of large-scale dynamical systems. Vol. 6. Siam, 2005.

[5] F. As’ ad, P. Avery, and C. Farhat. “A mechanics-informed artificial neural network approach in data-
driven constitutive modeling”. In: International Journal for Numerical Methods in Engineering 123.12
(2022), pp. 2738–2759.

[6] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. “Learning data-driven discretizations for partial
differential equations”. In: Proceedings of the National Academy of Sciences 116.31 (2019), pp. 15344–
15349.

[7] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. “An ’empirical interpolation’ method: ap-
plication to efficient reduced-basis discretization of partial differential equations”. In: Comptes Rendus
Mathematique 339.9 (2004), pp. 667–672.

[8] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira. Model Order
Reduction - Volume 2: Snapshot-Based Methods and Algorithms. Berlin, Boston: De Gruyter, 2021.

[9] P. Benner, S. Gugercin, and K. Willcox. “A survey of projection-based model reduction methods for
parametric dynamical systems”. In: SIAM Review 57.4 (2015), pp. 483–531.

[10] P. Benner, V. Mehrmann, and D. C. Sorensen. Dimension reduction of large-scale systems. Vol. 35.
Springer, 2005.

[11] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. “Algorithms for hyper-parameter optimization”. In:
Advances in neural information processing systems 24 (2011).

[12] S. Berrone, C. Canuto, M. Pintore, and N. Sukumar. “Enforcing Dirichlet boundary conditions in
physics-informed neural networks and variational physics-informed neural networks”. In: arXiv preprint
arXiv:2210.14795 (2022).

[13] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. “Convergence rates for
greedy algorithms in reduced basis methods”. In: SIAM journal on mathematical analysis 43.3 (2011),
pp. 1457–1472.

28

[14] G. A. Bird. “Molecular gas dynamics and the direct simulation of gas flows”. In:Molecular gas dynamics
and the direct simulation of gas flows (1994).

[15] J. Bongard and H. Lipson. “Automated reverse engineering of nonlinear dynamical systems”. In: Pro-
ceedings of the National Academy of Sciences 104.24 (2007), pp. 9943–9948.

[16] J. Bruna, B. Peherstorfer, and E. Vanden-Eijnden. “Neural galerkin scheme with active learning for
high-dimensional evolution equations”. In: arXiv preprint arXiv:2203.01360 (2022).

[17] S. L. Brunton, J. L. Proctor, and J. N. Kutz. “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems”. In: Proceedings of the National Academy of Sciences
(2016), p. 201517384.

[18] S. L. Brunton and J. N. Kutz. Data-driven science and engineering: Machine learning, dynamical
systems, and control. Cambridge University Press, 2022.

[19] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. “Machine learning for fluid mechanics”. In: Annual
review of fluid mechanics 52 (2020), pp. 477–508.

[20] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici. “A priori convergence of the
greedy algorithm for the parametrized reduced basis method”. In: ESAIM: Mathematical modelling
and numerical analysis 46.3 (2012), pp. 595–603.

[21] C. Canuto, T. Tonn, and K. Urban. “A posteriori error analysis of the reduced basis method for non-
affine parametrized nonlinear PDEs”. In: SIAM Journal on Numerical Analysis 47.3 (2009), pp. 2001–
2022.

[22] M. Cenedese, J. Ax̊as, B. Bäuerlein, K. Avila, and G. Haller. “Data-driven modeling and prediction of
non-linearizable dynamics via spectral submanifolds”. In: Nature communications 13.1 (2022), pp. 1–
13.

[23] S. Chaturantabut and D. C. Sorensen. “Nonlinear model reduction via discrete empirical interpolation”.
In: SIAM Journal on Scientific Computing 32.5 (2010), pp. 2737–2764.

[24] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. “Neural ordinary differential equa-
tions”. In: Advances in neural information processing systems (NeurIPS 2018 Proceedings) 31 (2018).

[25] D. Floryan and M. D. Graham. “Data-driven discovery of intrinsic dynamics”. In: Nature Machine
Intelligence (2022), pp. 1–8.

[26] S. Fresca, L. Dede’, and A. Manzoni. “A comprehensive deep learning-based approach to reduced order
modeling of nonlinear time-dependent parametrized PDEs”. In: Journal of Scientific Computing 87.2
(2021), pp. 1–36.

[27] S. Göktepe and E. Kuhl. “Computational modeling of cardiac electrophysiology: a novel finite element
approach”. In: International journal for numerical methods in engineering 79.2 (2009), pp. 156–178.

[28] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning. Vol. 1. 2. MIT press Cambridge,
2016.

[29] M. Guo and J. S. Hesthaven. “Data-driven reduced order modeling for time-dependent problems”. In:
Computer methods in applied mechanics and engineering 345 (2019), pp. 75–99.

[30] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified reduced basis methods for parametrized partial
differential equations. Springer, 2016.

[31] J. S. Hesthaven, C. Pagliantini, and G. Rozza. “Reduced basis methods for time-dependent problems”.
In: Acta Numerica 31 (2022), pp. 265–345.

[32] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural Computation 9.8 (1997),
pp. 1735–1780.

[33] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint arXiv:1412.6980
(2014).

[34] S. Lai, N. W. Ruktanonchai, L. Zhou, O. Prosper, W. Luo, J. R. Floyd, A. Wesolowski, M. Santillana,
C. Zhang, X. Du, et al. “Effect of non-pharmaceutical interventions to contain COVID-19 in China”.
In: nature 585.7825 (2020), pp. 410–413.

29

[35] K. Lee and K. T. Carlberg. “Model reduction of dynamical systems on nonlinear manifolds using deep
convolutional autoencoders”. In: Journal of Computational Physics 404 (2020), p. 108973.

[36] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. “Hyperband: A Novel Bandit-
Based Approach to Hyperparameter Optimization”. In: Journal of Machine Learning Research 18.1
(2017), pp. 6765–6816.

[37] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-Tzur, M. Hardt, B. Recht, and A. Talwalkar.
“A System for Massively Parallel Hyperparameter Tuning”. In: arXiv preprint arXiv:1810.05934 (2020).

[38] K. Linka and E. Kuhl. “A new family of Constitutive Artificial Neural Networks towards automated
model discovery”. In: Computer Methods in Applied Mechanics and Engineering 403 (2023), p. 115731.

[39] Y. Liu, J. N. Kutz, and S. L. Brunton. “Hierarchical deep learning of multiscale differential equation
time-steppers”. In: Philosophical Transactions of the Royal Society A 380.2229 (2022), p. 20210200.

[40] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. “Learning nonlinear operators via DeepONet
based on the universal approximation theorem of operators”. In: Nature Machine Intelligence 3.3
(2021), pp. 218–229.

[41] R. Maulik, B. Lusch, and P. Balaprakash. “Reduced-order modeling of advection-dominated systems
with recurrent neural networks and convolutional autoencoders”. In: Physics of Fluids 33.3 (2021),
p. 037106.

[42] J. J. Monaghan. “Simulating free surface flows with SPH”. In: Journal of computational physics 110.2
(1994), pp. 399–406.

[43] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul, M. I.
Jordan, and I. Stoica. “Ray: A Distributed Framework for Emerging AI Applications”. In: Proceedings
of the 13th USENIX Conference on Operating Systems Design and Implementation. 2018, pp. 561–577.

[44] V. Oommen, K. Shukla, S. Goswami, R. Dingreville, and G. E. Karniadakis. “Learning two-phase
microstructure evolution using neural operators and autoencoder architectures”. In: arXiv preprint
arXiv:2204.07230 (2022).

[45] S. Pagani, A. Manzoni, and A. Quarteroni. “Numerical approximation of parametrized problems in car-
diac electrophysiology by a local reduced basis method”. In: Computer Methods in Applied Mechanics
and Engineering 340 (2018), pp. 530–558.

[46] A. T. Patera. “A spectral element method for fluid dynamics: laminar flow in a channel expansion”.
In: Journal of computational Physics 54.3 (1984), pp. 468–488.

[47] B. Peherstorfer, S. Gugercin, and K. Willcox. “Data-Driven Reduced Model Construction with Time-
Domain Loewner Models”. In: SIAM Journal on Scientific Computing 39.5 (2017), A2152–A2178.

[48] B. Peherstorfer and K. Willcox. “Dynamic data-driven reduced-order models”. In: Computer Methods
in Applied Mechanics and Engineering 291 (2015), pp. 21–41.

[49] M. Peirlinck, F. S. Costabal, J Yao, J. Guccione, S Tripathy, Y Wang, D Ozturk, P Segars, T. Mor-
rison, S Levine, et al. “Precision medicine in human heart modeling: Perspectives, challenges, and
opportunities”. In: Biomechanics and modeling in mechanobiology 20 (2021), pp. 803–831.

[50] L. Petzold. “Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential
equations”. In: SIAM journal on scientific and statistical computing 4.1 (1983), pp. 136–148.

[51] C. Prud’Homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and G. Turinici.
“Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound
methods”. In: Journal of Fluids Engineering 124.1 (2002), pp. 70–80.

[52] A. Quarteroni, A. Manzoni, and F. Negri. Reduced basis methods for partial differential equations: an
introduction. Vol. 92. Springer, 2015.

[53] A. Quarteroni and A. Valli. Numerical approximation of partial differential equations. Vol. 23. Springer
Science & Business Media, 2008.

[54] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations”.
In: Journal of Computational Physics 378 (2019), pp. 686–707.

30

[55] C. E. Rasmussen. “Gaussian processes in machine learning”. In: Summer school on machine learning.
Springer. 2003, pp. 63–71.

[56] F. Regazzoni, L. Dedè, and A. Quarteroni. “Machine learning for fast and reliable solution of time-
dependent differential equations”. In: Journal of Computational Physics 397 (2019), p. 108852.

[57] F. Regazzoni, M. Salvador, P. Africa, M. Fedele, L. Dedè, and A. Quarteroni. “A cardiac electrome-
chanical model coupled with a lumped-parameter model for closed-loop blood circulation”. In: Journal
of Computational Physics 457 (2022), p. 111083.

[58] F. Regazzoni, S. Pagani, and A. Quarteroni. “Universal Solution Manifold Networks (USM-Nets): Non-
Intrusive Mesh-Free Surrogate Models for Problems in Variable Domains”. In: Journal of Biomechanical
Engineering 144.12 (Sept. 2022). 121004.

[59] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. “Data-driven discovery of partial differential
equations”. In: Science advances 3.4 (2017), e1602614.

[60] N. D. Santo, A. Manzoni, S. Pagani, and A. Quarteroni. “Reduced-order modeling for applications to
the cardiovascular system”. In: Model Order Reduction - Volume 3 Applications. Ed. by P. Benner, S.
Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira. Berlin, Boston: De Gruyter,
2021, pp. 251–278.

[61] E. Scalas, R. Gorenflo, and F. Mainardi. “Fractional calculus and continuous-time finance”. In: Physica
A: Statistical Mechanics and its Applications 284.1-4 (2000), pp. 376–384.

[62] M. Schmidt and H. Lipson. “Distilling free-form natural laws from experimental data”. In: science
324.5923 (2009), pp. 81–85.

[63] L. Sirovich. “Turbulence and the dynamics of coherent structures. I. Coherent structures”. In: Quarterly
of Spplied Mathematics 45.3 (1987), pp. 561–571.

[64] P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos. “Multiscale simulations of complex
systems by learning their effective dynamics”. In: Nature Machine Intelligence 4.4 (2022), pp. 359–366.

[65] M. Zhu, H. Zhang, A. Jiao, G. E. Karniadakis, and L. Lu. “Reliable extrapolation of deep neural
operators informed by physics or sparse observations”. In: arXiv preprint arXiv:2212.06347 (2022).

[66] O. C. Zienkiewicz and R. L. Taylor. The finite element method for solid and structural mechanics.
Elsevier, 2005.

31

MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

34/2023 Caldana, M.; Antonietti, P. F.; Dede', L.

A Deep Learning algorithm to accelerate Algebraic Multigrid methods in Finite Element solvers

of 3D elliptic PDEs

35/2023 Ferrari, L.; Manzi, G.; Micheletti, A.; Nicolussi, F.; Salini, S.

Pandemic Data Quality Modelling: A Bayesian Approach

32/2023 Gambarini, M.; Ciaramella, G.; Miglio, E.; Vanzan, T.

Robust optimization of control parameters for WEC arrays using stochastic methods

31/2023 Orlando, G.

Assessing ChatGPT for coding finite element methods

30/2023 Antonietti, P. F.; Bonizzoni, F.; Verani, M.

A DG-VEM method for the dissipative wave equation

29/2023 Carbonaro, D.; Mezzadri, F.; Ferro, N.; De Nisco, G.; Audenino, A.L.; Gallo, D.; Chiastra, C.;

Morbiducci, U.; Perotto, S.

Design of innovative self-expandable femoral stents using inverse homogenization topology

optimization

28/2023 Zingaro, A.; Vergara, C.; Dede', L.; Regazzoni, F.; Quarteroni, A.

A comprehensive mathematical model for myocardial perfusion

Fumagalli, A.; Panzeri, L.; Formaggia, L.; Scotti, A.; Arosio, D.

A mixed-dimensional model for direct current simulations in presence of a thin high-resistivity

liner

27/2023 Beirao da Vega, L.; Canuto, C.; Nochetto, R.H.; Vacca, G.; Verani, M.

Adaptive VEM for variable data: convergence and optimality

	qmox37-copertina
	mox-2023428231629
	Introduction
	Methods
	Notation
	Training data
	LDNets
	Normalization layers
	Imposing a-priori physical knowledge
	Equilibrium configuration imposition
	Prescribed solution in subsets of the domain (e.g. Dirichlet boundary conditions)

	Error metrics
	Training algorithm
	Hyperparameters tuning algorithms

	Results
	Test Case 1: Advection-Diffusion-Reaction equation
	Sampling of inputs
	Test Case 1a: finite latent dimension, constant parameters
	Test Case 1b: finite latent dimension, time-dependent inputs
	Test Case 1c: infinite latent dimension

	Test Case 2: Unsteady Navier-Stokes
	Test Case 3: Aliev-Panfilov electrophysiology model

	Appendices
	Alternative methods
	Projection-based reduced-order models
	Methods based on auto-encoders

	qmox37-terza_di_copertina

