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Abstract

Denoting by S the sharp constant in the Sobolev inequality in W1;2
0 (B),

being B the unit ball in R3, and denoting by Sh its approximation in a
suitable �nite element space, we show that Sh converges to S as h & 0
with a polynomial rate of convergence. We provide both an upper and a
lower bound on the rate of convergence, and present some numerical results.

1 Introduction

The Sobolev inequality in Rn says that, given 1 � p < n, one has

kDfkLp(Rn) � S(p; n)kfkLp? (Rn) (1)

�The �rst author has been supported by Azioni Integrate Italia{Spagna through the project
Tecniche numeriche all'avanguardia e metodi di ottimizzazione di forma per problemi di 
uido-

dinamica. The work of the second author is partially supported by the ERC Advanced Grant
2008 Analytic Techniques for Geometric and Functional Inequalities, and by the MEC through
the 2008 project MTM2008-03541.
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for every f 2 W1;p(Rn), where as usual p? = np=(n � p). For 1 < p < n, the
sharp constant S(p; n) was found by Aubin and Talenti [2, 11], and it is given
by

S(p; n) =
p
� n1=p

�
n� p

p� 1

�(p�1)=p��(n=p)�(1 + n� n=p)

�(1 + n=2)�(n)

�1=n

; (2)

where �(�) is the gamma function, i.e., �(x) =
R1
0 tx�1 exp(�t)dt, x 2 R.

In particular, it is known [11, 7] that the optimal functions are exactly those
of the form

ga;b;x0(x) =
a�

1 + bjx� x0jp0
�(n�p)=p ; (3)

with a 2 R n f0g; b 2 R+ and x0 2 Rn, so that (2) follows by direct calculation.

Passing from R
n to the case of a generic open set 
, the Sobolev inequality

still holds for any f 2W1;p
0 (
) with the same constant as in (1), i.e.,

kDfkLp(
) � S(p; n)kfkLp? (
) 8f 2W1;p
0 (
) :

As we will show in Lemma 2.1, the constant S(p; n) is again optimal for any set

, however there are no minimizing functions unless in the case 
 = R

n.

Remark 1.1 The case p = 1 is very di�erent, and much simpler, as it is easily
shown that inequality (1) holds not only in W1;1(Rn) but also on BV (Rn), pro-
vided that the term kDfkLp(Rn) is replaced by the total variation of f . Moreover,
the optimal functions are exactly those of the form

ĝa;�;x0(x) = a�
B�(x0)

(x) ;

with a 2 R n f0g, � 2 R
+ and x0 2 R

n. In words, the optimal functions are
exactly the characteristic functions of balls (with any center, any positive radius
and multiplied by any constant). A fundamental di�erence with the case p > 1 is
that for p = 1 all the optimal functions are compactly supported, while for p > 1
all the optimal functions have the whole Rn as support.

The aim of this paper is to consider a suitable approximation of problem (1),
and to study the convergence of the corresponding discrete Sobolev constants
towards the continuous one. For simplicity, we will work in the case n = 3
and p = 2, but all the proofs still hold true for any choice of p and n with
just a straightforward modi�cation of the calculations. Let Vh be the set of the
W1;2

0 (�nite element) functions on the unit ball B � R
3 which are continuous,

piecewise linear and vanish on the boundary of B. Since Vh �W1;2(R3) (clearly
extending the functions to 0 out of B), the Sobolev inequality (1) holds for all
discrete functions f 2 Vh, and there exists a minimal constant Sh such that

kDfkLp(B) � ShkfkLp? (B) 8 f 2 Vh :

Clearly, Sh � S, where for brevity we write S = S(3; 2). We will prove the
following result.
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Theorem 1.1 The constants Sh converge to S when h& 0. More precisely,

S +
1

C
h
 � Sh � S + Ch1=3 ;

for two constants C; 
 > 0.

Remark 1.2 We have chosen B to be the unit ball in R3 just for the sake of
convenience: many other choices are possible. For example, any open, bounded
domain in R3 with Lipschitz boundary (for instance, the unit cube) is admissible.

Remark 1.3 The estimate of Theorem 1.1 holds true for any


 >
2 � 262
3

;

see the discussion at the end of the proof of Proposition 2.2 below.

We mention that, in the framework of geometric-functional inequalities, the
question whether or not optimal constants are the limit of their discrete ap-
proximations has been considered also in [4]. More precisely, they consider
the Sobolev{Poincar�e inequality in the context of discontinuous �nite element
spaces, and show that, under suitable assumptions, the discrete optimal con-
stants converge to the continuous one (see [4, Proposition 7.1]).

1.1 A quantitative form of the Sobolev inequality

In this work we will need to use an improved version of the Sobolev inequality,
recently shown in [5], which says that the functions of the form (3), that are
known to be the only functions for which (1) is an equality, are also stable: this
means that a function for which (1) is almost an equality must be almost of the
form (3).

More precisely, for any function f 2W1;p(Rn) we de�ne the Sobolev de�cit

�(f) =
kDfkLp(Rn)
kfkLp? (Rn)

� S;

which says how far inequality (1) is from being an equality (in particular f is
optimal if and only if �(f) = 0). We also set the Sobolev asimmetry

�(f) = inf

� kf � ga;b;x0kLp? (Rn)
kfkLp? (Rn)

: kfkLp? (Rn) = kga;b;x0kLp? (Rn)
�
;

where ga;b;x0 is de�ned in (3). In words, �(f) is the (renormalized) distance of
f from the set of the optimal functions, then by de�nition f is optimal if and
only if �(f) = 0 (the set of the optimal functions is clearly closed).

Hence, the Sobolev inequality and the results of existence and uniqueness of
the minimizers can be restated by saying that �(f) = 0 () �(f) = 0, while
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the quantitative (or stability) result from [5] says that if �(f) is small then also
�(f) must be small {notice that the opposite implication is clearly false. More
precisely, the result is the following.

Theorem 1.2 (Quantitative Sobolev Inequality) There are two constants
C and � such that, for any f 2W1;p(Rn), one has

�(f) � C�(f)� :

In particular, one can take

� =
1

�2p?
; where � = 3 + 4p� 3p+ 1

n
: (4)

We will use this result to obtain the lower estimate (see Section 2.3 below).

1.2 Finite element setting

In this section we set up some notation and recall some technical tools we will
require in our analysis. We will de�ne the discrete space Vh �W1;2

0 (B) of piece-
wise linear conforming �nite elements by the polygonal approximation technique
[8].

We will consider an approximation of B given by a family of polyhedral
domains fBhg inscribed in B: the parameter 0 < h < 1, to be speci�ed in a mo-
ment, will go to 0. For any h, we construct a partition Th of Bh, more precisely,
let Bh =

S
T2Th

T , where each T is the image of the reference tetrahedron bT in

R
3 through an a�ne linear mapping FT : R3 �! R

3, i.e., T = FT ( bT ) for any
T 2 Th. We choose partitions Th that are regular (see, for instance, [6]): this
means that there exists a constant � > 0 such that

hT
�T

� � 8T 2 Th ; (5)

where �T is the radius of the biggest ball contained in T , and hT is the diameter
of T . Our meshes are also uniform, i.e., setting h = maxT2Th hT , the ratio h=hT
is uniformly bounded. Notice that, since B is smooth, convex and the boundary
vertices of Bh lie on @B, Bh can be constructed in such a way that jB nBhj . h2.

Next, for a �xed Th, we de�ne the space eVh as

eVh = ff 2 H1
0 (Bh) : f � FT 2 P1( bT ) 8 T 2 Thg;

where P1( bT ) is the space of linear polynomials on bT . Finally, we set Vh to be the
space of functions in eVh extended by zero in the skin B nBh. Notice that Vh is a
�nite dimensional vectorial space, since any f 2 Vh is univocally determined by
the values of f at the internal vertices of the mesh (called interpolation nodes).
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Observe also that Vh � W1;2
0 (B). Finally, we de�ne the interpolation operator

�1
h : C

0(B) �! Vh as
�1
hf(xi) = f(xi);

where xi are the interpolation nodes. We recall the following classical result
(see, for example, [10]): there exists a constant C > 0, independent of h, such
that:

kD(�1
hf � f)kL2(
) � ChkD2fkL2(
); (6)

for any f 2 H2(B).

Remark 1.4 There are many alternatives to the space Vh we are considering
as, for example, hexaedra, prisms or isoparametric elements (see, for example,
[3, Sect. 4.7]): it is of primary importance that standard interpolation estimates
as (6) hold. Our analysis could also be applied to other choices of approximation
spaces.

2 Proof of the main result

This section is devoted to show the main result, Theorem 1.1. We �rst recall
some preliminary results, next we prove the upper estimate (see Proposition 2.1),
and the lower estimate (see Proposition 2.2) which complete the proof of the
theorem.

2.1 Preliminary results

In this section we list a couple of well-known results which we will need later.
We point out that they are valid for any n and any 1 < p < n.

Let us start by taking any open set 
 � R
n: one may ask if there is a version

of Sobolev inequality which holds also inside 
. This should mean that there
exists a constant S(p; n;
) such that

kDfkLp(
) � S(p; n;
)kfkLp? (
) 8f 2W1;p
0 (
): (7)

Notice that the right space is W1;p
0 (
) instead of W1;p(
), because in the latter

all the constant functions show that Sobolev inequality is not true, at least when

 has �nite measure.

Lemma 2.1 Inequality (7) holds true for all functions f 2 W1;p
0 (
). More-

over, the optimal constant in the inequality is S(p; n;
) = S(p; n). Finally, the
inequality is strict for any non-zero function f 2W1;p

0 (
), unless 
 = R
n.

Proof. Since W1;p
0 (
) �W1;p(Rn) via the extension to 0 out of 
, for any function

f 2W1;p
0 (
) we already know that (1) holds true, so inequality (7) is valid with S(p; n)

which implies S(p; n;
) � S(p; n).
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On the other hand, �x a radius � > 0 and consider the ball B� centered at 0 and
with radius �. For any " > 0, then, de�ne the function

�"(x) =
1�

1 +
1

"
jxjp0

�(n�p)=p
� 1�

1 +
1

"
�p0
�(n�p)=p

:

this is a smooth function on B� which vanishes on the boundary, so that

S
�
p; n;B�

� � kD�"kLp(
)
k�"kLp? (
)

:

Recalling now formula (3) for the optimal functions on Rn, it is immediate to realize
that kD�"kLp(
)

k�"kLp? (
)
� S(n; p) =

kD�"kLp(
)
k�"kLp? (
)

� kDg1;1=";0kLp(
)
kg1;1=";0kLp? (
)

����!
"!0

0 :

This implies that, for any � > 0, one has the equality S(p; n;B�) = S(p; n). Since
the map S(p; n; �) is clearly decreasing with respect to the inclusion of sets and is not
e�ected by a translation, and since any open set contains a ball, we deduce the equality
S(p; n;
) = S(p; n) for all open sets 
.

Finally, suppose that there exists 
 � Rn and f 2W1;p
0 (
) such that

kDfkLp(
)
kfkLp? (
)

= S(n; p) :

Then, still denoting by f the extension to 0 out of 
, which belongs to W1;p(Rn), one
has kDfkLp(Rn)

kfkLp? (Rn)
=
kDfkLp(
)
kfkLp? (
)

= S(n; p)

hence f is optimal for the Sobolev inequality in Rn. By the existence-uniqueness result

of the optimizers, it must be f = ga;b;x0 for some suitable a; b; x0. And since all the

optimal functions have the whole Rn as support, we deduce that 
 = R
n, so for any

other set the constant S(p; n;
) is an in�mum but not a minimum and the thesis is

achieved. �

We give now the de�nition of the radial symmetrization for functions.

De�nition 2.1 For 0 � f 2W1;p(Rn), we de�ne radially symmetric rearrange-
ment of f the radially symmetric decreasing function f? : Rn ! R

+ such that���nx 2 Rn : f(x) > �
o��� = ���nx 2 Rn : f?(x) > �

o��� 8� > 0 :

The following property of the radial symmetrization is well known (refer
to [9]).

Theorem 2.1 (Polya{Szeg�o) For any 0 � f 2 W1;p(Rn), one has f? 2
W1;p(Rn) and

kf?kLp(Rn) = kfkLp(Rn) ; kDf?kLp(Rn) � kDfkLp(Rn) :
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Let us immediately notice the important consequence that Polya{Szeg�o The-
orem has when studying the Sobolev inequality (1). Assume for a moment that
we are looking for an optimizer of the inequality, and assume of course that we
still don't know the exact formula (3): then, Polya{Szeg�o Theorem immediately
suggests us to restrict our attention to radially symmetric decreasing function,
which is extremely useful since it basically means to study one-dimensional de-
creasing functions instead of n�dimensional generic ones. Indeed, assume that
f is optimal for the Sobolev inequality: then,

kDf?kLp(Rn) � kDfkLp(Rn) = S(p; n)kfkLp? (Rn) = S(p; n)kf?kLp? (Rn) ;

which means that also the radially symmetric decreasing function f? is optimal.

We conclude with a useful notation that we will use extensively in the fol-
lowing.

De�nition 2.2 Let p = 2, n = 3. Then, for any a > 0 we denote by Ta the
function Ta = ga;b;x0 in the sense of (3), where x0 � 0, and b = b(a) is chosen
so that

kTakL6(R3) = 1 :

Notice that the above de�nition is correct, since b 7! kga;b;0kL6(R3) is a continuous
and strictly decreasing function from (0;+1) to itself, which tends to 0 (resp.
+1) when b goes to +1 (resp. 0).

2.2 Upper estimate

In this section we will show the upper estimate.

Proposition 2.1 There exists a constant C such that Sh � S + Ch1=3.

Proof. We divide the proof in four steps.

Step I. Setting of the main function.

Let us �x a number � 2 R+, to be precised later, and set

a :=
1

h�
:

According to De�nition 2.2, b = b(a) is de�ned in such a way that

1 = kga;b;0k6L6(R3) =

Z +1

�=0

a6�
1 + b�2

�3 4��2 d�
=

4�

h6�

Z +1

�=0

1�
1 + b�2

�3 �2 d� = �2

4h6�b3=2
;

so that we derive that

b =
1

h4�

��
2

�4=3
: (8)
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Let us now consider the function eTa 2W1;2
0 (B) de�ned aseTa(x) = Ta(x)� Ta(1) ;

where, with an abuse of notation, we have denoted by Ta(1) the constant value of
the (radially symmetric) function Ta on the set fx 2 R

n : jxj = 1g. An immediate
calculation tells us that

Ta(1) =
ap
1 + b

=
1

h�
p
1 + (�=2)4=3h�4�

=

�
2

�

�2=3

h� +O(h5�) (9)

for h & 0. We will show our bound on Sh by making use of the function �1
h
eTa, which

course belongs to Vh by de�nition. Indeed, one has that

Sh �
kD�1

h

� eTa�kL2(B)

k�1
h

� eTa�kL6(B)

: (10)

In view of the interpolation estimate (6), it is clear that we need an upper bound for

kD2 eTakL2(B), an upper bound for kD eTakL2(B), and a lower bound for k eTakL6(B). The
�rst one will be obtained in Step III, while for the second one it is enough to notice that

kD eTakL2(B) = kDTakL2(B) � kDTakL2(R3) = S : (11)

Finally, for the lower bound for k eTakL6(B), we will use the fact that, since kTakL6(B) �
kTakL6(R3) = 1, one has

k eTak6L6(B) � 1�K1 �K2 ; (12)

having de�ned

K1 := kTak6L6(R3nB) ; K2 := 1�
k eTak6L6(B)

kTak6L6(B)

:

In Step II we will estimate k eTakL6(B) by giving bounds to K1 and K2.

Step II. Estimate on k eTakL6(B).

In the set fjxj � 1g one has

Ta(x) =
ap

1 + bjxj2 = h�
�
2

�

�2=3
1

jxj
�
1 +O(h4�)

�
:

Hence, one has

K1 = kTak6L6(R3nB) =
�
1 +O(h4�)

�Z
R3nB

h6�
�
2

�

�4
1

jxj6 dx

=
26

3�3
h6� +O(h10�) :

(13)

Thus, we obtained the estimate for K1.
Concerning K2, it is convenient to divide the unit ball B in the internal ball BI =

fx 2 B : Ta(x) � 1g and the external part BE = B n BI , and treating the two regions
in a di�erent way. Let us start taking x 2 BE : then, being Ta(x) � 1, one has

eTa(x)6 = �
Ta(x)� Ta(1)

�6
= Ta(x)

6

�
1� Ta(1)

Ta(x)

�6

� Ta(x)
6

�
1� 6

Ta(1)

Ta(x)

�
= Ta(x)

6 � 6Ta(1)Ta(x)
5 � Ta(x)

6 � 6Ta(1) ;
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from which we deduce

kTak6L6(BE)
� k eTak6L6(BE)

=

Z
BE

Ta(x)
6 � eTa(x)6 dx

� 8�

�
2

�

�2=3

h� +O(h5�) ;

(14)

recalling (9). On the other hand, if x 2 BI , Ta(x) � 1 and we have

eTa(x)6 = �
Ta(x)� Ta(1)

�6
= Ta(x)

6

�
1� Ta(1)

Ta(x)

�6

� Ta(x)
6

�
1� 6

Ta(1)

Ta(x)

�
� Ta(x)

6
�
1� 6Ta(1)

�
;

which gives

kTak6L6(BI)
� k eTak6L6(BI)

=

Z
BI

Ta(x)
6 � eTa(x)6 dx

� 6Ta(1)

Z
BI

Ta(x)
6 dx

� 6 kTak6L6(B)

�
2

�

�2=3

h� +O(h5�) ;

(15)

again recalling (9). Moreover, notice that by (13) it is

kTak6L6(B) = 1� kTak6L6(R3nB) = 1� h6�26

3�3
+O(h10�) = 1 +O(h6�) : (16)

Finally, putting together (14), (15) and (16), we obtain the estimate for K2

K2 = 1�
k eTak6L6(B)

kTak6L6(B)

=
kTak6L6(BE)

� k eTak6L6(BE)
+ kTak6L6(BI)

� k eTak6L6(BI)

kTak6L6(B)

� 8�

�
2

�

�2=3

h� + 6 kTak6L6(B)

�
2

�

�2=3

h� +O(h5�)

=
�
8� + 6

�� 2

�

�2=3

h� +O(h5�) :

(17)

Recalling (12), from (13) and (17), we �nally obtain

k eTak6L6(B) � 1� �
8� + 6

�� 2

�

�2=3

h� +O(h5�) : (18)

Step III. Estimate on kD2 eTakL2(B).

To estimate the semi-norm kD eTakL2(B) we start noticing that, since

Ta(x) =
ap

1 + bjxj2 =: '(jxj) ;

one has

DTa(x) = '0(jxj) x

jxj = � abjxj�
1 + bjxj2�3=2 x

jxj ;
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and

D2
ijTa(x) = '00(jxj)xixjjxj2 + '0(jxj) jxj

2�ij � xixj
jxj3 :

Therefore,

kD2 eTak2L2(B) = kD2TakL2(B) =

Z
B

��D2Ta(x)
��2 dx � Z

B

'00(jxj)2 + '0(jxj)2
jxj2 dx

� a2b2
Z
B

1�
1 + bjxj2�3 dx = a2b2

Z 1

t=0

4�t2�
1 + bt2

�3 dt � a2
p
b

� 1

h4�
:

(19)

Step IV. Conclusion.

We can now conclude: by (6) and (19) we get

kD�1
h

� eTa��D eTakL2(B) =
���1

h(
eTa)� eTa��1 � ChkD2 eTakL2(B)

� Ch1�2� :
(20)

Since the space Vh is contained in W1;2
0 (B), by Sobolev embeddings we also have that

k�1
h

� eTa�� eTakL6(B) � C
���1

h

� eTa�� eTa��2;B � Ch1�2� : (21)

Finally, putting together the estimates (11), (18), (20) and (21), and using (10), we
immediately get

Sh � S + Ch1�2� + Ch� :

We then derive that the best choice for � is � = 1=3, which leads to the thesis. �

2.3 Lower estimate

In this section we will show the lower estimate.

Proposition 2.2 There exist two positive constants C and 
 such that

Sh � S +
1

C
h
 :

Proof. We recall that

Sh = inf
f2Vh

kDfkL2(B)

kfkL6(B)
;

so that, since Vh is a �nite dimension space and the ratio is an invariant if we multiply
f by a constant, the in�mum is realized by some function fh 2 Vh with kfhkL6(B) = 1:
that is,

Sh =
kDfhkL2(B)

kfhkL6(B)
= kDfhkL2(B) :

For simplicity, let us still denote by fh its extension by 0 on Rn n B, which belongs
to W1;2(Rn). By applying the quantitative Sobolev inequality (Theorem 1.2) to the
function fh, we deduce the existence of an optimal function G = ga;b;x0 such that

kGkL6(R3) = kfhkL6(R3) = kfhkL6(B) = 1 ;

10



and
kfh �GkL6(R3) = �(fh) � C�(fh)

� = C(Sh � S)� : (22)

Then, to get a lower estimate for Sh, we will try to estimate from below the term
kfh � GkL6(R3). It will be useful, in analogy with Proposition 2.1, to de�ne � = �(h)
so that a = 1=h� (recall that a, b and x0 are �xed since G = ga;b;x0). We �x now " > 0
and we divide two cases, namely whether � is bigger or smaller than 1 + ".

Case I. If � � 1 + ".
In this case, keep in mind the estimate (13) from Proposition 2.1, since in that con-
struction we had by de�nition x0 = 0, the estimate tells us that

kGkL6(R3nB0) �
1

C
h� ;

where B0 = fx 2 R3 : jx�x0j � 1g. Moreover, being G a radially symmetric decreasing
function, one clearly has

kfh �GkL6(R3) � kfh �GkL6(R3nB) = kGkL6(R3nB)

� kGkL6(R3nB0) �
1

C
h� � 1

C
h1+" :

(23)

Notice that to get this estimate we did not really use the assumption � � 1 + ", except
of course in the last inequality: the estimate kfh �GkL6 � h�=C is true for any value
of �, but it is interesting for our purpose only if � is big enough.

Case II. If � � 1 + ".
In this second case we start noticing that, being kGkL6(R3) = 1, formula (8) still holds
for b. Moreover, since we already know that Sh � S & 0, then by (22)

1� C
�
Sh � S

�� � kfh �GkL6(R3) � kfh �GkL6(B)

� kfhkL6(B) � kGkL6(B) = kGkL6(R3nB) :

This immediately implies that x0 2 B. Let then T � 2 Th be the tetrahedron containing
x0, and let ~h be de�ned so that, splitting T � into the two parts T1 and T2 given by

T1 := T � \ fx 2 R3 : jx� x0j � ~hg ; T2 := T � n T1 ;
one has ��T1�� = ��T2�� = ��T ���

2
:

Since the mesh is regular and uniform (cf. Section 1.2), and x0 2 T �, it is

h � ~h � 1

C
hT� � 1

C
h :

Notice now that, by the formula (3) for G, for any x such that jx � x0j � ~h one has,
again using (8),

G(x) � aq
1 + b~h2

� h��1 � 1 ; (24)

since in the present case � � 1 + ". We now use again the estimate (13), which tells us
that

kGkL6(R3nB0) � Ch� :

11



Moreover, writing eB = fx : ~h � jx� x0j � 1g, one has also

kGkL6( eB) � kGkL1( eB)

�� eB��1=6 � Ch��1 � Ch" ;

thanks to (24). Summarizing, the assumption � � 1+" leads us to deduce that, de�ning
Bh = fx : jx� x0j � ~hg,

kGkL6(Bh) =
6

q
1� kGk6L6(R3nB0)

� kGk6
L6( eB)

� 1 :

Since the mesh is regular, this implies the existence of a positive constant C�, depending
only on the shape regularity constant of the mesh, such that

kGkL6(T1) � C� : (25)

On the other hand, it is of course

kGkL6(T2) � kGkL6(R3nBh) � 1 : (26)

Notice now that, by an easy geometrical argument, there exists a geometric constant eC,
depending only on the mesh, such that for any function v 2 Vh one has

1eC kvkL6(T1) � kvkL6(T2) � eCkvkL6(T1) : (27)

It is now simple to guess that (25), (26) and (27) will lead to a lower bound for kfh �
GkL6(R3). Indeed,

kfh �Gk6L6(R3) � kfh �Gk6L6(T1)
+ kfh �Gk6L6(T2)

:

then, if

kfhkL6(T1) �
C�

2
;

we have

kfh �Gk6L6(R3) � kfh �Gk6L6(T1)
�
�
C�

2

�6

:

On the other hand, if

kfhkL6(T1) �
C�

2
;

then

kfh �Gk6L6(R3) � kfh �Gk6L6(T2)
� ��kfhkL6(T2) � kGkL6(T2)

��6 � �
C�

3 eC
�6

for h � 1. We can then conclude by saying that, in the case � � 1 + ", there is a
constant bC so that

kfh �GkL6(R3) � bC (28)

for h� 1. Notice that the constant bC, which is formally given by

bC = min

(�
C�

2

�6

;

�
C�

3 eC
�6
)
;

12



does not depend on ". What depends on " is how small h needs to be in order the
estimate (28) to hold true.

We can �nally conclude the proof. By (23) and (28) we know that, in any case, if
h� 1 then

kfh �GkL6(R3) �
1

C
h1+" :

by (22), then, we have

Sh � S � 1

C
h(1+")=� :

Thus, recalling formula (4) for �, the thesis is obtained for any


 >
1

�
=

2 � 262
3

:

Notice that, if 
 & 1=�, then the corresponding C goes to +1. �

3 Dimensional reduction

Since a numerical estimate for a three-dimensional problem would be extremely
slow and fairly accurate, in this section we show how to reduce our original
problem to a one-dimensional one, which is meaningful since, how we already
observed, the problem of �nding extremals for Sobolev inequality is basically
one dimensional. To do so, we will construct a suitable sequence of \spherical
meshes" of the unit ball in R3.

3.1 Construction of spherical meshes

We now describe how to construct a sequence of \spherical meshes" Thk , k 2 N,
which will be made by \spherical tetrahedra". We consider the usual trans-
formation � : R3

�;�;' �! R
3
x;y;z from spherical to Cartesian coordinates given

by

�

0
@ �

�
'

1
A :=

0
@ � cos(�) sin(')

� sin(�) sin(')
� cos(')

1
A ;

with � 2 R
+, � 2 [0; 2�) and ' = [0; �). The spherical tetrahedron of vertices

A,B,C,D is the image under � of the standard \straight" tetrahedron having
vertices A0 = ��1(A), B0 = ��1(B), C 0 = ��1(C), D0 = ��1(D) (see Figure 1).
To obtain the spherical mesh Thk , we will construct a standard mesh bThk made

of \straight" tetrahedra; then, replacing each tetrahedron in bThk by the spherical
tetrahedron with the same vertices, we get Thk .

The meshes bThk , which are shown in Figure 2 for k = 1; : : : ; 6, will be de�ned
as follows.

1. We identify a �nite number of concentric spheres in the ball B: in partic-
ular, at step k, we will consider all the spheres with radii `=k, ` = 1; : : : ; k;

13



x y
zA0B0C0D0 x y

zABCD
Figure 1: Sample of a straight and a spherical tetrahedron.

2. each sphere is approximated by a suitable triangular grid having all the
vertices on the sphere;

3. the straight tetrahedra are obtained by suitably connecting the vertices of
consecutive layers.

Let us now show how to generate a sequence fE`g`2N of shape regular and
uniform triangulations approximating a given sphere @B� centered in the origin
and with radius �. Our approach is similar to the one considered in [1] with some
modi�cations due to the fact that at the end we are interested in constructing
a three-dimensional mesh for the unit ball. Let R = f�g � [0; 2�)� [0; �] be the
parameter domain in the (�; �; ') coordinates. We consider triangulations of R
as the ones depicted in Figure 3 for ` = 1; 2; 3; 4; for ` > 4 the corresponding
re�nements are obtained analogously. Notice that the following properties hold:

i) all the elements are triangular and have one edge parallel to the �-axis,
except for pole elements (i.e., the elements of the grid containing points
with ' equal to 0 or �) which are rectangular;

ii) at each pole there are six rectangles.

The searched grid which approximates @B� is then obtained as the triangular
grid whose vertices are the image through � of the vertices of E` with the same
connectivity matrix. Notice that this grid is made only by triangles because,
when passing from spherical to cartesian coordinates, the rectangles near the
poles become triangles.

Once we have constructed the sequence E` of two-dimensional triangulations
approximating @B�, the corresponding three-dimensional mesh is obtain as fol-
lows:

� the initial grid bTh1 is obtained by constructing the mesh E1 with vertices
lying on @B1, and connecting all the boundary points with the origin (see
Figure 2(a));

14



(a) bTh1 (b) bTh2

(c) bTh3 (d) bTh4

(e) bTh5 (f) bTh6

Figure 2: Sample of straight triangulations bThk , k = 1; : : : ; 6.
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�

'

�

'

�

'

�

'

Figure 3: Triangulation of @B� in the parameter domain: levels ` = 1; 2 (top),
and levels ` = 3; 4 (bottom).

� the second grid bTh2 is obtained by constructing the mesh E1 on @B1=2 and
the mesh E2 on @B1. Next, we connect all the vertices on @B1=2 with the
origin, whereas the points on @B1 and @B1=2 are connected properly with
each other to obtain a tetrahedral mesh as shown in Figure 2(b)).

� the grid bThk is obtained by constructing, for each ` = 1; : : : ; k, the mesh
E` on the sphere @B`=k. Finally, the generated points that lie on two
consecutive spheres are connected properly with each other to obtain a
tetrahedral mesh: see Figures 2(c){2(f)) for k = 3; 4; 5; 6.

The mesh Thk is then obtained from bThk , as we said before, simply replacing

all the straight tetrahedra of bThk with the spherical tetrahedra with the same
vertices. Notice that this is a mesh on the whole ball B, not on an approximation
Bh.

3.2 Reduction to a one-dimensional problem

Once we have our spherical meshes, we can consider a �nite element approxi-
mation corresponding to them: more precisely, we can de�ne the discret space
Vh �W1;2

0 (B) as the set of those functions f 2W1;2
0 (B) which, for each spherical

tetrahedron T 2 Th, are a�ne on T with respect to the spherical coordinates �; �
and '. Notice that elements of Vh are continuous and that an element of Vh is
completely known once one knows its values on the interpolation nodes: hence,
Vh is a �nite-dimensional vectorial space. Notice also that, in this setting, the
dimension of Vh is not the number of the interpolation nodes which are inside
the ball B, since not all the values of f 2 Vh at the interpolation nodes are
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independent: this is due to the fact that the change of variables between spheri-
cal and cartesian coordinates is not one-to-one. More precisely, if a tetrahedron
T 2 Th contains the origin and, inside T , f is a�ne in �; � and ', it is clear
that f must be in fact a�ne only in �; hence in particular the values of f at
the interpolation nodes which are in the most internal sphere must be all equal.
Analagously, a function f 2 Vh is a�ne only on � and ' in the tetrahedra which
contain a polar point (i.e., a point which is in the z�axis, or equivalently which
has the ' coordinate equal to 0 or �).

It is then possible to de�ne the constant Sh as the biggest constant for which
the discrete Sobolev inequality

kDfkLp(B) � ShkfkLp? (B) 8f 2 Vh

holds. The situation is completely analogous to the problem considered in the
�rst sections, the only di�erence being the fact that meshes are now spherical
instead of straight. In particular, the result of Theorem 1.1 can be proved in a
completely similar way in this new setting. However, the problem is now easier
to handle with since the spherical structure is better in order to approximate a
problem which has radially symmetric solutions. Being more precise, let us call

bVh = �
f 2 Vh : f is radially symmetric

	
:

This set is not empty thanks to the fact that the mesh is made by spherical
tetrahedra and the elements of Vh are a�ne in the spherical coordinates: on the
other hand, in the standard \straight" setting of the �rst sections there were no
functions in Vh which are radially symmetric (except the null function)! Notice
that bVh corresponds to all and only the functions of Vh which have the same
value at all the interpolation nodes having a given distance from the origin.
Being bVh a subspace of Vh, it is clear the bSh � Sh, where bSh is of course the
biggest constant for which one has

kDfkLp(B) � bShkfkLp? (B) 8f 2 bVh :
Therefore, in order to check numerically the validity of our estimate Sh � S +
Ch1=3, it is enough to work with bSh instead of Sh (by the way, recalling Polya{
Szeg�o Theorem 2.1 it is easy to guess that indeed bSh � S � Sh � S, so that in
fact we will also check the lower estimate Sh � S + C�1h
).

Finally, we can notice that, as anticipated before, the problem of evaluating
numerically bSh is much faster and more e�cient than evaluating Sh: for a radially
symmetric function f(x) = u(jxj), indeed, one has clearlyZ

B
jf(x)j6 dx =

Z 1

0
4��2ju(�)j6 d� ;

and analogously Z
B
jDf(x)j2 dx =

Z 1

0
4��2ju0(�)j2 d� :
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hence, the three-dimensional problem corresponding to f , which involves three-
dimensional integrals, has reduced to a one-dimensional problem corresponding
to u and involving one-dimensional integrals.

In the next section, then, we are going to show our numerical results for this
one-dimensional problem.

4 Numerical results

In this section we present some numerical results to validate our theoretical
estimates. Since we have reduced ourselves to a one{dimensional problem, we
are allowed to take our computational domain as I = [0; 1]. More precisely,
associating to any radially symmetric function f : B ! R the corresponding
u : I ! R so that f(x) = u(jxj), we perform our numerical study working on u
instead of f . To this aim, let fTNgN�2 be a sequence of partitions of I made
by N subintervals Ii = [xi�1; xi], i = 1; : : : ; N , with corresponding mesh size
hN = maxi jIij.

Since we are going also to consider non-uniform and adaptively re�ned grids
(cf. Section 4.2 and Section 4.3, below), the mesh size hN of the mesh is not
the right parameter to study the behavior of the approximation error, being the
number N of intervals the correct one (as, of course, the time needed to get the
numerical results only depends on N). For this reason, from now on we will call
SN the approximation of the Sobolev constant S on a grid TN of N intervals.
Recall that for an equispaced grid with N elements we have hN = N�1, saying
that estimates in Theorem 1.1 can be restated as

S +
1

C

�
1

N

�


� Sh � S + C

�
1

N

�1=3

;

for two constants C; 
 > 0.

For a �xed partition TN , we denote by VN the �nite element space associated
to TN , that reads now

VN = fu 2 C0(I) : ujIi 2 P1(Ii) 8Ii 2 TN ; u(1) = 0g:

To represent functions in VN we use the standard set of Lagrange \hat" basis
functions, i.e., VN = spanf�i; i = 0; : : : ; N � 1g, where �i(xj) = �ij for j =

0; : : : ; N � 1. Therefore, we write any uN 2 VN as uN =
PN�1

i=0 ui�i, and collect
the expansion coe�cients ui, i = 0; : : : ; N � 1, in the vector u 2 RN .

We must consider, then, the following constrained optimization problem:
�nd u 2 RN realizing

min
u2RN

RN (u); subject to u0 = 1; (29)
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where RN (u) is the Rayleigh quotient given by

RN (u) =

�R 1
0 4��2 ju0N (�)j2 d�

�1=2
�R 1

0 4��2 juN (�)j6 d�
�1=6 :

Notice that, being RN (u) = RN (�u) for any � 2 R by de�nition, the assumption
u0 = 1 does not e�ect the minimization problem, but is just set in order to ensure
convergence to our numerical procedure.

Thanks to the discussion in the previous section, we know that SN basically
corresponds to the solution of problem (29). We have numerically solved (29)
and compared our discrete approximation SN with the sharp constant (2).

In Section 4.1 we present some numerical results obtained with equispaced
grids to validate our theoretical estimates. Then, due to the shape of the opti-
mal functions (which decrease very rapidly from 1 to almost 0 near the origin,
and then remain very close to 0 in most of the ball) we pass to consider non-
equispaced grids clustered to 0. A �rst speci�c example of non-uniform grids,
which shows that the convergence rate is much faster with respect to the case of
equispaced grids, is made in Section 4.2. Finally, in Section 4.3 we present an
adaptive algorithm which automatically generate the grids, and that provide an
even faster rate of convergence.

4.1 Equispaced grids

We consider a sequence of equispaced uniform grids made of N = 2k elements,
k = 1; 2; : : : ; 9, with corresponding mesh size hN = 2�k, and, at each step of
re�nement, we have solved the constrained optimization problem (29). In Table 1
we report the computed errors together with the computed convergence rates:
we observe that SN � S & 0 as N goes to +1, at a rate of 0:6 approximately.
Observe that the convergence rate is in the range predicted by Theorem 1.1.
In Figure 4 we report, for the re�nement levels k = 2; 3; : : : ; 9, the computed
optimal function uN . For the sake of comparison, we also show the exact optimal
function

u(�) =
1q

1 + b j�j2
; (30)

where, at each re�nement level, the parameter b in (30) has been chosen so that
kfkL6(B) = kfNkL6(B), namely

Z 1

0
4��2 juN (�)j6 d� =

Z 1

0
4��2 ju(�)j6 d� : (31)

In Table 1 (�fth column) we also report kfNkL6(B). The selection of b in (31)
has been done numerically by the bisection method up the machine precision
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Figure 4: Approximated optimal function (solid line) and exact optimal function
(dashed line) on equispaced grids for the re�nement levels k = 2; 3; : : : ; 9.
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Table 1: Equispaced grids. Error estimates and computed convergence rates;
estimate of kfNkL6(B) and corresponding estimate of b such that kfkL6(B) =
kfNkL6(B).

k N SN � S rate kfNkL6(B) b

1 2 5.5294e-01 - 4.7878e-01 3.4565e+01
2 4 3.2139e-01 0.78279 3.6568e-01 1.0200e+02
3 8 1.9909e-01 0.69093 2.7725e-01 3.0897e+02
4 16 1.2868e-01 0.62960 2.1275e-01 8.9130e+02
5 32 8.4367e-02 0.60905 1.7156e-01 2.1078e+03
6 64 5.4019e-02 0.64322 1.4399e-01 4.2472e+03
7 128 3.4074e-02 0.66480 1.1684e-01 9.7981e+03
8 256 2.1515e-02 0.66333 9.2956e-02 2.4456e+04
9 512 1.3778e-02 0.64296 7.2168e-02 6.7314e+04

(cf. Table 1, last column). As it can be inferred from the results shown in
Figure 4, as the mesh is re�ned we get better and better approximations.

It is easy to understand that, as h goes to 0 or, equivalently, as N goes to
+1, the approximated solution uN , decrease faster and faster near the origin
(where by de�nition its value is always 1), and then it is very close to 0 in most of
the interval I. This is clear from the geometry of the solution (cf. also Figure 4),
and it can be inferred from the proof of Lemma 2.1. Therefore, to improve the
approximation error and to save computational time, the grid points should be
clustered near the origin where the solution undergoes a rapid variation. In
other words, once the number N of intervals of the grid is �xed, it appears
quite reasonable that a grid more dense around the origin should give better
approximation results.

Based on the above observation, we will now consider non-equispaced grids:
we start in Section 4.2 with an arbitrary chosen grid, to show that even with this
simple choice the convergence rate is improved, and then in Section 4.3 we will
present an adaptive algorithm to get an automatically generation of the grids.

4.2 Non-equispaced grids: an example

The grid that we present in this section is very simple: we �x a positive parameter
� and we consider N = 2k intervals whose lengths are proportional to 1, 1 + � ,
1 + 2� , . . . 1 + (N � 1)� : this means that the points xi are given by the formula

xi =
i(2 + �(i� 1))

N(2 + �(N � 1))
; i = 0; : : : ; N:

Notice that, the equispaced grid correspond to � = 0, and when � becomes
bigger, then more points are clustered to the origin. Figure 5 shows a sample of
the �rst four re�nements (k = 1; 2; 3; 4) for � = 1.
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Figure 5: First four levels of non-equispaced grids for � = 1.

We have ran the same set of experiments as before: the results are shown in
Table 2. We clearly observe an improvement in the approximation errors: with
N = 128 we get a better approximation of S than what we had in the equispaced
case with N = 512. Also the computed convergence rate is quite better than
in the equispaced case, namely 1 instead of 0:66. We have ran the same set of
experiments with � = 2; 3; 4: the results are analogous to the ones reported in
Table 2 and are omitted here for the sake of brevity.

Table 2: Non-equispaced grids. Error estimates and computed convergence rates;
estimate of kfNkL6(B) and corresponding estimate of b such that kfkL6(B) =
kfNkL6(B).

k N SN � S rate kfNkL6(B) b

1 2 5.1876e-01 - 3.9518e-01 7.4740e+01
2 4 3.0466e-01 0.7679 2.4031e-01 5.4744e+02
3 8 1.6633e-01 0.8731 2.1834e-01 8.0339e+02
4 16 8.5380e-02 0.9621 1.5738e-01 2.9762e+03
5 32 4.3220e-02 0.9822 1.1682e-01 9.8043e+03
6 64 2.1770e-02 0.9894 8.4353e-02 3.6065e+04
7 128 1.0928e-02 0.9942 6.0105e-02 1.3991e+05
8 256 5.4981e-03 0.9911 4.1442e-02 6.1908e+05
9 512 2.8059e-03 0.9705 2.8469e-02 2.7799e+06

4.3 Non-equispaced grids: an adaptive re�nement strategy

Finally we present an adaptive algorithm for the automatic re�nement of the
mesh. The re�nement strategy follows this observation: in view of the classical
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estimate (6) one can expect that, to estimate as good as possible a function f ,
more points of the grid are needed where the second derivative of f is big. Recall
also that, in our problem, we do not want to approximate a single unknown
function: indeed, there is a whole 1�parameter class of optimal functions, and
of course whenever a di�erent grid is selected then our approximated solution
will be close to a di�erent optimal one. Hence, the adaptively re�ned mesh is
generated according to the following algorithm.

Algorithm 4.1 Given an initial grid with N0 elements,

1. solve the constrained optimization problem (29);

2. compute the parameter b in (30) so that (31) is satisfied;

3. compute the quantities

�i =

Z xi

xi�1

4��2
��u00(�)��2 d�; i = 1; : : : ; N ;

4. employ the fixed fraction mesh refinement criterion, based on

�i, with refinement fraction set to 25%, to identify elements

which will be refined;

5. refine elements marked for refinement.

In Figure 6 we show the �rst six meshes generated by Algorithm 4.1 starting
from an initial uniform grid made of N0 = 8 elements, together with the corre-
sponding zoom near the origin: as expected the adaptive algorithm cluster points
near the origin. The computed errors SN � S together with the computed con-

0 0.2 0.4 0.6 0.8 1
N=  8  

N= 10  

N= 13  

N= 16  

N= 20  

N= 25  

0 0.025 0.05 0.075 0.1 0.125
N=  8  

N= 10  

N= 13  

N= 16  

N= 20  

N= 25  

Figure 6: First six levels of adaptively re�ned grids (left), and corresponding
zoom near the origin (right).

vergence rates are shown in Table 3. As before, we also report kfNkL6(B) and the
corresponding estimate of b such that kfkL6(B) = kfNkL6(B). The convergence
rate is now around 1:5, so more than linear, indicating that the adaptive strategy
provides better results than the ones obtained on general non-equispaced grids.
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Table 3: Adaptively re�ned grids. Error estimates and computed conver-
gence rates; estimate of kfNkL6(B) and corresponding estimate of b such that
kfkL6(B) = kfNkL6(B).

level N SN � S rate kfNkL6(B) b

1 8 1.9909e-01 - 2.7724e-01 3.0899e+02
2 10 1.3432e-01 1.9609 2.1074e-01 9.2568e+02
3 13 9.0433e-02 1.6406 1.6706e-01 2.3441e+03
4 16 6.1186e-02 2.0122 1.3813e-01 5.0151e+03
5 20 4.0335e-02 1.9720 1.1178e-01 1.1695e+04
6 25 2.6498e-02 1.9672 8.8816e-02 2.9344e+04
7 31 1.7511e-02 1.9950 7.0312e-02 7.4711e+04
8 39 1.1505e-02 1.8826 5.5871e-02 1.8739e+05
9 49 7.5472e-03 1.8893 4.4451e-02 4.6771e+05
10 61 4.9593e-03 1.9520 3.5257e-02 1.1817e+06
11 76 3.3586e-03 1.7988 3.0061e-02 2.2361e+06
12 95 2.4773e-03 1.3799 2.5854e-02 4.0866e+06
13 119 1.8406e-03 1.3315 2.1575e-02 8.4274e+06
14 149 1.3621e-03 1.3492 1.8841e-02 1.4489e+07
15 186 1.0253e-03 1.2881 1.4799e-02 3.8069e+07
16 233 7.1047e-04 1.6361 1.1163e-02 1.1758e+08
17 291 5.0007e-04 1.5860 8.4020e-03 3.6641e+08

Finally, we compare the results obtained with the three set of meshes consid-
ered so far: namely, equispaced, non-equispaced, and adaptively re�ned grids:
the computed errors versus the number of elements N are shown in Figure 7
(loglog scale). Clearly, the results obtained on the sequence of adaptively re-
�ned grids outperform the ones obtained on both equispaced and non-equispaced
meshes.

5 Conclusion

We have shown that the optimal constant in the discrete Sobolev inequality in
W1;2

0 (B) approximates, with a polynomial rate of convergence, the optimal con-
stant in the continuous version of the Sobolev inequality. The convergence is
established providing both an upper and a lower bound on the rate of conver-
gence. Numerical results including also an adaptive re�nement strategy are also
presented.

Possible future developments of our results may go in the following directions.

� The development of a better re�nement strategy to construct the mesh:
indeed, even though our method appears quite good, it could be made
better since when N increases also b increases, and then the re�nement of
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Figure 7: Computed error SN � S versus the number of elements: equispaced,
non-equispaced, and adaptively re�ned grids.

the grid made at one level is surely good but it is not the best possible
choice for the following levels.

� In this work we do not have to approximate a given function, but we are
approximating a degenerating sequence of functions. Hence, it could be
possible to adopt the same kind of strategy for situations where solutions
do not exist or degenerate in some sense. For instance, in the case of
problems with critical exponents, it may happen that a solution does not
exist but the �nite elements method gives an \approximated solution".
It could be interesting to understand at which rate these approximated
solutions explode or disappear when h& 0.

� More general Sobolev embeddings and the related inequalities are exten-
sively studied in the literature (among the recent works, we mention for
instance [12]). Therefore, one could try to investigate the possible conse-
quences that our kind of \polynomial rate of convergence" result has in
these general kinds of problems.
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