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Mathematical Models in
Science and Engineering
Alfio Quarteroni

M
athematical modeling aims to de-
scribe the differentaspectsof the real
world, their interaction, and their
dynamics through mathematics. It
constitutes the third pillar of science

and engineering, achieving the fulfillment of the
two more traditional disciplines, which are theo-
retical analysis and experimentation. Nowadays,
mathematical modeling has a key role also in fields
such as the environment and industry, while its
potential contribution in many other areas is be-
coming more and more evident. One of the reasons
for this growing success is definitely due to the
impetuous progress of scientific computation; this
discipline allows the translation of a mathemat-
ical model—which can be explicitly solved only
occasionally—into algorithms that can be treated
and solved by ever more powerful computers. See
Figure 1 for a synthetic view of the whole process
leading from a problem to its solution by scientific
computation. Since 1960 numerical analysis—the
discipline that allows mathematical equations (al-
gebraic, functional, differential, and integrals) to
be solved through algorithms—had a leading role
in solving problems linked to mathematical model-
ing derived from engineering and applied sciences.
Following this success, new disciplines started to
use mathematical modeling, namely information
and communication technology, bioengineering,
financial engineering, and so on. As a matter of
fact, mathematical models offer new possibilities
to manage the increasing complexity of technol-
ogy, which is at the basis of modern industrial
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production. They can explore new solutions in a
very short time period, thus allowing the speed of

innovation cycles to be increased. This ensures a
potential advantage to industries, which can save

time and money in the development and validation

phases. We can state therefore that mathematical
modeling and scientific computation are gradual-

ly and relentlessly expanding in manifold fields,
becoming a unique tool for qualitative and quanti-

tative analysis. In the following paragraphs we will
discuss the role of mathematical modeling and of

scientific computation in applied sciences; their

importance in simulating, analyzing, and decision
making; and their contribution to technological

progress. We will show some results and under-
line the perspectives in different fields such as

industry, environment, life sciences, and sports.

Scientific Computation for Technological
Innovation
Linked to the incredible increase of computer
calculation speed, scientific computation may be

decisive enough to define the border between
complex problems that can be treated and those

that, on the contrary, cannot. The aim of scien-

tific computation is the development of versatile
and reliable models, detailed in closed form, and

tested on a wide range of test cases, either analog-
ical or experimental, for which there are helpful

reference solutions.
A mathematical model must be able to address

universal concepts, such as, for instance, the con-

servation of mass or the momentum of a fluid, or
the moment of inertia of a structure; moreover, in

order to obtain a successful numerical simulation,
it is necessary to define which level of detail must

be introduced in the different parts of a model
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Figure 1. Scientific computing at a glance.

and which simplifications must be carried out
to facilitate its integration into different models.
Models able to simulate very complex problems
should take into account uncertainty due to the
lack of data (or data affected by noise) that feed
the model itself. These kinds of models will be
used to foresee natural, biological, and environ-
mental processes, in order to better understand
how complex phenomena work, and also to con-
tribute to the design of innovative products and
technologies.

An important aspect of scientific computation
is represented by computational fluid dynamics
(CFD), a discipline that aims to solve by computers
problems governed by fluids. In aerospace, for
example, CFD can be applied in many ways. Nu-
merical models based on potential flow equations
or on the more sophisticated Euler or Navier-
Stokes equations can be used, for example, in the
aerodynamic analysis of wing tips or for the whole
fuselage for performance optimization. See Figure
2 and Figure 3 for numerical simulations carried
out on, respectively, a civil aircraft (the Falcon 50)
and the X29 experimental aircraft using the Euler
equations solved by a stabilized finite element
approximation [1]. Simulation implies validation
and optimization, with the aim of designing air-
craft able to meet certain requirements: better
structural reliability, better aerodynamic perfor-
mance, lower environmental impact thanks to
the reduction in noise emissions (in the case of
commercial airplanes), speed optimization, and
improvement of maneuverability (in the case of
military aircraft). The solution to these problems
requires multi-objective optimization algorithms:
deterministic, stochastic, or genetic. Moreover,
models of electromagnetic diffusion are used to
simulate external electromagnetic fields in order
to restrain them from interfering with those gen-
erated by the several electronic circuits that are

contained in the instrumentation on board. Mod-
els are used to simulate the stresses and the
deformation of some parts of the aircraft (for
the simulation of the analysis of materials strain),
through algorithms for the interaction between
fluid and structure with the aim of improving
structural and dynamic stability. Similar analyses
are studied in the car industry, where numerical
simulation is used in virtually every aspect of
design and car production. Models are used to
simulate internal engine combustion in order to
save fuel, improve the quality of emissions, and
reduce noise. Moreover, to improve performance,
security, and comfort, several kinds of equations
must be solved, such as those modeling external
and internal fluid dynamics, aero-elasticity, and
aero-acoustic vibration dynamics, but also those
governing thermal exchange, combustion process-
es, shock waves (occurring during the opening
phase of an air bag), structural dynamics under
large stresses, and large deformations to simulate
the consequences of car crashes. The chemical
industry uses mathematical models to simulate
polymerization processes, pressing, or extrusion
for complex rheologic materials, where the typi-
cal macro analysis of continuum mechanics must
be connected to the micro one, the latter being
more adequate to describe the complex rheology
of materials with nanostructure. This requires the
development of multiscale analysis techniques and
algorithms,whichare able todescribe the exchange
of mechanical, thermal, and chemical processes
in heterogeneous spatial scales. In the electronics
industry, the simulation of drift-diffusion, hydro-
dynamics, Boltzmann, or Schrödinger equations
plays a key role in designing ever smaller and
faster integrated circuits, with growing function-
ality and with dramatic waste reduction (which
are fundamental, for example, in different appli-
cations of mobile phones). Efficient algorithms are
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Figure 2. Mach number distribution and
streamlines for a civil aircraft.

Figure 3. Mach number and streamlines on the
X29 experimental aircraft.

useful also for coding and decoding multi-user

messages.

Modeling the Weather
In the last few decades, the critical problem of

predicting the weather in a short time (daily or

weekly) has become more and more linked to long-

term prediction (for a decade or even a century),

to climatic evolution, and to atmospheric pollu-

tion problems. Luckily, there are natural climatic

changes in a particular area that obey physical law,

and can thus be simulated through mathematical

models. Also, from a global point of view (over

Figure 4. Wind velocity simulation over the
Mediterranean Sea.

either a continental or worldwide scale) there are
changes due to deterministic phenomena, for ex-
ample to variation in the inclination of the earth’s
axis, the eccentricity of the earth’s orbit, the ocean-
ic circulation, or intense geological phenomena like
volcanic eruptions. The meteorological prediction
problem was formulated as a mathematical issue
only at the beginning of the twentieth century by
the Norwegian mathematician Vilhelm Bjerkned,
who described atmospheric motion using the Euler
equations for perfect gas dynamics (well known
at that time), suitably modified in order to take
into account the action of the force of gravity and
the earth’s rotation. Unluckily, data regarding the
atmosphere were available only in a few points,
and they referred to heterogeneous variables and
to different periods of time.

Moreover, Euler equations described an ex-
tremely wide range of atmospheric motions, which
can take place on spatial and temporal scales that
are very different from each other (feet instead
of miles, seconds instead of days). The lack of
data regarding some of these scales may gen-
erate spurious motions (which do not exist in
nature) and reduce the prediction quality. A re-
alistic description of meteorological phenomena
cannot but take into account the prediction of
water steam distribution, its changes (from liquid
to gas), and consequent rainfall. The first attempt
to solve this problem from a numerical point of
view was carried out by Lewis Richardson, who
succeeded in calculating a concrete example of
the solution of atmospheric motion on a region
as wide as the whole of North Europe. The re-
sults obtained by Richardson through extremely
complicated hand calculations led to completely
wrong predictions, though: as a matter of fact, at
that time there was no theory able to dominate
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the traps of the equations to be solved. The contri-

bution of Carl-Gustaf Rossby, one of Richardson’s

students, was decisive enough to optimize the

efforts made by Richardson. After immigrating to

the USA in the 1920s, he contributed to founding

the meteorological service for civil and military

aviation during the Second World War. Among

the indirect contributions he gave, the weather

prediction made by the Americans for D-Day (June

4, 1944) can be included. The simplified mathe-

matical models introduced by Rossby allowed the

first meteorological prediction to be made with an

electronic computer, resulting from cooperation

between John von Neumann and Jules Charney,

which started in Princeton in the 1940s. In par-

ticular, it was possible to make a prediction for

the whole of the North of America through a

simplified model that described the atmosphere

as a unique fluid layer. Even though it took 24

hours to make a prediction for the following 12

hours on the only electronic computer available

(ENIAC), the efforts of von Neumann and Char-

ney showed for the first time that a prediction

based only on a mathematical model could achieve

the same results as those by an expert on mete-

orology of that time. The modern approach to

numerical weather prediction was born. As a mat-

ter of fact, beyond the spectacular improvements

in computer performance, there have also been

radical improvements in the accuracy of math-

ematical prediction tools, the development of a

theory on the predictability of chaotic dynamical

systems, and an improvement in data assimilation

techniques. In the 1970s, the systematic use of

surveys made by satellites was introduced, and it

constitutes nowadays the most relevant part of

the data used to start numerical models. Since

then, the impact of scientific and technological

progress has been very important. For instance,

the IFS global model of the European Center for

Medium Range Weather Forecasts (ECMWF) uses a

computation grid with an average spatial resolu-

tion of about 22km horizontal and 90km vertical.

This allows part of the stratosphere to be included.

This model can make a 10-day prediction in about

1 hour on a modern parallel supercomputer, even

though 6 further hours, necessary to insert the

data, must be added. The IFS model allows reliable

predictions to be made for about 7.5 days on a

continental scale in Europe. See Figure 4 for an

example of weather prediction.

Models for Life Sciences

In the 1970s, in vitro experiments, and those

on animals, represented the main approach to

cardiovascular studies. Recently, the progress of

computational fluid dynamics and the great im-

provements of computer performance produced

Figure 5. Computed velocity profiles
downstream a carotid bifurcation.

Figure 6. Shear stress distribution on a
pulmonary artery.

remarkable advances that revolutionize vascular

research [7].

For instance, a physical magnitude such as the

shear stress on the endothelial membrane,which is

very difficult to test in vitro, can be easily calculated

on real geometries obtained with tri-dimensional

algorithms, thanks to the support of modern

and noninvasive data acquisition technology (such

as nuclear magnetic resonance, digital angiogra-

phy, axial tomography, and Doppler anemometry).

Flowing in arteries and veins, blood mechanically

interacts with vessel walls, generating complex

fluid-structural interaction problems. As a matter

of fact, the pressure wave transfers mechanical

energy to the walls, which dilate; such an energy

is returned to the blood flow while the vessels

are compressed. Vascular simulation of the in-

teraction between the fluid and the wall requires

algorithms that describe both the energy transfer

between the fluid (typically modeled by the Navier-

Stokes equations) and the structure (modeled by
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Figure 7. Scientific computing for cardiovascular flow simulation and related topics.

solid mechanics equations) at a macroscopic lev-
el, and the influence—at a microscopic level—of
the shear stress on orientation, deformation, and
damage of endothelial cells [8]. At the same time,
flow equations must be coupled to appropriate
models in order to describe the transport, diffu-
sion, and absorption of chemical components in
the blood (such as oxygen, lipids, and drugs), in
the different layers that constitute artery walls

(tunica intima, tunica media, and tunica adventi-
tia). Numerical simulations of this kind may help
to clarify biochemical modifications produced by
changes in the flow field, generated, for example,
by the presence of a stenosis, i.e., an artery nar-
rowing. In the cardiovascular system, conditions
of separated flow and secondary circulatory mo-
tions are met, not only in the presence of vessels
featuring large curvature (e.g., the aortic bend or
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the coronary arteries), but also downstream of

bifurcations (for instance the carotid artery in its

internal and external branches) or regions with

restrictions due to the presence of stenosis. There

are other areas with a flow inversion (from distal
to proximal regions) and also areas with low shear

stress with temporal oscillations [9]. These cases

are nowadays recognized as potential factors in

the development of arterial pathologies. A detailed
comprehension of local haemodynamic change, of

the effects of vascular wall modifications on the

flow scheme, and of the gradual adaptation in

the medium to long period of the whole system

following surgical interventions, is nowadays pos-
sible thanks to the use of sophisticated computer

simulations, and may be extremely useful in the

preliminary phase before a therapeutic treatment.

A similar scenario may provide specific data for
surgical procedures. Simulating the flow in a coro-

nary bypass, in particular the re-circulation that

takes place downstream of the graft in the coro-

nary artery, may help us to understand the effects

of artery morphology on the flow and thus of
the post-surgical progression. The theory of op-

timal shape control may be useful for designing

a bypass able to minimize the vorticity produced

downstream of the graft in the coronary artery.
Similarly, the study of the effects of a vascular

prosthesis and of implantation of artificial heart

valves on local and global haemodynamics may

progress thanks to more accurate simulations in

the field of blood flow. In virtual surgery, the
result of alternative treatments for a specific pa-

tient may be planned through simulations. This

numerical approach is an aspect of a paradigm of

practice, known as predictive medicine. See Fig-

ure 7 for a comprehensive picture on our current
research projects in the field of cardiovascular

flow simulations.

Models for Simulation and Competition
The application of mathematical models is not
limited to the technological, environmental, or

medical field. As a matter of fact, deterministic

and stochastic models have beenadopted for many

years in analyzing the risk of financial products,
thus facilitating the creation of a new discipline

known as financial engineering. Moreover, the new

frontier has already begun to touch sociology,

architecture, free time, and sports.

As far as competitive sports are concerned, CFD
for some years now has been assuming a key role

in analyzing and designing Formula One cars. But

Formula One racing is not the only field where

mathematical/numerical modelling has been ap-

plied. As a matter of fact, my research group from
EPFL has been involved in an extremely interesting

experience, which saw the Swiss yacht Alinghi win

the America’s Cup both in 2003 and again in 2007.

Figure 8. Pressure distribution around yacht
appendages.

Until twenty years ago, the different designing

teams used to develop different shapes of sails,
hulls, bulbs, and keels. Nowadays the different

geometric shapes have been standardized, and
even the smallest details may make a difference

from the results point of view. Quoting Jerome
Milgram, a professor from MIT and an expert in

advising different American America’s Cup teams:
“America’s Cup teams require an extreme preci-

sion in the design of the hull, the keel, and the
sails. A new boat able to reduce the viscous re-

sistance by one percent, would have a potential
advantage on the finish line of as much as 30

seconds.” To optimize a boat’s performance, it is
necessary to solve the fluid-dynamics equations

around the whole boat, taking into account the
variability of wind and waves, of the different

conditions during the yacht race, of the position,
and of the moves of the opposing boat, but also

the dynamics of the interaction between fluids
(water and air) and the structural components

(hull, appendages, sails, and mast) must be con-
sidered. Moreover, the shape and dynamics of

the so-called free surface (the interface between
air and water) has to be accurately simulated as

well. A complete mathematical model must take
into account all these aspects characterizing the

physical problem. The aim is to develop together
with the designers optimal models for the hull,

the keel, and appendages.
Ideally, one wishes to minimize water resistance

on the hull and appendages and to maximize the
boost produced by the sails. Mathematics allows

different situations to be simulated, thus reducing
costs and saving time usually necessary to pro-

duce a great number of prototypes to be tested in
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Figure 9. Streamlines around mainsails and
spinnaker in a downwind leg.

a towing tank and wind tunnel. For each new boat
simulation proposed by the designers (which were
several hundred), it was necessary to build the ge-
ometrical model—about 300 splines surfaces are
needed to overlay the whole boat—to create the
grid on the surface of all the elements of the boat
reliable enough to enable the determination of
the transition between laminar flow and turbulent
flow regions, and consequently to generate the
volumetric grid in external domain. The Navier-
Stokes equations for incompressible viscous flows
must be used to describe both water and wind
dynamics and the consequent free surface, which
need to be completed by additional equations that
allow the computation of turbulent energy and
its dissipation rate. These equations cannot be
solved exactly to yield explicit solutions in closed
form. Their approximate solution requires the
introduction of refined discretization methods,
which allow an infinite dimensional problem to
be transformed into a big but finite dimensional
one. The typical calculation, based on finite vol-
ume schemes, involved the solution of nonlinear
problems with many millions of unknowns. Using
parallel algorithms, 24 hours on parallel calcula-
tion platforms with 64 processors were necessary
to produce a simulation, characterized by more
than 160 million unknowns. A further compu-
tation is concerned with the simulation of the
dynamical interaction between wind and sails by
fluid-structure algorithms. These simulations en-
able the design team to eliminate those solutions
that seem innovative and to go on with those that
actually guarantee better performance. Moreover,
by simulating the effects of aerodynamic interac-
tion between two boats, one can determine the
consistency of shadow regions (the areas with less

wind because of the position of a boat with re-

spect to the other), the flow perturbation, and the
turbulence vorticity generated by the interaction
of the air, thus obtaining useful information for
the tactician as well. These studies aim to design

a boat having an optimal combination of the four
features that an America’s Cup yacht must have:
lightness, speed, resistance, and maneuverability

necessary to change the race outcome.
A more in-depth description of the mathemat-

ical tools necessary for this kind of investigation
is provided in the next section.

Mathematical Models for America’s Cup
The standard approach adopted in the America’s
Cup design teams to evaluate whether a design
change (and all the other design modifications that

this change implies) is globally advantageous, is
based on the use of a Velocity Prediction Program
(VPP), which can be used to estimate the boat
speed and attitude for any prescribed wind con-

dition and sailing angle. A numerical prediction
of boat speed and attitude can be obtained by
modeling the balance between the aerodynamic
and hydrodynamic forces acting on the boat.

For example, on the water plane, a steady sailing
condition is obtained imposing two force balances
in the x direction (aligned with the boat velocity)

and the y direction (normal to x on the water
plane) and a heeling moment balance around the
centerline of the boat:

Dh + T a = 0,

Sh + Sa = 0,(1)

Mh +Ma = 0,

where Dh is the hydrodynamic drag (along the
course direction), T a is the aerodynamic thrust,
Sh is the hydrodynamic side force perpendicular

to the course, Sa is the aerodynamic side force,
Mh and Ma are, respectively, the hydromechani-
cal righting moment and the aerodynamic heeling
moment around the boat mean line. The angle

βY between the course direction and the boat
centerline is called yaw angle. The aerodynamic
thrust and side force can be seen as a decom-
position in the reference system aligned with the

course direction of the aerodynamic lift and drag,
which are defined on a reference system aligned
with the apparent wind direction. Similar balance
equations can be obtained for the other degrees

of freedom.
In a VPP program, all the terms in system

(1) are modeled as functions of boat speed, heel

angle, and yaw angle. Suitable correlations be-
tween the degrees of freedom of the system and
the different force components can be obtained
based on different sources of data: experimen-

tal results, theoretical predictions, and numerical
simulations.
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Figure 10. Forces and moments acting on boat.

The role of advanced computational fluid dy-
namics is to supply accurate estimates of the
forces acting on the boat in different sailing con-

ditions in order to improve the reliability of the
prediction of the overall performance associated
with a given design configuration.

The flow equations

LetΩ denote the three-dimensional computational

domain in which we solve the flow equations. If Ω̂
is a region surrounding the boat B, the computa-
tional domain is the complement of B with respect

to Ω̂, that is Ω = Ω̂\B. The equations that gov-
ern the flow around B are the density-dependent

(or inhomogeneous) incompressible Navier–Stokes
equations, which read:

∂ρ

∂t
+∇ · (ρu) = 0(2)

∂(ρu)

∂t
+∇ · (ρu ⊗ u)−∇ · τ(u, p) = ρg(3)

∇ · u = 0(4)

for x ∈ Ω and 0 < t < T , and where ρ is the
(variable) density, u is the velocity field, p is the

pressure, g = (0,0, g)T is the gravity acceleration,

and τ(u, p) = µ(∇u+∇uT )− pI is the stress ten-

sor with µ indicating the (variable) viscosity. The
above equations have to be complemented with
suitable initial conditions and boundary condi-
tions. For the latter we typically consider a given
velocity profile at the inflow boundary, with a flat

far field free-surface elevation.
In the case we are interested in, the compu-

tational domain Ω is made of two regions, the
volume Ωw occupied by the water and that Ωa
occupied by the air. The interface Γ separating

Ωw from Ωa is the (unknown) free-surface, which
may be a disconnected two-dimensional manifold

if wave breaking is accounted for. The unknown

density ρ actually takes two constant states, ρw (in
Ωw ) and ρa (inΩa). The values of ρw and ρa depend

on the fluid temperatures, which are considered
to be constant in the present model. The fluid

viscosities µw (in Ωw ) and µa (in Ωa) are constants
that depend on ρw and ρa, respectively.

The set of equations (2)-(4) can therefore be

seen as a model for the evolution of a two-phase
flow consisting of two immiscible incompressible

fluids with constant densities ρw and ρa and dif-
ferent viscosity coefficients µw and µa. In this

respect, in view of the numerical simulation, we
could regard equation (2) as the candidate for

updating the (unknown) interface location Γ , then

treat equations (3)-(4) as a coupled system of
Navier–Stokes equations in the two sub-domains

Ωw and Ωa:
∂(ρwuw)

∂t
+∇ · (ρwuw ⊗ uw)−∇ · τw(uw , pw ) = ρwg,

∇ · uw = 0,

in Ωw × (0, T),
∂(ρaua)

∂t
+∇ · (ρaua ⊗ ua)−∇ · τa(ua, pa) = ρag,

∇ · ua = 0,

inΩa×(0, T). We have set τw(uw , pw) = µw(∇uw+

∇uw
T )−pw I, while τa(ua, pa) is defined similarly.

The free surface Γ is a sharp interface between

Ωw and Ωa, on which the normal components of
the two velocitiesua·n anduw ·n should agree. Fur-

thermore, the tangential components must match

as well since the two flows are incompressible.
Thus we have the following kinematic condition

(5) ua = uw on Γ .
Moreover, the forces acting on the fluid at the

free-surface are in equilibrium. This is a dynamic
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condition and means that the normal forces on ei-

ther side of Γ are of equal magnitude and opposed

direction, while the tangential forces must agree

in both magnitude and direction:

(6) τa(ua, pa) · n = τw(uw , pw) · n+ κσn on Γ ,
where σ is the surface tension coefficient, that is

a force per unit length of a free surface element

acting tangentially to the free-surface. It is a prop-
erty of the liquid and depends on the temperature

as well as on other factors. The quantity κ in (6) is

the curvature of the free-surface, κ = R−1
t1
+ R−1

t2
,

where Rt1 and Rt2 are radii of curvature along the
coordinates (t1, t2) of the plane tangential to the

free-surface (orthogonal to n).

Coupling with a 6-DOF rigid body dynamical
system

The attitude of the boat advancing in calm water

or wavy sea is strictly correlated with its perfor-

mance. For this reason, a state-of-the-art numerical

tool for yacht design predictions should be able

to account for the boat motion.

Following the approach adopted in [2, 3], two
orthogonal cartesian reference systems are con-

sidered: an inertial reference system (O,X, Y ,Z),

which moves forward with the mean boat speed,

and a body-fixed reference system (G, x, y, z),

whose origin is the boat center of mass G, which

translates and rotates with the boat. The XY plane

in the inertial reference system is parallel to the
undisturbed water surface, and the Z-axis points

upward. The body-fixed x-axis is directed from

bow to stern, y positive starboard, and z upwards.

The dynamics of the boat in the 6 degrees of

freedom are determined by integrating the equa-

tions of variation of linear and angular momentum
in the inertial reference system, as follows

mẌG = F(7)

¯̄T¯̄I ¯̄T−1Ω̇+Ω× ¯̄T¯̄I ¯̄T−1Ω = MG(8)

where m is the boat mass, ẌG is the linear accel-

eration of the center of mass, F is the force acting
on the boat, Ω̇ and Ω are the angular acceleration

and velocity, respectively, MG is the moment with

respect to G acting on the boat, ¯̄I is the tensor of

inertia of the boat about the body-fixed reference

system axes, and ¯̄T is the transformation matrix

between the body-fixed and the inertial reference

system (see [2] for details).

The forces and moments acting on the boat are

given by

F = FFlow +mg + FExt

MG = MFlow + (XExt −XG)× FExt

where FFlow and MFlow are the force and moment,

respectively, due to the interaction with the flow

and FExt is an external forcing term (which may

model, e.g., the wind force on sails) while XExt is

its application point.

The equations for wind–sails interaction

The sail deformation is due to the fluid motion:
the aerodynamic pressure field deforms the sail
surfaces and this, in its turn, modifies the flow
field around the sails.

From a mathematical viewpoint, this yields a
coupled system that comprises the incompress-
ible Navier-Stokes equations with constant density

ρ = ρair (3-4) and a second order elastodynamic
equation that models the sail deformation as that
of a membrane. More specifically, the evolution

of the considered elastic structure is governed
by the classical conservation laws for continuum
mechanics.

Considering a Lagrangian framework, if Ω̂s is
the reference 2D domain occupied by the sails, the
governing equation can be written as follows:

(9) ρs
∂2d

∂t2
= ∇· σs(d)+ f s in Ω̂s × (0, T],

where ρs is the material density, the displacement

d is a function of the space coordinates x ∈ Ω̂s and
of the time t ∈ [0;T], σs are the internal stresses

while f s are the external loads acting on the sails
(these are indeed the normal stresses τ(u, p)·n on
the sail surface exerted by the flowfield). In fact,

Ω̂s represents a wider (bounded and disconnected)

domain that includes also the mast and the yarns
as parts of the structural model. The boundary of

Ω̂s is denoted by ∂Ω̂s and [0;T] ⊂ R+ is the time
interval of our analysis. For suitable initial and

boundary conditions and an assignment of an ap-
propriate constitutive equation for the considered
materials (defining σs(d)), the displacement field

d is computed by solving (9) in its weak form:

(10)

∫

Ω̂s
ρs
∂2di

∂t2
(δdi)dx+

∫

Ω̂s
σ II

ik (δǫki)dx

=

∫

Ω̂s
fs i (δdi)dx,

where σ II is the second Piola-Kirchoff stress ten-
sor, ǫ is the Green-Lagrange strain tensor, and δd
are the test functions expressing the virtual defor-

mation. The second coupling condition enforces

the continuity of the two velocity fields, u and
∂d

∂t
,

on the sail surface.

Fluid-structural coupling algorithm

As previously introduced, the coupling procedure
iteratively loops between the fluid solver (passing
sail velocities and getting pressure fields) and the

structural solver (passing pressures and getting
velocities and structural deformations) until the
structure undergoes no more deformations be-

cause a perfect balance of forces and moments is
reached. When dealing with transient simulations,
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this must be true for each time step, and the

sail geometry evolves over time as a sequence of
converged states. On the other hand, a steady sim-
ulation can be thought of as a transient one with

an infinite time step, such that “steady” means
a sort of average of the true (unsteady) solution
over time. More formally, we can define two oper-

ators called Fluid and Struct that represent the
fluid and structural solvers, respectively. In par-
ticular, Fluid can be any procedure that can solve

the incompressible Navier-Stokes equations while
Struct should solve a membrane-like problem,
possibly embedding suitable nonlinear models to

take into account complex phenomena such as, for
example, the structural reactions due to a fabric
wrinkle.

The fixed-point problem can be reformulated

with the new operators as follows:

(11) Fluid (Struct(p)) = p.

A resolving algorithm can be devised as follows.
At a given iteration the pressure field on sails p

is passed to the structural solver (Struct), which
returns the new sail geometries and the new sail
velocity fields. Afterwards, these quantities are

passed to the fluid solver (Fluid) which returns
the same pressure field p on sails. Clearly, the
“equal” sign holds only at convergence. The re-

sulting fixed-point iteration can be rewritten more
explicitly as follows: Given a pressure field on sails
pk, do:

(12)

(Gk+1, Uk+1) = Struct(pk)
p̄k+1 = Fluid(Gk+1, Uk+1)
pk+1 = (1− θk)pk + θkp̄k+1

where Gk+1 and Uk+1 are the sail geometry and the
sail velocity field at step k+ 1, respectively, while
θk is a suitable acceleration parameter.

Even though the final goal is to run an unsteady

simulation, the fluid-structure procedure has to
run some preliminary steady couplings to provide
a suitable initial condition. The steady run iterates

until a converged sail shape and flow field are
obtained, where converged means that there does
exist a value of kc such that (11) is satisfied for

every k > kc (within given tolerances on forces
and/or displacements). When running steady sim-
ulations the velocity of the sails is required to

be null at each coupling, thus somehow enforcing
the convergence condition (which prescribes null
velocities at convergence). This explains why con-

vergence is slightly faster when running steady
simulations with respect to transient ones (clearly
only when such a solution reflects a steady state

physical solution).
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