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Abstract

We deal with the approximation of an unsteady advection-diffusion-
reaction problem by means of space-time finite elements, continuous affine
in space and piecewise constant in time. In particular, we are interested in
the advection-dominated framework. To face the trade-off between com-
putational cost and accuracy, we devise a space-time adaptive procedure
where both the time step and the spatial grid are adapted throughout the
simulation. Two are the key points involved: the derivation of an a pos-
teriori error estimator where the contributions of the spatial and of the
temporal discretization are split; a balance of these two contributions via a
proper adaptive scheme. The main novelty of the paper is the interest for
an anisotropic mesh adaption framework.



1 Introduction

Time dependent advection-dominated problems represent an interesting bench-
mark for an adaption procedure, due to the (possible) presence of steep internal
and/or boundary layers, moving in time. We tackle this issue starting from
a theoretically sound space-time adaptive procedure which: i) extends to the
time dependent case the anisotropic interpolation error estimates in [7, 8]; ii)
generalizes the a posteriori analysis in [13] for a pure diffusive problem to an
advective-diffusive-reactive regime. Concerning the pertinent literature, an ef-
fective space-time adaptive procedure is proposed in [11] in an optimization
framework. In this last case the authors focus on an isotropic goal-oriented
analysis for the heat equation. Instead we pursue an anisotropic management
of the space adaption procedure. Moreover we control a suitable energy norm
of the discretization error as, e.g., in [1, 5]. As far as we know, the only paper
dealing with a parabolic problem in an anisotropic framework is [16]. Here the
heat equation is considered in an optimal control framework: the time discretiza-
tion is carried out via the standard backward Euler scheme and no sound time
adaption procedure is addressed, in favor of a heuristic approach.
Let us focus on the model parabolic problem for u = u(Z,t)

Lu=08u—V -(DVu)+b-Vu+ou=f in Qx J,

u=20 onI'p x J, (1)
DVu-i=g on I'y x J,

u = ug on Q x {0},

where J = (0,7], with T' > 0, is the considered time span, € is a bounded
polygonal domain in R? with boundary 99Q, I'n and T'y are nonoverlapping
subsets of 0f), each comprising a whole number of sides of 92 and such that
90 = T'p UTy, and n is the unit outward normal vector to 9. Moreover we
make the following assumptions on the data: the source f € L2(0,T; L?(f2)); the
Neumann datum g € L?(0, T} HSéQ(I’N)’); the diffusion tensor D € [L>(£2)]>*?
and satisfies the standard ellipticity condition; the advective field b € [L*(£2)]2
with V-b € L®(Q) and b- 7 > 0 a.e. on I'y; the reaction term o € L*(Q) with
y=0-1V- b >0 a.e. in ©, while the initial condition ug € L2(£2). Notice that
the notation adopted for the function spaces is standard (cf. e.g., [10]). The weak
solution to (1) belongs to the space U = L?(0,T; Hp_ () N H'(0,T; Hp_(Q)").
It is well known that the space U is continuously embedded in C°([0, T; L(£2))

([4)-

1.1 Managing the space-time

The adopted discrete formulation can be seen as a spatial approximation of a
discontinuous in time, dG(0), formulation [17]. Let us first manage the time
discretization. We partition the interval J by the time levels 0 =ty < t; < ... <



tn—1 <ty =T, andset J, = (tn—1,tn], kn = tn—tn—1. We define the space-time
slab S, = Q x J,, with n = 1,..., N. Due to the possible time discontinuity
characterizing the dG(0 ) approximation, for suitable smooth functions v(-, ), we
also define the values v = lim,_, o+ v(-, ¢, £¢) and the corresponding temporal
jump [v], = v} — v, with m =1,...,N — 1. Then we introduce the function
space S, = {v : (0,T] — Hp (Q) : fu(-,t)‘Jn = (), € Hp (Q)}, whose
elements coincide with polynomials of degree zero in ¢ on each interval J,, with
coefficients in H%D(Q). The functions in S can be discontinuous at each time
level, with continuity from the left. Moreover, since 0 ¢ Jq, the value v(-,0) has
to be specified separately, Vv € S.

To discretize the space we resort to a family of conformal decompositions
of Q into triangles, such that there is always a vertex of the triangulation at
the interface between I'p and I'y (see, e.g., [3]). The temporal discontinuity
allows for the employment of a family {7}, }, of meshes, possibly different on
each space-time slab Sy, for n = 1,..., N. In particular we define 73, = {K,},
with K, triangle of diameter hg, and h, = maxg, hk,, the prism Sk, =
K, x J, and its lateral surface Lx, = 0K, X J,. We are now in a position
to define the so-called ¢G(1)-dG(0) space, Spr = {vpr € Sk : Vhi( {J
(), n € X} N H%D ()}, X} being the space of the finite elements of degree
one associated with the mesh 7}, (see, e.g., [6]). The continuity of the functions
Upk € Spi 18 guaranteed with respect to the space, while the discontinuity in
time characterizing the space Sj is maintained.

In view of the ¢G(1)-dG(0) formulation of (1), we introduce the bilinear and
linear forms Bpg-crs(-,-) and Fpg—crs(+), given by

N
Bpg-cLs(v,w) = Z / {atvw + DVv-Vw + (l_; Vv + ov) w} dzdt

/vowo dm—{—Z/ mw+dm—{—z Z / Tk, Lv Lw dZdt,

n=1 Kn€T, Skn (2)

Foe—crs(w Z { /5 fwdZdt + / /F gw dsdt
n=1 n n N
+ > /

Tk, [ Lw dzdt} /vowar dZ,
K ETh SK”

Q

respectively, vg = v, € L?(2) being known. These forms already incorporate a
Galerkin Least-Squares (GLS) stabilization [9] to deal with possible numerical
instabilities; the T}(ns are suitable anisotropic piecewise constant stabilization
coefficients ([15]).
Notice that [u],, =0, m =1,...,N — 1, while u = uy = ug(-), as u € U.

The GLS ¢G(1)-dG(0) discrete formulation of problem (1) is: find up, € Spi
such that

Bpa—crs (Unks vhk) = Foa—ars(vnk)  Yopk € Shi, (3)



where vy in (2) is replaced by u% € X,il OH%D (), i.e., by a proper finite element
approximation of the initial data ug.

It can be proved that the space-time error epr = u — upy associated with
the approximation upy satisfies a slabwise Galerkin orthogonality condition with
respect to the discrete space Sy.

The bilinear form Bpg_qrs induces the norm

N
llwlllbe-cLs = Boa-ars(w,w) = > {HDl/szH[zm(Sn)P + 17 2wll32 s,
n=1
1. - 1/2
3 1E D 0l g + Yo I Lol |
KnGThn
1= 1 1
+5 D llwh = w2y + §||w0+||%2(9) + 5““&“%(9) (4)
m=1

on the space UUSy, (see, e.g. [9, 14] for further details). This is the energy norm
on which we base the a posteriori analysis below.

2 The anisotropic framework

With a view to the a posteriori analysis, we recall the basic ideas of the anisotropic
setting introduced in [7]. Moreover, we generalize some of the anisotropic inter-
polation error estimates in [7, 8] to the unsteady case.

Given any slab S,, 7;, = {K,} being the associated mesh, we extract
the anisotropic information from the invertible affine map Tk, : K — K,
from the reference triangle K to the general element K, € 7, , such that
K, = Tk,(K) = Mg, K + ix,, where Mg, € R*? and g, € R? denote
the Jacobian and the offset associated with Tk, , respectively. Then we intro-
duce the polar decomposition Mk, = Bk, Zk, of Mk, into a symmetric positive
definite matrix By, € R**? and an orthogonal matrix Zx, € R?*? and we fur-
ther factorize the matrix By, in terms of its eigenvectors 7 g, and eigenvalues
)‘i,Km for ¢ = 1,2, as BKn = R[T(nAKnRKm with AKn = diag ()\1,[(”,)\2,[(”) and
RITQL = [k, , 7.1, Notice that Zg,, and tx, do not play any role in providing
anisotropic information as associated with a rigid rotation and a shift, respec-
tively. We choose K as the equilateral triangle inscribed in the unit circle, with
centroid placed at the origin. For this choice, it is possible to completely de-
scribe the shape and the orientation of each element K, through the quantities
ik, and A; k. The unit circle circumscribed to K is mapped into an ellipse
circumscribing K,: the eigenvectors 7; i, and the eigenvalues \; g, provide us
with the directions and the length of the semi-axes of such an ellipse, respec-
tively. In particular, we measure the deformation of each element K, by the
so-called stretching factor sk, = A1k, /A2 k,,, assuming, without loosing gener-
ality, A1 k,, > A2k, so that sk, > 1, the equality holding if and only if K, is
equilateral.



We now state the anisotropic interpolation error estimates used in the a pos-
teriori analysis. We focus on the Lagrange interpolant H}Ln :C%Q) - X flzn The
local interpolant ITj : I} (U{K ) = (I, for any v € C°(Q), satisfies

the following

v)‘Kn’

Lemma 2.1 Let v|SK € L?(J,; H*(K,)) NU; then it holds

o =Tk, vllz2(s ) < C1Lk, (v),  [v =g, vlgis, ) < CoLr, (v),

o=k vlp2(sy, ) < C3Lk, (v), v =T vllr2(1,,) < Cilk,(v), (5)

1/2 1/2
A2 A2 A2 A2
—1 1,K. 2, K. _ 1,K. 2,K
where C;y = C1, Cy = 02)\2 K C3=0C5 <7>\2 = 2 o ,Cy=0Cy 7;3 = s
) 1,Kn"\2,Kn 2,Kn

1/2
} , the constants C;, fori=1,--- ,4 de-

) g
Lr,(v) = Zi,jzl )‘?,Kn)‘?,KnLZ[](n (v)
pending on K only. Moreover, L%n(v) = / (FEKnHKn(v)f}Kn)Z dZdt, with

Skn
i,7 = 1,2, while Hg, (v) denotes the Hessian matriz associated with v.

Estimates (5) generalize the standard (isotropic) results, recovered when Aq g, =~
)\27 Kn ~ h K-

3 The a posteriori error estimate

We provide an a posteriori error estimator, npg_crs, for the DG-GLS norm
(4) of the discretization error epng. It is essentially a residual-based estimator,
weighted by suitable recovered derivatives of the error itself, in the spirit of
a Zienkiewicz-Zhu recovery procedure [18, 12]. We define the local residuals,
distinguishing between spatial and temporal. For any K, € 7, , with n =
1,--- N, let

0 on (0K, NTp) x Jy,
PK, = [f - Luhk] ‘S and jx, = ¢ 2(9 — DVup-1) on (0K, NTxN) X Jy,
o —[DVupy - 7] on (9K, NER) X Jy,

be the interior and boundary residual associated with the cG(1)-dG(0) ap-
proximation wupy, respectively, with £}' the skeleton of 7j, and [DVuyy, - 7i] =
DVupy - ik, + DVupg - fig: the jump of the diffusive flux across the internal
interfaces of K, for (K}, N K,) NE # 0. Then we introduce the temporal
and the initial residuals, J,, = [~upk]n and ey = ug — ul), respectively. The
residual J,, merges the information coming from the different meshes 73, and
Th,,.,- This inevitably entails a careful computation of this term. As a conse-
quence of the dG(0) approximation, it is useful to introduce the time averaged
residuals, pr. = k;! ‘[Jn pi, (- t)dt and jgi = k! ‘[Jn Jk, (-, t) dt, which play
an important role in the forthcoming analysis.
We can state the main result of our a posteriori analysis.



Proposition 3.1 Let u € U be the weak solution to (1) and let upy € Spi be
the corresponding GLS ¢G(1)-dG(0) approximation, solution to (3). Then there
exists a constant C' = C(K) such that

N
llentlhe—cis = mha-cs =C > > ( ok, Bk, ok, 3ok AR W),
%,_/

n=1 Kn€Tp, =1
nKn ~~

Tz .2
where o, = |K|)‘1Kn)‘2Kn ag’, =kp,i=1,--- .4,

_ — —3/2 =
R%{,L = | Kp| 1/2{||PK”HL2(SK”) + (A 1K, T A3 Kn)l/Z )‘2,[(/n 1Tk, |2, )

+kr (I Tn=1llL2(&,) + O1nlleq [lL2(x,)) + T <)\2}<n”b = V- Dllipee (k)2

+loll oo iy + (A &, + )\%,Kn)l/Q()\l,KnAZKn)_lHDH[LOO(Kn)]?X?) ||ﬁKn||L2(SKn)},

1/2
W, = 1Kl ™2 sk, LR, (1) + 2 LR, (10) + 572 LE (i)

REL = k2 o, = P, liacsie,) + i P2 (10 liacy + Omlleg o ) |

756, (Il o e 10k = B 2,y + K lora 2 ) |

R = (k) ik, = Tz, B = R Ibllize e,

R = 7K, kP ok, — Pr, L2 (s, )0

TL _ p—1/2 = k12

Wi HatethL?(SKn) WK ||at6;klk”L2 (Li,)?

WK =k, 1/2”atvehk” [L2(SKy, )% WK =k, 1/2”3 V- (DVep)llrz( (Skp)

where d1,, is the Kronecker symbol, and all the terms depending on e}, desig-
nate suitable space-time recovery quantities that provide computable spatial and
temporal derivatives of the discretization error epy.

Further details concerning the space and time recovery procedures can be found,
for instance, in [18] and [11], respectively, as well as in [14], where the complete
proof of (6) is furnished too. We just remark that the quantities R% = RTin, with
i=1,---,4, are scaled (with respect to the size |K,| of the element and k, of
the time interval, respectively), so that all the spatial and temporal dimensional

information is collected into the coefficients a% , a}}z , respectively. The weights

w%n are associated with the anisotropic source, whereas the w}}i’s drive the time
adaption procedure. Finally, n%n (77};”) in (6) represent the local estimators for

a pure space-dependent (time-dependent) problem.



3.1 The adaptive algorithm

The adaptive algorithm is the same as that introduced in [13]. An equidistri-
bution in space-time of the total error is enforced by splitting a given tolerance
7, equal for each slab, into a space (7°) and a time (77) contribution. The
time step and the spatial mesh are successively adapted until both the estima-
tors of the space and time error are within their respective tolerances, i.e., until
=3 Kn€Th, 77%” ~ 7S andnl =3 Kn€Th, n}}n ~ 7T, After processing a slab,
if the time tolerance is largely satisfied, a new (larger) time step is guessed for
the next slab. This algorithm is similar to that in [2] though in our case both
space and time adaptivity are carried out via an optimization strategy rather
than through a compute-estimate-mark-refine procedure.
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Figure 1: Details of the adapted meshes at ¢t ~ T/4 (top-left) and at ¢t ~ T'/2
(top-right); time evolution of the time step k,, (solid) and of the number of mesh
elements (dashed), scaled to their maximum value (bottom)



3.2 The rotating donut

We approximate problem (1) on the cylinder Qx J = (—1,1)?x (0, 10), with D =
10731 (with I the identity tensor), b= [~29,21]T, 0 =0, Ty =0, and f,ug cho-
sen such that u = exp (— ((r — r¢)/0)?), wherer = \/(z1 — #1,5)% + (z2 — 32,R)?,
z1,r = Rcos(wt),xo g = Rsin(wt), with r. =0.2,0 = 0.01,w = 27/10, R = 0.5.
The exact solution is localized in an annular region of thickness O(J) rotating
counterclockwise at a constant angular velocity w. The tolerances for the adap-
tive algorithm are 75 = 77 = 0.01. Figure 1 shows a detail of the adapted
meshes at ¢t ~ T'/4 (top-left) and ¢ ~ T'/2 (top-right). The mesh is correctly de-
tecting the anisotropic features of the solution. In particular we can appreciate a
sort of “wake” effect that is a clear effect of the donut velocity: this detail would
not be spotted in the case of the corresponding stationary problem. The bottom
graph in Figure 1 displays the time evolution of the time step k,, (solid) and of
the number of mesh elements (dashed), scaled to their maximum value. These
time histories show that, after a transient phase, both the time step and the
number of triangles level out, as a consequence of the constant angular velocity
and of the absence of distortion of the donut. At the final time we obtain the
value 1.257 for the effectivity index EI = npc-crs/||lerk|l|pc-cLs-

Concerning the future developments, we are currently extending the above
analysis to an optimal control framework.
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