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Abstract

We introduce a mathematical framework in which a functional data reg-
istration problem can be soundly and coherently set. In detail, we show
that the introduction of a metric/semi-metric and of a group of warping
function respect to which the metric/semi-metric is invariant is the key to
a clear and not ambiguous definition of phase and amplitude variability.
Moreover, an amplitude-to-total variability index is proposed. This index
turns to be useful in practical situations to measure to what extent ampli-
tude variability affects the data and to compare the effectiveness of different
registration methods.

1 Introduction

The problem of data registration is often encountered in recent statistical liter-
ature. All papers devoted to this issue can be parted in two groups: the ones
positioned within the longitudinal data analysis and the ones positioned within
the functional data analysis. The distinction between these two types of data
is quite subtle and fuzzy: roughly speaking, we refer to longitudinal data for
data that have low within-subject signal-to-noise ratio and small within-subject
sample size and to functional data for data that have high within-subject signal-
to-noise ratio and large within-subject sample size. See the discussion following
Ke and Wang (2001) for a detailed account about this issue.

1



Some examples relevant to the former approach can be found in Lawton
et al. (1972), Lindstrom and Bates (1990), Ke and Wang (2001), and Altman
and Villarreal (2004). Instead some examples relevant to the latter approach can
be found in Ramsay and Li (1998), Kneip et al. (2000), Ramsay and Silverman
(2005), James (2007), Kaziska and Srivastava (2007), and Sangalli et al. (2009).

Works belonging to the former line of research stem from the very old and
sound tradition of classical regression analysis and they have cleverly been put
together in a unique theoretical framework by Ke and Wang (2001). Works
belonging to the latter one do not rely on a very established tradition. Indeed
they come within a very young branch of statistics: the so-called Functional
Data Analysis (e.g Ramsay and Silverman 2005; Ferraty and Vieu 2006) or with a
more general term Object Oriented Data Analysis (e.g. Wang and Marron 2007).
Within this approach data are considered as realizations of random variables
taking values in a ∞-dimensional functional space. The present work is within
the latter line of research.

Data registration is often the first key to a successful functional data analysis.
Although many successful methods have already been proposed in literature, a
clear theoretical analysis about the soundness and the meaningfulness of the
problem of functional data registration is still missing. This work aims at being
one of the first attempts to put in a coherent mathematical framework this
key problem of functional data analysis. Recently, also in Kneip and Ramsay
(2008), some effort has been done in this direction. Even if the latter work
and the present one differ by many issues (indeed, the driving idea of Kneip
and Ramsay (2008) is the concept of amplitude convex space, while here the
driving idea is the concept of phase equivalence classes), the basic assumptions
enabling both approaches appear to be non-conflicting, hopefully leaving space
for a possible future integration of the two.

The paper is structured as follows: in Section 2 the issue of registering a
function with respect to another one is tackled. In detail: in Subsection 2.1
the necessary mathematical framework, that will be used also in the following
sections, is introduced; in Subsection 2.2 the problem of registering a function
with respect to another is declined in the introduced mathematical framework
and an amplitude-to-total variability ratio α2 is proposed; in Subsection 2.3 a
discussion about the number of equivalence classes related to phase variability is
undertaken. In Sections 3 and 4 the theory developed in Section 2 is generalized
to the problem of registering a set of functions in presence and absence of a
reference function, respectively. In Section 5 the theory is further extended to
deal with the registration of functions when a semi-metric is used in place of
a metric. In Section 6 a couple of real applications presented in literature are
presented and discussed in the light of the theory here presented. Finally in
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Section 7 the key points of the theory are synthetically pointed out and some
hints for future research are proposed.

It must be clear to the reader that by means of this work we do not claim to
cover all possible approaches to functional data registration; we rather aim at
providing to statisticians a clear mind-set through which setting and comparing
different registration methods.

2 Registration of a pair of functions

In this section we deal with the easiest case of functional data registration: this
is the problem of registering two functions one with respect to the other one.

2.1 Mathematical framework

In order for a functional data registration problem to be meaningful and math-
ematically consistent according to our theory, some basic properties, of the set
F which the functional data belong to, and of the set W of warping functions,
are demanded:

a) F = {f : Ω ⊆ Rp −→ Ψ ⊆ Rq} is a metric space according to a metric
d : F × F −→ R+

0 , i.e. ∀ f1, f2, and f3 ∈ F :

f1 = f2 ⇔ d(f1, f2) = 0 , (1a)

d(f1, f2) = d(f2, f1) , (1b)

d(f1, f3) ≤ d(f1, f2) + d(f2, f3) ; (1c)

b) W is a subgroup - with respect to ordinary composition ◦ - of the group
of the continuous automorphisms: Ω ⊆ Rp −→ Ω ⊆ Rp;

c) ∀f ∈ F and ∀h ∈W we have that f ◦ h ∈ F ;

d) Given any couple of elements f1, f2 ∈ F and an element h ∈ W , the
distance between f1 and f2 is invariant under the composition of f1 and
f2 with h, i.e.:

d(f1, f2) = d(f1 ◦ h, f2 ◦ h) , (2)

we will refer to this property as W -invariance of d.

We will now present some results derived from properties (a)–(d) which en-
able the definition of a semi-metric dW (determined by the metric d and the
group W ) on the space F and thus a partition of the space F in to a quotient
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set F , that are easily interpretable in terms of phase and amplitude variability
(Subsection 2.2). To make this discussion clearer, all proofs are reported in the
Appendix.

The basic assumption upon which it is possible to build the theory is the
following:

Assumption 2.1. Given f1 and f2 ∈ F : ∃minh1,h2∈W d(f1 ◦ h1, f2 ◦ h2).

Note that in some situations it might be difficult to check for the existence of
the minimum. We thus provide a lemma that can be useful to deal with this kind
of situations. Indeed this lemma gives a sufficient condition for the existence of
a solution of the former minimization problem.

Lemma 2.2. If W is compact and ∀f ∈ F the map f◦ : W → F is continuous,
then ∀f1, f2 ∈ F, ∃ minh1,h2∈W d(f1 ◦ h1, f2 ◦ h2) .

Note that the minimizing couple, if existing, is never unique (except for
W = {1}). Indeed, because of the W -invariance of d, if (h1,h2) is a minimizing
couple, any other couple of the form (h1◦h,h2◦h) with h ∈W is still a minimizing
couple. Thus, without loss of generality, h1 (or h2) can be fixed equal to a
convenient element of W - for instance 1 - and h2 (or h1) consequently.

We can now define the function dW as follows:

Definition 2.3. dW (f1, f2) := minh1,h2∈W d(f1 ◦ h1, f2 ◦ h2) .

The following lemmas enlighten some important properties of the quantity
dW (f1, f2) just defined. In particular, Lemma 2.4 guarantees that, given f1 and
f2, dW (f1, f2) is bounded, while Lemmas 2.5 and 2.6 characterize the lower and
the upper bounds.

Lemma 2.4. 0 ≤ dW (f1, f2) ≤ d(f1, f2) .

Lemma 2.5. dW (f1, f2) = 0⇔ ∃h1, h2 ∈W such that f1 ◦ h1 = f2 ◦ h2 .

Lemma 2.6. dW (f1, f2) = d(f1, f2)⇔ h1 = h2 = 1 is a minimizing couple.

Previous results make it easy to prove that the function dW is actually a
semi-metric, as the following theorem states.

Theorem 2.7. dW : F ×F −→ R+
0 is a semi-metric, i.e. ∀ f1, f2, and f3 ∈ F :

f1 = f2 ⇒ dW (f1, f2) = 0 , (3a)

dW (f1, f2) = dW (f2, f1) , (3b)

dW (f1, f3) ≤ dW (f1, f2) + dW (f2, f3) . (3c)
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The following corollary just states that the equivalence classes of the quotient
set induced by the semi-metric dW on the set F coincide with the orbits of the
action of the group W on the set F . This is made possible by the W -invariance
of the original metric d.

Corollary 2.8. The semi-metric dW induces an equivalence relation .= between
elements of F defined as

f1
.= f2 ⇔ dW (f1, f2) = 0 , (4)

or equivalently

f1
.= f2 ⇔ ∃h1, h2 ∈W such that f1 ◦ h1 = f2 ◦ h2 ; (5)

and thus defines a quotient set F := F/
.= .

We are now moving toward the definition of a distance between the equiv-
alence classes being coherent with the original distance d. In particular, the
following lemma states that, given two equivalence classes, the semi-distance
dW between two functions, each one belonging to one of the two classes, is al-
ways the same.

Lemma 2.9. f1
.= f̄1 and f2

.= f̄2 ⇒ dW (f1, f2) = dW (f̄1, f̄2) .

Let [f ] indicate the equivalence class ∈ F which f belongs to, and let f̄1

and f̄2 be any couple of functions ∈ F belonging respectively to the equivalence
classes [f1] and [f2]. We are now able to define the function dF as follows:

Definition 2.10. dF ([f1], [f2]) := dW (f̄1, f̄2) .

Lemma 2.9 ensures that, given two classes [f1] and [f2], dF ([f1], [f2]) is uni-
vocally defined. Indeed, given two equivalence classes [f1] and [f2], the semi-
distance dW (f̄1, f̄2) between a generic element f̄1 ∈ [f1] and a generic element
f̄2 ∈ [f2] is always the same.

The following theorem is probably the most important result of this work;
in particular, it states that dF makes the quotient set F be a metric set.

Theorem 2.11. dF : F × F −→ R+
0 is a metric, i.e. ∀ [f1], [f2], and [f3] ∈ F :

[f1] = [f2]⇔ dF ([f1], [f2]) = 0 , (6a)

dF ([f1], [f2]) = dF ([f2], [f1]) , (6b)

dF ([f1], [f3]) ≤ dF ([f1], [f2]) + dF ([f2], [f3]) . (6c)
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Note that the introduction of a W -invariant metric d is not crucial in the
definition of the equivalence classes, indeed those classes can be simply and
directly defined as the orbits induced by the action of the group W on the set
F . On the other hand, the introduction of a W -invariant metric d is essential
to the identification of the orbits with the equivalence classes induced by the
semi-metric dW , and thus also essential to enable the definition of a distance dF
between orbits that is consistent with the original distance d.

2.2 The problem of registration revisited

We are now ready to formalize in this mathematical framework the problem of
a registration of a pair of functions f1 and f2.

Definition 2.12. Functions f̃1 ∈ [f1] and f̃2 ∈ [f2] are said to be mutually-
registered representatives of equivalence classes [f1] and [f2] (or in more familar
terms simply mutually-registered) if and only if d(f̃1, f̃2) = dF ([f1], [f2]) .

In other words two functions are mutually-registered representatives of their
equivalence classes if and only if the distance between the two functions coincides
with the distance between their respective equivalence classes. By Definitions
2.3, 2.10, and 2.13, we have the equivalent definition of mutually-registered rep-
resentatives of [f1] and [f2]:

Definition 2.13. Given f1 and f2 ∈ F and a minimizing couple h1 and h2 ∈W
(i.e. h1 and h2 such that d(f1 ◦ h1, f2 ◦ h2) = dF ([f1], [f2])), f̃1 = f1 ◦ h1 and
f̃2 = f2 ◦ h2 are said to be mutually-registered representatives of [f1] and [f2].

Note that even if both f1 and f̃1 ∈ [f1], and both f2 and f̃2 ∈ [f2], only
d(f̃1, f̃2) = dF ([f1], [f2]) while d(f1, f2) ≥ dF ([f1], [f2]).

Note that since, given a couple of elements f1 and f2 ∈ F , there is not a
unique minimizing couple h1 and h2, there is not a unique couple f̃1 and f̃2 of
mutually-registered representatives of [f1] and [f2]. It is worth mentioning two
special couples of mutually-registered representatives of [f1] and [f2]: the one
corresponding to h1 = 1 and the one corresponding to h2 = 1. In the former
case f̃1 = f1, while in the latter case f̃2 = f2.

Definition 2.14. Given a couple f1 and f2, and a couple of mutually-registered
representatives f̃1 and f̃2 such that f̃1 = f1 and h1 = 1, f̃2 is said to be a
f1-registered representative of [f2] (or in less formal but more familiar terms f̃2

is said to be a registered version of f2 with respect to f1). We will refer to it
as f̃2→1 and to the corresponding warping function as h2→1. The definition of
f̃1→2 and h1→2 is analogous.
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Note that the uniqueness of f̃2→1 and f̃1→2 cannot be guaranteed in general.
In particular, if f̃2→1 and f̃1→2 are unique (like in most practical cases), their
definition can be made more explicit. Indeed, under the assumption of unique-
ness, since an f1-registered representative of [f2] is an element ∈ [f2] minimizing
the distance with f1, we have that:

f̃2→1 = arg min
f∈[f2]

d(f, f1) ,

f̃1→2 = arg min
f∈[f1]

d(f, f2) ,

with h1→2 = (h2→1)−1 .

According to this framework registering a function f1 ∈ F with respect to
a function f2 ∈ F - according to a metric d and a class of warping functions
W - simply means replacing f1 with f̃1→2. Just to keep the notation as simple
as possible, in the rest of the paper, we will assume, without loss of generality,
f̃2→1 and f̃1→2 to be unique. Note that we are not talking about the uniqueness
of the minimizing couple (f̃1, f̃2), that is instead intrinsically non unique.

The introduction of a quotient set F over F (dependent on the choices for d
and W ) is the key to a clear and not ambiguous definition of Phase Variability
and Amplitude Variability. We are quite sure to come across the heuristic sense
of many authors, by defining the phase variability as the one that can occur
between functions belonging to the same equivalence class, i.e. the variability
within equivalence classes; note that if f1 and f2 belong to the same equivalence
class we have that 0 = dF ([f1], [f2]). Coherently, the amplitude variability is
the variability between functions not belonging to the same equivalence class
and not imputable to phase variability, i.e. the variability between equivalence
classes; we can thus say that the difference between f1 and f2 is imputable only
to amplitude variability in the case dF ([f1], [f2]) = d(f1, f2). Given the fact that
0 ≤ dF ([f1], [f2]) ≤ d(f1, f2), we can define an amplitude-to-total variability
ratio bounded between 0 and 1, useful in practical situations and measuring to
what extent phase and amplitude variability contribute to total variability:

α2 =
d2
F ([f1], [f2])
d2(f1, f2)

;

and then we can simply characterize the two extreme situations as follows:

• presence of phase variability only, when α2 = 0, i.e. dF ([f1], [f2]) = 0;

• presence of amplitude variability only, when α2 = 1, i.e. dF ([f1], [f2]) =
d(f1, f2).

The two extreme situations can be equivalently characterized as follows:
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• presence of phase variability only, when f̃2→1 ≡ f1 (and thus also f̃1→2 ≡
f2);

• presence of amplitude variability only, when f̃2→1 ≡ f2 (and thus also
f̃1→2 ≡ f1).

2.3 How many equivalence classes?

Given a set F and a metric d, the quotient set F depends only on the group W ;
to emphasize this dependency, in this subsection we will use the notation FW to
indicate the quotient set associated to the group W , and the notation P(FW )
to indicate its powerset.

It is easy to prove that if W is replaced by a sub-group W ′, the number of
equivalence classes can only increase, i.e.:

W ′ ⊂W =⇒ P(FW ′) ⊇ P(FW ) .

Equivalently, if W is replaced by a sup-group W ′ (such that d is also W ′-
invariant), the number of equivalence classes can only decrease, i.e.:

W ′ ⊃W =⇒ P(FW ′) ⊆ P(FW ) .

More generally, within a functional data analysis the replacement of the group
W with the group W ′ ⊂W [W ′ ⊃W ] might cause the partitioning [merging] of
former equivalence classes (associated to W ) into new classes (associated to W ′).
This kind of variability, that occurs between new [old] classes associated to W ′

[W ] being subsets of the same old [new] class associated to W [W ′]), is exactly
the variability that according to W ′ [W ] is considered as part of the amplitude
variability while according to W [W ′] is considered as part of phase variability.

In other words, given d, choosing W is the same as defining phase variability.
It is worth mentioning the two extreme situations for the choice of W :

• W = {1}: in this case each element of F is equivalent only to itself, i.e.,
F ≡ F . We are thus assuming that no phase variability is present within
functional data;

• W = F : in this case all elements of F are equivalent, i.e., only one equiv-
alence class exists coinciding with the whole set F . We are thus assuming
that no amplitude variability is present within the functional data. Note
that this case can occur only if F is a sub-group of the group of the con-
tinuous automorphisms: Ω ⊆ Rp −→ Ω ⊆ Rp.
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3 Registration of a set of functions in presence of a

target function

We have just shown that, under the introduced framework, registering f2 with
respect to f1 means replacing f2 with a function f̃2→1 ∈ [f2] whose distance to f1

is minimal. In the same framework, it is straightforward to define the registration
of a set {fi}i=1,2,...,n with respect to a target function f0. Indeed registering the
set {fi}i=1,2,...,n with respect to f0 means replacing the set {fi}i=1,2,...,n with the
set {f̃i→0}i=1,2,...,n (or simply {f̃i}i=1,2,...,n) whose distances to f0 are minimal
over the relevant equivalence classes:

{fi}i=1,2,...,n 7−→ {f̃i = arg min
f∈[fi]

d(f0, f)}i=1,2,...,n .

In other words, registering the set {fi}i=1,2,...,n with respect to f0 consists in
finding in [f1], [f2], . . . , [fn], n functions that are the closest to f0 respectively.

Also in this case, we can define an amplitude-to-total variability ratio:

α2 =
∑n

i=1 d
2
F ([fi], [f0])∑n

i=1 d
2(fi, f0)

;

we can then simply characterize the two extreme situations as follows:

• presence of phase variability only, when α2 = 0;

• presence of amplitude variability only, when α2 = 1.

The two extreme situations can be equivalently characterized as follows:

• presence of phase variability only, when for i = 1, 2, . . . , n : f̃i ≡ f0;

• presence of amplitude variability only, when for i = 1, 2, . . . , n : f̃i ≡ fi.

In order to help the reader, in Figure 1, a schematic representation of the math-
ematical framework introduced is reported.

4 Registration of a set of functions in absence of a

target function

In most practical problems the focus is on registering a set {fi}i=1,2,...,n with
respect to “itself”, since a target function f0 is generally not available. Also in
this case, it is still meaningful to talk about registration: roughly speaking, it
is straightforward to assert that registering the set {fi}i=1,2,...,n would consist in
replacing the set {fi}i=1,2,...,n with a set {f̃i}i=1,2,...,n ∈ [f1]× [f2]× · · · × [fn] of
functions that are “closest as possible”.
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Figure 1: Schematic representation of the mathematical framework introduced: registration of

a couple of functions on the left, and registration of a set of functions with respect to a target

function f0 on the right. Black dots refer to non-registered functions, white dots to registered

functions, and circumferences to equivalence classes.

A natural approach to formalize the notion of “closest as possible” is to
introduce an auxiliary reference function f̂0 ∈ F such that {f̃i}i=1,2,...,n ∪{f̂0} is
the solution of the following minimization problem:

min
f̃i∈[fi] ∧ f̂0∈F

(
n∑
i=1

d2(f̃i, f̂0)

)
. (7)

In other words, registering a set {fi}i=1,2,...,n means registering each function of
the set with respect to the sample Frechet mean of the registered set. The fol-
lowing lemma guarantees the existence of a solution of the minimization problem
(7) under the same assumption of Lemma 2.2.

Lemma 4.1. If W is compact and ∀f ∈ F the map f◦ : W → F is continuous,
then a solution of the problem (7) exists.

Note that, also in this case, the solution is never unique (except for W = {1}
where the solution might be unique). Indeed, because of the W -invariance of d,
if {f̃i}i=1,2,...,n∪{f̂0} is a solution of the minimization problem (7) any other set
of the form {f̃i ◦ h}i=1,2,...,n ∪ {f̂0 ◦ h} with h ∈W is still a solution.

Also in this case, we can define an amplitude-to-total variability ratio:

α2 =
∑n

i=1 d
2
F ([fi], [f̂0])∑n

i=1 d
2(fi, f̂0)

.

Note that in this case (i.e. when a target function f0 is not present but needs
to be estimated) some care is needed to correctly compute the α2 index:
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• Firstly, note that α2 compares the deviations of the registered functions
from the Frechet mean of the same registered functions (numerator) with
the deviations of the original functions from the Frechet mean of the regis-
tered functions (denominator) and not with the deviations of the original
functions from the Frechet mean of the same original functions as one
might expect. This mistake has been made - more or less explicitly - in
many works dealing with the registration of functional data, providing
of course an underestimation of the total variability and consequently an
overestimation of the contribution of the amplitude variability to the total
variability (e.g. Sangalli et al. 2009) or even bringing to meaningless situa-
tions in which the amplitude variability seems to be greater than the total
one (e.g. Kneip and Ramsay 2008).

• Secondly, note that the α2 ratio is not invariant under a joint warping of
the solution set {f̃i}i=1,2,...,n ∪ {f̂0} along the same warping function h.
Indeed, even if {f̃i ◦ h}i=1,2,...,n ∪ {f̂0 ◦ h} is still a solution of (7), in the
computation of α2 the numerator does not change while the denominator
may change from

∑n
i=1 d

2(fi, f̂0) to
∑n

i=1 d
2(fi, f̂0 ◦ h). It is natural to

assume that among all possible solution of the minimization problem (7)
the one that is “closest as possible” to the original situation is the natural
candidate to be the “right one”. Formally, it means that given a solution
{f̃i}i=1,2,...,n ∪ {f̂0}, the solution {f̃i ◦ h}i=1,2,...,n ∪ {f̂0 ◦ h} to be used to
compute the α2 ratio is the one minimizing the total variability, i.e. given
[f̂0], the following constraint on f̂0 has to be introduced in the minimization
problem (7) in order to identify the correct solution:

n∑
i=1

d2(fi, f̂0) = min
f∈[f̂0]

(
n∑
i=1

d2(fi, f)

)
. (8)

Thus, the constrained minimization problem can be restate in a simpler
way as follows. Given a set {fi}i=1,2,...,n find the reference class [f̂0] such
that:

[f̂0] = arg min
[f ]∈F

(
n∑
i=1

d2
F ([fi], [f ])

)
and take as representatives of the equivalence classes those functions {f̃i}i=1,2,...,n

that are registered with respect to f̂0, that is that function belonging the
reference class [f̂0] such that its average squared distance from the original
functions is minimal.

Neglecting constraint (8) brings of course to an overestimation of the total
variability and consequently an underestimation of the contribution of the
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amplitude variability to the total variability. This constraint essentially
avoid the drifting apart of the registered functions from the original ones.
Similar constraints have been used in the literature for the same purpose.
For instance, in both Sangalli et al. (2009) and Kneip and Ramsay (2008)
the constraint

∑n
i=1 hi = 1 was used. Unfortunately the latter constraint,

even if heuristically equivalent to constraint (8), does not appear to be
theoretically coherent with the theory here proposed.

If we take care of the points discussed above, also in this case, we can simply
characterize the two extreme situations as follows:

• presence of phase variability only, when α2 = 0;

• presence of amplitude variability only, when α2 = 1.

The two extreme situations can be equivalently characterized as follows:

• presence of phase variability only, when for i = 1, 2, . . . , n : f̃i ≡ f0;

• presence of amplitude variability only, when for i = 1, 2, . . . , n : f̃i ≡ fi.

Solving the minimization problem (7) might be of course not trivial. Even
if any numerical minimization method can be used to approximate the solution,
the proof of Lemma 4.1 suggests all methods belonging to the family of the so-
called Procrustes fitting criteria to be good candidates to solve this minimization
problem. In particular, in the same way of Ramsay and Li (1998), Kneip et al.
(2000), and Sangalli et al. (2009), an iterative search of a minimum can be
performed alternating minimization and expectation steps:

Minimization: {f̃ [k+1]
i }i=1,2,...,n =

{
arg minf̃i∈[fi]

(∑n
i=1 d

2(f̃i, f̂
[k]
0 )
)}

i=1,2,...,n
.

In these steps, each function of the set {fi}i=1,2,...,n is registered with re-
spect to the Frechet mean of the set {f̃ [k]

i }i=1,2,...,n;

Expectation: f̂ [k+1]
0 = arg minf̂0∈F

(∑n
i=1 d

2(f̃ [k+1]
i , f̂0)

)
.

In these steps, the Frechet mean of the set {f̃ [k+1]
i }i=1,2,...,n is computed.

The algorithm can be initialized identifying f̂
[0]
0 with the Frechet mean of the

initial set {fi}i=1,2,...,n. Moreover, since
∑n

i=1 d
2(f̃ [k]

i , f̂
[k]
0 ) can only decrease as

k increases and it is lower bounded by 0, the algorithm can be stopped when

n∑
i=1

d2(f̃ [k]
i , f̂

[k]
0 )−

n∑
i=1

d2(f̃ [k+1]
i , f̂

[k+1]
0 ) < ε .
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Note that a small decrement in
∑n

i=1 d
2(f̃ [k+1]

i , f̂
[k]
0 ) can be associated with big

changes in f̃
[k+1]
i . This is compatible with the W -invariance of d and the non-

uniqueness of the solution of the minimization problem (7). Indeed in some
cases, the algorithm might approach the set of all possible solutions targeting at
each step a different solution. This should not create any concern since after any
expectation step the function f̂

[k+1]
0 has to be replaced by a suitable equivalent

function f̂
[k+1]
0 ◦ h satisfying constraint (8).

5 Ancillary variability

In many situations, d is not a metric but a semi-metric, i.e. condition (1a) is
relaxed to:

f1 = f2 ∈ F ⇒ d(f1, f2) = 0

This means that two functions f1 and f2 ∈ F such that f1 6= f2 even if d(f1, f2) =
0 can exist.

In this frequent case, the presented theory still holds if F is replaced with F̄ ,
where F̄ is the quotient set F/� defined by the following equivalence relation:

f1 � f2 ⇔ d(f1, f2) = 0 .

It is important to point out that if d is a semi-metric, a further kind of
variability is evident: the Ancillary Variability. Thus, when d is a semi-metric
we can coherently define ancillary, phase and amplitude variability as follows:

• Ancillary variability is the one that can occur between functions belonging
to the same equivalence class of F̄ ;

• Phase variability is the one that can occur between equivalence classes of
F̄ belonging to the same equivalence class of F ;

• Amplitude variability is the one that can occur between different equiva-
lence classes of F .

Also in this case we can characterize some extreme situations:

• presence of ancillary variability only, when d(f1, f2) = 0;

• presence of phase and ancillary variability only, when dF ([f1], [f2]) = 0;

• presence of amplitude and ancillary variability only, when dF ([f1], [f2]) =
d(f1, f2).
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Note that in the definition of the index α2, the ancillary variability con-
tributes neither to amplitude nor to total variability. Indeed according to d, it
is actually a non-variability. For this reason, the easiest approach to functional
data registration in these cases should be that of setting the analysis, from the
very beginning, in terms of elements of F̄ and induced metric dF̄ rather than in
terms of the original elements of F and the original semi-metric d.

6 Examples presented in literature

The theory hereby developed is able to put in a unique theoretical framework
many approaches to functional data registration that have already appeared in
the literature. As examples, we illustrate in the light of the present work, two
recent papers in which a registration of complex functional data is performed:
Sangalli et al. (2009) and Kaziska and Srivastava (2007).

In Sangalli et al. (2009) a registration of 65 Human Internal Carotid Artery
centerlines ⊂ R3 is performed. In Figure 2, the first derivatives of these center-
lines before and after registration are reported. It is easy to identify in this work
the set F , the group W , and the semi-metric d:

F = {f ∈ C1(R; R3) : f(s) 6≡ c with c ∈ R3} ,
W = {h ∈ C1(R; R) : h(s) = ms+ q with m ∈ R+, q ∈ R} ,

d(f1, f2) =

√√√√1− 1
3

∑
k=x,y,z

< f ′1k , f
′
2k >L2(Ω)

||f ′1k||L2(Ω)||f ′2k||L2(Ω)
.

The corresponding notions of ancillary, phase, and amplitude variability are thus
implicitly assumed:

• Ancillary variability is the one that can occur between functions that are
equal up to an increasing affine transformation of the ordinate, i.e.:

∃Ak ∈ R+, Bk ∈ R : f1k(s) = Akf2k(s) +Bk .

• Phase variability is the one that can occur between functions that are equal
up to an increasing affine transformation of the abscissa, i.e.:

∃m ∈ R+, q ∈ R : f1(s) = f2(ms+ q).

• Amplitude variability is the one that cannot been removed by the data by
means of increasing affine transformations of neither the ordinate nor the
abscissa.
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Figure 2: The 65 first derivatives f ′
ix, f ′

iy and f ′
iz before registration (top) and the 65 first

derivatives f̃ ′
ix, f̃ ′

iy and f̃ ′
iz after registration (bottom). The first derivatives of the estimated

Frechet mean f̂0 are reported in black. See Sangalli et al. (2009) for details.

Moreover, we are able to compute α2 = 33%, i.e. the amplitude variability
accounts for nearly just 1/3 of the variability of the 65 Internal Carotid Artery
centerlines. This a further evidence of the necessity of a registration procedure
within this functional data analysis (Figure 2).

It is worth noticing that the group W used in Sangalli et al. (2009) is not
compact and thus in general their choice for W and d cannot guarantee the exis-
tence of a solution for the associated minimization problem. On the other hand,
the lack of compactness of W should not rise any concern in practical situations.
Indeed, in real applications, data are usually only slightly misaligned and there-
fore a marked local minimum is usually present. So, by simply introducing some
“reasonable” constraints on the warping functions (i.e. large enough to gather
the local minimum and small enough not to obtain an artificial minimum at
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the boundary of the constraint) we can re-obtain a meaningful and well posed
minimization problem.

Kaziska and Srivastava (2007), in the first part of their work regarding the
analysis of human shapes, deal with the registration of simple closed (i.e. peri-
odic) bi-dimensional curves ⊂ R2. Also in this work, it is easy to identify the
set F , the group W , and the metric d:

F = C ,
W = S1 ×D ,

d(f1, f2) = dC(f1, f2) ;

where C (the preshape space in the work) is the set of all continuous 2π-periodic
functions mapping [0, 2π] in a closed curve ⊂ R2 of length 2π and average di-
rection π; S1 is the group of the translation of the abscissa; D is the group of
the automorphisms [0, 2π] 7−→ [0, 2π]; the distance dC , even if not clearly stated,
appears to be the distance induced by the usual inner product <,>L2([0,2π]), i.e.
dC(f1, f2) = ||f1 − f2||L2([0,2π]); for completeness, the quotient set F is indicated
in the work as S (the shape space).

It is important to mention that, as declared by the authors, the original
functions do not belong to C; the original curves are indeed preprocessed – i.e.
rotated, translated, and scaled in R2 – such that their average length is 2π and
their average direction is π. In this case the ancillary variability (here the one
imputable to rotation, translation, and scaling in R2) is explicitly removed before
the analysis.

The corresponding notions of ancillary, phase, and amplitude variability
come straightforward:

• As just pointed out, there is no ancillary variability between functions ∈ C
since this is removed before the analysis;

• Phase variability is the one that can occur between functions representing
the same curve ∈ R2 by means of a different parameterization, i.e. func-
tions that are equal up to a change in the origin of the abscissa and an
automorphism of the abscissa;

• Amplitude variability is the one that can occur between functions repre-
senting different curves ∈ R2 after the phase variability has been removed,
i.e. after the two abscissas have been matched by means of a joint trans-
lation and automorphism h ∈ S1 ×D minimizing dC(f1, f2 ◦ h).
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Note that the choice d = dC and W = D is not fair according to the theory
here developed, in the sense that they do not satisfy (d), i.e. dC is not (S1×D)-
invariant (it is actually only S1-invariant, thanks to the periodicity of functions
belonging to C). This means that two curves can be made arbitrarily more/less
close simply by jointly changing the parameterization of the two curves. There
are two main consequences due to the non D-invariance of dC : firstly the quotient
set F is not formally defined and thus the phase and amplitude variability are
not clearly defined; secondly, if the registration procedure is anyway performed,
it will be likely to find meaningless and unusable results from a practical point
of view. This degeneracy problem occurring with the joint use of the group of
automorphisms and of the L2-norm has already been noticed in Ramsay and
Silverman (2005) and more recently in Kneip and Ramsay (2008).

Kaziska and Srivastava (2007), like Ramsay and Silverman (2005), get out
of this degeneracy problem by introducing in the minimization process a pe-
nalization term. Indeed, even if in the declared theoretical framework the reg-
istration problem is introduced as the minimization over h ∈ S1 × D of the
functional ||f1 − f2 ◦ h||L2([0,2π]), in the search for the solution, the functional
λ||f1 − f2 ◦ h||2L2([0,2π]) + (1− λ)||h′||2L2([0,2π]) is actually minimized.

In the light of the present work, we are convinced that the necessity of
introducing a reasonable penalization term or reasonable constraints to make
meaningful the results of a registration procedure is in general an evidence of a
mismatch between the phase variability as actually defined by W and the phase
variability as thought by the statistician.

For this reason, we think that the correct way to get out of degeneracy
problems is not to introduce a penalization term or constraints (we are aware
that, even if not theoretically sound, these solutions are however practically easy
and efficient) but to replace W with a suitable group and to redefine phase and
amplitude variability consequently. Of course this second approach is definitely
not trivial and poses new challenging questions for future research.

7 Conclusions

We introduced a mathematical framework in which a functional data registra-
tion problem can be soundly and coherently set. In detail, we showed that the
introduction of a metric/semi-metric and a compact group of warping function
respect to which the metric/semi-metric is invariant is the key to a clear and
not ambiguous definition of phase and amplitude variability. Moreover, we pro-
posed the amplitude-to-total variability ratio α2. This index turns to be useful
in practical situations to measure to what extent amplitude variability affects
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the data and to compare the effectiveness of different registration methods.
We think that it might be of interest in future to find out pairs of com-

pact sub-groups of the group of the automorphisms and invariant metrics/semi-
metrics able to report, in formal terms, the ideas about phase and amplitude vari-
ability of the “experts” and/or for which an exact or approximate decomposition
of total variability in amplitude and phase variability of the form “α2 +φ2 = 1”
is possible.

Finally, we want to thank professors Piercesare Secchi and Marco Fuhrman
of the Department of Mathematics - Politecnico di Milano for their useful com-
ments.

Appendix

Proof of Lemma 2.2. d is continuous since triangular inequality (1c) implies
|d(f1, f2) − d(f1, f3)| ≤ d(f2, f3); the maps f1◦ and f2◦ are demanded to be
continuous; thus d(f1 ◦ h1, f2 ◦ h2) is continuous in h1 and h2. Moreover d(f1 ◦
h1, f2 ◦ h2) is lower bounded (≥ 0). Since W is compact, the extreme value
theorem ensures the minimum to exist.

Proof of Lemma 2.4: lower bound. d(f1◦h1, f2◦h2) ≥ 0 ∀h1, h2 ∈W ⇒ minh1,h2∈W d(f1◦
h1, f2 ◦ h2) ≥ 0.

Proof of Lemma 2.4: upper bound. minh1,h2∈W d(f1◦h1, f2◦h2) ≤ d(f1, f2) since
d(f1, f2) = d(f1 ◦ 1, f2 ◦ 1).

Proof of Lemma 2.5: ⇒. By Definition 2.3, dW (f1, f2) = 0 implies that exists a
couple (h1,h2) such that d(f1◦h1, f2◦h2) = 0; (1a) implies that d(f1◦h1, f2◦h2) =
0⇒ f1 ◦ h1 = f2 ◦ h2.

Proof of Lemma 2.5: ⇐. (1a) implies that f1◦h1 = f2◦h2 ⇒ d(f1◦h1, f2◦h2) =
0; since 0 is also the lower bound, this couple is also a minimizing couple, then
dW (f1, f2) = 0.

Proof of Lemma 2.6. Proof is immediate by Definition 2.3.

Proof of Theorem 2.7: (3a). From (1a), f1 = f2 ⇒ d(f1, f2) = 0; from Lemma
2.4, d(f1, f2) = 0⇒ dW (f1, f2) = 0.

Proof of Theorem 2.7: (3b). (3b) descends from (1b), indeed if (h̄1, h̄2) is a
minimizing couple for d(f1 ◦h1, f2 ◦h2), then (h̄2, h̄1) is a minimizing couple for
d(f2 ◦ h2, f1 ◦ h1) providing the same minimum.
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Proof of Theorem 2.7: (3c). (3c) descends from (1c) and from the W -invariance
of d. Let (h̄1, h̄2) and (h̄2, h̄3) be minimizing couples for d(f1 ◦ h1, f2 ◦ h2) and
d(f2 ◦ h2, f3 ◦ h3) respectively, i.e.:

dW (f1, f2) = d(f1 ◦ h̄1, f2 ◦ h̄2) , (9a)

dW (f2, f3) = d(f2 ◦ h̄2, f3 ◦ h̄3) . (9b)

As already stressed, because of the W -invariance of d and without loss of gener-
ality, h̄2 of the former couple can be fixed equal to h̄2 of the latter couple. The
couple (h̄1, h̄3) is not in general a minimizing couple for d(f1 ◦ h1, f3 ◦ h3), thus:

dW (f1, f3) ≤ d(f1 ◦ h̄1, f3 ◦ h̄3) . (10)

(1c) applied to f1 ◦ h̄1, f2 ◦ h̄2, and f3 ◦ h̄3, provides that:

d(f1 ◦ h̄1, f3 ◦ h̄3) ≤ d(f1 ◦ h̄1, f2 ◦ h̄2) + d(f2 ◦ h̄2, f3 ◦ h̄3) . (11)

Finally - by chaining (10), (11), (9a) and (9b) - (3c) is obtained:

dW (f1, f3) ≤ d(f1 ◦ h̄1, f3 ◦ h̄3) ≤
≤ d(f1 ◦ h̄1, f2 ◦ h̄2) + d(f2 ◦ h̄2, f3 ◦ h̄3) = dW (f1, f2) + dW (f2, f3)

Proof of Corollary 2.8. .= is an equivalence relation. Indeed reflexivity, sym-
metry, and transitivity of the .=, trivially descend from (3a), (3b), and (3c)
respectively. Lemma 2.5 implies the equivalence between enunciations (4) and
(5).

Proof of Lemma 2.9. Firstly, let us prove that f2
.= f̄2 ⇒ dW (f̄1, f2) = dW (f̄1, f̄2).

(3c) ensures that dW (f̄1, f2) ≤ dW (f̄1, f̄2)+dW (f2, f̄2); f2
.= f̄2 implies dW (f2, f̄2) =

0; thus dW (f̄1, f2) ≤ dW (f̄1, f̄2). Analogously, permuting f2 and f̄2, also dW (f̄1, f̄2) ≤
dW (f̄1, f2). Thus dW (f̄1, f2) = dW (f̄1, f̄2).

Analogously, we can obtain that f1
.= f̄1 ⇒ dW (f1, f2) = dW (f̄1, f2); thus

(f2
.= f̄2 and f1

.= f̄1)⇒ dW (f1, f2) = dW (f̄1, f̄2).

Proof of Theorem 2.11: (6a). Sufficient condition: [f1] = [f2] implies that ∀f̄1 ∈
[f1] and f̄2 ∈ [f2]⇒ f̄1

.= f̄2; moreover f̄1
.= f̄2 ⇒ dW (f̄1, f̄2) = 0; but by defini-

tion dW (f̄1, f̄2) = dF ([f1], [f2]) and thus dF ([f1], [f2]) = 0. Necessary condition:
dF ([f1], [f2]) = 0 implies that dW (f̄1, f̄2) = 0 ∀f̄1 ∈ [f1] and f̄2 ∈ [f2]; thus
∀f̄1 ∈ [f1] and f̄2 ∈ [f2] we have that f̄1

.= f̄2; thus any f̄1 ∈ [f1] is equivalent to
any f̄2 ∈ [f2] and viceversa, that means that [f1] = [f2].
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Proof of Theorem 2.11: (6b). Let us take two elements f̄1 and f̄2 ∈ F such
that f̄1 ∈ [f1] and f̄2 ∈ [f2]; by definition dF ([f1], [f2]) = dW (f̄1, f̄2) and
dF ([f2], [f1]) = dW (f̄2, f̄1); moreover (3b) ensures dW (f̄1, f̄2) = dW (f̄2, f̄1) and
thus (6b) is proven.

Proof of Theorem 2.11: (6c). Let us take three elements f̄1, f̄2, and f̄3 ∈ F such
that f̄1 ∈ [f1], f̄2 ∈ [f2], and f̄3 ∈ [f3]; by definition dF ([f1], [f3]) = dW (f̄1, f̄3),
dF ([f1], [f2]) = dW (f̄1, f̄2), and , dF ([f2], [f3]) = dW (f̄2, f̄3); moreover (3c) en-
sures dW (f̄1, f̄3) ≤ dW (f̄1, f̄2) + dW (f̄1, f̄3) and thus (6c) is proven.

Proof of Lemma 4.1: [f1] , [f2] , . . . , [fn] are compact sets ⊆ F since W is com-
pact and for i = 1, 2, . . . , n, fi◦ : h ∈W 7−→ (f1◦h) ∈ F is continuous. The func-
tional

∑n
i=1 d

2(f̃i, f̂0) is lower bounded, so inf f̃i∈[fi] ∧ f̂0∈F

(∑n
i=1 d

2(f̃i, f̂0)
)
≥ 0.

The compactness of set [fi] guarantees that inferior limit occurs in correspon-
dence of functions f̃i belonging to the set [fi]. Moreover in correspondence of
the inferior limit, we have that f̂0 belongs to the sample Frechet mean set of
a set of function belonging to a compact set, i.e.

⋃
i=1,2,...,n[fi]. It is known

that the sample Frechet mean set is non-empty and compact. So we can find an
element f̂0 belonging to the sample Frechet mean set in correspondence of which
the functional takes value equal to its inferior limit. Thus the inferior limit is
also a minimum.
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