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Abstract

In this paper we consider the coupling between two diffusion-reaction prob-

lems, one taking place in a three-dimensional domain Ω, the other in a one-

dimensional subdomain Λ. This coupled problem is the simplest model of fluid

flow in a three-dimensional porous medium featuring fractures that can be de-

scribed by one-dimensional manifolds. In particular this model can provide

the basis for a multiscale analysis of blood flow through tissues, in which the

capillary network is represented as a porous matrix, while the major blood

vessels are described by thin tubular structures embedded into it: in this

case, the model allows the computation of the 3D and 1D blood pressures

respectively in the tissue and in the vessels.

The mathematical analysis of the problem requires non-standard tools,

since the mass conservation condition at the interface between the porous

medium and the one-dimensional manifold has to be taken into account by

means of a measure term in the 3D equation. In particular, the 3D solution is

singular on Λ. In this work, suitable weighted Sobolev spaces are introduced

to handle this singularity: the well-posedness of the coupled problem is estab-

lished in the proposed functional setting. An advantage of such an approach

is that it provides a hilbertian framework which may be used for the conver-

gence analysis of finite element approximation schemes. The investigation of

the numerical approximation will be the subject of a forthcoming work.

1 Introduction

In this paper we focus on a special class of differential problems, involving a three-
dimensional domain Ω ⊂ R

3 and a one-dimensional subdomain Λ ⊂ Ω, which is a
line parametrised by its curvilinear abscissa s (see fig. 1).

We consider a pair of spaces V1, V2 of real functions on Ω, and a space V̂ of real
functions on Λ: the spaces V1, V2, V̂ will be specified later. Let A : V1 × V2 → R,
Â : V̂ × V̂ → R the following bilinear forms

A(u, v) :=

∫

Ω

A1∇u · ∇vdx +

∫

Ω

A0uvdx, (1)

Â(û, v̂) :=

∫

Λ

Â1
dû

ds

dv̂

ds
ds +

∫

Λ

Â0ûv̂ds, (2)

(3)

where A1, A0 ∈ L∞(Ω) and Â1, Â0 ∈ L∞(Λ). Let1 Π : V1 → L2(Λ) be a continuous
linear operator, and let be given two continuous functionals B : V2 → R, B̂ : V̂ → R.

1For the sake of simplicity, we will often identify a space of functions defined on a given
manifold and the corresponding space of functions defined on the domain of the parametrisation.
For instance, if Λ is parametrised by the curvilinear abscissa and has length L, we will identify
L2(Λ) and L2(0, L).
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The problem we want to study is: find (u, û) ∈ V1 × V̂ such that





A(u, v) +

∫

Λ

β(Πu − û)vds = B(v) ∀v ∈ V2,

Â(û, v̂) −

∫

Λ

β(Πu − û)v̂ds = B̂(v̂) ∀v̂ ∈ V̂ ,
(4)

where β ∈ L∞(Λ).

Ω

Λ

s

Figure 1: A 3D domain Ω with a 1D sub-domain Λ (the fracture).

Problem (4) is not “standard” because of the special line integral term in the
first equation of (4). The continuity of the corresponding bilinear term is ensured
only if the space V2 is equipped with continuous trace operator γΛ : V2 → L2(Λ) on
Λ. This would not be the case if we took V2 = H1(Ω): V2 has to be “smaller” than
H1(Ω). As a consequence, V1 has to be “larger”; in other words, the solution u is
not H1(Ω).

In this paper we introduce suitable functional spaces V1, V2 and V̂ , carry out the
mathematical analysis of the decoupled 3D equation, and prove the well-posedness
of the fully coupled 1D-3D problem.

Our main motivation for studying the abstract formulation (4) is that it provides
a general paradigm for multiscale flow problems in 3D domains having 1D “fissures”,
including blood flow through biological tissues. In such cases, u and û represent fluid
pressures, Π is typically an “averaging” operator, having the meaning of the local
average of u around a point on Λ, and β plays the role of a hydraulic conductance,
so that β(Πu − û) represents the linear density of flow rate entering Λ from Ω.
Besides the simulation of flow in fractured porous media has gained importance
in scientific literature mainly because of its applications in geomechanics, similar
models were recently applied in biomechanics for describing physiological flows. For
instance, Huyghe, Ooomens and co-workers[8, 9] have developed a theory capable
of accounting for the huge range of geometrical scales of the vascular structures:
they look at tissue perfusion as blood flow through a hierarchical porous medium, in
which each hierarchy of pores describes a network of vessels having comparable sizes.
In certain cases, modelling some arteries and arterioles of the considered vascular
tree as “pores” of a homogeneous medium may not be satisfactory, and one has to
take into account the geometry of the major blood vessels. However, the network of
these vessels can still be quite complex (for an example, see fig. 2), which prevents
(or at least makes rather difficult) to consider the full three-dimensional Navier-
Stokes equations to model blood flow in it. Since blood vessels are thin tubular
structures, one possible strategy that allows the reduction of the complexity of the
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problem at hand consists in representing the latter network as a one-dimensional
fracture in the tissue. In this case, the problems that are found fall in the family of
models (4). We point out that Quarteroni et alt.[14, 5] have already studied 1D-3D
models for blood flow in arteries, considering a “sequential” coupling. The point of
view of this paper is more on the “geometrical” coupling between blood flow in a
1D vessel and through the surrounding tissue.

Figure 2: Retinal imaging. Shown is the retinal tissue, with a network of major
blood vessels. In the steady case, blood flow can be modelled by 3D Darcy flow in
the former and 1D Poiseuille flow in the latter, with suitable coupling conditions.

As an example, let us consider the steady perfusion of a biological tissue, rep-
resented by the domain Ω. Suppose that, at the macroscale, tissue’s vasculature
is given by a single artery; in spite of this artery having a certain radius R > 0,
we consider the frequent case in which R ≪ diam(Ω). In this case, the artery can
be represented by a one-dimensional subdomain Λ, parametrised by the curvilin-
ear abscissa s ∈ [0, L], L being the artery length. The averaged blood flow in the
capillary matrix of the tissue is governed by Darcy’s equation[9]; and if R is small,
blood flow in the one-dimensional vessel satisfies a similar elliptic equation (see for
instance Fung[6], ch. 5, on steady flow in arteries). To introduce these equations,
denote by u, k : Ω → R the blood pressure and Darcy conductivity in the tissue,
respectively, and by û, k̂ : Λ → R the blood pressure and conductivity in the vessel.
Let q : Ω → R be the flow rate per unit volume of blood leaving the tissue capillaries
and collected by the venous system. Finally, let f̂ : Λ → R be the fluid loss from
the vessel to the tissue, i.e. the volume of blood transferred from the vessel to the
tissue per unit time and per unit vessel length. Then the tissue and vessel blood
pressures satisfy the equations





−∇ · (k∇u) + q − f̂ δΛ = 0 in Ω,

−
d

ds

(
k̂

dû

ds

)
+ f̂ = 0 in Λ,

(5)

where we denote by f̂ δΛ a Dirac measure with mass on Λ and having the density
f̂ . This measure term expresses the conservation of the blood flow rate (the blood
that is lost in the vessel goes into the tissue).

As regards the boundary conditions for problem (5), we assume that a given flow
rate Q is imposed at the vessel inlet s = 0, that the reference value of the pressure
at the outlet s = L is zero (this is not restrictive, since the pressure is defined up
to an arbitrary additive constant), and that no blood crosses the tissue boundaries.
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This reads




−k
∂u

∂n
= 0 on ∂Ω,

−k̂
dû

ds
= Q at s = 0, û = 0 at s = L.

(6)

Constitutive laws for the fluxes q, f̂ have to be chosen. We consider the following
linear filtration law:

f̂(u, û)(s) = β (û(s) − ū(s)) , (7)

where β is a permeability coefficient for the vessel-tissue blood transfer, and ū(s) is
the mean value of u on the circle having the actual vessel radius R, centered on Λ at
the point having curvilinear abscissa s, and lying in a normal plane to Λ. In other
words, we are assuming that the blood flow rate per unit length from the vessel to
the tissue is proportional to the gap between the vessel blood pressure and the local
average tissue pressure (computed at the actual vessel-tissue interface). We point
out that similar linear constitutive laws expressing the blood flow rate leaving a
certain level of the vascular hierarchy and entering into the neighboring levels have
been already adopted in biomechanics[9, 8].

As regards the venous out-flux, we consider again a first order conductive law,
in which q is proportional to the gap between tissue and venous blood pressures.
Moreover, assuming that the venous blood pressure is zero (this reference value is
only adopted for the sake of simplicity), we have

q = γu, (8)

where γ > 0 is a given conductivity term.
The weak formulation of problem (5) with boundary conditions (6) is actually

given by (4), where Πu = ū, B(v) = 0, B̂(v̂) = Qv̂(0), and A1 = k, A0 = γ, Â1 = k̂,
Â0 = 0.

At our knowledge, a mathematical analysis of such flow problems in 3D porous
media with 1D fractures is not available in literature. For 3D media, usually a
network of 2D fractures, that are in turn intersecting at a sub-network consisting of
1D fractures, has to be considered (see the work[1] by Alboin, Jaffré, Roberts and
Serres): in this way, the problem is traced back to the “standard” coupling of 3D-2D
and 2D-1D problems. This is not the case if we consider tissue perfusion problems.
The “high dimensional gap” encountered in the related 3D-1D coupled model of
blood flow makes the picture rather different, both regarding boundary/interface
conditions and the analysis of the resulting coupled problem, and constitutes the
subject of this work.

2 Geometry and notations

Let us introduce more precisely the geometry and the notations we will consider in
this work (see also fig. 3). Since our model is intended to be applied to blood flow
problems, we will refer to Ω as the tissue and Λ as the vessel.

(i) For the sake of simplicity, we assume that the vessel Λ is a single line:

Λ = {x ∈ Ω : x = x(s), s ∈ [s1, s2]} , (9)

where s is the curvilinear abscissa, and x : [s1, s2] → R
3 is a smooth parametri-

sation. This assumption can easily be extended to consider branching geome-
tries too.
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(ii) We assume that the actual vessel radius is a positive constant R > 0. Then,
we introduce the actual volume occupied by the vessel as the set of points
closer than R to Λ:

ΩR := {x ∈ R
3 : dist(x,Λ) < R}.

This is an auxiliary domain, that we will use only for the analysis of our
model. We assume that R is small enough so that ΩR ⊂ Ω.

We will equip ΩR with an atlas consisting of three local maps. To this end,
we define

ΩR
0 = {x ∈ R

3 : x = x0(s, r, θ),

(s, r, θ) ∈ (s1, s2) × [0, R) × [0, 2π)},

ΩR
1 = {x ∈ R

3 : x = x1(r, θ, φ), (10)

(r, θ, φ) ∈ [0, R) × [0, 2π) × [0, π)},

ΩR
2 = {x ∈ R

3 : x = x2(r, θ, φ),

(r, θ, φ) ∈ [0, R) × [0, 2π) × [0, π)},

being

x0(s, r, θ) = x(s) + n(s)r cos θ + b(s)r sin θ,

x1(r, θ, φ) = x(s1) + n(s1)r cos θ sin φ +

b(s1)r sin θ sin φ + t(s1)r cos φ, (11)

x2(r, θ, φ) = x(s2) + n(s2)r cos θ sin φ +

b(s2)r sin θ sin φ + t(s2)r cos φ,

where t(s), n(s) and b(s) are the tangent, normal and binormal versors on
Λ (see fig. 3). Roughly speaking, ΩR can be parametrised by an overlapping
union of one local map in cylindrical coordinates on ΩR

0 and two mappings in
spherical coordinates on ΩR

1 ,ΩR
2 .

(iii) We denote by ΓR = ∂ΩR the “actual” interface between vessel and tissue. The
“cylindrical” part of ΓR that belongs to the boundary of ΩR

0 will be denoted
by

ΓR
0 = {x ∈ R

3 : x = x0(s,R, θ), (s, θ) ∈ (s1, s2) × [0, 2π)}.

Our basic assumption on the vessel geometry is that the projection from ΩR

to Λ is unique:

∀x ∈ ΩR : ∃!x0 ∈ Λ : dist(x,Λ) = ‖x − x0‖. (12)

Notice that the projection x0 exists because Λ is compact. One can show that
eq. (12) is satisfied if Λ is smooth enough and R is small. A consequence of
(12) is that

dist(x0(s, r, θ),Λ) = r ∀(r, s, θ) ∈ [s1, s2] × [0, R) × [0, π). (13)

(iv) For the perfusion model described in section 1 we have in particular Πu = ū,
where ū is the mean value of the function u on circles of radius R laying
on the cylindrical surface ΓR

0 and normal to the line Λ. With the notations
introduced above, ū is defined by

ū(s) :=
1

2π

∫ 2π

0

u(x0(s,R, θ))dθ, (14)
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Ω

ΓRΩR

Λ

ΩR
0

ΩR
1

ΩR
2

∂Ω

n b

ts

Figure 3: Subdomains in Ω: the 1D domain Λ and the auxiliary 3D domain ΩR.
Shown is the covering of ΩR by overlapping subsets ΩR

0 , ΩR
1 and ΩR

2 where local
cylindrical/spherical coordinates x0, x1, x2 are defined.

at least for a smooth u. As we will see (lemma 4.3), this operator can be
extended to a the functional space V1 in such a way that it is continuous from
V1 to V̂ . In every case, for the sake of generality, in this paper we always
assume Π a generic bounded linear operator from V1 to V̂ , so that other
possible averaging operators can be considered in our abstract framework.

3 The coupled problem and the functional spaces

Problem (5) is a system of two elliptic equations, with the 3D equation featuring
a measure term in the form of a line integral. Existence and uniqueness results
for Dirichlet problems with measure data were proved by Stampacchia[17], whereas
the semilinear case has been treated by Brezis[3]: in these papers the authors have
proved the existence of a solution in W 1,q(Ω), with 1 ≤ q < 3/2 when Ω is in R

3

(in the linear case uniqueness is obtained as well).
In order to provide analytical tools suited also for numerical approximation

schemes, in this work we rather consider a hilbertian framework. We point out that
Babuška[2] and Scott[16] have already studied the convergence of finite element
schemes for Dirichlet problems with Dirac measure data. Nevertheless, their ap-
proach is essentially based on spaces Hs(Ω) with s ∈ [0, 1

2 ), and is not appropriate
for problems featuring terms like (7), where one needs a continuous mapping u → ū
on L2(Λ). Well posedness in spaces W 1,q and L2 finite element scheme convergence
was obtained by Casas[4]; however the extension to our problem, where the measure
appears not only as datum but in the differential operator as well, is not straight-
forward at all. Moreover, the measures involved by the problem considered in this
paper are not arbitrary: the only measure we deal with (see the strong formulation
(5)) is a Dirac measure concentrated on Λ. For all these reasons, we introduce an
“ad hoc” functional setting, based on weighted Sobolev spaces.

Let α ∈ (−1, 1); we denote by L2
α(Ω) the space of measurable functions u such

that ∫

Ω

u(x)2d2α(x)dx < ∞,

where d is the distance from Λ, d(x) = dist(x,Λ). This means that u ∈ L2
α(Ω)

if and only if dαu belongs to L2(Ω). L2
α(Ω) is a Hilbert space, equipped with the
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scalar product

(u, v)L2
α(Ω) =

∫

Ω

u(x)v(x)d2α(x)dx.

We also define the following weighted Sobolev space:

H1
α(Ω) =

{
u ∈ L2

α(Ω) : ∇u ∈ L2
α(Ω)3

}
,

and its scalar product

(u, v)H1
α(Ω) = (u, v)L2

α(Ω) + (∇u,∇v)L2
α(Ω)3 .

It is easily found that, for α ∈ (−1, 1), the weight function dα belongs to the
Muckenhoupt class A2 of functions w : R

3 → R+ such that

sup
B=B(x,r)

x∈R
3,r>0

(
1

|B|

∫

B

w(x)dx

) (
1

|B|

∫

B

w(x)−1 dx

)
< +∞

where B(x, r) is the ball centered at x with radius r, and |B| is its measure.
Hence[7, 10], the density of smooth functions, Rellich-Kondriatev theorem and
Poincaré inequalities hold true in H1

α (for the theory of weighted Sobolev spaces,
we also refer to Kufner[11]).

Before stating the well-posedness result for the coupled problem (4) (which is
the abstract formulation of perfusion models such as (5) with exchange term (7) and
venous flux (8)), we consider a simpler 3D decoupled problem. Finally, we extend
the previous results to the full coupled problem (4).

4 Analysis of the decoupled problem

Consider the coupled problem (4), and assume that the blood pressure in the vessel
Λ is known, û = u0. Then we are left with one variational equation only. We
introduce the bilinear form

a(u, v) = A(u, v) +

∫

Λ

βΠu(s)v(s)ds

=

∫

Ω

A1∇u · ∇vdx +

∫

Ω

A0uvdx +

∫

Λ

βΠu(s)v(s)ds, (15)

and the linear functional

F (v) =

∫

Λ

βu0v(s)ds + B(u). (16)

The decoupled problem reads: find u ∈ V1 such that

a(u, v) = F (v) ∀v ∈ V2. (17)

The idea here is to consider V1 = H1
α and V2 = H1

−α. To get the existence
and uniqueness of this problem, we will make use of a generalised Lax-Milgram
theorem[12, 2, 15]:

Theorem 4.1 (Nečas) Let V1 and V2 be two Hilbert spaces, F ∈ V ′
2 be a bounded

linear functional on V2 and a(·, ·) be a bilinear form on V1 × V2 such that

|a(u, v)| ≤ C1‖u‖V1
‖v‖V2

∀(u, v) ∈ V1 × V2, (18)

sup
u∈V1

a(u, v) > 0 ∀v ∈ V2, v 6= 0, (19)

sup
‖v‖V2

≤1

a(u, v) ≥ C2‖u‖V1
∀u ∈ V1, (20)
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where C1 and C2 are positive constants. Then there exists a unique u ∈ V1 such
that

a(u, v) = F (v) ∀v ∈ V2,

which depends linearly and continuously on F :

‖u‖V1
≤

1

C2
‖F‖V ′

2
.

In order to use this theorem for problem (17), we have to show that:

i) the bilinear form a defined in (15) is continuous on H1
α × H1

−α and satisfies
the inf-sup inequalities (19), (20);

ii) the functional F defined in (16) is continuous on H1
−α.

Let us start with point ii): we can show that if 0 < α < 1, functions of H1
−α

admit a continuous trace operator on the 1D manifold Λ. This implies that F is a
continuous functional on H1

−α. We will make use of the following weighted Hardy’s
inequality[13]:

Property 4.1 (Weighted Hardy’s inequality) Let 0 < p ≤ q < ∞, 0 < R ≤
∞ and let w1 and w2 be weight functions defined on (0,∞). Assume that, for every
r > 0, ∫ r

0

w2(t)
1

1−p dt < ∞.

Then, the inequality

(∫ R

0

(∫ r

0

f(t)dt

)q

w1(r)dr

) 1

q

dr ≤ C

(∫ R

0

f(r)pw2(r)dr

) 1

p

(21)

holds for all positive functions f on (0,∞) if and only if

D = sup
r∈(0,R)

(∫ R

r

w1(t)dt

) 1

q (∫ r

0

w2(t)
1

1−p dt

) p−1

p

< ∞.

Moreover, the best constant in (21) satisfies the estimate

D ≤ C ≤ k(p, q)D

where

k(p, q) =

(
p + qp − q

p

) 1

q
(

p + qp − q

(p − 1)q

) p−1

p

.

Thanks to weighted Poincaré’s inequality (21), we can prove the following trace
theorem, which guarantees the continuity of the functional F .

Theorem 4.2 (Λ-trace operator) Let 0 < α < 1. There exists a unique linear
continuous map

γΛ : H1
−α(Ω) → L2(Λ)

such that γΛφ = φ|Λ for each smooth function φ ∈ C∞(Ω). In particular, there
exists a positive number CΛ = CΛ(α) such that

‖φ‖L2(Λ) ≤ CΛ(α)‖φ‖H1

−α
(Ω) ∀φ ∈ H1

−α(Ω).
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Proof. Let φ ∈ C∞(Ω). By using the local cylindrical coordinates x0 and integrat-
ing in ΩR

0 along the radial direction, we have for every θ ∈ [0, 2π):

φ(s, 0, 0) = φ(s, r, θ) −

∫ r

0

∂φ

∂r
(s, t, θ)dt,

so that, using the inequality (a + b)2 ≤ 2a2 + 2b2, and integrating on ΩR
0 we get

πR2

∫

Λ

φ(s)2 ds ≤ 2

∫

ΩR
0

φ(s, r, θ)2rdsdrdθ + 2

∫

ΩR
0

(∫ r

0

∂φ

∂r
(s, t, θ)dt

)2

rdsdrdθ,

(22)
where φ(s) = φ(s, 0, 0). Now we can use theorem 4.1 and inequality (21) with
p = q = 2, the weight functions being

w1(t) = t, w2(t) = t1−2α,

and f(t) = |∂φ/∂r(s, t, θ)|; in fact, being α > 0 we have
∫ r

0

w2(t)
1

1−p dt =

∫ r

0

t2α−1dt =
r2α

2α
< ∞ ∀r > 0.

In particular,

D(α) := sup
r∈(0,R)

(∫ R

r

tdt

) 1

2 (∫ r

0

t2α−1 dt

) 1

2

= sup
r∈(0,R)

[
1

4α
(R2 − r2)r2α)

] 1

2

= R1+α α(−1+α)/2

2(α + 1)(1+α)/2
.

Since k(2, 2) = 2, we have

∫ R

0

(∫ r

0

∣∣∣∣
∂φ

∂r
(s, t, θ)

∣∣∣∣ dt

)2

rdr ≤ C(α)2
∫ R

0

∣∣∣∣
∂φ

∂r
(s, r, θ)

∣∣∣∣
2

r1−2α dr, (23)

where C(α) is any number such that

D(α) ≤ C(α) ≤ 2D(α). (24)

Moreover, using the identity r = dist(x,Λ) on Ω0, and estimates (23) and 1 ≤
dist(x,Λ)−2αR2α ∀x ∈ ΩR

0 in (22), we obtain

πR2

∫

Λ

φ(s)2ds ≤ 2Rα

∫

ΩR
0

φ(s, r, θ)2dist(x,Λ)−2αrdsdrdθ +

2C(α)2
∫

ΩR
0

(
∂φ

∂r
(s, r, θ)

)2

dist(x,Λ)−2αrdsdrdθ

≤ 2max{Rα, C(α)2}‖φ‖2
H1

−α
(Ω), (25)

Hence the following continuity estimate holds:

‖φ‖L2(Λ) ≤ CΛ(α)‖φ‖H1

−α
(Ω)

where CΛ(α) =
√

max{Rα, C(α)2}/(πR2), and φ is a smooth function. The exten-
sion to φ ∈ H1

−α(Ω) follows by a density argument. From (24) we have that the

dependence of CΛ on α for α → 0 is CΛ = O(α−1/2), and limα→0 CΛ = ∞; this
confirms that the result is not true anymore if α = 0 (non-weighted case).

We are left with the proof of i): the non-trivial step is here the inf-sup inequal-
ity (20). To prove this inequality, we will consider an auxiliary problem and the
following technical lemma, that we adapted to our case from Voldřich[18].
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x

xr

r

θ

θ

φ

s

ΩR
0

ΩR
1 \Ω

R
0

Λ

Figure 4: Local coordinates on subdomains of ΩR.

Lemma 4.1 Let α∗ ∈ (0, 1) and u ∈ H1
α(Ω) be given, with 0 < α ≤ α∗. Consider

the θ-Fourier expansions in local coordinates given by

u(s, r, θ) =
∑

k∈Z

Ak
0(r, s)eikθ in ΩR

0 , (26)

u(r, θ, φ) =
∑

k∈Z

Ak
1(r, φ)eikθ in ΩR

1 \Ω
R
0 , (27)

u(r, θ, φ) =
∑

k∈Z

Ak
2(r, φ)eikθ in ΩR

2 \Ω
R
0 . (28)

Consider the real function

A0(x) =





A0
0(r, s) in ΩR

0

A0
1(r, φ) in ΩR

1 \Ω
R
0

A0
2(r, φ) in ΩR

2 \Ω
R
0

defined on the whole ΩR. Furthermore, define

Ψ(x) = Ψ(x;u) =





Ψ(r, y;u) =

∫ R

r

t2α−1A0(t, y)dt in ΩR,

0 elsewhere,

(29)

where y can be either the s or the φ local variable, depending on the subdomain of
ΩR x belongs to (in particular, Ψ is independent of θ).

There are positive constants C1, C2, C3, dependent only on α∗, such that the
following estimates hold ∀α ∈ (0, α∗]:

‖u − A0‖L2

α−1
(ΩR) ≤ C1‖∇u‖L2

α(Ω), (30)

‖Ψ‖L2

−α
(Ω) ≤ C2‖u‖L2

α(Ω), (31)
∥∥d2α−1u∇d + ∇Ψ

∥∥
L2

−α
(ΩR)

≤ C3‖∇u‖L2
α(ΩR), (32)

where as usual d(x) = dist(x,Λ).
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The proof is given in the appendix. Thanks to this lemma we can prove the following
auxiliary result.

Lemma 4.2 Let A0, A1 ∈ L∞(Ω); assume that there exists a constant Amin > 0
such that A0, A1 ≥ Amin in Ω. Then, there is a constant δ ∈ (0, 1) such that for
each α ∈ (0, δ) there exists a unique w ∈ H1

α(Ω) satisfying

A(w,ψ) = F̃ (ψ) ∀ψ ∈ H1
−α(Ω),

where A is defined by (1) and F̃ is a given continuous linear functional on H1
−α(Ω).

Moreover, there is a positive number C̃ = C̃(α,Amin, ‖A0‖∞, ‖A1‖∞) > 0 such
that

‖w‖H1
α(Ω) ≤ C̃‖F̃‖H1

−α
(Ω)′ ∀F̃ ∈ H1

−α(Ω)′. (33)

Proof. The idea of the proof is to apply the Nečas’ theorem 4.1, with V1 = H1
α(Ω),

V2 = H1
−α(Ω), for α > 0 small enough. The bilinear form A is continuous on

H1
α(Ω) × H1

−α(Ω), since

|A(w,ψ)| ≤

∣∣∣∣
∫

Ω

A1∇w · ∇ψdx

∣∣∣∣ +

∣∣∣∣
∫

Ω

A0wψdx

∣∣∣∣

=

∣∣∣∣
∫

Ω

A1d
α∇w · d−α∇ψdx

∣∣∣∣ +

∣∣∣∣
∫

Ω

A0d
αwd−αψdx

∣∣∣∣
≤ ‖A1‖L∞‖∇w‖L2

α
‖∇ψ‖L2

−α
+ ‖A0‖L∞‖w‖L2

α
‖ψ‖L2

−α

≤ max{‖A1‖L∞ , ‖A0‖L∞}‖w‖H1
α
‖ψ‖H1

−α
.

Now, let ψ ∈ H1
−α(Ω), ψ 6= 0; since α > 0, we have H1

−α(Ω) ⊂ H1
α(Ω), so that

sup
u∈H1

α

A(u, ψ) ≥ A(ψ,ψ) ≥ Amin‖∇ψ‖2
L2(Ω) + Amin‖ψ‖

2
L2(Ω) > 0.

Hence, A is non-degenerate and hypothesis (19) is satisfied.
To prove that (20) holds, it is sufficient to show that there are positive constants

m, M , such that for every w ∈ H1
α there is ψ ∈ H1

−α satisfying

‖ψ‖H1

−α
≤ m‖w‖H1

α
, (34)

A(w,ψ) ≥ M‖w‖2
H1

α
. (35)

Then, (20) holds with C2 = M/m.
Set

ψ(x) = d̃(x)2αw(x) + 2αΨ(x), (36)

where d̃ is the following Lipschitz continuous function

d̃(x) = max{dist(x,Λ), R} =

{
dist(x,Λ) in ΩR,

R elsewhere,
(37)

and Ψ = Ψ(x;w) is the auxiliary function introduced in lemma 4.1, associated to

u = w. Notice that d̃ is equivalent to the distance function d in the sense that

(
R

diam(Ω)

)
d ≤ d̃ ≤ d on Ω. (38)

Thanks to (38) and (31) we have

‖ψ‖L2

−α
≤ ‖w‖L2

α
+ 2‖Ψ‖L2

−α
≤ m1‖w‖H1

α
.
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Moreover, since
∇ψ = d̃2α∇w + 2α(d̃2α−1w∇d̃ + ∇Ψ)

observing that d̃ = d on ΩR, Ψ = 0 on Ω\ΩR, ∇d̃ = ∇Ψ = 0 on Ω\ΩR, and using
estimate (32) of lemma 4.1, we have

‖∇ψ‖L2

−α
(Ω) ≤ ‖∇w‖L2

α(Ω) + 2‖d2α−1w∇d + ∇Ψ‖L2

−α
(ΩR) ≤ m2‖w‖L2(Ω).

Hence, (34) is satisfied with m2 = m2
1 + m2

2. Let α∗ ∈ (0, 1): by lemma 4.1, for any
α ∈ (0, α∗], constants m1, m2 and m only depend on α∗. Now, since

A(w,ψ) ≥Amin

∫

Ω

d̃2α|∇w|2 dx + Amin

∫

Ω

d̃2αw2dx

+ 2α

∫

ΩR

A1∇w · (d̃2α−1w∇d̃ + ∇Ψ)dx + 2α

∫

ΩR

A0wΨdx,

we can use estimate (38) to obtain

A(w,ψ) ≥ Amin‖∇w‖2
eL2

α(Ω)
+ Amin‖w‖2

eL2
α(Ω)

−2α‖A1‖L∞‖∇w‖eL2
α(ΩR)‖d

2α−1u∇d + ∇Ψ‖eL2

−α
(ΩR)

−2α‖A0‖L∞‖w‖eL2
α(ΩR)‖Ψ‖eL2

−α
(ΩR)

≥ Amin‖∇w‖2
eL2

α(Ω)
+ Amin‖w‖2

eL2
α(Ω)

−2α
(
‖A1‖L∞C3‖∇w‖2

eL2
α(ΩR)

+ ‖A0‖L∞C2‖w‖2
eL2

α(ΩR)

)
(39)

where C2 = C2(α
∗), C3 = C3(α

∗) are the constants in estimates (31), (32), and, for
any subset A ⊂ Ω and function f , we define

‖f‖2
eL2

α(A)
:=

∫

A

d̃2α|f |2 dx.

Of course ‖f‖L2
α(ΩR) = ‖f‖eL2

α(ΩR), and ‖ · ‖eL2
α(Ω), ‖ · ‖L2

α(Ω) are equivalent norms,

since thanks to (38) we have

Rα

diam(Ω)α
‖f‖L2

α(Ω) ≤ ‖f‖eL2
α(Ω) ≤ ‖f‖L2

α(Ω).

From (39) we get

A(w,ψ) ≥ (Amin − 2α max{C3‖A1‖L∞ , C2‖A0‖L∞})
(
‖w‖2

eL2
α(Ω)

+ ‖∇w‖2
eL2

α(Ω)3

)

≥ (Amin − 2α max{C3‖A1‖L∞ , C2‖A0‖L∞})
R2α

diam(Ω)2α
‖w‖2

H1
α(Ω).

Defining the following α-independent quantity

δ = min

{
α∗,

Amin

2max{C2‖A1‖L∞ , C3‖A0‖L∞}

}
, (40)

for 0 < α < δ we have
A(w,ψ) ≥ M‖w‖2

H1
α(Ω), (41)

where

M = Amin(1 − α/δ)
R2α

diam(Ω)2α
,

so that (35) holds.
In this case, theorem 4.1 applies. This proves the theorem and the estimate

(33), with C̃ = m/M .
Now, let us consider problem (17). The next theorem establishes that this

problem is well-posed, at least for ‖β‖∞ small.
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Theorem 4.3 Let A0, A1 ∈ L∞(Ω), and assume that there exist a constant Amin >
0 such that A0, A1 ≥ Amin in Ω.

Let Π : H1
α(Ω) → L2(Λ), a and F be respectively a bounded linear operator, the

bilinear form (15) and the linear functional (16), where B ∈ H1
−α(Ω)′.

Then, there is a constant δ ∈ (0, 1) and a positive function βmax(α), such that
if α ∈ (0, δ) and ‖β‖∞ < βmax(α) problem

a(u, v) = F (v) ∀v ∈ H1
−α(Ω),

admits a unique solution u ∈ H1
α(Ω).

Moreover, there exists a positive number C = C(α,Amin, ‖A0‖∞, ‖A1‖∞, ‖β‖∞)
such that:

‖u‖H1
α(Ω) ≤ C

(
‖u0‖L2(Λ) + ‖B‖H1

−α
(Ω)′

)
. (42)

Proof. For any given α∗ ∈ (0, 1), let 0 < α ≤ α∗. The first two terms of a in
equation (15) are obviously continuous on H1

α(Ω)×H1
−α(Ω). The third term is also

continuous: indeed,

∣∣∣∣
∫

Λ

βΠu(s)v(s)ds

∣∣∣∣ ≤ ‖β‖∞‖Πu‖L2(Λ)‖γΛv‖L2(Λ) (43)

≤ ‖β‖∞KΛ(α)CΛ(α)‖u‖H1
α(Ω)‖v‖H1

−α
(Ω),

where we denote by KΛ(α) the norm of the bounded operator Π : H1
α(Ω) → L2(Λ),

and by CΛ(α) the norm of the trace operator γΛ : H1
−α(Ω) → L2(Λ) (given in

theorem 4.2).
Similarly, thanks to theorem 4.2, F is a continuous linear functional on H1

−α(Ω),
and

‖F‖ ≤ CΛ(α)‖u0‖L2(Λ) + ‖B‖H1

−α
(Ω)′ . (44)

Let v ∈ H1
−α(Ω), v 6= 0; to show that bilinear form a is non-degenerate, we take

advantage of lemma 4.2, and choose u as the solution of

A(u, ψ) = F̃ (ψ) ∀ψ ∈ H1
−α(Ω),

with
F̃ (ψ) = (v, ψ)H1

−α
(Ω).

Obviously F̃ (ψ) is a continuous linear functional on H1
−α(Ω), and

‖F̃‖H1

−α
(Ω)′ = ‖v‖H1

−α
(Ω).

Moreover,

a(u, v) = A(u, v) +

∫

Λ

βΠu(s)v(s)ds

= ‖v‖2
H1

−α
(Ω) +

∫

Λ

βΠu(s)v(s)ds. (45)

Using the estimation (33) of theorem 4.2, we have

‖u‖H1
α(Ω) ≤ C̃‖F̃‖H1

−α
(Ω)′ = C̃‖v‖H1

−α
(Ω) (46)

with C̃ = C̃(α,Amin, ‖A0‖∞, ‖A1‖∞). Thanks to (44), (45) and (46), we get

a(u, v) ≥ (1 − ‖β‖∞KΛCΛC̃)‖v‖2
H1

−α
(Ω),
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so that, if 0 ≤ ‖β‖∞ ≤
1

KΛCΛC̃
, the bilinear form a is non-degenerate.

Now, let u ∈ H1
α(Ω), and set

v = d̃2αu + 2αΨ,

as done in the proof of lemma 4.2, with Ψ(x) = Ψ(x;u). It has already been shown
in the proof of lemma 4.2 (eq. (34), (40), (41)), that constants m, δ > 0 exist,
independent of α, such that

‖v‖H1

−α
≤ m‖u‖H1

α
,

and
A(u, v) ≥ M‖u‖2

H1
α(Ω),

where M = M(α) = Amin(1 − α/δ)R2αdiam(Ω)−2α.
Hence, we have:

a(u, v) ≥ M(α)‖u‖2
H1

α(Ω) +

∫

Λ

βΠu(s)v(s)ds. (47)

By (44) we can estimate the line integral as follows

a(u, v) ≥ (M(α) − m‖β‖∞KΛ(α)CΛ(α)) ‖u‖2
H1

α(Ω).

Defining

βmax = βmax(α) = min

{
1

KΛCΛC̃
,

M

mKΛCΛ

}
,

for α ∈ (0, δ) and ‖β‖∞ ≤ βmax Nečas’ theorem applies. In particular, (44) implies
estimate (42) with

C =
mmax {CΛ(α), 1}

M(α) − m‖β‖∞KΛ(α)CΛ(α)

and the proof is complete.
We point out that theorem 4.3 applies for Πu = ū, which is a bounded linear

operator, as the next lemma states.

Lemma 4.3 Let α ∈ (−1, 1): the linear mapping u → ū from H1
α(Ω) to L2(Λ) is

bounded.

Proof. For any u ∈ C∞(Ω),

∫

Λ

ū(s)2 ds =

∫

Λ

(
1

2π

∫ 2π

0

u(s,R, θ)dθ

)2

ds

≤

∫

Λ

1

2π

∫ 2π

0

u(s,R, θ)2 dθds =
1

2πR
‖u‖2

L2(ΓR
0

),

where ΓR
0 is the “cylindrical” part of the actual vessel surface (see sec. 2). Since

dist(ΓR
0 ,Λ) = R > 0, the trace operator from H1

α(Ω) to L2(ΓR
0 ) is continuous.

Thanks to the density of smooth functions, ū is thus extended to a bounded linear
operator from H1

α(Ω) to L2(Λ).
Remark. The “coercivity” of a (in the sense of Nečas’ theorem) in theorem 4.3 is
obtained also thanks to the term

∫
Ω

A0uvdx and to the hypothesis A0 ≥ Amin > 0.
In the case Πu = ū, an alternative analysis is possible, in which A0 can be zero.
Assuming instead β ≥ βmin > 0, one might investigate if the term

∫
Λ

βūvds can
supply to the loss of coercivity, at least for R small enough; but this approach is by
far more complex.
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5 The 1D-3D coupled problem

The methods we used in section 4 apply to the abstract coupled problem (4) without
any substantial modification. Let us consider the case of mixed Neumann-Dirichlet
homogeneous boundary conditions, being the Dirichlet homogeneous condition im-
posed at the vessel end s = s2 to the 1D variable. Define the subspace

V̂ =
{
û ∈ H1(Λ) : û(s2) = 0

}
,

and consider the spaces V1 = H1
α(Ω)× V̂ , V2 = H1

−α(Ω)× V̂ ; for every u = (u, û) ∈
V1 and v = (v, v̂) ∈ V2, define the following bilinear form and linear functional

a(u,v) = A(u, v) + Â(û, v̂) +

∫

Λ

β(Πu − û)(v − v̂)ds, (48)

F (v) = B(v) + B̂(v̂), (49)

with Π : H1
α(Ω) → L2(Λ) a bounded linear operator, B ∈ V ′

1 , B̂ ∈ V̂ ′. The next
theorem states the well-posedness of the problem (4) for ‖β‖∞ small.

Theorem 5.1 Let Ai ∈ L∞(Ω), Âi ∈ L∞(Λ) and assume that Ai ≥ Amin, Â0 ≥ 0,
Â1 ≥ Amin, with Amin > 0 a constant and i = 0, 1.

Let Π : H1
α(Ω) → L2(Λ), a and F be respectively a bounded linear operator, the

bilinear form (48) and the linear functional (49), where B ∈ V ′
1 , B̂ ∈ V̂ ′.

Then, there is a δ ∈ (0, 1) and a positive function βmax(α) such that if α ∈ (0, δ)
and ‖β‖∞ < βmax(α) there exists a unique u ∈ V1 such that

a(u,v) = F (v) ∀v ∈ V2.

Moreover, there is a positive number C = C(α,Amin, ‖Ai‖∞, ‖Âi‖∞, ‖β‖∞) such
that:

‖u‖V1
≤ C‖F‖V′

2
. (50)

Proof. We follow the same steps of the proof of theorem 4.3. First of all, let us
prove that a is continuous on V1 × V2. We already know that the bilinear terms
A, Â in eq. (48) are respectively continuous on H1

α(Ω) × H1
−α(Ω) and V̂ × V̂ . To

see that the remaining coupling term is continuous on V1 × V2, notice that

∣∣∣∣
∫

Λ

β(Πu − û)(v − v̂)ds

∣∣∣∣ ≤ ‖β‖∞‖Πu − û‖L2(Λ)‖γΛv − v̂‖L2(Λ)

≤ ‖β‖∞(KΛ(α)‖u‖H1
α(Ω) + ‖û‖V̂ )(CΛ(α)‖v‖H1

−α
(Ω) + ‖v̂‖V̂ ),

where KΛ(α) = ‖Π‖ and CΛ(α) = ‖γΛ‖ are respectively the norm of the bounded
linear operator Π : H1

α(Ω) → L2(Λ) and the norm of the trace operator γΛ :
H1

−α(Ω) → L2(Λ) (see th. 4.2). Thus, we have

∣∣∣∣
∫

Λ

β(Πu − û)(v − v̂)ds

∣∣∣∣ ≤ ‖β‖∞C(α)‖u‖V1
‖v‖V2

, (51)

where C(α) = max{1,KΛ(α), CΛ(α)}.
Now, we have to show that a satisfies the inequalities (19) and (20) of the Nečas’

theorem 4.1.

a) Given v = (v, v̂) ∈ V2, we choose u ∈ V1 as u = (u, v̂) where u is the solu-
tion of A(u, ψ) = (v, ψ)H1

−α
∀ψ ∈ H1

−α(Ω), to show that a is non-degenerate.

Thanks to lemma 4.2, we have ‖u‖H1
α(Ω) ≤ C̃(α)‖v‖H1

−α
(Ω), where C̃ also

depends on Amin and ‖Ai‖∞, i = 0, 1. By estimate (51), defining C ′(α) =
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C(α)max{1, C̃(α)}, and using Poincaré’s inequality ‖v̂‖L2(Λ) ≤ CP ‖dv̂/ds‖L2(Λ)

in V̂ , we get

a(u,v) ≥ A(u, v) + Â(v̂, v̂) − ‖β‖∞C(α)‖u‖V1
‖v‖V2

≥ ‖v‖2
H1

−α
(Ω) + Amin‖dv̂/ds‖2

L2(Λ) − ‖β‖∞C ′(α)‖v‖2
V2

≥ ‖v‖2
H1

−α
(Ω) + Amin

1

2

(
‖dv̂/ds‖2

L2(Λ) + C−2
P ‖v̂‖2

L2(Λ)

)
− ‖β‖∞C ′(α)‖v‖2

V2

≥ min

{
1, Amin

min{1, C−2
P }

2

}
‖v‖2

V2
− ‖β‖∞C ′(α)‖v‖2

V2
.

Hence, if ‖β‖∞ < min{1, Amin
min{1,C−2

P
}

2 }/C ′(α) then a is non-degenerate.

b) Given u = (u, û) ∈ V1, consider v = (v, v̂) = (d̃2αu + 2αΨ, û) ∈ V2, as in
the proof of theorems 4.2 and 4.3. We have that there exist two constants
m, δ > 0, both independent of α, such that

‖v‖H1

−α
(Ω) ≤ m‖u‖H1

α(Ω), A(u, v) ≥ M‖u‖2
H1

α(Ω),

with M = M(α) = Amin(1 − α/δ)R2αdiam(Ω)−2α. Using (51) we have

a(u,v) ≥ M(α)‖u‖2
H1

α(Ω) + Amin‖dû/ds‖2
L2(Λ) − ‖β‖∞C ′′(α)‖u‖2

V1

where C ′′(α) = C(α)max{1,m}. For α ∈ (0, δ) M(α) > 0, and

a(u,v) ≥ C ′′′(α)‖u‖2
V1

− ‖β‖∞C ′′(α)‖u‖2
V1

,

where C ′′′(α) = min
{

M(α), Amin
min{1,C−2

p }

2

}
> 0. The inequality (20) of the

Nečas’ theorem is thus satisfied if ‖β‖∞ < C ′′′(α)/C ′′(α).

The proof is completed by taking βmax(α) as the lowest between the upper bounds
for ‖β‖∞ found in a) and b).

As an immediate application of th. 5.1 for Πu = ū, and thanks to lemma 4.3,
the well-posedness of the tissue perfusion problem (5) with boundary conditions (6)
follows.

6 On the FE approximation of coupled 1D-3D el-

liptic problems

Since standard finite element functions are continuous and have a trace on any one-
dimensional manifold in Ω, the Galerkin discretisation of problem (4) is straight-
forward. However, the convergence analysis of the resulting numerical scheme is
not trivial. The functional setting we have introduced in this work provides a tool
for the convergence analysis of finite element schemes, thanks to results based on
theorem 4.1 and analogous to Cea’s lemma[15, 2].

Figure 5 shows an example of FE numerical approximation for a flow problem
with branching 1D geometry inside a porous cylinder. The details about the FE
scheme and its convergence will be given in a forthcoming work.

7 Conclusions

In this paper, a coupled 1D-3D diffusion-reaction problem has been considered, for
modelling flow in porous media with thin tubular fractures, as for instance in the
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Figure 5: Finite element approximation of a 1D-3D flow problem: Ω is a cylinder
and λ is a branching 1D subdomain. Shown are the computed 1D pressure and
some slices of the 3D pressure.

case of blood flow through tissues. A mathematical analysis of this problem, based
on suitable weighted Sobolev spaces, has been carried out to show that the coupled
problem is well-posed. Our investigation is the basis for forthcoming studies on the
numerical approximation of the solutions, as well as the application of the model
to the simulation of tissue perfusion in relevant cases of physiological interest.

A Proof of lemma 4.1

Proof. The coefficients of Fourier expansions are given by standard formulae, for
example in ΩR

0 we have

Ak
0(r, s) =

1

2π

∫ 2π

0

u(s, r, θ)e−ikθ dθ.

Since A−k
0 (r, s) = Ak

0(r, s), A0
0 is a real function, and so are functions A0

1, A0
2.

Actually, A0(x) is the average of u on the circle described by θ ∈ [0, 2π], keeping
the other local variables constant and equal to those of point x. Incidentally, this
gives a geometrical interpretation for Ψ too, as the integral of 1

2π dist(x,Λ)2α−2u(x)
on the shaded areas associated with x in fig. 4. Even if we have two kinds of local
variables (spherical and cylindrical), we will consider only the cylindrical subdomain
ΩR

0 , since calculations for the remaining hemispherical subdomains are carried on
in the same way.

From now on, when the integration intervals are omitted, it is understood that
they are r ∈ (0, R), θ ∈ (0, 2π), s ∈ (s1, s2), and φ ∈ (0, π/2). Thanks to Parseval’s
equality and to the orthogonality of the Fourier components, we have

∫ 2π

0

(
u(s, r, θ) − A0

0(r, s)
)2

dθ = 2π
∑

k∈Z\{0}

|Ak
0(r, s)|2, (52)

so that we can write

‖u − A0‖2
L2

α−1
(ΩR

0
) =

∫
r2α−2[u(s, r, θ) − A0

0(r, s)]
2rdrdsdθ

= 2π
∑

k∈Z\{0}

∫
r2α−1|Ak

0(r, s)|2 drds. (53)
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On the other hand, being |∇u|2 ≥ 1
r2

(
∂u
∂θ

)2
, we have

‖∇u‖2
L2

α(Ω) ≥

∫
r2α 1

r2

(
∂u

∂θ

)2

rdsdrdθ = 2π
∑

k∈Z

∫
r2α−1k2|Ak

0(r, s)|2 drds

= 2π
∑

k∈Z\{0}

∫
r2α−1k2|Ak

0(r, s)|2 drds,

where Parseval’s formula for the θ-derivative has been used. Since in the last sum
k2 ≥ 1, comparing with (53) we have

‖u − A0‖L2

α−1
(ΩR

0
) ≤ ‖∇u‖L2

α(Ω).

Analogous estimates on ΩR
1 \Ω

R
0 and ΩR

2 \Ω
R
0 follow in an similar way and (30) is

proved.
The L2

−α norm of Ψ on ΩR
0 is given by

‖Ψ‖2
L2

−α
(ΩR

0
) = 2π

∫
r−2α

(∫ R

r

t2α−1A0
0(t, s)dt

)2

rdsdr.

Now we use the following weighted Hardy’s inequality[18]

∫ R

0

r−β

(∫ R

r

tβ−1f(t)dt

)2

dr ≤

(
2

1 − β

)2 ∫ R

0

rβf(r)2 dr, β < 1, (54)

with f(t) = tA0
0(t, s), β = 2α − 1 (which is < 1 since 0 < α ≤ α∗ < 1). We get

‖Ψ‖2
L2

−α
(ΩR

0
) ≤ 2π

(
1

1 − α

)2 ∫
A0

0(r, s)
2r2α+1 drds

≤

(
1

1 − α

)2 ∫
u(r, s, θ)2r2α+1 drdsdθ ≤

(
1

1 − α∗

)2

‖u‖2
L2

α(ΩR
0

), (55)

where Parseval’s formula has been used again. Analogous estimates are found on
ΩR

1 \Ω
R
0 and ΩR

2 \Ω
R
0 , where we make use of (54) with f(t) = A0

i (t, φ)t2, i = 1, 2,
and β = 2α − 2 due to the extra r term coming from the integration formula in
spherical coordinates; therefore, since Ψ = 0 outside ΩR, (31) is proved.

Now let us show (32). We recall the following formulae in ΩR
0

∂u

∂s
(s, r, θ) =

∑

k∈Z

∂Ak
0

∂s
(r, s)eikθ, (56)

and

∇Ψ = −err
2α−1A0

0(r, s) + es

∫ R

r

t2α−1 ∂A0
0

∂s
(t, s)dt, d2α−1∇d = r2α−1er,

where er and es are the versors associated to the r and s local coordinates. We
have

‖d2α−1u∇d + ∇Ψ‖2
L2

−α
(ΩR

0
) ≤ ‖u − A0‖2

L2

α−1
(ΩR

0
)

+ 2π

∫
r−2α

(∫ R

r

t2α−1 ∂A0
0

∂s
(t, s)dt

)2

rdsdr.
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The first term can be estimated by means of (30), so that we are left with the
second one. We can proceed as for eq. (55), using (54) and Parseval’s equality for
the Fourier expansion (56); we get

2π

∫
r−2α

(∫ R

r

t2α−1 ∂A0
0

∂s
(t, s)dt

)2

rdsdr

≤ 2π

(
1

1 − α

)2 ∫ (
∂A0

0

∂s

)2

r2α+1 drds

≤

(
1

1 − α

)2 ∥∥∥∥
∂u

∂s

∥∥∥∥
2

L2
α(ΩR

0
)

≤

(
1

1 − α∗

)2

‖∇u‖2
L2

α(Ω). (57)

Analogous estimates can be derived from integration over the remaining subdomains
of ΩR. This completes the proof.
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[10] T. Kilpeläinen. Smooth approximation in weighted Sobolev spaces. Comment.
Math. Univ. Carolinae, 38(1):29–35, 1997.

[11] A. Kufner. Weighted Sobolev Spaces. Wiley, 1985.
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