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Abstract

We introduce an a posteriori modeling error estimator for the effective
computation of electric potential propagation in the heart. Starting from
the Bidomain problem and an extended formulation of the simplified Mon-
odomain system, we build a hybrid model, called Hybridomain, which is
dynamically adapted to be either Bi- or Mono-domain ones in different re-
gions of the computational domain according to the error estimator. We
show that accurate results can be obtained with the adaptive Hybridomain
model with a reduced computational cost compared to the full Bidomain
model. We discuss the effectivity of the estimator and the reliability of
results on simulations performed on real human left ventricle geometries
retrieved from healthy subjects.

Keywords: Computational electrocardiology, Model adaptivity, A poste-

riori error estimation, Modeling error
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1 Introduction

The propagation of electrical potential in the cardiac tissue is well described by
the so-called Bidomain model (see e.g. [24]), which is a system of non-linear un-
steady partial differential equations coping with both the intra and extra cellular
potential dynamics. Usually, the computational cost of numerical simulations
of this system is high due to the degenerate parabolic nature of the model, be-
ing the time derivative vector multiplied by a singular matrix. Moreover, an
accurate solution on real geometries demands for fine meshes and time steps.
For these reasons, many applications consider a simplified model called Mon-

odomain. It relies however on an assumption on the fibers conductivity which
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is not always verified and this model is not able to predict certain physiological
and pathological patterns, expecially in the neighborhood of a propagating front
([15]). Moreover, the standard Monodomain model does not predict correctly
the front propagation velocity ([22]). See also [9, 10] for an “improved” Mon-
odomain model that features a front speed closer to the Bidomain one. In this
work we will refer to the standard Monodomain model as described e.g. in [9].

Recent literature has been devoted to the efficient solution of the discretized
Bidomain model and, in particular, to the development of efficient precondi-
tioners (see e.g. [9], [29] , [33], [20], [32], [28]). In [14] an extended version of
the Monodomain model has been proposed as a preconditioner for solving the
Bidomain system.

In this paper we follow a different approach for simulating potential propa-
gation in the heart. More precisely, inspired by the recent literature on modeling
error estimation and adaptation (see e.g. [17, 30, 5, 21, 23]), we combine the Bi-
and Mono-domain models in a model adaptivity framework. The basic idea is
to confine the (more expensive) Bidomain solution to a small part of the domain
at hand, while on its most part we solve the Monodomain equation. In this way,
we reduce the computational time, without significantly affecting the reliability
of the numerical solution.

The crucial step in this approach is the set up of a modeling error estimator
able to identify the region where it is worth solving the Bidomain system. Based
on the error estimate we solve a finite element discretization of the hybrid model.
We actually solve the Bidomain model on some elements whilst in the most part
of the domain we keep on solving the Monodomain system. Numerical results
presented here are carried out on a real geometry retrieved from medical images
and show that the hybrid model driven by our estimator is able to capture
the most important features of the potential propagation described by a full
Bidomain model with a good effectivity and CPU time reduction.

The paper is organized as follows. In Section 2 we introduce the Bidomain
and Monodomain systems and recall their features. We introduce the extended
formulation of the Monodomain model and the Hybridomain system used for
the model adaptivity. Moreover, we present the semi-discretization of these
problems (continuous in space, discrete in time). In Sect. 3 we introduce two
quantities providing a posteriori upper and lower bounds for the modeling error
and investigate their properties. In Section 4 we describe implementation details
and the algorithm for the model adaptivity.

Numerical results are presented in Sect. 5. We refer to a real geometry of a
heart retrieved by SPECT Images (courtesy of Dr. E. V. Garcia group at Emory
University). We discuss the effectivity of our strategy showing the reliability of
the adaptive Hybridomain model in capturing a nontrivial potential pattern,
both in a healthy and a pathological case.
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2 The Bidomain, Monodomain and the Hybridomain

models

We introduce the mathematical models commonly used for describing the prop-
agation of the electric potential in the heart, without a detailed insight of the
underlying physiology. For a complete introduction, we refer e.g. to [10], [24].

Let Ω ⊂ R
3 be a bounded region where we investigate the cardiac potential.

We do not distinguish the intra and extra-cellular space, that means that we
assume that the intra and extra-cellular potentials uτ (τ = i, e) are both defined
in the entire domain. With u = ui − ue we denote the transmembrane potential.
Cardiac tissue is made of fibers that drive the potential propagation. With al we
denote the direction along the fiber, at is orthogonal to the fiber direction and in
the fiber sheet and an orthogonal to the sheet. Conductivity is different along
the different directions, so we denote by σl

i(x) (resp. σl
e(x)) the intracellular

(resp. extracellular) conductivity in al(x) direction at point x ∈ Ω, and similarly
by σt

i(x) (σt
e(x)) and σn

i (x) (σn
e (x)) the conductivities along at(x) and an(x).

Following [9], we assume the same conductivity in both the tangential and normal
direction (axial isotropy), so that the conductivity tensors read

Dτ (x) = σt
τI + (σl

τ − σt
τ )al(x)aT

l (x). (1)

for τ = i, e. Moreover, we assume that Dτ satisfies a uniform ellipticity condition
in Ω. The density current in each domain can be computed as Jτ = −Dτ∇uτ for
τ = i, e. The net current flux between the intra and the extracellular domain is
assumed to be zero as a consequence of the charge conservation in an arbitrary
portion of tissue. Let us denote by Im the ingoing membrane current flow and
by χ the ratio of membrane area per tissue volume. We get therefore

∇ · (Di∇ui) = χIm = −∇ · (De∇ue). (2)

Here Im can be further expressed as Im = Cmdu/dt + Iion(u, w) being Cm a
capacitance and Iion the ionic current, depending on the potential u and on
suitable ionic variables that we denote with w. The dependence of Iion on u and
w has been described in two different ways in the literature. One approach is
based on a precise description of ionic channels (see [26], [34], [18]). In this case
w represents a vector composed of gate variables and the ions concentration in
the cell. The second approach is based on a purely phenomenological evidence
(see [13], [25]). In this case w represents a scalar variable called recovery variable.
Independently of a specific choice for the ionic model, the complete Bidomain
system reads

χCm

[
1 −1
−1 1

]
∂

∂t

[
ui

ue

]
−
[

∇ · Di∇ui

∇ · De∇ue

]
+ χ

[
Iion(u,w)
−Iion(u,w)

]
=

[
Iapp
i

−Iapp
e

]

(3)
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where Iapp
τ (τ = i, e) represent applied external stimuli. The problem is com-

pleted by an initial condition u(x, 0) = u0 and boundary conditions on ∂Ω. In
particular, homogeneous Neumann boundary conditions

nTDi∇ui(x, t) = 0 and nTDe∇ue(x, t) = 0, on ∂Ω × (0, T ) (4)

correspond to an insulated myocardium (here n is the unit normal outward-
pointing vector on the surface). As a consequence of the Gauss theorem, the
applied external stimuli must fulfill the compatibility condition

∫

Ω
Iapp
i dx =

∫

Ω
Iapp
e dx. (5)

In system (3) the transmembrane potential u is uniquely determined, while the
intra and extracellular potentials ui and ue are determined up to the same func-
tion of time. Usually uniqueness is forced by requiring that ue has zero average
on Ω. Let us define V = H1(Ω)×H1(Ω)\{[c, c] : c ∈ R} and denote by (·, ·) the
scalar product in L2. The variational form of the Bidomain problem reads as
follows: given Iapp

τ and Iion, find [ui, ue] ∈ V such that

χCm(
∂u

∂t
, φ) + ai(ui, φi) + ae(ue, φe) + (Iion(u), φ) = (Iapp

i , φi) − (Iapp
e , φe) (6)

for each [φi, φe] ∈ V , where φ = φi − φe. The forms aτ (v, φ) are defined as
aτ (v, φ) =

∫
Ω ∇vT Dτ∇φdx (for τ = i, e). For well-posedness analysis of the

Bidomain problem coupled to the Fitzhugh Nagumo ionic model we refer to
[11], [31].

The Monodomain problem has been proposed as a simplification of the Bido-
main one. It can be deduced in different ways (see [19], [16] and [7]). One
consists in assuming De = λDi, where λ is a constant to be properly chosen.
Thanks to this assumption, a linear combination of the Bidomain equations with

coefficients
λ

1 + λ
and − 1

1 + λ
yields the Monodomain model





χCm
∂u

∂t
−∇ · (DM∇u) + χIion(u) = Iapp in Ω × (0, T )

u(x, t = 0) = u0 in Ω

nTDM∇u = 0 on ∂Ω × (0, T ),

(7)

where DM =
λDi

1 + λ
and Iapp =

λIapp
i + Iapp

e

1 + λ
. The variational form of (7) reads:

given Iapp, and Iion find u ∈ H1(Ω) such that

χCm(
∂u

∂t
, φ) + aM (u, φ) + (Iion(u), φ) = (Iapp, φ) (8)

for each φ ∈ H1(Ω). The form aM (v, φ) :=
∫
Ω ∇vTDM∇φdx is bilinear, contin-

uous and weakly coercive on H1(Ω)×H1(Ω). For well-posedness analysis of this
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problem, we still refer to [11]. Monodomain model is a single parabolic reaction-
diffusion PDE for the transmembrane potential, replacing the two equations of
the original model. However, this model is not able to capture some physiological
and pathological patterns of the action potential propagation (see [8]).

Since our approach is to combine in the same computation both the Bidomain
and Monodomain models, we reformulate them in a different way, so that it is
easier to downscale the former to the latter, as it was already done in [14] with
the purpose of defining a “Monodomain” preconditioner of the Bidomain system.
Setting Ĩapp = Iapp

i −Iapp
e , by linear combinations of the equations (3), we obtain





χCm
∂u

∂t
−∇ ·

(
λDi

1 + λ
∇u

)
−∇ ·

(
λDi − De

1 + λ
∇ue

)
+ χIion(u) = Iapp

−∇ · [Di∇u + (Di + De)∇ue] = Ĩapp.

(9)

More precisely, the first equation in (9) is obtained by linear combination with

coefficients
λ

1 + λ
and − 1

1 + λ
. The second equation is obtained summing the

two equations in (3). The same linear combination leading to (9), together with
the assumption De = λDi in the first equation yields the Extended Monodomain
formulation in terms of the variables u and ue





χCm
∂u

∂t
−∇ ·

(
λDi

1 + λ
∇u

)
+ χIion(u) = Iapp

−∇ · [Di∇u + (Di + De)∇ue] = Ĩapp.

(10)

As for the Bidomain model, also in the Extended Monodomain model (10) the
intra and extra cellular potentials ui and ue are defined only up to the same
function of time. Again, we will fix such function by requiring that ue has zero
average.

Notice that our formulation of the Monodomain model comes immediately
from (9) when the differential term in ue in the first equation is dropped.

Our proposed hybridomain models consists in splitting the domain Ω into
two parts ΩB and ΩM , being ΩM ∪ ΩB = Ω and ΩM ∩ ΩM = ∅ and setting the
problem





χCm
∂u

∂t
−∇ ·

(
λDi

1 + λ
∇u

)
−∇ ·

(
(λDi − De)1ΩB

1 + λ
∇ue

)
+

χIion(u) = Iapp

−∇ · [Di∇u + (Di + De)∇ue] = Ĩapp.

(11)

where 1ΩB
is the characteristic function defined in Ω, so that 1ΩB

(x, y, z) = 1
for x, y, z ∈ ΩB and 1ΩB

(x, y, z) = 0 elsewhere. At each time step, on the basis
of our error estimator, we adapt ΩB as described in Section 4.
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Remark In the sequel we introduce the following notation,

‖ui, ue‖2
E(Ω) ≡

∫

Ω
(∇ui)

TDi∇ui +

∫

Ω
(∇ue)

TDe∇ue, (12)

which is a semi-norm in V since the two tensors Di and De are assumed to
be positive. Starting from (6), assuming the intra and extra cellular applied
currents to be equal and taking φi = ui and φe = ue, so that φ = u, we obtain

χCm

2

∫

Ω

∂u2

∂t
+ ‖ui, ue‖2

E(Ω) = −(Iion(u), u) + (Iapp
i , u). (13)

This equation states the balance of the energy of the considered physical system,
the first term on the righthand side being the energy rate by ionic currents and
the second term on the righthand side being the energy rate by external currents.
Given a specific form of the ionic model, an estimate of the energy rate by ionic
currents in terms of the solution u can be deduced.

2.1 Semi-discretization of the problem

We consider a semi-implicit first order time advancing scheme, where the terms
depending on the ionic currents are taken at the previous time step, so that at
each time step the problem is linear. Stability bounds induced by this choice
are in general not too restrictive in practice. Let ∆t be the (constant) time
step of the discretization. Denote with superscript n the variables computed
at time tn = t0 + n∆t. We denote with (un

i,B, un
e,B, un

B = un
i,B − un

e,B) the
solution to (9), with (un

i,M , un
e,M , un

M = un
i,M − un

e,M ) the solution to (10) and
with (un

i,H , un
e,H , un

H = un
i,H − un

e,H) the solution to the Hybridomain problem

(11). Moving from time step tn to tn+1 the semi-implicit time-discretization of
(9) reads




χCm
un+1

B − un
B

∆t
−∇ ·

(
λDi

1 + λ
∇un+1

B

)
−∇ ·

(
λDi − De

1 + λ
∇un+1

B,e

)
+

χIion(un
B) = Iapp,n+1

−∇ ·
[
Di∇u + (Di + De)∇un+1

B,e

]
= Ĩapp,n+1.

(14)

Similarly, for the Hybridomain (11), we resort to the following discretization




χCm
un+1

H − un
H

∆t
−∇ ·

(
λDi

1 + λ
∇un+1

H

)

−∇ ·
(

(λDi − De)1Ωn

B

1 + λ
∇un+1

H,e

)
= Iapp,n+1 − χIion(un)

−∇ ·
[
Di∇un+1 + (Di + De)∇un+1

e,H

]
= Ĩapp,n+1.

(15)

Notice the choice 1Ωn

B
, which implies that the region where we switch the “Bido-

main” term on is estimated upon the solution at the previous time step. A similar
discretization is carried out for the Mondomain (10) model.
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After discretizing (14) in space for instance by Lagrange finite elements, we
are led to an algebraic system of the form

[
Buu Bue

Beu Bee

] [
un+1

B

un+1
B,e

]
=

[
fn+1

gn+1

]
.

being un+1
B and un+1

B,e the vectors of nodal values corresponding un+1
B and un+1

B,e ,
respectively. Similarly, the Monodomain problem will read at algebraic level

[
Buu

Beu Bee

] [
un+1

M

un+1
M,e

]
=

[
fn+1

gn+1

]
.

In the Hybridomain approach we will assemble the off diagonal matrix Bue only
in those elements K ∈ ΩB.

3 The a posteriori estimator

The differences between the Bidomain and Monodomain solutions at the generic
time tn+1 are denoted by

etot,n+1
i,M = un+1

i,B − un+1
i,M etot,n+1

e,M = un+1
e,B − un+1

e,M etot,n+1
u,M = un+1

B − un+1
M

(16)
while

etot,n+1
i,H = un+1

i,B − un+1
i,H etot,n+1

e,H = un+1
e,B − un+1

e,H etot,n+1
u,H = un+1

B − un+1
H

(17)
denote the differences between the Bidomain and the Hybridomain models. In

the sequel we set Dε ≡
De − λDi

1 + λ
.

We split the differences (17) (resp. (16)) in two components. Let (ũn+1
B , ũn+1

e,B , ũn+1
i,B )

be the solution of (14) from time step tn to tn+1 moving from the Hybridomain
(resp. Monodomain) solution at time tn, namely




χCm
ũn+1

B − ũn
B

∆t
−∇ ·

(
λDi

1 + λ
∇ũn+1

B

)
−∇ ·

(
λDi − De

1 + λ
∇ũn+1

e,B

)
+

χIion(ũn
B) = Iapp,n+1

−∇ ·
[
Di∇ũn+1

B + (Di + De)∇ũn+1
e,B

]
= Ĩapp,n+1,

ũn
i,B = un

i,H , ũn
e,B = un

e,H

(18)

Then the total error is split as

en+1,tot
i,H = ẽn+1

i,H + en
i,H , ẽn+1

i,H = un+1
i,B − ũn+1

i,B , en+1
i,H = ũn+1

i,B − un+1
i,H

and similarly for the other components en+1,tot
u,H and en+1,tot

e,H . Component (en+1
u,H , en+1

i,H , en+1
e,H )

can be considered the local contribution to the error, being the difference intro-
duced at each time step by using the Hybridomain model instead of the Bidomain
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one, starting from the same solution at time tn. Contribution (ẽn+1
u,H , ẽn+1

i,H , ẽn+1
e,H )

is a propagated error whose analysis involves the stability of the time discrete
Bidomain operator, coupled with the ionic model (see e.g. [4]). Hereafter, we
focus on estimating the local error only. Numerical results will show that this
achieves an effective control also on the total error.

3.1 Definition of the estimator

Recalling that Ω \ΩB = ΩM , memberwise substraction of the equations (15) to
the corresponding ones of (18) yields the error equation





χCm

∆t
en+1
u,H −∇ ·

(
λDi

1 + λ
∇en+1

u,H

)
+ ∇ ·

(
Dε∇en+1

e,H

)
= −∇ ·

(
Dε1Ωn

M
∇un+1

e,H

)

−∇ ·
[
Di∇en+1

u,H + (Di + De)∇en+1
e,H

]
= 0,

which can be written in equivalent form, upon taking a linear combination of
the two equations with coefficients (1, 1/(1 + λ)) as





χCm

∆t
en+1
u,H −∇ ·

(
Di∇(en+1

u,H + en+1
e,H )

)
= −∇ ·

(
Dε1Ωn

M
∇un+1

e,H

)

−∇ ·
[
Di∇en+1

u,H + (Di + De)∇en+1
e,H

]
= 0.

(19)

In the sequel we drop time index n + 1 for the sake of notation. Notice that if
in the previous system we force Ωn

M = Ω we estimate the errors eu,M , ei,M , ee,M .
Let us multiply the first equation in the previous system by eu,H and the

second by ee,H , integrate over Ω and sum the two equations. We obtain

∫

Ω

χCm

∆t
e2
u,H +

∫

Ω
∇eT

u,HDi∇ei,H −
∫

∂Ω
nTDi∇ei,Heu,H+

+

∫

Ω
∇eT

e,HDi∇eu,H −
∫

∂Ω
nTDi∇eu,Hee,H+

+

∫

Ω
∇eT

e,H(Di + De)∇ee,H −
∫

∂Ω
nT (Di + De)∇ee,Hee,H =

=

∫

Ωn

M

∇eT
u,HDε∇ue,H −

∫

∂Ωn

M
∩∂Ω

nTDε∇ue,Heu,H (20)

We assume that both problems fulfill the same conditions on the boundary
∂Ω. For this reason, in the previous equation we drop the integrals on ∂Ω.

Exploiting eu,H = ei,H − ee,H , we have

∫
Ω ∇eT

u,HDi∇ei,H +
∫
Ω ∇eT

e,HDi∇eu,H +
∫
Ω ∇eT

e,H(Di + De)∇ee,H

=
∫
Ω ∇eT

i,HDi∇ei,H +
∫
Ω ∇eT

e,HDe∇ee,H

(21)
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so that the variational formulation of the error system reads

∫
Ω

χCm

∆t
e2
u,H +

∫
Ω ∇eT

i,HDi∇ei,H +
∫
Ω ∇eT

e,HDe∇ee,H =

=
∫
Ωn

M

∇eT
i,HDε∇ue,H −

∫
Ωn

M

∇eT
e,HDε∇ue,H

(22)

Using standard techniques, since Di and De are symmetric and positive
definite, we can manipulate the right hand side of the previous equation as
follows

∫

Ωn

M

∇eT
i,HDε∇ue,H −

∫

Ωn

M

∇eT
e,HDε∇ue,H ≤

≤
∫

Ωn

M

∣∣∣∇eT
i,HD

1/2
i D

−1/2
i Dε∇ue,H

∣∣∣+
∫

Ωn

M

∣∣∣∇eT
e,HD1/2

e D−1/2
e Dε∇ue,H

∣∣∣ ≤

≤ 1

2
‖ei,H , ee,H‖2

E(Ωn

M
) +

1

2

∫

Ωn

M

∇uT
e,HDT

ε (D−1
i + D−1

e )Dε∇ue,H (23)

yielding

∫

Ω

χCm

∆t
e2
u,H +

1

2
‖ei,H , ee,H‖2

E(Ωn

M
) + ‖ei,H , ee,H‖2

E(Ωn

B
) ≤

≤ 1

2

∫

ΩM

∇uT
e,HDT

ε (D−1
i + D−1

e )Dε∇ue,H ≡ η2
ΩM

(ue,H) (24)

In the sequel we denote

|||ei,H , ee,H |||2 ≡
∫

Ω

χCm

∆t
e2
u,H +

1

2
‖ei,H , ee,H‖2

E(Ωn

M
) + ‖ei,H , ee,H‖2

E(Ωn

B
),

which is still a norm, so we can write in short

|||ei,H , ee,H ||| ≤ ηΩM
(ue,H).

The quantity ηΩM
(ue,H) bounds therefore the “local” difference between the

“template” Bidomain model and the Hybridomain solution currently computed.

Remark Notice that with similar arguments it is possible to prove that the
“complementary” estimator

η2
ΩB

(ue,H) =
1

2

∫

ΩB

∇uT
e,HDT

ε (D−1
i + D−1

e )Dε∇ue,H

measures the difference between the Hybridomain solution and the Monodomain
one.
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Remark The total error could be obviously split in different ways. In partic-
ular, we could split the total error into a local component obtained by solving a
time step of Hybridomain system moving from the “exact” Bidomain solution at
the previous time step. This is the classical approach in analyzing Ordinary Dif-
ferential Equations schemes. Following this splitting, we can perform an analysis
similar to the one carried out above, yielding an upper bound for the local error
given by ηΩM

(ue,H) where ue,H is the solution of the Hybridomain system com-
puted starting from the Bidomain data at the previous time step. Differently
than ue,H in (24), ue,H is not available in current applications (since it needs to
know the Bidomain solution that we do not want to compute actually). For this
reason we prefer to consider our error splitting leading to (24).

3.2 An error lower bound

Let us start from the error equation (22). Observe that the left hand side can
be derived from a bilinear symmetric scalar form, that we denote by

< [ei,H , ee,H ], [vi,H , ve,H ] >†≡
∫
Ω

χCm

∆t
(ei,H − ee,H)(vi,H − ve,H)

+
∫
Ω ∇vT

i,HDi∇ei,H +
∫
Ω ∇vT

e,HDe∇ee,H .

The associated norm is denoted by

|||[ei,H , ee,H ]|||2† ≡
∫

Ω

χCm

∆t
e2
u,H +

∫

Ω
∇eT

i,HDi∇ei,H +

∫

Ω
∇eT

e,HDe∇ee,H

Notice the equivalence between the two norms ||| · ||| and ||| · |||†. It is actually
verified by direct inspection that

1

2
|||[ei,H , ee,H ]|||2† ≤ |||[ei,H , ee,H ]|||2 ≤ |||[ei,H , ee,H ]|||2† . (25)

By exploiting the properties of the scalar product, and denoting

F([vi,H , ve,H ]) ≡
∫

Ωn

M

∇vT
i,HDε∇ue,H −

∫

Ωn

M

∇vT
e,HDε∇ue,H ,

we have from (22) that

|||[ei,H , ee,H ]|||2† =
∫
Ωn

M

∇eT
i,HDε∇ue,H −

∫
Ωn

M

∇eT
e,HDε∇ue,H

= |||F|||′,2† =

(
sup

[vi,ve]6=[0,0]

F([vi,H , ve,H ])

|||[vi,H , ve,H ]|||†

)2

.

Consequently, for any choice of the test functions [vi,H , ve,H ], we have

ζ([vi,H , ve,H ]) =
1√
2

|F([vi,H , ve,H ])|
|||[vi,H , ve,H ]|||†

≤ 1√
2
|||[ei,H , ee,H ]|||† ≤ |||[ei,H , ee,H ]|||

(26)
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Let us consider the family of test functions of the form [pue,H ,−ue,H ]. In or-
der to have a sharp lower bound, we look for the parameter popt which maximizes
ζ.

Upon differentiating ζ([pue,H ,−ue,H ])2 with respect to p and equating it to
zero, we obtain that the maximum lower bound corresponds to

p =

∫
Ω ∇uT

e,HDe∇ue,H∫
Ω ∇uT

e,HDi∇ue,H
≡ popt.

Notice that popt would be equal to λ under Monodomain assumption De = λDi.
In the sequel, we set ζopt ≡ ζ([poptue,H ,−ue,H ]) the lower bound for the error

|||ei,H , ee,H |||.

4 The adaptive algorithm

As we have pointed out previously, in our Hybridomain model the region Ωn
B

where the Bidomain model is active is evaluated on the basis of the estimator.
More precisely, we introduce the local error indicator

η2
K(ue,H) =

1

2

∫

K
∇uT

e,HDT
ε (D−1

i + D−1
e )Dε∇ue,H , K ∈ Th (27)

so that, if NM is the number of elements in ΩM (we drop the time index for the
sake of notation)

ηΩM
(ue,H) =

√√√√
NM∑

k=1

η2
k(ue,H).

We impose then a uniform distribution of the error among all elements of the
mesh Th, namely

ηK(ue,H) ≤ τ√
N

(28)

being N the total number of elements and τ a prescribed tolerance. Observe
that this choice guarantees that ηΩM

(ue,H) ≤ τ . More precisely, the refinement
algorithm reads:

case 1 if for K ∈ Ωn
M inequality (28) is fulfilled, then K ∈ Ωn+1

M , else

case 2 if (28) is not fulfilled, K ∈ Ωn+1
B .

The coarsening strategy is based on the complementary estimator ηΩB
(ue,H).

For K ∈ ΩB we compute ηK(ue,H). Then, for a given fraction σ we verify the
inequality

ηK(ue,H) ≥ στ√
N

. (29)

In our numerical tests we used σ = 1. The coarsening strategy reads

11



case 1 if for K ∈ Ωn
B, inequality (29) is fulfilled, then K ∈ Ωn+1

B , else

case 2 if (29) is not fulfilled, K ∈ Ωn+1
M .

It is worth pointing out that in this adaptive strategy the upper right block
of the matrix needs to be reassembled at each time step. As we will see in the
Numerical results, the adaptive strategy is still faster than the full Bidomain
solver.

The adaptive algorithm has been implemented within the finite elements li-
brary LifeV (see www.lifev.org). The space discretization chosen is a piecewise
linear finite element discretization while the time advancing scheme is described
in section 2.1.

The solution at each time step of the Hybridomain model is carried out with
the Trilinos linear solver GMRES or Flexible GMRES ([27]), implemented in
Belos package. The system is preconditioned with the Extended Monodomain
model, as done in [14], with different values of the inner tolerance. The same
strategy has been applied to the Bidomain system, to compare performances
and results. The Extended Monodomain system is solved blockwise, using ILU-
preconditioned CG solver for each block.

Remark The estimator ηΩM
(ue,H) and the lower bound ζopt(ue,H) provide

bounds for the local error. Consistently, in the next Section we investigate
efficiency and reliability of the estimator by comparing the Hybridomain solution
at time tn+1 with the Bidomain solution at the same time step, initialized to
the same datum at time tn. In the numerical results presented in Section 5 we
have decided to initialize both the Bidomain and Hybridomain solvers to the
Bidomain solution at each time step.

5 Numerical results

We firstly address the comparison of Bidomain, Monodomain and Hybridomain
solvers on the propagation of the action potential in a healthy tissue geometry
of the left ventricle. This geometry has been segmented from SPECT images
provided by Dr. E. V. Garcia (Emory Hospital, Atlanta, GA USA) [6, 3] using
the Level Set method implemented in the VMTK code (see www.vmtk.org). The
computational mesh features 1233256 elements and 199766 degrees of freedom.
The conductivity of the tissue in this test case is homogeneus non-isotropic due
to the presence of the cardiac fibers, as described in Section 2. Details on the
conductivity parameters and the analytical description of the fibers used for the
numerical experiments in Section 5.1 can be found in [9]. More precisely, the
geometrical parameters of the fiber description have been here adjusted to fit
the size of the geometry at hand.

In Section 5.2 we simulate the presence of a scar in the ventricle wall and
we compare the pattern obtained with the different solvers. The geometry, the
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space discretization and the fibers direction used are the same as in the previous
test case. In this case the conductivity of the tissue is non-homogeneus, the extra
cellular conductivities being amplified, while the intracellular conductivities are
reduced, as suggested in [12].

Since the adaptive algorithm is independent of the choice of the ionic model,
we analyse the performances of this strategy choosing only one of the two ionic
models mentioned in Section 2, namely the Rogers-McCulloch one, whose pa-
rameters are specified in [9]. The time step is ∆t = 0.5 ms and the simulations
are carried out for 400ms. We point out that the transmembrane potential com-
puted with Rogers-Mc Culloch model is shifted by 84 mV with respect to the
physiological one, setting 0 mV as rest potential in place of the physiological -84
mV.

5.1 Test cases on a healthy real geometry

The aim of the first set of simulations is to compare the choice of different thresh-
olds τeff = τ

√
N (being τ introduced in (28)), with respect to the effectivity

index of the upper bound estimator defined at each time step as

θup :=
ηΩM

(ue,H)

|||ei,H , ee,H ||| . (30)

In Figure 1 we show for every timestep the effectivity index (top) and the per-
centage of Bidomain elements over the total number of elements (bottom), for
τeff = 20, 40, 80, 120, 160. More precisely, since the rest transmembrane poten-
tial is zero, the error is dropping to zero in the last phase of the simulation
and it forces the effectivity index to grow, even if the Hybridomain solution is
identical to the Bidomain one. To filter this effect, in Figure 1 we plot θup if
|||ei,H , ee,H ||| > 10−3 and 0 otherwise.

In Figure 2 we plot the average of the effectivity index with respect to the
chosen threshold. Effectivity index is quite robust with respect to the choice of
the threshold, ranging between 4.68 and 4.93. Moreover we identify τeff = 80 as
the threshold value that gives the minimum effectivity index, and therefore the
more effective adaptive strategy. In the subsequent simulations we set τeff = 80.

Figure 3 shows the effectivity index of the lower bound estimator, defined as

θlow =
ζopt(ue,H)

|||ei,H , ee,H |||

Figure 4 highlights (in red) the distribution in space of the active Bidomain
elements (region ΩB) at three different time steps. Comparing the activation
pattern with the Bidomain transmembrane potential pattern we stress that the
adaptive strategy, based on the estimator ηΩM

(ue,H), succesfully activates the
Bidomain model in the area involved by the propagating front. This confirms
the reliability of the a priori error estimator.
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Figure 1: Top: effectivity index θup for different values of the threshold τeff .
Bottom: percentage of Bidomain elements over the total number of elements for
different values of the threshold τeff .

Let us now calculate the effectiveness of the adaptive Hybridomain model
both in reducing the error with respect to the simplified Monodomain model
and in reducing the computational time with respect to the complete Bidomain
model.

In Figure 5 we compare the norm of the difference etot
u,M with the norm of

etot
u,H . Solving the Hybridomain in place of the Monodomain produces a solution

much closer to the Bidomain one both in terms of the H1 and L2 errors.
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Figure 2: Average effectivity index for different values of the threshold τeff . The
minimum average is reached for τeff = 80.

Figure 3: Effectivity index θlow and percentage of active Bidomain elements for
τeff = 80.

In Table 1 we compare the computational effort required for solving the
Bidomain system and the Hybridomain system. In particular we report the
average CPU time (computed over all the time steps of the simulation) and the
number of iterations required by the iterative algorithm GMRES to converge.
As mentioned in Section 4, both systems are preconditioned with the Extended
Monodomain, and in this test case the preconditioner system is solved with
the Conjugate Gradient method, up to the fulfillment of an inner tolerance
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Figure 4: Top: Bidomain elements activated in Ω (ΩB shown in red) for t =
40, 80, 200 ms. Bottom: Bidomain transmembrane potential at t = 40, 80, 200
ms.

tol = 10−5. In the first row of the table we report the gain in iteration count

git = 100
(# Bidomain iterations)-(# Hybridomain iterations)

(# Bidomain iterations)
.

In the second row we show the gain in CPU time for the solution of each system
in the time advancing scheme, computed as

gtime = 100
(CPU Bidomain)-(CPU Hybridomain)

(CPU Bidomain)
.

When considering that solving the Hybridomain system requires to re-assemble
the upper right block of the matrix, the gain is defined as

gtime, net = 100
(CPU Bidomain)-(CPU Hybridomain +CPU assembling)

(CPU Bidomain)
.

This is reported in the last row of the Table. The adaptive strategy we are
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Figure 5: H1(Ω) norm (top) and L2(Ω) norm (bottom) of eu,M and eu,H at each
time step of the simulation.

git 28.6 %

gtime 35.0 %

gtime, net 33.4 %

Table 1: Percentage gain in CPU effort using the adaptive strategy with respect
to solving the Bidomain system. We report in the first row the average gain in
iteration count; in the second row the average gain in CPU time required for
the solution of the linear system; in the third row the average net gain in CPU
time, considering the assembling time required by the Hybridomain.

proposing, combined with the model preconditioning proposed in [14], allows
therefore to save more than 30% of CPU time with respect to solving the Bido-
main and with an average error per time step (with respect to the Bidomain
model) smaller than 2.9%, compared to the 16% average error of the Mon-
odomain solver.
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Remark We point out that if we use a coarser inner tolerance for CG method
when solving the preconditioner system, as suggested in [14], (Flexible GMRES
solver), the computational time required to solve both the Hybridomain and the
Bidomain decreases and the difference between them becomes less evident. In
particular in this test case git = 12.5%, gtime = 10.9% and gtime, net = 6.2%. Ef-
fectiveness of adaptivity is less evident in this case. More sophisticated coupling
strategies that could avoid to resort to the Extended Monodomain model will
allow a more relevant computing time reduction and will be investigated as a
future development of the present work.

Condition number Let B, M and H be the matrices obtained after the dis-
cretization (in time and space) of the Bidomain, (Extended) Monodomain and
Hybridomain models at a given time step. We analyse the condition number
of the matrices M−1B and M−1H obtained by preconditioning the Bidomain
system and the Hybridomain system with the Extended Monodomain matrix.
Different Computational meshes are considered. We report in Table 2 the con-
dition number associated. For all the mesh sizes tested, the action of M as

# mesh nodes K(M−1B) K(M−1H)

6288 1.67e+02 5.04e+01

12437 8.13e+01 5.47e+01

22470 1.81e+02 3.96e+01

52953 7.39e+01 6.04e+01

Table 2: Condition number of the preconditioned Bidomain (2nd) column and
Hybridomain (3nd) matrices. In the first column we report the number of nodes
of the computational mesh used. The Hybridomain matrix corresponds to t = 15
ms. From all the Extended Monodomain, Bidomain and Hybrid matrices the
singularity has been removed by enforcing, in an algebric way, the zero-average
of the extracellular potential.

preconditioner is remarkable and the condition number of the Hybridomain pre-
conditioned matrix is consistently smaller.

5.2 Test cases on a real geometry with artificial scar

In this test case we impose an artificial scar on the ventricle wall tissue, on the
intersection between the previously described SPECT geometry and a sphere
centered in (0.8,-0.3,0) cm and with 1 cm radius, as shown in Figure 6. For this
test case we run a Bidomain, a Hybridomain and a Monodomain simulation and
we compare the transmembrane potential patterns we obtain. In Figure 7 we
can see that the modeling error estimator activates the Bidomain model in the
scar region, even if the propagating front is far from it. This behaviour could
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Figure 6: Artificial scar on the wall of the SPECT reconstructed left ventricle
geometry in use.

be useful if the scar region needs to be studied and analysed in a more accurate
way than the rest of the cardiac tissue, during the whole heart beat.

Figure 7: Left: Bidomain activation (ΩB highlightened in red); Right: Bidomain
transmembrane potential at t = 40 ms.

It is also evident from Figure 8 that the propagating front predicted by
the Hybridomain near the scar is more similar to the Bidomain front than the
Monodomain pattern.
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Figure 8: Comparison among Bidomain, Hybridomain and Monodomain solu-
tions on a scarred ventricle at t = 90 ms. On the 1st row we report the Bidomain
activation (ΩB highlightened in red) on the left and the Hybridomain transmem-
brane potential on the right; on the 2nd we show the Monodomain transmeme-
brane potential on the left and the Bidomain transmemebrane potential on the
right.

6 Conclusion

In this paper we have introduced a model adaptivity strategy for coupling Bido-
main and Monodomain models in electrocardiology, in the form of a hybrid
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system, called Hybridomain. In this model, we couple a non symmetric for-
mulation of the Bidomain system and an extended version of the Monodomain
one, so that the Hybridomain model is obtained just switching on or off a term
locally (i.e. elementwise in the finite element discretization). The region where
we activate the “Bidomain term” is selected using a modeling error estimator
introduced here. Numerical results testify the effectivity of the estimator and
of the adaptive approach. There are some limitations that prevent this model
adaptive solver to be more effective. In particular, the need of resorting to an
Extended Monodomain formulation makes the reduced model still more expen-
sive than the pure Monodomain problem. Coupling between Bidomain and pure
Monodomain problems is however non trivial, for the different nature of the two
problems and a specific devising of interface conditions is currently under inves-
tigation. On the other hand, the Hybridomain model presented here is easy to
implement once a Bidomain non symmetric solver is available and provides a
reliable image of the critical regions of potential propagation in the heart, both
in the healthy and pathological cases.
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