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ABSTRACT 

 

This paper deals with the processing of accident scenarios generated from a dynamic 

reliability analysis of a Nuclear Power Plant (NPP). A large number of scenarios are 

simulated to account for the influence of the timing and magnitudes of fault events on 

the accident end states; post-simulation processing is then required for retrieving the 

safety-relevant information. 

For classifying the final system state reached at the end of the accident scenarios, Fuzzy 

C-Means clustering is performed with different sets of Functional Principal 

Components (FPCs) of a selected relevant process variable. The approach allows 

capturing the characteristics of the process evolution determined by the occurrence, 

timing, and magnitudes of the fault events. 

An illustrative case study is considered, regarding the fault scenarios of the digital I&C 

of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). 

The results obtained are compared with those of the Kth Nearest Neighbor (KNN) and 

Classification and Regression Tree (CART) classifiers. 
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1. Introduction 

 

Nuclear Power Plants (NPPs) are replacing and upgrading their aging and obsolete Instrumentation 

and Control (I&C) components, with a transition from analog to digital technology. Furthermore, 

new NPP designs involve an increased use of computer-based systems, expected to improve the 

plant’s safety, reliability and failure detection capability. 

To assess the impact of digital I&C on NPPs safety, quantifiable reliable models are needed, along 

with data for digital systems that are compatible with the Probabilistic Risk Assessment 

Methodology (PRA). Due to the many unique attributes of these systems (e.g., software, fault 

tolerant features, different human-system interfaces, dynamic interaction between the plant system 

and processes), several challenges exist in modeling and data collection. 

The feature addressed in this paper is limited to the modeling of the dynamic interactions between 

the plant systems and processes, which in many instances regards both analog and digital I&C 

systems. Indeed, it has been shown that the order and timing of the fault events occurring along an 

accident sequence and the magnitude of the process variables at the time of event occurrence can be 

critical in determining the evolution of the accident and thus the risk associated with the system 

operation [Siu, 1994; Aldemir et al., 2008]. In the case of digital I&C systems the reliability 

modeling is rendered more difficult by the complex interactions of the software with the hardware 

and human components that are not easily captured by the existing PRA modeling tools, e.g., the 

Event-Tree (ET)/Fault-Tree (FT) approach which do not take explicitly into account the sequencing 

of the events nor their timing in the system stochastic evolution [Rutt et al., 2006, Zio et al., 2009]. 

Methodological approaches have been studied and practical tools are being developed, in an effort 

to complement the current static PRA methods and tools. These so-called dynamic reliability 

[Devooght, 1997; Labeau et al., 2000; Dufour et al, 2002] or probabilistic dynamics [Devooght et 

al., 1992a; Devooght et al., 1992b] methods aim at giving explicit account to the interactions among 

the physical parameters of the process (temperature, pressure, speed, etc.), the human operators 

actions and the failures of the hardware and software components. 

Some extensions of classical methods have been proposed but in most instances these remain 

unable to take into account the system state dynamic changes and reconfigurations along the 

accident scenarios and their application is limited to problems with a small number of scenarios 

[Medjoudj et al., 2004]. Some methods allow a visual presentation of the sequence of events 

ordered in time, e.g. the Events Sequence Diagrams (ESD) [Swaminathan et al., 1999], Petri Nets 

[Peterson, 1977] and Dynamic Flowgraph Methodology (DFM) [Guarro et al., 1996; Garret et al., 
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2002]. Most of these methods can be regarded as semi-dynamic, because they represent system 

dynamics qualitatively (e.g., Petri Nets) or in a coarse partitioning of the system state space (i.e., in 

terms of large, small, medium changes in the controlled process variables such as in DFM). 

Discrete methods have also been developed to generate dynamic failure scenarios, e.g. the Discrete 

Dynamic Event Trees (DDET) [Marchand et al., 1998], the DYnamic Logical Analytical 

Methodology (DYLAM) [Amendola et al., 1984; Cojazzi, 1996] and the Dynamic Event Tree 

Analysis Method (DETAM) [Acosta et al., 1993]. The advantage of the dynamic event-tree 

generation techniques (such as DDET, DYLAM and DETAM) is that they are compatible with the 

existing PRA structure and are able to generate possible scenarios of the system evolution 

exhaustively. 

A major challenge of the dynamic reliability techniques is their computational complexity, both in 

model construction and implementation. Indeed, the number of dynamic scenario branches 

increases according to the power law with the number of occurring events and thus is much larger 

than in the classical FT/ET approach; the a posteriori information retrieval then becomes quite 

burdensome and difficult [Labeau et al., 2000]. 

The work in this paper reconsiders the problem of processing dynamic reliability scenarios as 

formulated in [Zio et al., 2009], i.e., in terms of the classification of dynamic patterns on the basis 

of the similarity of both their stochastic features (i.e., times and magnitudes of failure event 

occurrences) and deterministic features (i.e., process variable values, such as temperatures and 

pressures); the case study considered for illustration is also the same as in the previous cited work, 

i.e., the dynamic scenarios are taken from the analysis of the Lead Bismuth Eutectic eXperimental 

Accelerator Driven System (LBE-XADS) equipped with digital I&C [Cammi et al. (2006)]. 

The original objective of the present work is the investigation of the feasibility of applying 

Functional Principal Component analysis for representing in a finite dimensional space with 

uncorrelated components, the characteristics of the accident scenarios that are typically non-finite 

nor immediately describable by means of uncorrelated components [Ramsay et al., 2005]. 

As in [Zio et al., 2009], the supervised Fuzzy C-Means (FCM) clustering algorithm developed in 

[Mercurio et al., 2007] is utilized as classifier of the accident scenarios. As additional original 

contribution with respect to the previous work in [Zio et al., 2009], the present study offers a 

comparison with a Kth Nearest Neighbor (KNN) [Hastie et al., 2001] and a Classification and 

Regression Tree (CART) [Breiman et al., 1984] algorithms for classification of the end state classes 

of the dynamic accident scenarios simulated. 

It is worth noting that some of the failure modes considered in the case study of the LBE-XADS 

system are applicable also to analog I&C systems, whereas others arise specifically in the case of 
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digital components because of the so called “digitalization effect”. To keep the focus on the 

dynamic reliability scenario processing scope, the analysis does not cover the study of the software 

and its possible failure modes, nor the benefit of fault tolerant features, nor the interactions of the 

software with the hardware and human components. The simplified dynamic scenario modeling is 

then intended only to serve the purpose of showing the feasibility of effectively post-processing 

accident scenarios resorting to a FCM clustering algorithm based on the information provided by 

the FPCs. The actual implementation of the approach as a qualified tool in support of a complete 

quantitative dynamic reliability analysis would need to be supported by full dynamic accident 

calculations, inclusive of comprehensive models of hardware, software and human failure modes 

and their interactions. 

 

The paper is organized as follows. In Section 2, the presentation made in [Zio et al., 2009] of the 

mechanistic model used to generate the scenarios for the dynamic reliability analysis of the LBE-

XADS is repeated, for completeness of the paper. In Section 3, the processing of dynamic scenarios 

by FCM clustering for classification based on FPCs is illustrated. In Section 4, the results of the 

application of the approach to the scenarios of the LBE-XADS are presented and supported with a 

comparison to the KNN and CART classifiers. Conclusions and remarks are given in Section 5. 

 

 

2. Analysis of the LBE-XADS 

 

2.1 The model 

 

The Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) is a sub-

critical, fast reactor in which the fission process for providing thermal power ( )P t  is sustained by 

an external neutron source through spallation reaction by a proton beam ( )Q t  accelerated by a 

synchrotron on a lead-bismuth eutectic target [Bowman et al., 1992; Van Tuyle et al., 1993; 

Venneri et al., 1993; Carminati et al., 1993; Rubbia et al., 1995]. In the current design [Ansaldo, 

2001], the core contains Uranium and Plutonium dioxide fuel rods; future developments are aimed 

at housing also long-lived transuranic elements. 

A simplified scheme of the plant is sketched in Figure 1. The primary cooling system is of pool-

type with Lead-Bismuth Eutectic (LBE) liquid metal coolant leaving the top of the core, at full 

power nominal conditions, at temperature ,C P

LBτ  equal to 400 °C pushed by natural circulation 
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enhanced by argon gas injection into the heat exchangers of the secondary cooling circuit and then 

re-entering the core from the bottom through the down-comer at temperature ,P C

LBτ  equal to 300 °C. 

The average in-core temperature of the LBE ,av C

LBT  is taken as the mean of ,C P

LBτ  and ,P C

LBτ . 

The secondary cooling system is a flow of an organic diathermic oil at 290-320 °C, at full power 

conditions. Cooling of the diathermic oil is obtained through an air flow ( )a tΓ  provided by three 

air coolers connected in series. 

 

 

Figure 1 LBE-XADS simplified schematics. A = Accelerator; C = core; P = primary heat exchanger; S = 

secondary heat exchanger 

 

A dedicated, dynamic simulation model has been implemented in SIMULINK for providing a 

simplified, lumped and zero-dimensional description of the coupled neutronic and thermo-hydraulic 

evolution of the system [Cammi et al., 2006]. The model allows the simulation of the system 

controlled dynamics as well as of the free dynamics when the control module is deactivated and the 

air cooler flow is kept constant. Both feedforward and feedback digital control schemes have been 

adopted for the operation of the system. The feedback controller is a PID (Proportional, Integral and 

Derivative)-based configuration with low values of both the proportional and the integral gains: it 

contributes for 70% of the load to fulfill the control strategy. On the other hand, the remaining 30% 

of the load is provided by the feedforward action which consists of a monotonically increasing 

function relating the required air mass flow rate to the reactor power. The logic of operation of the 

discrete-state control block can be represented as in Figure 2. 
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Figure 2 Block diagram representing the logic structure of the LBE-XADS control 

 

The control is set to keep a steady state value of approximately 300 °C of  the average temperature 

of the diathermic oil ,av S

oT : this value represents the optimal working point of the diathermic oil at 

the steady state, full nominal power of 80 MWth. On the contrary, an oil temperature beyond the 

upper threshold ,th u

oT =340 °C  would lead to degradation of its physical and chemical properties, 

whereas a temperature below the lower threshold ,th l

oT =280 °C could result in thermal shocks for 

the primary fluid and, eventually, for the structural components [Cammi et al., 2006]. 

The block diagram representing the SIMULINK model of the LBE-XADS is shown in Figure 3: the 

controlled variable is the average temperature of diathermic oil ( ,av S

oT ), whereas the control variable 

is the mass flow rate of air ( aΓ ) in the air coolers battery. In Figure 4, the profile of the average 

temperature of diathermic oil ( ,av S

oT ) at full power nominal conditions is shown: even if the system 

is stable at nominal conditions (303.85 °C), the discrete-state regulation of the air coolers causes 

visible ripples of the diathermic oil temperature. 

 

 

Figure 3 Block diagram representing the SIMULINK model of the LBE-XADS [Cammi et al., 2006] 
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Figure 4 Diathermic oil temperature profile for the LBE-XADS in the stable, nominal conditions 

 

2.2 The Monte Carlo-driven fault injection engine 

 

Multiple component failures can occur during the system life. To simulate this, the model has been 

embedded within a Monte Carlo (MC) sampling procedure for injecting faults at random times and 

of random magnitudes. This allows generating transients representative of the system dynamic 

accident scenarios. 

The set of faults considered are (Figure 5): 

 

• The PID controller fails stuck at time t1 in [0,3000] [s], with a flow rate output of magnitude 

m1 in [0,797] [kg/s]. 

• The air coolers fail stuck at time t2 in [0,3000] [s] in a random position that provides a 

corresponding air flow mass m2 in [0,1000] [kg/s]. 

• The feedforward controller fails stuck at time t3 in [0,3000] [s] with a corresponding flow 

rate value m3 in [0,797] [kg/s]. 

• The communication between air coolers actuators and PID controller fails at time t4 in 

[0,3000] [s] so that the PID is provided with the same input value of the previous time step. 

 

The combination of the selected faults gives rise to 64 possible system configurations depending on 

the number of failed components and the order of occurrence of the failures (Table 1). It is 

important to underline that the procedure implemented in this work for sampling the fault events is 
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not intended to reproduce the actual stochastic failure behavior of the system components; rather, 

the choices and hypotheses for modeling the faults (i.e., the mission time, the number and typology 

of faults, the distributions of failure times and magnitudes) have been arbitrarily made with the aim 

of favoring multiple failures in the sequences and capturing the dynamic influence of their order, 

timing, and magnitude. 

In particular, times and magnitudes of faults are obtained by a stratified sampling with respect to the 

64 possible ordered accident sequences of Table 1, assumed equally probable. This assumption is 

conservative, rare multiple fault events being included in the set of accident scenarios, and in this 

sense it further tests the robustness of the classification procedure. 

Within each stratum (i.e., given one of the 64 possible ordered sequences), the corresponding failure 

times are generated by means of a “stick-breaking” strategy [Halmos, 1944]: the first failure time is 

sampled from the uniform distribution [0,3000] [s] and the successive failure times from the 

conditional distributions, uniform from the last sampled time to 3000 [s]. This sampling strategy 

models a wearing system, since the average failure rate is increasing along time. Failure magnitudes 

are instead independently sampled from uniform distributions in [0,797], [0,1000], and [0,797] 

[kg/s] for m1, m2, and m3, respectively. 

The evolution of the accident scenarios may lead to three different end states, within the mission 

time of 3000 [s]: 

1. Low-temperature failure mode ( ,av S

oT < ,th l

oT ) 

2. Safe mode ( ,th l

oT < ,av S

oT < ,th u

oT ) 

3. High-temperature failure mode ( ,av S

oT > ,th u

oT ) 

 

 

Figure 5 Sketch of the faults that can be injected into the system: the PID controller fails stuck at a random 

output value, the air coolers fails stuck at a random position, the feedforward control fails stuck at a random 

output value, the communication between air coolers actuators and the PID controller is interrupted 
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Failure 
sequence 

Random PID 
controller output 

Random Air 
coolers failure 

Random Feedforward 
controller output 

Actuators-PID 
communication interruption 

1 1st - - - 

2 - 1st - - 

3 - - 1st - 

4  - - 1st 

5 1st 2nd - - 

6 2nd 1st - - 

7 1st  - 2nd  - 

8 2nd - 1st - 

9 1st  - - 2nd 

10 2nd - - 1st 

11 - 1st 2nd - 

12 - 2nd 1st - 

13 - 1st - 2nd 

14 - 2nd - 1st 

15 - - 1st 2nd 

16 - - 2nd 1st 

17 1st 2nd 3rd - 

18 1st 3rd 2nd - 

19 2nd 1st 3rd - 

20 2nd 3rd 1st - 

21 3rd 2nd 1st - 

22 3rd 1st 2nd - 

23 1st - 2nd 3rd 

24 1st - 3rd 2nd 

25 2nd - 1st 3rd 

26 2nd - 3rd 1st 

27 3rd - 2nd 1st 

28 3rd - 1st 2nd 

29 - 1st 2nd 3rd 

30 - 1st 3rd 2nd 

31 - 2nd 1st 3rd 

32 - 2nd 3rd 1st 

33 - 3rd 2nd 1st 

34 - 3rd 1st 2nd 

35 1st 2nd - 3rd 

36 1st 3rd - 2nd 

37 2nd 1st - 3rd 

38 2nd 3rd - 1st 

39 3rd 2nd - 1st 

40 3rd 1st - 2nd 

41 1st 2nd 3rd 4th 

42 1st 3rd 4th 2nd 

43 1st 4th 2nd 3rd 

44 1st 2nd 4th 3rd 

45 1st 3rd 2nd 4th 

46 1st 4th 3rd 2nd 

47 2nd 1st 3rd 4th 

48 3rd 1st 4th 2nd 

49 4th 1st 2nd 3rd 

50 2nd 1st 4th 3rd 

51 3rd 1st 2nd 4th 

52 4th 1st 3rd 2nd 

53 2nd 3rd 1st 4th 

54 3rd 4th 1st 2nd 

55 4th 2nd 1st 3rd 

56 2nd 4th 1st 3rd 

57 3rd 2nd 1st 4th 

58 4th 3rd 1st 2nd 

59 2nd 3rd 4th 1st 

60 3rd 4th 2nd 1st 

61 4th 2nd 3rd 1st 

62 2nd 4th 3rd 1st 

63 3rd 2nd 4th 1st 

64 4th 3rd 2nd 1st 

 
Table 1 Failure sequences: - = safe component, 1st = first event of the sequence, 

2nd = second event of the sequence, 3rd = third event of the sequence, 4th = fourth event of the sequence 
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2.3 System analysis 

 

The system has been analyzed in an effort to identify its minimal cut sets with respect to the low- 

and high-temperature failure modes [Zio et al., 2009]. However, the order, timing and magnitude of 

the events occurring along an accident scenario is expected to determine the evolution of the 

accident towards safe or fault end states [Aldemir et al., 2008; Zio et al., 2009]. To investigate this, 

the MC-driven fault injection engine introduced in Section 2.2 is used to sample for the 64 system 

configurations of Table 1, the time and magnitude of the components failures from their probability 

distributions. With the aim of generating a sufficiently wide variety of system dynamic behaviors, 

the number of simulated accident scenarios has been taken equal to 120 for each one of the 64 

failure sequences; for each sequence, the random times and magnitudes of the components faults 

have been sampled from the respective assumed distributions and the SIMULINK model of the 

LBE-XADS in the sampled system configuration has been run. 

Figure 6 reports the frequency of the three system end states (high-temperature, safe, low-

temperature) for the 64 system configurations of Table 1. All but one configurations lead 

unequivocally to one and only one end state: on one side, this means that none of those system 

configurations is a minimal cut set of the system; on the other side, it also means that even when the 

order of the events in the sequence is accounted for this is not sufficient to unequivocally determine 

the consequent system end state, which depends also on the timing and magnitude of the occurring 

failures. 

 

Figure 6 Stacked bar chart of the frequency of end states for each of the 64 accident scenarios listed in Table 1 
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3. Processing dynamic scenarios for classification 

 

The processing of the dynamic scenarios here performed aims at identifying classes of behavioural 

similarity in the scenario evolutions in terms of the characteristic features of the accident sequences 

and at relating them with the three possible end states of the system, which define the classes. 

The particular approach adopted is founded on the use of the FPCs of a selected relevant safety 

parameter, as input features within a supervised evolutionary scheme of optimization of a Fuzzy-C-

Means (FCM) clustering algorithm developed by the Laboratory of Analysis of Signals and of 

Analysis of Risk (LASAR, http://lasar.cesnef.polimi.it) of the Energy Department of the 

Pollitecnico di Milano, Italy [Zio et al., 2005]. 

In more details, the first step of the approach is the evaluation of the FPCs of the selected safety 

parameter; then, follows the evolutionary training of the FCM clustering algorithm on patterns of 

known classes, which amounts to finding geometric clusters in the feature space based on a 

Mahalanobis metric iteratively optimized so that the clusters finally obtained are close to the actual 

classes of scenarios of same end state [Zio et al., 2005]. 

 

3.1 The supervised evolutionary clustering classifier based on functional principal 

components 

 

In mathematical terms, the target of the supervised optimization is to find c=3 optimal Mahalanobis 

metrics which define c geometric clusters of the available data set which minimize the distance 

( ),t
D Γ Γ  between the a priori known physical class partition ( )1 2

, ,...,t t t t

c
Γ ≡ Γ Γ Γ  and the obtained 

geometric cluster partition ( )1 2
, ,...,

c
Γ ≡ Γ Γ Γ  (in this case c=3, corresponding to the three possible 

end states): 

 
( ) ( )*

1 1 1

| |( , )
( , )

k k

ttc c N
i it i i

i i k

x xD
D

c N c

µ µ

= = =

−Γ Γ
Γ Γ = =

⋅
∑ ∑∑

r r

 (1) 

where ( )0 1
k

t

i xµ≤ ≤
r

 is the a priori known membership of the k -th pattern kx
ρ

to the i -th physical 

class (possibly not known with absolute precision, in which case it has a membership less than one) 

and ( )*
0 1

ki xµ≤ ≤
r

 is the membership to the corresponding geometric cluster in the feature space. 

The overall iterative training scheme for the supervised optimization leading to the identification of 

the optimal Mahalanobis metrics and the corresponding clusters is given in [Zio et al., 2009]. 
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Note that the use of individual specific Mahalanobis metrics for defining the different clusters 

allows obtaining different ellipsoidal shapes and orientations of the clusters that can more 

adequately fit the actual data partition than the traditional Euclidean metric which leads to spherical 

clusters [Yuan et al., 1997].  

When fed with a new pattern of feature values x
ρ

 of a given dynamic scenario, the trained 

classification algorithm provides the values of the membership functions )(* xi

ρ
µ , 1,2,...,i c= , to the 

different clusters which represent the scenario classes in the stochastic and process variable feature 

space. 

Within the analysis presented in this work, kx
ρ

 consists of the functional principal components of 

the selected safety parameter (i.e., the average temperature of the LBE coolant ,av C

LBT ) in the time 

interval [0,3000] [s] (for more details, see the Appendix at the end of the paper). 

 

4. LBE-XADS fault scenario classification by FCM 

 

The three classes (c=3) which supervise the construction of the clusters in the feature space 

correspond to the three system end states which may arise in the dynamic scenarios generated by 

the accident sequences: 

 

class 1: low-temperature failure mode, with the safety parameter (i.e., the diathermic oil 

temperature ,av S

oT ) falling below the lower threshold ,th l

oT  

class 2: safe transients, with the safety parameter ,av S

oT  remaining within the allowed range 

, ,,th l th u

o o
T T    

class 3: high-temperature failure mode, with the safety parameter ,av S

oT  rising beyond the upper 

threshold ,th u

oT  

 

From the training sample, the main uncorrelated modes of variability in time (i.e., the FPCs) of the 

average temperature of the LBE coolant ,av C

LBT  (the safety parameter) are identified (see the 

Appendix) [Ramsay et al., 2005]. In Figure 14, the ,av C

LBT  patterns are shown together with their 

representation by means of the first (
1

,

,

av C

LB PCT ), first and second (
1

,

,

av C

LB PCT ,
2

,

,

av C

LB PCT ), first, second and third 
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functional principal components (
1

,

,

av C

LB PCT ,
2

,

,

av C

LB PCT  and 
3

,

,

av C

LB PCT ). The FPCs are able to efficiently 

capture the characteristics of the original ,av C

LBT  patterns and thus of the underlying stochastic 

sequence of failures; on the other hand, they may lack a complete interpretation in reliability terms. 

In this case, the first principal component 
1

,

,

av C

LB PCT  (explaining by itself 93.5% of the total variability) 

is clearly identifiable as a factor indicating to what extent ,av C

LBT  is increasing in time (Figure 15); on 

the contrary, the interpretation of the second and third principal components are less clear. 

 

 

Figure 14 The sixty-four ,av C

LBT  patterns as cumulatively described by means of the first, first and second, first, 

second and third functional principal components together with the original ,av C

LBT  patterns 

 

 

Figure 15 First, second, and third functional principal components. On the far right, cumulative fraction of the 

explained total variance 

 

The training of the FCM classifier (and of the KNN and CART classifiers used for comparison) has 

been performed on the basis of a set of N=6400 class-labeled patterns (generated by 100 sampled 

realizations for each of the 64 accident sequences of Table 1) each one represented by means of one 

input vector and one output (the system end state class label 1, 2 or 3); the sampled training patterns 

turn out to be distributed as follows among the c=3 classes of system end states: N1=1527 belong to 

class 1, N2=2399 to class 2 and N3=2474 to class 3. 
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Three possible input vectors have been considered to test the classifier performances: 

(
1

,

,

av C

LB PCT ):    first principal component of ,av C

LBT  

(
1

,

,

av C

LB PCT ,
2

,

,

av C

LB PCT ):  first and second principal components of ,av C

LBT  

(
1

,

,

av C

LB PCT ,
2

,

,

av C

LB PCT ,
3

,

,

av C

LB PCT ): first, second, and third principal components of ,av C

LBT  

Once constructed, the classifier can be used to classify any pattern of dynamic scenarios. In the 

present work, a total of M=1280 newly simulated accident scenarios of the three classes have been 

fed for classification by the fuzzy clustering classifier. These new scenarios are generated from the 

64 possible accident sequences of Table 2 by sampling new realizations of the times of occurrence 

and magnitudes of the failure events (20 for each ordered sequence). 

The error rate of classification of the test patterns provided by the FCM classifier is summarized in 

Table 2: patterns are assigned to the class for which the membership value of the pattern is the 

highest. For comparison, the error rate when 
,av C

LBT (the mean value over the transient duration of 

3000 [s] of the average temperature of the LBE coolant ,av C

LBT ) is considered as the most important 

feature for the post-processing clustering analysis is also reported. 

 

Misclassification error rate FCM 

(
,av C

LBT ) 16.65% 

(
1

,

,

av C

LB PC
T ) 11.64% 

(
2

,

,

av C

LB PC
T ,

2

,

,

av C

LB PC
T ) 9.06% 

(
1

,

,

av C

LB PC
T ,

2

,

,

av C

LB PC
T ,

3

,

,

av C

LB PC
T ) 5.25% 

 

Table 2 Results of the classifier for different sets of FCP of the process variable ,av C

LBT and its mean value 
,av C

LBT  

 

5. Comparisons with KNN and CART classifiers 

 

In this Section, the misclassification error rates of the test patterns associated to the FCM classifier 

are compared with those of the KNN and CART classifiers [Hastie et al., 2001; Breiman et al., 

1984]. The KNN classifier is a non-parametric classification method; the central idea of this method 

is to determine the unknown class of a new pattern looking at the known classes of its neighbors. 

More specifically, the classification of a new pattern is done by assignment to the class whose 

frequency is the highest among the kth nearest neighbors of the new pattern, where the kth nearest 
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neighbors are the k patterns of the training sample that are closest to the new pattern according to 

the Euclidean distance [Hastie et al., 2001]. A CART classifier is essentially a recursive dicotomic 

partition of the input space in which each element of the partition (namely, the leaves of the tree) is 

associated to a class; classification of a new pattern is done by assignment to the class whose 

frequency is the highest among the patterns of the training sample within the leaf of the tree which 

the new pattern belongs to; maximization of the decrement of the Gini index is used as growing 

criterion [Breiman et al., 1984], and minimization of the 10-fold crossvalidation misclassification 

error is used as pruning criterium [Breiman et al., 1984]. In Table 3, the misclassification error rate 

on M=1280 newly simulated patterns are reported (columns refer to the different classifiers, rows 

refer to the different input vectors). 

 

Misclassification error rate FCM KNN CART 

(
,av C

LBT ) 16.65% 13.59% 13.75% 

(
1

,

,

av C

LB PC
T ) 11.64% 11.25% 11.48% 

(
1

,

,

av C

LB PC
T ,

2

,

,

av C

LB PC
T ) 9.06% 5.86% 8.98% 

(
1

,

,

av C

LB PC
T ,

2

,

,

av C

LB PC
T ,

3

,

,

av C

LB PC
T ) 5.25% 4.45% 8.67% 

 

Table 3 Results of the classifiers for different sets of FCP of the process variable ,av C

LBT and its mean value 
,av C

LBT  

 

As expected, because of the massive size of the training sample, the KNN classifier (that is fully 

non-parametric) performs similarly or better than both FCM and CART classifiers for all possible 

input vectors; this might not be confirmed for smaller training samples. 

Functional principal components appear to be effective not only in terms of descriptiveness (more 

of the 99% of the total variability is explained by the first three principal components, as shown in 

Figure 15), as expected, but also in terms of discriminating power. For instance, focusing on the 

FCM classifier, using the first three principal components of the average temperature of the LBE 

coolant (
1

,

,

av C

LB PCT ,
2

,

,

av C

LB PCT  and 
3

,

,

av C

LB PCT ) the classifier is able to correctly classify nearly 19 patterns out 

of 20 (94.75%), while using the mean value of the average temperature of the LBE coolant 
,av C

LBT  it 

is able to correctly classify nearly 17 patterns out of 20 (83.35%). 
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6. Conclusions 

 

Dynamic approaches to system safety and reliability analysis embed the physical models of process 

dynamics into the stochastic models governing the hardware, software, human components failure 

behavior. To capture the different system behaviors which arise, a large number of time-dependent 

scenarios of possible system evolutions are simulated and then interpreted for drawing conclusions 

on the system safety and reliability characteristics. 

This paper has addressed the problem of processing the numerous scenarios arising from a dynamic 

system safety and reliability analysis. With reference to a literature case study regarding the LBE-

XADS system, a Fuzzy C-Means clustering approach has been presented for classifying scenarios 

with similar characteristics described by the Functional Principal Components (FPCs) of a selected 

safety parameter whose behavior is affected by the occurred events. The classification approach is 

based on the use of FPCs within an optimized fuzzy clustering scheme. The system end states of 

interest and the relative safety parameter are identified a priori by expert judgment on the basis of 

the analysis of the system design, logic and dynamics of the LBE-XADS system. In the case study 

presented, the safety parameter is the diathermic oil secondary coolant temperature which cannot 

exceed lower and upper thresholds otherwise the system enters low- and high-temperature failure 

modes, respectively. 

The application of the approach to the case study considered has demonstrated: 

• the feasibility of the proposed approach of dynamic accident scenarios post-processing for 

retrieving safety-relevant information, and  

• the increased classification performance when relying on FPCs of the selected safety 

relevant parameters, with respect to other characteristic features. 

A comparison with the KNN and CART classification approaches has confirmed these findings. 

It will be of interest in future works to measure to what extent these results are robust to changes in 

the Monte Carlo (MC) sampling procedure. 
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APPENDIX A 

 

The iterative training scheme for the supervised optimization leading to the identification of the 

optimal Mahalanobis metrics and the corresponding cluster can be summarized as follows: 

 

1. At the first iteration ( 1τ = ), initialize the metrics of all the c  clusters to the Euclidean 

metrics, i.e. 
i

M (1)=I, 1,2,...,i c= , where I is the identity matrix. 

2. At the generic iteration step τ , run the FCM clustering algorithm [Bezdek, 1981] to 

partition the N  training data into c  clusters of memberships ( ) ( ) ( ){ }1 ,..., cτ τ τΓ = Γ Γ , 

based on the current metrics ( )
i

M τ
+

 and on the “supervising” initial partition tΓ  which 

sets the initial memberships of the N  patterns to c  clusters equal to the true memberships 

to the a priori known classes. 

3. Compute the distance ( )( ),t
D τΓ Γ  between the a priori known physical classes and the 

geometric possibilistic clusters. At the first iteration ( 1τ = ) initialize the best distance D+  

to ( )( ),t
D τΓ Γ , iD+  to ( )( ), 1t

i i
D Γ Γ  and the best metrics 

i
M

+
 to ( )

i
M τ  and go to step 5. 

4. If ( )τΓ  is close to tΓ , i.e. ( )( ),t
D τΓ Γ  is smaller than a predefined threshold ε, or if the 

number of iterations τ  is greater than the predefined maximum allowed number of 

iterations maxτ , stop: ( )τΓ  is the optimal cluster partition *Γ ; otherwise, if ( )( ),t
D τΓ Γ  is 

less than D+  upgrade D+  to ( )( ),t
D τΓ Γ , 

i
M

+
 to ( )

i
M τ  and iD+ = ( )( ), 1t

i i
D Γ Γ . 

5. Increment τ by 1. Update each matrix 
i

M
+
 by exploiting its unique decomposition into 

Cholesky factors [Labeau, 1996], 
i

M
+ { }

T

i
G

+
=

i
G

+
, where 

i
G

+
 is a lower triangular matrix 

with positive entries on the main diagonal. More precisely, at iteration τ , the entries 

( )
1 2,

i

l lg τ  of the Cholesky factor ( )
i

G τ
+

 are updated as follows: 

 ( ) ( )
1 2 1 2 1 2, , ,

0,i i i

l l l l l l i
g g Nτ δ+ += +  if 

1 2l l<  (2) 

 ( ) ( )( )
1 2 1 2 1 2

5

, , ,max 10 , 0,
i i i

l l l l l l ig g Nτ δ− + += +  if 1 2l l=  (3) 
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where 
i iDδ α+ += , α  is a parameter that controls the size of the random step of 

modification of the Cholesky factor entries 
1 2 1 2, ,,i i

l l l lg N+  denotes a Gaussian noise with mean 

0 and standard deviation δ , and Eq. (3) ensures that all entries in the main diagonal of the 

matrices ( )
i

G τ  are positive numbers and so ( )
i

M τ  are definite positive distance 

matrices. Notice that the elements of the i -th Mahalanobis matrix are updated 

proportionally to the distance iD+  between the i -th a priori known class and the i -th 

cluster found. In this way, only the matrices of those clusters which are not satisfactory for 

the classification purpose are modified. 

6.  Return to step 2. 

 

 

APPENDIX B 

 

The basic concepts pertaining to Functional Principal Component Analysis (FPCA) as a tool for 

dimensional reduction are here presented. 

Let F be a random function such that 

 2 ( )
b

a
E F t dt  < +∞
  ∫  (4) 

with [ ])()( tFEt =µ  being its mean function and [ ])()(),( sFtFEst =σ  its covariance function, and 

thus the kernel of its covariance operator. Often )(tµ and ),( stσ are not known and thus need to be 

estimated. Sample mean and sample covariance function provide consistent estimates 

of )(tµ and ),( stσ ; thus, if the sample size is sufficiently large, they can be used to estimate 

functional principal components. 

It can be proven that under assumption (4), the set { },..., 21 ΦΦ of the eigenfunctions of the 

covariance operator forms an orthonormal basis for [ ]( )baL ,2 , i.e. the space which the realizations of 

the random function F belong to. 

Thus, F can be decomposed as follows:  

 )()()(
1

tFttF kk k Φ+= ∑
∞

=
µ  with ( )∫ Φ−=

b

a
kk dttttFF )()()( µ  (5) 
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The function
kΦ is known as the kth functional principal component and 

kF  as the score relative to 

the kth functional principal component. 

Moreover, it can be proven that [ ] kkF λ=var with
kλ being the eigenvalue associated to the 

eigenvector kΦ  (i.e. ∫ Φ=Φ
b

a
kkk dttsts )(),()( σλ ) and [ ] '', kkkk FFcor δ=  (i.e. scores related to 

different functional principal components are uncorrelated scalar random variable). Note 

that ,...,, 321 ΦΦΦ  are ordered such that 0...21 ≥≥≥ λλ . 

Let )()()(
1

tFttF k

q

k k

q Φ+= ∑ =
µ be the projection of F on the q-dimensional affine space centered 

on the mean function generated by the first q principal components. 

It can be proven that the approximation obtained by means of this projection is “statistically 

optimal”. Indeed, identifying with [ ]( )baLSq ,2⊂  a generic q-dimensional affine space centered on 

the mean function and with 
qSΡ the orthogonal projector on this space, it can be proven that: 

 ( ) ( )




 Ρ−=





 − ∫∫ Ρ

b

a
S

b

a

q dttFtFEdttFtFE
qqS

22
)()(minarg)()(  (6) 

Hence, the approximation obtained by representing F through its first q principal components 

minimizes the expected quadratic error over any other q-dimensional representation. 

The effectiveness of this approximation can be easily quantified by means of the so called “fraction 

of explained total variance”, i.e.: 

 

( )

( )

( )

( ) ∑
∑

∫

∫

∫

∫
∞

=

==





 −





 −

−=





 −





 −

1

1

2

2

2

2

)()(

)()(

1

)()(

)()(

k k

q

k k

b

a

b

a

q

b

a

b

a

q

dtttFE

dttFtFE

dtttFE

dtttFE

λ

λ

µµ

µ
 (7) 

In the end, FPCA provides a useful tool to interpret and represent in a finite dimensional space with 

uncorrelated components, phenomena that are intrinsically non-finite and not immediately 

describable by means of uncorrelated components. 
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