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Abstract

This work presents a new computational optimization framework for the robust control of parks of Wave
Energy Converters (WEC) in irregular waves. The power of WEC parks is maximized with respect to the
individual control damping and stiffness coefficients of each device. The results are robust with respect
to the incident wave direction, which is treated as a random variable. Hydrodynamic properties are
computed using the linear potential model, and the dynamics of the system is computed in the frequency
domain. A slamming constraint is enforced to ensure that the results are physically realistic. We show
that the stochastic optimization problem is well posed. Two optimization approaches for dealing with
stochasticity are then considered: stochastic approximation and sample average approximation. The
outcomes of the above mentioned methods in terms of accuracy and computational time are presented.
The results of the optimization for complex and realistic array configurations of possible engineering
interest are then discussed. Results of extensive numerical experiments demonstrate the efficiency of the
proposed computational framework.
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1. Introduction

Ocean waves and tides are a renewable source of energy with large predicted growth over the next
years and decades. Proposals of the European Commission [2] regard as “realistic and achievable”
a target of 1 GW installed capacity by 2030 and of 40 GW by 2050 for ocean energy.1 A massive
deployment of wave energy is expected to drive costs down and make this choice competitive, especially
for islands and offshore applications [1]. Since single devices for wave energy conversion have small
production capabilities and a limited possibility of scaling up compared to other technologies such as
wind turbines [6], it is crucial from the economical point of view to install them in arrays. The relatively
small distance between devices in arrays implies the appearance of mutual interactions. The result of
these interactions is known as the park effect [5], and it has to be carefully taken into account in the
design process.

In order to better utilize the energy resource and improve survivability in extreme conditions, con-
trol strategies of devices in the array need to be appropriately designed. In particular, hydrodynamic
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interactions in the controlled system should be favourable in terms of extracted power. The most com-
mon control techniques for wave energy converters are presented in [20], reviewing constant and time-
varying damping control, reactive control, latching and model predictive control. Classical results ob-
tained through frequency domain analysis for regular waves with control parameters kept constant in
time are presented in [11]. Strategies for irregular waves (in time domain) and related results are dis-
cussed in [17]. In an array, the same control parameters may be assigned to all devices, or each device
may be assigned its own. The latter approach is referred to as individual optimization and it has been
performed in [7] and [28] using SQP (Sequential Quadratic Programming), optimizing for a single wave
direction and then checking the performance for different directions. Another aspect of array design and
optimization, that will not be treated in this work, is the layout of devices. Layout optimization can be
performed either before or together with control optimization. For more details, see the reviews [33, 15].

In this work, we present a numerical strategy for the robust optimization (maximization) of the power
production of arrays with reactive control: damping and stiffness coefficients of the generators are op-
timized. We allow each body to have its own control coefficients and assume that the corresponding
parameters are constant in time. As shown in [10], damping is actually a nonlinear function of the veloc-
ity for real electrical generators. Our assumptions, though, allow the use of a linear framework, and the
results can still be a guide for the design process. We also allow control stiffnesses to assume negative
values, meaning that the control action must be able to counteract the hydrostatic restoring force, that is
the force acting on a floating body when it is displaced from its buoyancy equilibrium position [11, Sec.
5.9]. Even though a negative stiffness could seem counterintuitive or unphysical, some technologies are
in fact capable of achieving this effect: see, e.g., [30, 34]. For this reason, we do not exclude apriori
this case from the set of admissible solutions. Moreover, the optimal solutions must fulfill the slamming
constraint, meaning that devices must not leave the water, and in some cases a constraint of positive
stiffness is added, to assess the benefit of using negative stiffness technologies.

To obtain good performances in real scenarios, the result of optimization needs to be robust against
the uncertainty in the incident waves direction. To the best of our knowledge, this problem has never
been addressed in the literature. We formulate a stochastic (robust) optimal control problem governed by
linear hydrodynamic equations, describing the physics of the system, and characterized by control and
state constraints. The numerical solution of this optimization problem requires an adequate treatment
of different issues. A reduced approach based on the adjoint equation allows us to work in the space
of solutions of the hydrodynamic equations and consider the control as the only optimization variable.
Stochasticity is addressed by employing two different approaches suitable for stochastic optimization
problems: SAA (Sample Average Approximation) and SA (Stochastic Approximation) [27]. The slam-
ming (state) constraint is treated by using a penalty approach, while the stiffness (control) constraint is
enforced by projection. Therefore, our proposed numerical computation framework is obtained by two
nested iterative processes. The outer iteration is essentially a quadratic penalty method increasing at each
iteration the weight of the penalty term for the slamming constraint. At each penalty iteration a stochastic
optimal control problem is solved by a projection method based either on SA or SAA. The performances
obtained by individually optimizing the coefficients of each device are compared with those obtained by
setting the coefficients of all devices equal to the tuning parameters of the isolated case. We show that
sets of parameters corresponding to feasible solutions for isolated devices can lead to unfeasible (incom-
patible with the constraints) solutions when the devices are installed in arrays, and that the optimization
process leads to sensible increases of the power output in most cases.

The paper is organized as follows. In Section 2, we detail the hydrodynamic and mechanical models
used and discuss the constraints. In Section 3, we study the well-posedness of the problem and present
optimization methods and algorithms. Sections 4 and 5 contain numerical experiments performed with
the proposed algorithms. In Section 6 the obtained results are commented and conclusions are drawn.
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2. Modeling of WEC

2.1. Hydrodynamic modeling
To model the hydrodynamic behaviour of WEC (Wave Energy Converter) arrays, we use linear poten-

tial wave theory [9]. In particular, we make the kinematic assumption of irrotational flow (zero vorticity),
which implies the existence of a scalar potential ϕ whose gradient is the flow velocity. This assumption
is well verified for external flows, outside boundary layers [18]. Under the assumption that the dis-
placements of the free surface and of the surfaces of floating bodies are small, boundary conditions can
be linearized and enforced at the reference surfaces. This avoids the difficulty of dealing with moving
boundaries and permits solving the problem in the frequency domain. Finally, we assume that viscous
effects can be neglected.

Γd,1 Γd,2 . . . Γd,Nb

Ω

Γs

Γb

Figure 1: Domain of the hydrodynamic problem (slice)

For a single frequency ω, the potential is written as ϕ(x, t) = Re
[
ϕ̂(x) exp(−iωt)

]
and ϕ̂ is the solution

of the hydrodynamic problem



∆ϕ̂ = 0 in Ω (2.1a)

∂ϕ̂

∂n
= 0 on Γb (2.1b)

∂ϕ̂

∂z
−
ω2

g
ϕ̂ = 0 on Γs (2.1c)

∂ϕ̂

∂n
= v̂ℓ · n on Γd,ℓ, ℓ = 1, . . . ,Nb , (2.1d)

where Ω ⊂ R3 is the fluid domain, bounded by the sea bottom surface Γb, the reference free surface Γs

and the device immersed surfaces Γd,ℓ, and unbounded on the lateral sides (see Fig. 1). The complex
amplitude of the velocity of the ℓ-th device is denoted by v̂ℓ. We assume that the bodies are restricted to
vertical motion (heave). Hence, we have

v̂ℓ = [0, 0, v̂ℓ] = [0, 0,−iωζ̂ℓ],

where ζ̂ℓ is the complex amplitude of the vertical position of the ℓ-th device. The free surface elevation
η̂ can be computed using the kinematic condition η̂ = iϕ̂ω/g. For the ℓ-th device, the dynamic problem
in the z direction is

(−ω2mℓ + iωcℓ + kℓ + sℓ)ζ̂ℓ = F̂ℓ (2.2)
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where mℓ is the mass, kℓ is the combined hydrostatic and mechanical stiffness, cℓ and sℓ are the equiv-
alent damping and stiffness coefficients of the electrical generator, respectively, and F̂ℓ is the vertical
component of the hydrodynamic force. The latter is obtained from the potential ϕ̂:

F̂ℓ = −iωρ
∫
Γd,ℓ

ϕ̂nz dΓ, (2.3)

nz being the vertical component of the outer surface normal of the body. This is a consequence of the
unsteady, linearized Bernoulli equation, which holds thanks to the assumption of inviscid flow.

The equations above show that there is a two-way coupling between the hydrodynamic problem and
the mechanical problem. The two may be solved monolithically. However, for the purpose of control
design, it is more common and insightful to define intermediate hydrodynamic quantities, namely added
mass, radiation damping and excitation force [11]. In this way, once the hydrodynamic problem has
been solved to determine such quantities, the dynamic problem can be treated independently. To apply
this approach, the potential is split into the sum of three harmonic functions: an incident potential ϕ̂0,
a diffraction potential ϕ̂d and a radiation potential ϕ̂r. Given a wave of direction θ and height H, the
complex amplitude of the incident potential ϕ̂0 is given by [9, Sec. 3.5]:

ϕ̂0(x, y, z) = −i
H
2

g
ω

cosh[k(z + h)]
cosh(kh)

exp[ik(x cos θ + y sin θ)]. (2.4)

This function satisfies the Laplace equation in Ω and the boundary conditions on the bottom and the free
surface, but not the boundary condition on device surfaces. We can then rewrite (2.1d) as

∂ϕ̂d

∂n
+
∂ϕ̂r

∂n
= −
∂ϕ̂0

∂n
+ v̂ℓ · n on Γd,ℓ, ℓ = 1, . . . ,Nb.

Such condition can be satisfied by requiring that the diffraction and radiation potentials satisfy

∂ϕ̂d

∂r
= −
∂ϕ̂0

∂n
and

∂ϕ̂r

∂r
= v̂ℓ · n on Γd,ℓ.

The radiation potential ϕr can then be decomposed as a sum of the effects of radiation from each body,

ϕ̂r =

Nb∑
ℓ=1

v̂ℓ φℓ,

so that each φℓ satisfies a condition of unit velocity amplitude on the ℓ-th body and an homogeneous
condition on all the others. Diffraction and radiation potentials are also required to satisfy a radiation
condition at infinity, which is needed for energy conservation. The full potential ϕ̂ = ϕ̂0 + ϕ̂d + ϕ̂r is then
computed by solving a single diffraction problem to obtain ϕ̂d and a radiation problem for each body to
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get φℓ, ℓ = 1, . . . ,Nb:



∆ϕ̂d = 0 in Ω

∂ϕ̂d

∂n
= 0 on Γb

∂ϕ̂d

∂z
−
ω2

g
ϕ̂d = 0 on Γs

∂ϕ̂d

∂n
= −
∂ϕ̂0

∂n
on Γd,ℓ, ℓ = 1, . . . ,Nb

∂ϕ̂d

∂r
− ikϕ̂d → 0 for r → ∞,



∆φℓ = 0 in Ω

∂φℓ
∂n
= 0 on Γb

∂φℓ
∂z
−
ω2

g
φℓ = 0 on Γs

∂φℓ
∂n
= nz on Γd,ℓ

∂φℓ
∂n
= 0 on Γd,m, m = 1, . . . ,Nb ∧ m , ℓ

∂φℓ
∂r
− ikφℓ → 0 for r → ∞.

(2.5)
Using the decomposition of the potential, equation (2.3) can be rewritten as

F̂ℓ = iωρ
∫
Γd,ℓ

(ϕ̂0 + ϕ̂d)nz dΓ︸                       ︷︷                       ︸
F̂e,ℓ

+

Nb∑
m=1

v̂m

∫
Γd,ℓ

φmnz dΓ︸         ︷︷         ︸
Rℓm

, (2.6)

where the first term is the excitation force F̂e,ℓ, and the m-th term of the summation is the radiation
impedance Rℓm. This is further split into real (in phase with velocity) and imaginary (out of phase) parts:

Rℓm = Bℓm + iωAℓm, (2.7)

where Aℓm is called added mass and Bℓm radiation damping.
Summarising, using the above decomposition of the potential together with (2.6) and (2.7), the dy-

namical system (2.2) can be recast as a complex linear system for each frequency:

Nb∑
m=1

Zℓm(ωq)ζ̂m,q = F̂θe,ℓ(ωq), q = 1, . . . ,N f ,

where the impedance matrix Z(ωq) is defined as

Zℓm(ωq) = −ω2
q(mℓδℓm + Aℓm(ωq)) − iωq(cℓδℓm + Bℓm(ωq)) + (kℓ + sℓ)δℓm, (2.8)

and δℓm is the Kronecker symbol. The dependence on frequency ωq and on direction θ has been made
explicit. Notice that only excitation forces depend on the wave direction. The only terms coupling the
motions of different devices are the added mass and radiation damping coefficients.

2.2. Modeling of constraints
The model described in Section 2.1 needs to be complemented with constraints to guarantee that the

solutions are physical and that the control forces are feasible. A description of some possible constraints
is reported in [7], namely slamming, stroke and force constraints. The slamming constraint guarantees
that the bodies do not leave the water, and it is needed because the linear potential model is built on
the assumption of small displacements. The stroke constraint limits the amplitude of body motions; it
is related to the dimensions of the power take-off system. Finally, the force constraint ensures that the
control force can be realized by an electromechanical system.
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In this work, since we aim for generality, we focus on the slamming constraint, that is a purely
hydrodynamic one. Conversely, force and stroke constraints depend strongly on the design details of a
specific power take-off system. Once a system is specified, the other two constraints can be imposed
with the same methodologies presented here.

The slamming constraint is a state constraint expressed in time domain as

wℓ(t) = ζℓ(t) − ηℓ(t) ≤ dℓ ∀t, ℓ = 1, . . . ,Nb, (2.9)

where dℓ is the draft of the ℓ-th device and ηℓ is the wave height at the center of the ℓ-th device. Let
us now formulate this constraint in frequency domain. First, we consider the approximation introduced
in [7], which consists in neglecting diffraction and radiation effects and taking the wave height from the
incident wave whose complex amplitude is

η̂0 = A exp[ik(x cos θ + y sin θ)].

For monochromatic waves, constraint (2.9) implies∣∣∣ζ̂ℓ − η̂ℓ0∣∣∣ ≤ dℓ. (2.10)

For irregular waves, it is not possible to obtain an explicit formula such as (2.10). The constraint can
instead be imposed in a statistical sense by limiting the fraction of time above threshold tat, meaning the
fraction of time for which the constraint is violated, or the fraction of peaks above threshold Q, where
constraint violations are considered as discrete events. It has been observed that for deep sea waves the
free surface elevation η(t) at a fixed point is well described as a Gaussian process [26]. Moreover, if the
input of a linear time invariant system is a Gaussian process, then its output is also a Gaussian process.
We thus work under the approximation that w(t) is a Gaussian process, which implies that the constraint
can be enforced on the root mean square value wrms [19]. Such quantity can be computed from frequency
domain data:

wℓ,rms =

√√√√
1
2

N f∑
q=1

|wqℓ |
2. (2.11)

The constraint is then written for each body as

wℓ,rms ≤ αdℓ, (2.12)

where α is a constant chosen to control the exceedance probability. In particular, the fraction of time
above threshold is

tat,ℓ = 2
[
1 − Φ

(
dℓ

wℓ,rms

)]
,

where Φ(·) is the normal cumulative distribution function. The fraction of peaks above threshold is, for
a narrow banded process [19],

Qℓ = exp

− d2
ℓ

2w2
ℓ,rms

 . (2.13)

The process we consider does not have a narrow band. However, it can be shown that, for a generic
Gaussian process, (2.13) is a cautionary estimate (upper bound) of the exceedance probability. As an
example, setting α = 1/2 and assuming that the constraint (2.12) is active, i.e. wℓ,rms = αdℓ, yields
tat,ℓ = 4.55% and Qp,ℓ = 13.5%.
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For convenience, we rewrite (2.12) using (2.11) as

gℓ
(
ζ̂
)
≤ 0, gℓ(ζ̂) :=

∑
q

∣∣∣ζ̂qℓ − η̂qℓ

∣∣∣2 − 2α2d2
ℓ , ℓ = 1, . . . ,Nb,

and we recast it as a differentiable equality constraint hℓ
(
ζ̂
)
= 0, where

hℓ
(
ζ̂
)

:=
[
gℓ

(
ζ̂
)]2

+
, [g]+ := max(g, 0).

The two constraints are equivalent in the sense that they have the same active set: hℓ
(
ζ̂
)
= 0⇔ gℓ

(
ζ̂
)
≤ 0.

In addition to the slamming constraint, a constraint of positive control stiffness

sℓ ≥ 0, ℓ = 1, . . . ,Nb

is enforced in some of the simulations to quantify the advantage of using negative stiffness technologies.

2.3. Forces stochasticity modeling
As noted in section 2.1, the wave climate influences the system dynamics through the excitation force

F̂e. Since our aim is to obtain control parameters that are robust with respect to the wave direction, we
define a realization as a condition with irregular unidirectional waves, where the direction is sampled
from a probability distribution. By irregular we mean that waves are not monochromatic, but rather a
superposition of harmonics. Frequency and amplitude of each harmonic are the same for all realizations.

The wave climate is described by the directional spectrum S ( f , θ), which is the distribution of wave
power with respect to frequency f and direction θ. Its general form is [13]

S ( f , θ) = S ( f )D(θ| f ),

with short (high-frequency) waves generally showing a larger directional spreading than long waves. In
this work, we consider the simpler approximate form S ( f , θ) = S ( f )D(θ). For the frequency spectrum
we use the two-parameter Piersov-Moskovitz form [11], whose expression is

S ( f ) = γ1 f −5 exp
(
−γ2 f −4

)
, with γ1 =

γ2H2
s

4
, γ2 =

5
4

f 4
p , (2.14)

and where Hs is the significant wave height and fp is the peak frequency. The spectrum is discretized
using the deterministic spectral amplitude method [9] by first defining N f intervals of center fq and width
∆ fq. Intervals are chosen so that they all correspond to the same power fraction (meaning they have in
general different widths). The incident wave potential is then a superposition of potentials of the form
(2.4), where the q-th component has height Hq = 2

√
2S ( fq)∆ fq. If necessary, the wave profile in time

domain can be reconstructed as

η(x, t) =
N f∑

q=1

Hq

2
cos

[
k(x cos θ + y sin θ) − ωqt + ϕi

]
,

with ϕi ∼ U(0, 2π). In the limit of N f → ∞, η(x, t) is a Gaussian process [32].
For the directional part, choosing a spectrum that has a closed-form inverse cumulative distribution

makes sampling straightforward. A suitable choice is Donelan’s spreading function [12]:

D(θ) =
1
2
β(sech[β(θ − θ0)])2, (2.15)
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with the corresponding cumulative distribution function

D̃(θ) =
1
2

[
tanh[β(θ − θ0)] + 1

]
,

where θ0 is the dominating direction and β is a scale parameter: for increasing β, the distribution is more
sharply peaked (see Fig. 2). To sample a wave direction, we use the inverse transformation technique
[16, Sec. 9.2]: we first obtain a sample ξ from a uniformly distributed variable X ∼ U(0, 1), and then
apply the transformation

θ = D̃−1(ξ).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
θ (rad)

0

2

4

6

8

10
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(θ

)

β=5

β=10

β=20

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
θ (rad)

0.0

0.2

0.4

0.6

0.8

1.0

D̃
(θ

)

β=5

β=10

β=20

Figure 2: Probability density (left) and cumulative distribution (right) for Donelan’s function

2.4. Computational aspects and Haskind’s relation

The hydrodynamic problem is solved with the boundary element method (BEM), based on boundary
integral reformulations of (2.5). In particular, the source distribution method is used [22, Sec. 4.11]: an
unknown source distribution σ is defined on the device surfaces Γd,ℓ, ℓ = 1, . . . ,Nb. The potential in any
point x of the domain is obtained as the effect of such surface distribution through a convolution integral
with a Green function G, which satisfies the boundary conditions on ∂Ω \ ∪ℓΓd,ℓ:

ϕ(x) =
∫
∪ℓΓd,ℓ

σ(x′)G(x; x′) dx′, ∀x ∈ Ω. (2.16)

The boundary conditions on the body surface are then enforced:

1
2
σ(x) +

∫
∪ℓΓd,ℓ

σ(x′)
∂G

∂n
dx′ = b.c. (2.17)

where the b.c. depends on the considered problem in (2.5) The two equations (2.16), (2.17) are trans-
formed into linear algebraic equations by discretization:

K1σ = b, ϕ = K2σ.

Once the first system is solved, the potential is obtained from the second.
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We now discuss the computational effort required to construct a realization of the excitation force. In
principle, one would need to draw a sample θ and then, for all frequencies, compute the corresponding
incident wave potential using (2.4) and use it as a boundary condition for a diffraction problem. This
requires storing or recomputing N f dense, and possibly large, matrices and solving each system once.
This would make the process very computationally demanding. A much cheaper approach would be
to run a batch of simulations for different values of the wave direction before the optimization process
and then recover the force by interpolation for each realization. This strategy, however, could result
in large inaccuracies because of the difficulty and ambiguity of interpolating complex functions [29].
Another possibility is the use of Haskind’s relation, an exact integral relation which allows computing
the diffraction force for any wave direction as a combination of the potential of incident waves and
radiation potentials [11, Sec. 5.4]. The recomputation of the incident wave field is relatively cheap,
while radiation potentials would need to be computed anyway to obtain the added mass and radiation
damping matrices. For these reasons, this approach is intermediate in computational cost between full
diffraction simulations and interpolation. The use of Haskind’s relation is the choice that has been made
here. Its expression is

F̂e,ℓ = −iωρ
∫
∪ℓΓd,ℓ

[
ϕ̂0
∂φℓ
∂n
− φℓ
∂ϕ̂0

∂n

]
dΓ.

The integral is discretized as a sum on the mesh elements.

3. Design of damping and stiffness by optimization

In this section, we formalize the optimization problem and present numerical methods for its solution.

3.1. Problem statement
The cost function is the average power with negative sign, which can be written as

J := −
Nb∑
ℓ=1

1
T

∫ T

0
cℓ

(
ζ̇ℓ(t)

)2
dt.

The motion of each body is realized in the time domain as a sum of harmonics. Because of the orthogo-
nality of such functions, the mean square of the signal depends only on the amplitudes of the harmonic
components, phases being irrelevant. If incident waves are realized as the sum of N f monochromatic
waves, as explained in Section 2.3, the cost is obtained by summing the contributions of all frequency
components:

J(u, ζ̂θ) = −
1
2

N f∑
q=1

ω2
q

(
ζ̂θq

)H
Cζ̂θq , (3.1)

where u ∈ R2Nb is the control vector having the form u =
[
c1, . . . , cNb , s1, . . . , sNb

]
, C is a diagonal matrix

with Cℓℓ = cℓ, and we denote by the superscript θ all quantities depending on the wave angle. Here,
ζ̂θq ∈ CNb is the vector of complex amplitudes of all bodies at the q-th frequency, while ζ̂θ ∈ CNbN f is the
collection of all ζ̂θq for q = 1, . . . ,N f . For a single wave angle, the problem of power maximization can
then be stated as

min
ζ̂θ ,u∈Uad

J(u, ζ̂θ) s.t.

 Zq(u)ζ̂θq = F̂θq q = 1, . . . ,N f ,

hℓ(ζ̂θ) = 0 ℓ = 1, . . . ,Nb.
(3.2)
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The admissible set of controlsUad is defined by

Uad =
{
u ∈ R2Nb : cℓ ≥ ε > 0, sℓ ≥ γ, ℓ = 1, . . . ,Nb

}
,

where ε is a positive constant, and γ = 0 if the positive stiffness constraint is applied, γ = −∞ otherwise.
Next, we discuss sufficient conditions for Zq(u) to be invertible.

Lemma 3.1. Let Z ∈ CN×N and call Zr = Re(Z), Zi = Im(Z). If Zr is symmetric and Zi is symmetric
positive (or negative) definite, then Z is invertible.

Proof. Consider a generic system (Zr + iZi)(xr + ixi) = fr + ifi. Splitting into real and imaginary parts
and solving formally for xr and xi yields

xr = Z̃−1(ZrZ−1
i fr + fi), xi = (I + Z−1

i ZrZ̃−1Zr)Z−1fr + Z−1
i ZrZ̃−1fi, (3.3)

where Z̃ is the Schur complement Z̃ = Zi + ZrZ−1
i Zr. Suppose Zi is positive definite, so that its inverse is

also positive definite (an analogous argument applies if Zi is negative definite). Zr is real and symmetric,
thus ZH

r = Zr. Then Z̃ is positive definite:

vH(Zi + ZrZ−1
i Zr)v = vHZiv +

(
vHZH

r

)
Z−1

i (Zrv) = vHZiv + (Zrv)H Z−1
i (Zrv) > 0, ∀v , 0.

Since Z̃ is invertible, the expressions in (3.3) are well defined for any f and thus Z is invertible.

Consider now the impedance matrix defined in (2.8). Matrices A and B are symmetric, and because
of energy conservation B is also positive semidefinite [11, Sec. 5.2, 6.5]. The other involved matrices
are diagonal and thus symmetric. Then, the real part of the impedance matrix Zr = −ω

2(M + A) + K + S
is symmetric. Regarding the imaginary part Zi = −ω(B + C), we have that B is symmetric positive
semidefinite. If we further assume that all bodies have positive generator damping, implying that the
mean extracted power is positive, then C is diagonal with positive values. Thus Zi is symmetric positive
definite and Zr is symmetric, satisfying the hypotheses of Lemma 3.1.

Since the matrix Zq(u) is invertible for any admissible control vector u, we can formally eliminate
the constraint Zq(u)ζ̂θ = F̂θ and rewrite (3.2) in the reduced form

min
u∈Uad

J̃(u; θ) := J(u, ζ̂θ(u)) s.t. hℓ(ζ̂θ(u)) = 0 ℓ = 1, . . . ,Nb. (3.4)

The following properties hold for the case of a single wave direction θ.

Lemma 3.2. If there exists an index q ∈ 1, . . . ,N f such that F̂θq , 0, then J̃(u) < 0 ∀u ∈ Uad.

Otherwise, J̃(u) = 0 ∀u ∈ Uad.

Proof. Lemma 3.1 ensures that Zq(u) is invertible for all u ∈ Uad. Then, F̂θq , 0 implies ζ̂θq , 0.
From this and using again the assumption that u ∈ Uad, so that in particular cl > 0, it follows that(
ζ̂θq

)H
Cζ̂θq > 0. From the definition of J (3.1) we have J̃(u) ≤ −

1
2
ω2

q

(
ζ̂θq

)H
Cζ̂θq < 0.

Lemma 3.3. The following asymptotics hold for ∥u∥2 → ∞ and ∀q, ∀θ:

∥Zq(u)∥2 = O (∥u∥2) , ∥ζ̂θq∥2 = O
(

1
∥u∥2

)
.

In particular, lim∥u∥2→∞ J̃(u) = 0.
10



Proof. From the definition (2.8) of the impedance matrix, one directly finds ∥Zq(u)∥F = O(∥u∥2) for
∥u∥ → ∞. The equivalence between the Frobenius norm and the 2-norm implies ∥Zq(u)∥2 = O(∥u∥2).

For the second statement, consider

∥ζ̂θq(u)∥2 = ∥Zq(u)−1Fq∥2 ≤ ∥Zq(u)−1∥2∥Fθq∥2.

Since Fq does not depend on u, we have ∥ζ̂θq(u)∥2 = O
(

1
∥Zq(u)−1∥2

)
= O

(
1
∥u∥2

)
.

Lemma 3.4. There exists a constant C̃ > 0 such that

min
u∈Uad

J̃(u)⇔ min
u∈Uad∩B0(C̃)

J̃(u),

where B0(C̃) is a ball of radius C̃ centered in the origin.

Proof. Lemmas 3.2 and 3.3 imply that

∀M < 0 ∃C̃ > 0 s.t. J̃(u) > M ∀u ∈ Uad ∩ B0

(
C̃
)C
.

Consider a control vector ũ such that J̃(ũ) = M < 0. Then J̃(u) > J̃(ũ) ∀u ∈ Uad∩B0

(
C̃
)C

. In particular,

if J̃ has a minimum over such set, then the latter is also a minimum overUad.

Theorem 3.1. Under the assumptions of Lemma 3.2, Problem

min
u∈Uad

J̃(u; θ)

admits a solution for any θ.

Proof. Invertibility of the impedance matrix Zq(u) guarantees that the reduced cost J̃ is a continuous
function of u. Lemma 3.4 implies that the problem can be equivalently posed on the compact setUad ∩

B0

(
C̃
)
. The existence of a minimum in such set is guaranteed by the Weierstrass theorem.

Theorem 3.2. Under the assumptions of Lemma 3.2, Problem (3.4) admits a solution for any θ.

Proof. Define hℓ(u) := hℓ(ζ̂θ(u)), hℓ : R2Nb → R+. We equivalently recast (3.4) as minu∈U′ad J̃(u; θ),

where U′ad = Uad ∩ B0

(
C̃
)
∩

(
∩

Nb
ℓ=1h−1

ℓ (0)
)
. Since {0} is a compact set and hℓ is continuous for all

ℓ, h−1
ℓ (0) is compact. Then, U′ad is also compact and the same reasonings of Theorem 3.1 can be

applied.

In the stochastic case, (3.4) turns into

min
u∈Uad

j̃(u) := Eθ
(
J̃(u; θ)

)
s.t. Eθ (hℓ) = 0, ℓ = 1, . . . ,Nb,

(3.5)

where Eθ denotes the expected value with respect to θ.
11



Theorem 3.3. Problem

min
u∈Uad∩B0

(
C̃
) j̃(u) := Eθ

(
J̃(u; θ)

)
s.t. Eθ (hℓ) = 0, ℓ = 1, . . . ,Nb

admits a solution for all C̃ > 0.

Proof. Lemma 3.2 guarantees that J̃(u, θ) ≤ 0∀θ, ∀u ∈ Uad. Then, we have

j̃(u) = Eθ
(
J̃(u, θ)

)
≤ 0 ∀u ∈ Uad.

Furthermore, we have

lim
∥u∥2→∞

∣∣∣̃ j(u)
∣∣∣ = lim

∥u∥2→∞

∣∣∣∣∣∣
∫ 2π

0
J̃(u, θ)D(θ) dθ

∣∣∣∣∣∣ ≤ lim
∥u∥2→∞

∣∣∣∣∣max
θ

J̃(u, θ)
∣∣∣∣∣
∣∣∣∣∣∣
∫ 2π

0
D(θ) dθ

∣∣∣∣∣∣ = 0,

where the last equality follows from Lemma 3.3. Then, the problem can be equivalently recast in a

compact set Uad ∩ B0

(
C̃
)
, for some suitable positive constant C̃. Since such set is compact and J̃

is a continuous function of both its arguments, the Heine-Cantor theorem implies J̃ is also uniformly
continuous. We now use uniform continuity and the fact that D(θ) is a probability distribution, so that it
has unit integral. We have

∀ε > 0 ∃δ > 0 s.t. ∥u − v∥ < δ⇒
∣∣∣J̃(u, θ) − J̃(v, θ)

∣∣∣ < ε,
where δ does not depend on θ. Then, if ∥u − v∥ < δ, the following inequality

∣∣∣̃ j(u) − j̃(v)
∣∣∣ = ∣∣∣∣∣∣

∫ 2π

0
J̃(u, θ)D(θ) dθ −

∫ 2π

0
J̃(v, θ)D(θ) dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 2π

0

[
J̃(u, θ) − J̃(v, θ)

]
D(θ) dθ

∣∣∣∣∣∣
≤ max

θ

∣∣∣J̃(u, θ) − J̃(v, θ)
∣∣∣ ∣∣∣∣∣∣
∫ 2π

0
D(θ) dθ

∣∣∣∣∣∣ < ε
proves that j̃(u) is also continuous. Then, existence of a solution for the unconstrained problem follows
from the same reasonings applied in the proofs of Lemma 3.4 and Theorem 3.1.

For the constrained problem, we can prove, as done above for j̃, that Eθ[hℓ(u)] is continuous, so its
inverse maps {0} into a compact set. Then, the remainder of the proof is the same as for Theorem 3.2.

3.2. Numerical optimization strategy
In this section, we present a computational framework for the solution of the stochastic optimization

problem (3.2) modelled in Sections 2 and 3. Problem (3.2) has three different constraints that must
be appropriately treated: a system of complex algebraic equations (the state problem), the slamming
constraint (a constraint on the state) and the positive stiffness constraint (a constraint on the controls).
First, the slamming (state) constraint is treated by using a penalty method, as described in Section 3.2.1.
Our framework is based on a reduced approach working in the space of solutions to the state equation

12



and considers the control u as the only optimization variable. To do so, the gradient of the (reduced)
cost j̃ (and its penalized counterpart Qµ) is obtained by a Lagrangian approach leading to an adjoint
problem, as show in Section 3.2.2. Each iteration of the penalty method requires the solution of a
stochastic problem with control constraint (positive stiffness constraint). This is achieved by either an
SAA approach (Section 3.2.3), or by a Robust SA (Section 3.2.4). In both cases, the control constraint is
enforced by projection onto the admissible set at each iteration. Implementation details and a comparison
between SAA and Robust SA are given in Section 3.2.5.

3.2.1. Penalty method
The penalized cost function used to enforce the slamming constraint is defined as

Qµ(u) := j̃(u) +
µ

2

Nb∑
ℓ=1

Eθ[hℓ(u)]

and the penalty method consists in solving the sequence of problems

min
u∈Uad

Qµ(u), µ→ ∞.

Each of these problems is solved using either sample average approximation or robust stochastic ap-
proximation; these methods are described in Sections 3.2.3 and 3.2.4, respectively. The penalized cost
function can be rewritten as an expected value thanks to linearity,

Qµ(u) = Eθ

J̃(u) +
µ

2

Nb∑
ℓ=1

hℓ(u)

 ,
and, again because of linearity, also the gradient of Qµ may be computed as the expected value of the
quantity in brackets. The optimization procedure is detailed in Algorithm 1.

Algorithm 1 Stochastic quadratic penalty algorithm

1: Set u0, µ0, kµ > 1, τout, 0 < τout < 1, itout
max

2: Set j = 0
3: while maxℓ Eθ[hℓ] > τout and j < itout

max do
4: Compute u j+1 ∈ Uad by minimizing Q j+1, using either SA or SAA with initial guess u j and

tolerance τ j

5: µ j+1 = kµµ j

6: τ
j+1
in = kττ

j
in

7: j← j + 1
8: end while

Convergence results for Algorithm 1 can be obtained from [23, Th. 17.1, 17.2]. It is proved that, if at
each iteration the exact minimum of Q is found and if µ j → ∞, then every limit point of the sequence u j

is a global solution of the original problem. It is further proved that if at each iteration the solution of the
optimization problem is computed approximately with vanishing tolerance kτ, as in Algorithm 1, either
a limit point of the sequence u j is infeasible and corresponds to a stationary point of the penalty term, or
it is a KKT point for the original problem. The above results require differentiability of the penalty term,
which is satisfied in our case, as ∇hℓ = ∇[gℓ]2

+ = [gℓ]+∇gℓ. Since convergence is only guaranteed in the
limit, the method is terminated when constraint violations are below a finite tolerance, that is when the
obtained iterate is in, or close enough to, the feasible set.
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3.2.2. Gradient computation and first-order optimality condition
Algorithm 1 requires finding the minimum of the penalized cost function Qµ. In order to do this, the

computation of its gradient is needed. The SA method needs a stochastic gradient at each iterate, that
is, a gradient computed for a single realization of the wave angle θ. The SAA method, instead, needs
an estimate of the true gradient, which is the expected value of the stochastic gradient and thus can be
computed as a suitable average of stochastic gradients. For a single given angle θ, the gradient of the
reduced cost can be obtained by using the Lagrangian function defined as

L(u, ζ̂θ, y) = J(u, ζ̂θ) +
µ

2

Nb∑
ℓ=1

[gℓ(u)]2
+ +

N f∑
q=1

Re
[
yH

q

(
Zq(u)ζ̂θq − F̂θq

)]
.

The problem is set in the space of complex vectors over the field of real numbers, with scalar product
(u, v) = Re[uHv], thus the presence of the real part in the Lagrangian. The adjoint equation is obtained
by differentiation with respect to the state vector,

ZH
q (u)yq = ω

2
qCζ̂θq − 2µV(ζ̂θq − ηq), q = 1, . . . ,N f ,

where V is a diagonal matrix
Vℓℓ = [gℓ(ζ̂)]+, i = 1, . . . ,Nb,

that is independent of the frequency. The components of the stochastic gradient are obtained by differ-
entiating with respect to the controls:

∂L

∂cℓ
(u, ζ̂θ, y) = −

N f∑
q=1

(
1
2
ω2

q|ζ̂ℓ,q|
2 + Re[ jωqy∗ℓ,qζ̂ℓ,q]

)
,

∂L

∂sℓ
(u, ζ̂θ, y) =

N f∑
q=1

Re[y∗ℓ,qζ̂ℓ,q],

G(u, θ) =
∂L

∂u
(u, ζ̂θ, y) =

[
∂L

∂c1
, . . . ,

∂L

∂cNb

,
∂L

∂s1
, . . . ,

∂L

∂sNb

]
. (3.6)

The first-order optimality condition requires [23]

u − PUad (u − Eθ[G(u, θ)]) = 0,

where PUad is the projector ontoUad:

P(u) = P[c1, . . . , cNb , s1, . . . , sNb ]
= [c1, . . . , cNb , [s1]+, . . . , [sNb ]+].

(3.7)

3.2.3. SAA
The sample average approximation (SAA) method is based on writing the expected value in Prob-

lem (3.5) as an integral, and approximating such integral with a suitable quadrature rule:

Eθ
[
J̃(u; θ)

]
=

∫ 2π

0
J̃(u; θ) D(θ) dθ ≈

N∑
i=1

J̃(u; θi) wi.
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The same approximation is applied to the gradient. One then obtains a deterministic problem that can be
solved using standard optimization algorithms. In this work, we use the gradient descent method with
step length determined according to the Armijo rule [23, Chap. 3]. The quadrature rule is defined by
the choice of nodes θi and weights wi. In the following, we consider the Monte Carlo [27] and Gauss-
Legendre [25, 31] methods.

For the Monte Carlo method, the nodes θi are obtained by sampling the wave direction, following the
procedure described in Section 2.3, and the choice of weights corresponds to averaging, wi = 1/N. In
the case of Gauss-Legendre, instead, nodes are defined as the zeros of Legendre polynomials. Numerical
libraries provide nodes and weights θ̂i, ŵi on the interval [−1, 1], which are then mapped to the desired
interval [a, b] using

θi =
a + b

2
+

b − a
2
θ̂i, wi =

b − a
2

D(θi)ŵi.

In our case, the interval [a, b] is chosen as [θmin, θmax]. Here, θmin and θmax define an effective interval of
wave angles, which depends on the parameters β, θ0, such that the probability is considered negligible
outside such interval. Notice that each weight for Gauss-Legendre integration includes the value of the
probability distribution function in the corresponding node. This is not the case for Monte Carlo, where
the probability distribution is accounted for in the sampling phase.
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Figure 3: Relative error in the constrained case of the Monte Carlo method with respect to a solution obtained with Gauss-Legendre
using 10 (left) and 320 (right) nodes

Convergence of the two methods is studied on a test case with 15 bodies, enforcing the slamming
constraint. The results are reported in Figure 3 for the Monte Carlo method and in Figure 4 (left) for
the Gauss-Legendre method. Since the exact solution of the optimization problem is not known, two
reference solutions are computed using Gauss-Legendre, one with 10 nodes, and another with 320 nodes.
The convergence rate of Monte Carlo is estimated by computing the slope of the regression line in
logarithmic scale. For Monte Carlo, multiple points are available for each value of N, obtained by
repeating the computation with different sets of samples. Using the reference solution computed with 10
nodes yields a slope of -0.507 with standard error 0.070, while using the reference solution computed
with 320 nodes yields a slope of -0.565 with standard error 0.074. Both values are consistent with the
expected convergence rate −1/2. This result shows that a Gauss-Legendre solution obtained with a very
limited sample size is very accurate compared to a Monte Carlo solution with larger sample size.

The order of convergence of Gauss-Legendre, instead, is estimated at a value of 2.53, while repeating
the test for the unconstrained problem leads to a spectral convergence of the Gauss-Legendre method, as
shown in Fig. 4 (right). In particular, we obtain a behaviour of the type k exp(−mN), where m ≈ 0.658.
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Figure 4: Left: Relative error in the constrained case of Gauss-Legendre method with respect to a reference solution computed
with 320 nodes. Right: Relative error in the unconstrained case of the Gauss-Legendre method with respect to a reference solution
computed with 320 nodes.

The loss of spectral convergence in the constrained case is explained by the presence of the max operator
in the slamming constraint; such operator is present in the right hand side of the adjoint equation.

3.2.4. Robust SA
The stochastic approximation method (SA) moves, at each iteration, in the direction of a gradient

computed from a single sample of the random variable. We call this vector the stochastic gradient. Since
there is no guarantee that the stochastic gradient defines a descent direction, the line-search stepsize
strategies suitable for deterministic problems cannot be applied. Instead, the sequence of stepsizes is
fixed once the initial step is chosen. A suitable initial step t0 can be estimated by performing a line
search using a single sample of the stochastic gradient.

Some stepsize strategies for SA method are discussed in [21]. We choose the robust variable stepsize
strategy, that is, the sequence of steps is

tk =
t0

√
k + 1

, k = 0, 1, . . . (3.8)

A convergence estimate is available, based on the assumptions that

∃M > 0 s.t. Eθ[∥G(u, θ)∥22] ≤ M2 ∀u ∈ Uad,

that Q is convex and that the admissible setUad is convex

E
[
Q

(
ũN

K

)
− Q(u∗)

]
≤

cQ
√

N
,

where N is the number of iterations, cQ is a constant independent on N and ũN
K is a weighted average

defined as

ũ j
i =

j∑
k=i

tkuk. (3.9)

Such average is taken as the solution of the optimization problem.
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Figure 5: History of relative error on the optimal control with respect to iterations (left) and time (right). Numbers in the labels
refer to the number of nodes (Gauss-Legendre) or samples (Monte Carlo)

As a stopping indicator, we use the norm of an average of the stochastic gradients on the most recent
iterations:

ind =

∥∥∥∥∥∥∥ 1
W

N∑
k=N−W

Gk

∥∥∥∥∥∥∥ ≤ τin, (3.10)

where W is the window size. This is a modification of a criterion proposed in [24] and it can be interpreted
as an estimate of the gradient of the corresponding deterministic problem. Such quantity appears in the
convergence proof of the penalty method mentioned above, suggesting that our choice is reasonable.

Algorithm 2 Robust Stochastic Approximation (variable stepsize)

1: Set initial step t, window size W
2: while k ≤ itout

max or ind > τin do
3: Extract θ
4: for q = 1 : N f do
5: Compute F̂θq
6: Find ζ̂q by solving the state problem with (uk, F̂θq)
7: Find yq by solving the adjoint problem with (uk, F̂θq)
8: end for
9: Compute the stochastic gradient G from (3.6)

10: Update uk+1 = P(uk − tkG), with P from (3.7) and tk from (3.8)
11: Compute ũk+1

k+1−W from (3.9)
12: Compute the stopping indicator ind from (3.10)
13: end while

3.2.5. Implementation and comparison between SAA and robust SA
Hydrodynamic data is computed using the code Capytaine [4], version 1.3. The Haskind relation is

applied to compute diffraction properties. Such routine and the numerical optimization codes are written
in Python, using Numba for performance improvement.

The performances of stochastic approximation and sample average approximation using Monte Carlo
and Gauss-Legendre integration are compared in Fig. 5. A constrained case with 15 bodies and fixed

17



penalization parameter has been considered, using the same initial guess and initial step. The reference
solution was obtained by a computation with Gauss-Legendre using 320 nodes. The relative error ∥u −
ure f ∥/∥ure f ∥ is plot against execution time and number of iterations. The test is run on an average laptop.
We can observe that the SAA methods require a much smaller number of iterations with respect to SA,
but, since for the former many problems need to be solved at each iteration, the methods are comparable
in terms of computational time. In terms of number of iterations, the histories of Monte Carlo and
Gauss-Legendre are almost identical up to a certain value of the error, after which Gauss-Legendre
exhibits better accuracy. However, in terms of computational times, the histories of the two methods are
similar only when the same number of nodes is used. The error of stochastic approximation, instead,
initially decreases at a rate comparable to (in terms of number of iterations) or faster than (in terms of
computational time) the other methods, and then starts oscillating, as expected from an SA approach
(see, e.g., [21] and references therein). Moreover, the results of Fig. 5 provide useful insights into the
choice of the method to use in a design phase. If one seeks indicative results in relatively short times,
then an SA approach is indeed a reasonable choice: on the one hand, it converges faster in the initial
phase when the starting point is far from the optimal solution; on the other hand, it does not require the
choice of a number of nodes or of an effective interval of wave angles where the probability distribution
is correctly represented. Instead, if one is interested in highly accurate results, then Gauss-Legendre is
the method to choose. However, this strategy requires an appropriate choice of an effective interval of
wave angles, which is not needed by a Monte Carlo approach. Moreover, if the number of stochastic
parameters becomes very large, then the Gauss-Legendre method could become unfeasible, and an SA
strategy is more appropriate.

4. Numerical experiments

The numerical framework presented in the previous sections was used to compute the optimal control
parameters of arrays of two different models of WECs (see Table 1). In particular, the results presented
in this section are obtained by simulations run using SA. The data for the first case is taken from [14].
The second case is derived from the first by rescaling the generator mass proportionally with respect to
the volume. In the first case, the resonance frequency of the uncontrolled body is higher than the peak
spectrum frequency. The second case is tuned in such a way that the uncontrolled body frequency is
lower than the peak spectrum frequency.

In both cases, the region of the spectrum containing 99.9% of the power is discretized into 30 bins of
equal power, so that each realization is obtained as a superposition of 30 harmonics.

To quantify the performance of the obtained configurations, we define the interaction factor q as the
ratio between the total average power produced by the array and the sum of the powers of the isolated
devices:

q =

∑Nb
ℓ=1 Pℓ

Nb Pisolated
.

radius
(m)

draft
(m)

generator
mass (kg)

generator
stiffness (N/m)

depth
(m)

Hs

(m)
Tp

(s)

Case 1 2.5 0.5 2560 4000 50 1.53 5.83
Case 2 9 1.5 155520 4000 50 1.53 3.49

Table 1: Body parameters and wave climates
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Figure 6: Left: Convergence plot (outer iterations) for the isolated body of case 1 superimposed on power contour map (values in
W). Red dashed line: slamming constraint. Right: Time domain realization.

4.1. Single-body optimization

We first consider optimization for a single device. For case 1, if negative stiffnesses are allowed,
the optimal power is 7636 W, achieved by setting the control parameters to c = 31820.7 N · s/m, s =
−27022.2 N/m. The outer convergence history is shown in Figure 6 (left), superimposed on a contour
map of the absorbed power. The region above the red dashed line is feasible with respect to the slamming
constraint, and the black dot is the constrained optimum obtained by exhaustive search over a rectangular
grid. If instead only positive values of stiffness are accepted, the optimal power is 5886 W, and the
corresponding controls are c = 61774.8 N · s/m, s = 0. Figure 6 (right) shows the statistical meaning
of the slamming constraint, which has been formulated in Section 2.2 in the frequency domain. The
fraction of peaks exceeding the bound can be controlled by varying α in (2.12).

For case 2, the optimal power is 5712 W, obtained with controls c = 733196 N·s/m, s = 1411344 N/m,
without imposing constraints on the sign of s.

The results of this section are used as initial guesses for the multi-body optimization runs: all devices
are initially assigned the same control parameters.

4.2. Two-body optimization

Table 2 shows the results of numerical experiments with 2 bodies of type 1. Configuration θ0 = 0°
corresponds to bodies aligned along the mean wave vector; θ0 = 90° corresponds to bodies aligned
perpendicular to the mean wave vector. In both cases, the resulting interaction factor q is larger when
the spreading in wave direction is small, that is when β is large (see (2.15)). In most cases, the slamming
constraint is violated for the initial guess. This results in a reduction of power between the initial guess
and the optimized result, the latter being compatible with the constraint up to the tolerance. The results
for control parameters in the symmetric case θ0 = 90° are not exactly symmetric: this is due to the use of
a stochastic optimization method. The asymmetry may be reduced by increasing the window size used
for averaging the iterates.

Figure 7 reports the convergence history for test 1. The two jumps correspond to a switch to a
higher value of the penalization parameter. After a jump, the cost starts decreasing again, but stops at
a larger value than the one before the jump, which would now be unattainable because of the stronger
enforcement of the constraint.
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β θ0 Initial violation ∆P (%) q c (N·s/m) s (N/m)

Test 1 20 0 yes -2.65 0.949
32095.1
31140.3

-27384.7
-23636.9

Test 2 5 0 yes -2.59 0.947
32156.5
31188.2

-27379.7
-23701.0

Test 3 1 0 yes -2.14 0.943
32698.3
32243.6

-27207.6
-23555.7

Test 4 20 90 no +5.03 1.015
33122.7
33121.3

-29660.8
-29660.6

Test 5 5 90 no +4.59 1.009
33306.1
33365.8

-29258.7
-29280.5

Test 6 1 90 yes -2.27 0.940
33353.7
33192.1

-25061.1
-24690.0

Table 2: Tests for 2 bodies, case 1

β θ0 Initial violation ∆P (%) q c (N·s/m) s (N/m)

Test 1 20 0 no +2.41 0.675
689151
728208

1104329
604768

Test 2 5 0 no +2.63 0.675
671380
716425

1124916
559310

Test 3 1 0 no +2.20 0.893
659638
783297

1490803
1196127

Test 4 20 90 no +3.34 0.870
878379
876926

708776
706616

Test 5 5 90 no +1.01 0.924
869725
869114

1035442
1044426

Test 6 1 90 no +3.26 1.037
735201
737221

1526562
1528286

Table 3: Tests for 2 bodies, case 2

4.3. Multi-body optimization: devices on two concentric arcs
We now consider an array of 15 devices in an arrangement with 2 concentric arcs, derived from

the ones considered in [14], for case 1. The geometry of the array and the results without constraints
on the sign of the stiffness are shown in Fig. 8 and 9. For all the following tests, the dominant wave
direction is zero: the incident wave vector is aligned with the x axis. We observe that the bodies with the
smallest stiffnesses are the ones located in the downwave arc, at the center. They are thus the bodies with
the lowest tuning frequency, and they receive the largest power increase. Conversely, the devices at the
outer edges of the array have the largest stiffnesses and they are subject to a moderate power decrease.
Regarding dampings, bodies in the upwave arc have larger values than the ones in the downwave arc,

20



0 1 2
Iterations ×104

−1.44

−1.42

−1.40

−1.38

C
os

t
×104

0 1 2
Iterations ×104

2.9

3.0

3.1

3.2

3.3

D
am

p
in

g

×104

0 1 2
Iterations ×104

−2.8

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

S
ti

ff
n

es
s

×104

Figure 7: Convergence plot for test 1 (see Table 2)

corresponding to wider response peaks: the bodies at the front, roughly speaking, are tuned so that they
are able to absorbe power in a wider range of frequencies. The global result is a power increase of 3.44%
compared to the initial guess, and an interaction factor of 0.966.
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Figure 8: Map of power before (left) and after (right) array optimization; case 1, 15 devices unconstrained stiffness. Bodies not to
scale (radius is 2.5 m)

If the constraint of positive stiffnesses is enforced, the results of Fig. 10 are obtained. Only a
very small power increase of 0.31% is obtained, and an interaction factor of 0.980. Contrary to the
previous case, bodies in the downwave arc have larger control dampings than the ones in the upwave
arc. All optimal control stiffnesses are zero; this is explained by the large, positive frequency distance
between the response peaks of the uncontrolled bodies and the frequencies where most of wave power is
distributed.

For the same kind of geometry, with bodies of type 2, the results are reported in Figures 11 and 12. All
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Figure 9: Map of control parameters; case 1, 15 devices, unconstrained stiffness
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Figure 10: Maps of power (left) and control damping (right); case 1, 15 devices, positive stiffness constraint

optimal stiffnesses are positive, without imposing any constraint. As in the corresponding arrangement
for case 1, bodies in the upwave arc have generally larger stiffnesses than the ones in the downwave arc,
but in this case there is the exception of the body located at y = 0 in the downwave row. There is no
evident behaviour for dampings between the two arcs. The power increase obtained by optimization is
of 3.99%; the interaction factor is 1.144. Notice that the slamming constraint is never active, due to the
relatively large draft of the bodies. Due to this, positive interactions in the array are promoted and they
are not limited by the constraint.
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Figure 11: Map of power before (left) and after (right) array optimization; case 2, 15 devices, unconstrained stiffness
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Figure 12: Map of control parameters; case 2, 15 devices, unconstrained stiffness

4.4. Multi-body optimization: 4 × 4 square arrangement

Figures 13 and 14 refer to the case of a square grid of 16 bodies. For case 1, without the constraint of
positive stiffnesses, we obtain all negative stiffness, the smallest ones being located in the most downwave
rows. Maximum dampings are assigned to the devices at the front and center of the array. Bodies in the
upwave rows are subject to a power increase compared to the initial guess; in the downwave rows,
devices at the edges see a moderate power increase, while devices at the center see a power decrease,
that is particularly intense for the bodies in the last row. The global power increase is of 3.11%, and the
interaction factor is 0.766.

If stiffnesses are constrained to positive values, the optimization drives them all to zero. Powers and
control dampings are shown in Figure 15. This time, the largest power increases are for the devices at
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Figure 14: Map of control parameters; case 1, 16 devices, unconstrained stiffness

the center of the array, which are also the ones with the largest control stiffnesses. The power increase is
of 0.41%, and the obtained interaction factor is 0.816.

A 4×4 square arrangement has also been simulated for the case 2 considered in the previous section.
The results are shown in Figures 16 and 17. Devices in the most downwave row are subject to a power
reduction, while all the others see a power increase. Bodies in the third row are assigned negative
stiffnesses. The global power is increased by 9.16% and the interaction factor is 0.835.

The process is repeated with the constraint of positive stiffnesses: see Fig. 18, 19. In terms of
total power, the result is around 76.3 kW in both cases, but in this second one, almost all bodies in the
downwave part of the array are assigned stiffnesses close to zero.

24



0 10 20
x (m)

−5

0

5

10

15

20

25

y
(m

)

6541 5473 4559 3546

6766 5002 3687 2642

6766 5007 3694 2649

6540 5482 4578 3569

0 10 20
x (m)

−5

0

5

10

15

20

25

6526 5565 4607 3521

6549 5225 3772 2575

6544 5233 3787 2589

6523 5584 4646 3570

3000 3500 4000 4500 5000 5500 6000 6500
Average power (W)

−5 0 5 10 15 20 25
x (m)

−5

0

5

10

15

20

25

y
(m

)

64591 67313 68853 61260

45458 69616 70297 55005

45335 69560 70336 55088

64418 67264 68979 61690

5.0

5.5

6.0

6.5

7.0

D
am

p
in

g
(N

/(
m

/s
))

×104

Figure 15: Maps of power (left) and control damping (right); case 1, 16 devices, positive stiffness constraint
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Figure 16: Map of power before (left) and after (right) array optimization; case 2, 16 bodies, unconstrained stiffness

5. Extension to multiple random parameters

The methods presented in the previous sections can be generalized to the case of multiple random
variables. We present an application of practical interest involving two random parameters, based on a
discussion presented in [8]. This allows us to discuss a case where our optimization framework com-
putes an optimal solution that is, from a physical point of view, less intuitive than the ones presented
in the previous sections. Consider a sea state formed by a superposition of wind waves and swell
waves. Wind waves are generated locally by the action of the wind on the free surface, while swell
waves originate from storms occurring far from the measurement point. The frequency spectrum of
such sea state typically presents two peaks: a relatively narrow, low-frequency peak corresponding to
the swell component, and a relatively wide, high-frequency peak corresponding to the wind component.
Assuming linearity of the interaction between the two wave systems, the spectrum can be written as
S ( f , θ) = S w( f , θ) + S s( f , θ), the subscripts w and s being referred to the wind contribution and the swell
contribution, respectively. Consistently with the approximation adopted for the case of a single random
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Figure 17: Map of control parameters; case 2, 16 devices, unconstrained stiffness
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Figure 18: Map of power before (left) and after (right) array optimization; case 2, 16 devices, positive stiffness constraint

direction, we write S w( f , θ) = S w( f )Dw(θ), and the analogous expression for swell. The frequency part
is given by the Pierson-Moskovitz spectrum (2.14), while the directional part is given by the Donelan
distribution function (2.15).

To formulate the robust optimization problem in this case, we assume that peak frequencies fp,w, fp,s

and significant wave heights Hs,w, Hs,s are known and fixed values. We define a realization as the sum of
two irregular waves, each one unidirectional with directions θw and θs, sampled from Dw(θ) and Ds(θ),
respectively. The excitation force acting on each device is, accordingly, the sum of the excitation forces
due to the wind and swell contributions.

We present a case with the 15-device configuration of type 2 (see Tab. 1). The parameters of the
wind component are Hs = 2 m, Tp = 5 s, β = 5, θ0 = 30°. The parameters of the swell component
are Hs = 1 m, Tp = 10 s, β = 20, θ0 = 0°. The corresponding spectrum is depicted in Fig. 20. The
results of the optimization run are reported in Fig. 21. Let us discuss the obtained results from a physical
point of view. First, it is possible to see that the distributions of damping and stiffness parameters is
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Figure 19: Map of control parameters; case 2, 16 devices, positive stiffness constraint
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Figure 20: Double-peaked wave spectrum. Left: frequency spectrum; right: frequency-directional spectrum

not symmetric with respect to the x axis. This is due to the asymmetry in the wave directions. More
interestingly, one can observe that the parameters are not clearly clustered: even though one may expect
to obtain two clusters, dealing with the two peaks in the spectrum independently, the optimal solution
presents a more intricate configuration, with a large spread in the array of the values of stiffness and
damping coefficients.

6. Discussion and conclusions

In this work, a new computational framework for the robust optimization of arrays of WEC was
proposed and tested. In particular, we modelled an optimization problem for the maximization of the
power of WEC parks with respect to the individual control damping and stiffness coefficients of each
device. The results are robust with respect to the incident wave direction, which is treated as a random
variable. The numerical solution to this stochastic optimization problem is obtained as a combination
of penalty iterations and stochastic approaches, namely robust SA and SAA based on Monte Carlo or
Gauss-Legendre quadrature integration.
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Figure 21: Map of power (left), damping (center) and stiffness (right) for 15 bodies, double-peaked spectrum

The results of our numerical simulations are in agreement with the ones presented (for determinis-
tic problems and unidirectional waves) in classical references in the field of marine engineering, like,
e.g., [5], where it was observed that downwave rows are in general less productive than upwave rows.
This behaviour is made even more evident by optimization, especially in square arrangements of bodies,
where the difference in power between the first and the last row generally increases. Upwave bodies
extract more power than they would in isolated conditions, so they benefit from the interactions with
downwave bodies. These positive interactions might be impeded or reduced by the slamming constraint.
In particular, it is possible that bodies tuned to have admissible oscillations individually (i.e., in isolated
conditions) will violate the constraint when installed in an array. In our tests, we observed that when
the initial guess is feasible, then the proposed optimization framework leads to performance increases
of a few percentage points. When the initial guess is unfeasible, the method leads to a condition that is
feasible and that might have a smaller power than the unfeasible initial guess. In most of the explored
cases, allowing the stiffness to have negative values provided larger power that enforcing positive stiff-
ness. In this case, technological feasibility considerations should be made about whether such solution
is realizable. Finally, by proposing an example with a double-peaked wave spectrum, we showed that
our computational framework can be used to control and optimize more complex configurations, so that
it is capable to provide useful indications for the preliminary control design of realistic WEC arrays.
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