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Abstract

We consider Bayesian hierarchical models for event history analysis,
where the event times are modeled through an underlying diffusion pro-
cess, which determines the hazard rate. We show how these models can be
efficiently treated by means of Markov chain Monte Carlo techniques.
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tion of hierarchical models.

1 Introduction

Diffusion processes have found many applications in the modelling of continuous-
time phenomena, for problems related to several scientific areas, ranging from
economics to biology, from physics to engineering. Here we use diffusion pro-
cesses as building blocks for the definition of models for event history analysis.
This idea is not new (see for example the reviews in Aalen and Gjessing (2001,
2004)). However, in this paper we are able to considerably extend the flexibility
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of the diffusion models used, by adopting powerful Markov Chain Monte Carlo
techniques.

Diffusion models for survival analysis have been proposed because, as sum-
marized in Aalen and Gjessing (2004), “when modelling survival data it may
be of interest to imagine an underlying process leading up to the event in que-
stion”. Such a process might for example represent the development of a disease.
Two types of models have been considered in the literature. Models where the
event happens when a diffusion process hits some barrier, and models where the
hazard rate is some suitable function of the diffusion. For the former type of
models, we refer the reader to Aalen and Gjessing (2001), and references therein.
Here we are interested in the latter. Woodbury and Manton (1977) proposed a
model where the hazard rate is a quadratic function of an Ornstein-Uhlenbeck
diffusion process. This model has been later considered by several authors, in-
cluding Myers (1981), Yashin (1985), Yashin and Vaupel (1986), and Aalen and
Gjessing (2004). For given values of the parameters of the Ornstein-Uhlenbeck
process, survival distributions and hazards are studied. Myers (1981) focuses on
survival distributions conditioned on initial covariates values; Yashin (1985) and
Yashin and Vaupel (1986) use hazards based on quadratic functions of Ornstein-
Uhlenbeck processes in order to model heterogeneity among groups and among
individuals, and study the relative hazard functions and survival distributions;
Aalen and Gjessing (2004) derive quasi-stationary distributions. Obtaining such
analytical results for hazard functions other than quadratic functions, or for
more complex diffusion processes, is not feasible.

In our paper, we adopt a Bayesian approach and we show how these models
can be efficiently treated by means of Markov chain Monte Carlo techniques,
for general choices of diffusion processes and hazard functions. We also consider
the case of multiple groups of observations, typical of clinical trials. We test our
MCMC algorithm both on simulated and on real data.

The paper is organized as follows. In Section 2 we recall the essential of dif-
fusion processes and introduce the model. In Section 3 we describe the MCMC
scheme. In Section 4 we discuss a straightforward generalization of the frame-
work developed in the previous sections, and deal with the case of multiple
groups of observations. Section 5 is devoted to simulation studies. In Section
6 we illustrate an improved version of the algorithm, based on a reparametriza-
tion of the model. In Section 7 we apply our models to a dataset from a clinical
trial, that has been considered in a number of papers in the context of survival
analysis, the famous Cox (1972) paper among the firsts. Finally, in Section 8
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and 9 we discuss possible extensions of the model considered.

2 Latent diffusion models

Let Θ be a random variable with values in Rd. Denote by C([0,∞),R) the space
of continuous functions from [0,∞) to R, and by C its cylinder σ-algebra. Given
Θ = θ, consider the scalar diffusion process X =

{
Xt : t ≥ 0

}
, solution of a

stochastic differential equation (SDE, for short) of the form

dXt = β(Xt, θ) + σdBt t ≥ 0

X0 = x0

(1)

driven by the standard scalar Brownian motion B =
{
Bt : t ≥ 0

}
. The Brownian

motion B and the diffusion process X are random elements of (C([0,∞),R), C).
The diffusion coefficient σ is assumed constant and known, for the moment. The
more technically difficult case of unknown σ is postponed to Section 8. The drift
β(x, θ) is assumed to be jointly measurable in x and θ, and to satisfy the regula-
rity conditions (locally Lipschitz, with linear growth bound) that guarantee the
existence of a, weakly unique, global solution to (1). See, for example, Chapter
V.24 in Rogers and Williams (2000).

Let Wσ be the law of σB, and, for a given θ, denote by Pθ the law of
the diffusion X, solution of (1). By Girsanov’s theorem, the Radon-Nikodym
derivative of Pθ, with respect to Wσ, is given by

dPθ

dWσ
(x) = exp

{∫ ∞

0

β(xt, θ)
σ2

dxt − 1
2

∫ ∞

0

β(xt, θ)2

σ2
dt

}
.

See, for example, Chapter V.27 in Rogers and Williams (2000).
Similarly, for a finite T , denote by C([0, T ],R) the space of continuous func-

tions from [0, T ] to R, and by CT its cylinder σ-algebra. Then, B[0,T ] :=
{
Bt : 0 ≤

t ≤ T
}

and X[0,T ] =
{
Xt : 0 ≤ t ≤ T

}
are random elements of (C([0, T ],R), CT ).

Let WT,σ be the law of σB[0,T ], and, for a given θ, denote by PT,θ the law of
X[0,T ]. Then, by Girsanov’s theorem, the Radon-Nikodym derivative of PT,θ,
with respect to WT,σ, is given by

dPT,θ

dWT,σ
(x[0,T ]) = exp

{∫ T

0

β(xt, θ)
σ2

dxt − 1
2

∫ T

0

β(xt, θ)2

σ2
dt

}
(2)

and, for each T , the measures PT,θ are absolutely continuous.
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Given the diffusion X, let us consider the random distribution function FX,h

on [0,∞), defined as

FX,h(t) := 1− exp
{
−

∫ t

0
h(Xs) ds

}
t ≥ 0 (3)

where h(·) is some suitable nonnegative and continuous function, with
∫∞
0 h(Xs)ds

= ∞ almost surely. The function h(·) plays the role of the hazard function, and
h(Xt) is the random hazard rate, at time t, associated to the random distribution
FX,h.

Two features of the random measure FX,h have to be noted. The first is
that the hazard inherits the Markov property of the diffusion process, so that
the hazard at a future time t′ just depends on the hazard at the present time t.
The Markov property seems indeed a sensible choice to make at the level of the
hazard. The second is that the cumulative hazard is a process with positively
correlated increments, being the integral of a continuous process. The latter
feature is natural in many contexts, and it translates into the model the concern
with the stochastic process that clearly must lie behind the occurrence of events.
In words, an high increment of the cumulative hazard over the time interval [t, t′]
means that the underlying stochastic process has reached a region of high risk,
and this is likely to yield an high increment of the cumulative hazard over a
close (disjoint) time interval. The strength of this positive correlation, and thus
the smoothness of the cumulative hazard, depends on the choice of the hazard
function h and of the diffusion process X: the rougher the diffusion, the weaker is
the correlation, and viceversa. See also the comments in Section 9. Note that the
property we have just highlighted differentiates the random distributions we are
considering from another class of random distributions that has been extensively
used in applications to event history analysis, namely the class of neutral to the
right random probabilities. The cumulative hazards of these probabilities are
processes with independent increments, and thus have an erratic behaviour. See
Doksum (1974) for definition and properties of these random measures, and e.g.
Kalbfleisch (1978), Hjort (1990) and Damien and Walker (2002) for applications
in survival analysis. In fact, we could say that the random distribution FX,h

is positive to the right : for each k and 0 < t1 < t2 < · · · < tk, the normalised
increments

FX,h(t1) ,
FX,h(t2)− FX,h(t1)

1− FX,h(t1)
, . . . ,

FX,h(tk)− FX,h(tk−1)
1− FX,h(tk−1)

are positively correlated, instead of being stochastically independent as in the
case of neutral to the right random probabilities.
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Let us now consider a sequence of event times Y1, Y2, . . . which are, condition-
ally on FX,h, independent and identically distributed (i.i.d., for short) with com-
mon distribution FX,h. From (3), it follows that the distribution of Y1, . . . , Yn,
given X = x, has density, with respect to the n-dimensional Lebesgue measure
Ln, given by

l(y1, . . . , yn|x) :=

[
n∏

j=1

h(xyj )

]
exp

{
−

n∑

j=1

∫ yj

0
h(xt) dt

}
. (4)

Censored observations can be easily dealt with in this setting. Suppose for
example that the observations are censored if they exceed time C, then the
likelihood becomes

l(y1, . . . , yn|x) =

[
n∏

j=1

h(xyj )
1(yj<C)

]
exp

{
−

n∑

j=1

∫ yj

0
h(xt) dt

}
.

We are thus considering a latent diffusion model for event history analysis,
where the event times are modelled through an underlying diffusion process
which determines the hazard rate. As highlighted by Aalen and Gjessing (2004),
this model can be also interpreted as a random barrier hitting model. Indeed,
the event happens when the cumulative hazard strike a random barrier R, which
is exponentially distributed with mean 1, and is stochastically independent of
X.

3 Markov Chain Monte Carlo methods for latent dif-

fusion models

Let pΘ(θ) be the prior density, with respect to Ld, of the d-dimensional parame-
ter Θ, which appears in the drift of the diffusion process X, solution of (1). Fix
a finite time horizon T of interest, with T ≥ y[n], where y[n] := max{y1, . . . , yn}.
The choice of T will be discussed in Section 6. Then, the joint posterior distribu-
tion of Θ and X[0,T ] has density, with respect to the product measure Ld⊗WT,σ,
given by

π(θ, x[0,T ]|y1, . . . , yn) = C pΘ(θ) g(x[0,T ]|θ) l(y1, . . . , yn|x[0,y[n]]) (5)

where C is a normalizing constant, and g(x[0,T ]|θ) := dPT,θ

dWT,σ
(x) is given by Gir-

sanov’s formula (2).
A Gibbs sampling algorithm for sampling from (5) alternates between
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1. simulation Θ, conditional on the observations and the current path of
X[0,T ];

2. simulation of X[0,T ], conditional on the observations and the current value
of Θ.

Note that the parameter Θ and the observations Y1, . . . , Yn are conditionally
independent, given the non-observed process X[0,T ]. In particular, from (5),
the conditional distribution of Θ given X[0,T ], has density, with respect to Ld,
proportional to pΘ(θ) g(x[0,T ]|θ). The update of the parameter is particularly
straightforward when a conjugate prior pΘ(θ) is chosen, so that it is possible
to derive analytically the conditional distribution of Θ given X[0,T ] and sample
directly from it. The second step is computationally more demanding. From
(5), the conditional distribution of X[0,T ], given parameter and observations,
has density, with respect to WT,σ, proportional to g(x[0,T ]|θ) l(y1, . . . , yn|x), and
cannot be sampled directly. An appropriate Metropolis-Hastings step is thus
required.

Implementation of the algorithm will necessary involve a discretisation of
the diffusion sample path. When the SDE cannot be solved, it is possible to
use Euler-Maruyama approximation. See for example Chapter 9 in Kloeden and
Platen (1992). Alternatively, it may be possible to simulate the diffusion path
by means of the exact algorithm described in Beskos, Papaspiliopoulos, Roberts,
and Fearnhead (2006), thus avoiding approximation errors.

3.1 Hastings-within-Gibbs algorithm for a latent diffusion model

We now give the details of the Hastings-within-Gibbs algorithm for latent diffu-
sion models.

Just as an example, consider a latent diffusion model with base diffusion
which is solution of the SDE

dXt = θ Tf(Xt)dt + σdBt , t ≥ 0 , X0 = x0 (6)

with θ T = (θ1, . . . , θd), and f(x) T = (f1(x), . . . , fd(x)), where fi(x) is some
real-valued function, for i = 1, . . . , d. Let the drift θ Tf(x) be such that the
regularity conditions mentioned in Section 2 are satisfied. Let the prior for
Θ = (Θ1, . . . ,Θd) be multivariate Gaussian, with mean vector and variance
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matrix

µ =




µ1

µ2

...
µd




Σ =




λ11 λ12 · · · λ1d

λ12 λ22 · · · λ2d

...
...

. . .
...

λ1d λ2d · · · λdd




−1

Then, the distribution of Θ, given the diffusion X[0,T ] = x[0,T ], is still Gaussian,
with mean and covariance matrix

µx = Σx




S1

S2

...
Sd




Σx =




L11 L12 · · · L1d

L12 L22 · · · L2d

...
...

. . .
...

L1d L2d · · · Ldd




−1

(7)

where, for i = 1, . . . , d and j = 1, . . . , d,

Si :=
1
σ2

∫ T

0
fi(xt)dxt +

d∑

j=1

λijµj Lij :=
1
σ2

∫ T

0
fi(xt)fj(xt)dt + λij .

The update of Θ can thus be performed by sampling directly from this con-
ditional distribution.

The update of the diffusion X[0,T ] is less straightforward and requires an
appropriate Metropolis-Hastings step. It is possible for example to carry out an
independence sampler with proposal distribution given by a Brownian motion
starting at x0. To improve the acceptance rate of the move that update the
diffusion path, we apply the following updating strategy. Let 0 = t1 < . . . <

tm = T . Instead of proposing a new diffusion path on the whole interval [0, T ],
we propose to change the trajectory just on a subinterval [ti, ti+2], keeping fixed
the rest of the diffusion. To ensure continuity of the diffusion path, the proposal
distribution, for the new trajectory on the subinterval [ti, ti+2], is a Brownian
bridge BB[ti,ti+2](xti , xti+2) = {BBt(xti , xti+2) : ti ≤ t ≤ ti+2}, having as starting
and ending points, respectively, the values Xti = xti and Xti+2 = xti+2 of the
current diffusion. The proposed diffusion path x∗[0,T ] is then given by {x∗t = 1

(
t /∈

[ti, ti+2]
)
xt + 1

(
t ∈ [ti, ti+2]

)
bbt(xti , xti+2) : t ∈ [0, T ]}, where bbt(xti , xti+2) is the

realization of the Brownian bridge BB[ti,ti+2](xti , xti+2). This move is accepted
with probability

1 ∧ g
(
bb[ti,ti+2](xti , xti+2)|θ

)

g(x[ti,ti+2]|θ)
l(y1, . . . , yn|x∗[0,y[n]]

)

l(y1, . . . , yn|x[0,y[n]])
(8)
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where g(x[ti,ti+2]|θ) is given by Girsanov’s formula restricted to the interval
[ti, ti+2], i.e.

g(x[ti,ti+2]|θ) = exp

{∫ ti+2

ti

θ Tf(Xt)
σ2

dxt − 1
2

∫ ti+2

ti

(
θ Tf(Xt)

)2

σ2
dt

}
.

The procedure is iterated for i = 1, . . . , m − 3. Note that the different blocks
[ti, ti+2] overlap, so that there are no time instants where the diffusion is kept
fixed. For the same reason, the last block [tm−2, T ] is updated by means of a
Brownian motion B[tm−2,T ](xtm−2) starting at Xtm−2 = xtm−2 , so that the value of
the diffusion at T may vary. The acceptance coefficient of the move that update
the last block is the same as in (8), with [ti, ti+2] = [tm−2, T ] and b[tm−2,T ](xtm−2)
in place of bb[ti,ti+2](xti , xti+2), where b[tm−2,T ](xtm−2) is the realization of the
Brownian motion B[tm−2,T ](xtm−2).

This idea of updating smaller intervals at a time has been used in Shephard
and Pitt (1997) for the simulation of non-Gaussian time series models, and
later applied for the simulation of discretely observed diffusions, for example by
Elerian, Chib, and Shephard (2001).

In Section 5 and 6 we will carry out simulation studies using this latent
diffusion model. Note that the choice of a base diffusion having drift linear in
the parameter θ is just due for purposes of exposition. In Section 7 we will
indeed analyse a real dataset by a latent diffusion model whose base diffusion
has drift which is not linear in θ. Also in that case, the update of the diffusion
path will be performed according to the technique described above.

4 Multiple groups of observations

We now discuss a straightforward generalization of the framework developed in
the previous sections, and deal with the case of multiple groups of observations,
where the observations within each group are taken under homogeneous con-
ditions. Consider for example the case in which different treatments are being
administered to different groups of patients in a clinical trial.

Given Θ = θ, let X [1], . . . , X [q] be q stochastically independent diffusion pro-
cesses satisfying (1), and FX[1],h, . . . , FX[q],h the relative random distributions as

in (3). Now consider q sequences of observations (Y [1]
n )n, . . . , (Y [q]

n )n such that the
random variables in

(
(Y [1]

n )n, . . . , (Y [q]
n )n

)
are conditionally independent, given

FX[1],h, . . . , FX[q],h, and the random variables in (Y [k]
n )n have common distribu-

tion FX[k],h, for k = 1, . . . , q.
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The joint distribution of Y
[1]
1 , . . . , Y

[1]
n1 , . . . , Y

[q]
1 , . . . , Y

[q]
nq , given the diffusions

X
[1]
[0,T1] = x

[1]
[0,T1], . . . , X

[q]
[0,Tq ] = x

[q]
[0,Tq ], has density, with respect to Ln (where

n = n1 + · · ·+ nq), given by

l
(
y

[1]
1 , . . . , y[1]

n1
; . . . ; y[q]

1 , . . . , y[q]
nq

∣∣x[1]
[0,T1], . . . , x

[q]
[0,Tq ]

)
=

q∏

k=1

l
(
y

[k]
1 , . . . , y[k]

nk

∣∣x[k]
[0,y[nk]]

)

where l
(
y

[k]
1 , . . . , y

[k]
nk

∣∣x[k]
[0,y[nk]]

)
is as in (4). The joint posterior distribution of Θ

and X
[1]
[0,T1], . . . , X

[q]
[0,Tq ] has density, with respect to the product measure Ld ⊗

WT1,σ ⊗ · · · ⊗WTq ,σ, given by

π
(
θ, x

[1]
[0,T1], . . . , x

[q]
[0,Tq ]

∣∣y[1]
1 , . . . , y[1]

n1
; . . . ; y[q]

1 , . . . , y[q]
nq

)

= C pΘ(θ)

[
q∏

k=1

g
(
x

[k]
[0,Tk]

∣∣θ) l
(
y

[k]
1 , . . . , y[k]

nk

∣∣x[k]
[0,Tk]

)
]

(9)

where C is a normalizing constant, and g
(
x

[k]
[0,Tk]

∣∣θ) =
dPTk,θ

dWTk,σ

(
x

[k]
[0,Tk]

)
is given by

Girsanov’s formula (2).
The contributions of the q groups of observations factorize in (9), and a

simple modification of the MCMC algorithm presented in Section 3 may be used
to deal with this case. The Hastings-within-Gibbs algorithm for sampling from
(9) alternates between

1. simulation of Θ, conditional on the current paths of the q diffusions X
[1]
[0,T1],

. . . , X
[q]
[0,Tq ];

2. for each k in {1, . . . , q}, simulation of X
[k]
[0,Tk], conditional on the observa-

tions Y
[k]
1 , . . . , Y

[k]
nk , and the current value of Θ.

Consider, for example, a latent diffusion model with q stochastically indepen-
dent diffusion processes, X [1], . . . , X [q], satisfying the SDE (6). Choose the same
multivariate Gaussian prior for Θ that has been used in Section 3.1. Then, the
distribution of Θ, given X

[1]
[0,T1] = x

[1]
[0,T1], . . . , X

[q]
[0,Tq ] = x

[q]
[0,Tq ], is still Gaussian,

with mean vector and covariance matrix as in (7), but with

Si :=
1
σ2

[
q∑

k=1

∫ Tk

0
fi

(
x

[k]
t

)
dx

[k]
t

]
+

d∑

j=1

λijµj

Lij :=
1
σ2

[
q∑

k=1

∫ Tk

0
fi

(
x

[k]
t

)
fj

(
x

[k]
t

)
dt

]
+ λij
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for i = 1, . . . , d, j = 1, . . . , d. The update of the parameter Θ can thus be
performed by sampling directly from this conditional distribution. The second
step may be carried out by q repetitions of the updating mechanism described
in Section 3.1.

In Section 7 we will apply this model for multiple groups of observations to
analyse a dataset from a clinical trial, that has been considered in a number of
papers in the context of survival analysis.

Note that we are here considering a simple hierarchical structure, where
inference on the separate groups is linked at the level of the finite dimensional
parameter Θ. For some applications this might allow too little borrowing of
strength for inference across groups. It would be then of interest to consider
a more complex hierarchical structure which allows linking the distributions of
the separate groups of observations at an intermediate level. For example, the
hazard function of each group could be taken to depend both on a baseline
hazard function, and on a group specific hazard function which characterise the
idiosyncratic behavior in the group. This would of course call for a more complex
MCMC scheme, and care would be needed to insure identifiability of the model.

5 Simulation studies

We show here the implementation of the algorithm described in Section 3, by
means of a toy example.

Consider the model based on the diffusion process satisfying the SDE

dXt = θ1 sin(Xt)dt + θ2dt + dBt , t ≥ 0 , X0 = 2 (10)

with hazard function h(u) = u2. We simulate observations from this model, for
values of the parameters θ1 = −1.4 and θ2 = −1, and censoring time C = 0.9.
In particular, we sample one realization x of the diffusion process satisfying (10),
with θ1 = −1.4 and θ2 = −1. Then we simulate 200 i.i.d. observations from
the corresponding distribution Fx,h = 1−exp

{
− ∫ t

0 (xs)
2 ds

}
and we censor the

observations at C = 0.9. The diffusion is sampled at intervals of length 0.01, us-
ing Euler-Maruyama approximation. Figure 1 shows the corresponding hazards
(the squared diffusion) and an histogram of sampled data. The hazard function
has a typical shape, first (mainly) increasing and then (mainly) decreasing.

We choose as time horizon of interest T = 1. We then run the Hastings-
within-Gibbs algorithm under the following specifications. The prior for (θ1, θ2)
is Gaussian, as in Section 3.1, with µ1 = −1.4, µ2 = −1, λ11 = λ22 = 1/5
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Figure 1: Left: hazard function x2. Right: histogram of data sampled from Fx,x2 with censoring at

C = 0.9.
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Figure 2: Top left: true survival distribution 1 − Fx,x2 (solid), together with its posterior mean

(dashed) and pointwise approximate 90% highest posterior bands (dotted). Top right: true density

(solid), together with its posterior mean (dashed) and pointwise approximate 90% highest posterior

bands (dotted). Bottom left: true hazard function x2 (solid), together with its posterior mean (dashed)

and pointwise approximate 90% highest posterior bands (dotted). Bottom right: autocorrelation func-

tions for θ1 series (dotted) and θ2 series (dashed).
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and λ12 = 0. The starting values of the parameters are θ1 = θ2 = 0, and the
starting diffusion is a Brownian motion, starting at x0 = 2. The diffusion path is
updated on subintervals of length 0.2 at a time. The algorithm is run for 200000
iterations and the first 2000 are discarded as burn in.

Figure 2 shows the estimates of survival distribution, density, and hazard
function, based on the MCMC output, together with pointwise approximate 90%
highest posterior bands. The true survival distribution and hazard function are
also displayed to evidence the good fit of the MCMC estimates. Figure 2 also
shows autocorrelation functions for θ1 and θ2 series.

6 Partially non-centered reparametrization of model

It may sometime be of interest to consider a finite time horizon T which is
significantly bigger than the maximum of the data. In this case the MCMC
algorithm described in the previous sections might have poor mixing properties.
This problem is evidenced in Figure 3. This figure shows the histogram of 200
i.i.d.observations from the distribution Fx′,h, where x′ is a new realization of the
diffusion process satisfying the same SDE used in Section 5, and also the hazard
function h and the censoring time C are the same. This time we choose a longer
time horizon T = 1.8 (the high number of censored observations, one quarter
of the data, suggests that a significant part of the probability mass falls outside
the time window where we observed data). We then run the algorithm under
the same specifications of Section 5. Figure 3 displays autocorrelation functions
for θ1 and θ2 series, which are not exponentially decreasing.
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Figure 3: Right: histogram of data sampled from Fx′,h with censoring at C = 0.9. Right: autocor-

relation functions for θ1 and θ2 series.
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To avoid this problem, we propose a modification of the algorithm, based on
a reparametrization of the model. Indeed, the performance of MCMC methods,
particularly when using Gibbs samplers, depends crucially on the parametriza-
tion of the unknown quantities in the hierarchical structure. The issue of
reparametrization of the posterior distributions, as to improve convergence pro-
perties of the algorithms, has received much attention. See for example Hills
and Smith (1992), Gelfand, Sahu, and Carlin (1995), Gelfand, Sahu, and Carlin
(1996), and Papaspiliopoulos, Roberts, and Sköld (2003, 2007).

Instead of using the natural parametrization of the model in terms of (Θ, X),
the so-called centered parametrization, we parametrize it in terms of (Θ, X̃),
where

X̃t = 1(t ≤ y[n]) Xt + 1(t > y[n])
[
Bt −By[n]

]
t ≥ 0. (11)

In the terminology used by Papaspiliopoulos, Roberts, and Sköld (2003), this is
called a partially non-centered parametrization, the fully non-centered parame-
trization being, in this case, (Θ, B). Using the parametrization (11) expresses
the idea that the data carry no information on the diffusion after the maximum
data point. The diffusion X can then be reconstructed as function of Θ, X̃ and
y1, . . . , yn, by

{
Xt = X̃t 0 ≤ t ≤ y[n]

dXt = β(Xt, Θ)dt + σdX̃t t ≥ y[n].

The joint posterior distribution of Θ and X̃ has density, with respect to the
product measure Ld ⊗Wσ, given by

π
(
θ, x̃

∣∣y1, . . . , yn

)
= C pΘ

(
θ
)

g
(
x[0,y[n]]

∣∣θ) l
(
y1, . . . , yn

∣∣θ, x[0,y[n]]

)
(12)

where C is a normalizing constant, and g
(
x[0,y[n]]

∣∣θ) =
dPy[n],θ

dWy[n],σ
(x[0,y[n]]). Note

that (12) characterizes the posterior distribution of X̃, and thus the posterior
distribution of the diffusion X, over the whole positive half-line.

It is possible to simulate from (12) by means of a Gibbs sampler quite similar
to the one described in Section 3.1. In the first step we simulate Θ conditionally
on X̃[0,y[n]] ≡ X[0,y[n]]. In the second step, we simulate X̃ over the time interval
of interest [0, T ], conditionally on Θ. In this case we use a proposal distribution
which is a Brownian motion starting at x0, over the time interval [0, y[n]], and
a Brownian motion starting at 0, over the time interval [y[n], T ]. On [0, y[n]]
we follow again the updating strategy, with the overlapping Brownian bridges,
described in Section 3.1. When reconstructing the diffusion X[0,T ], from Θ and

13



0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

centered

lag

au
to

co
rr

el
at

io
n 

fu
nc

tio
n

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

partially non−centered

lag

au
to

co
rr

el
at

io
n 

fu
nc

tio
n

Figure 4: Autocorrelation functions for θ1 series (dotted) and θ2 series (dashed), obtained with the

algorithm based on the centered parametrization (left) and with the algorithm based on the partially

non-centered parametrization (right).
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Figure 5: Top: true survival distribution distribution 1− Fx′,x′2 (solid), together with its posterior

mean (dashed) and pointwise approximate 90% highest posterior bands (dotted), obtained with the

algorithm based on the centered parametrization (left) and with the algorithm based on the partially

non-centered parametrization (right). Bottom: the same for the hazard function x′2.
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X̃[0,T ], we are careful to preserve continuity of the diffusion path at time y[n].
Details are omitted.

The algorithm based on the reparametrization (11) is completely robust to
the choice of T , since the update of the parameter Θ, conditionally on X̃, only
involve X̃[0,y[n]]. Moreover, if the algorithm has been run with a certain choice
of T , and it later becomes of interest a longer time horizon T ′, with T ′ > T ,
we can obtain sample paths of X̃[T,T ′] by additional post hoc simulation, using
the values of Θ and XT that have been sampled along the chain. With the
centered parametrization it is instead necessary to run again the algorithm from
the beginning, changing the time window from [0, T ] to [0, T ′].

Figures 4 and 5 compares mixing and MCMC estimates obtained with the
algorithms based on the centered parametrization and on the partially non-
centered parametrization, for the data set corresponding to figure 3. The speci-
fications of the two algorithms are as in Section 5. Note that the hazard function
is bathtub shaped. Hazard functions with such shapes are quite common in sur-
vival analysis (think, for instance, to human mortality).

7 Application to real data

In this section we apply our latent diffusion model for multiple groups of obser-
vations to a dataset from a clinical trial, that has been considered in a number
of papers in the context of survival analysis, among which Gehan (1965), Cox
(1972), Wei (1984) and Xu and O’Quigley (2000) in the non-Bayesian litera-
ture, and Kalbfleisch (1978), Laud, Damien, and Smith (1998) and Damien and
Walker (2002) in the Bayesian one. In the trial, reported by Freireich (1963),
6-mercaptopurine (6-MP) was compared to a placebo in the maintenance of re-
mission in acute leukemia. The following lengths of remission in weeks were
recorded for 42 patients, half of which treated with the 6-MP drug and half with
the placebo (a + sign indicates a censored observation):

6-MP: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+, 19+, 20+, 22, 23,

25+, 32+, 32+, 34+, 35+ ;

placebo: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23.

We consider the model for multiple groups of observations (here 2 groups,
6-MP drug and placebo), based on the diffusion process satisfying the SDE

dXt = θ1 (sign(Xt)) |Xt|θ2 dt + σ dBt , t ≥ 0 , X0 = x0 (13)
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where

sign(u) = 1





1 if u > 0
−1 if u < 0

0 if u = 0

with hazard function h(u) = |u|. Note that when σ = 0, this is equivalent to
the Weibull model. Indeed, for σ = 0, the SDE (13) reduces to the differential
equation dXt = θ1X

θ2
t dt, which has solution Xt =

(
θ1(1 − θ2)

) 1
1−θ2 t

1
1−θ2 , so

that the hazard h(Xt) is proportional to a power of t, as the hazard of Weibull
distribution. Thus, the model based on the diffusion process (13), with hazard
function h(u) = |u|, is a stochastic perturbation around a central Weibull model.

We express the data as fractions of one year, and choose as time horizons of
interest T1 = T2 = 0.75, corresponding to 9 months (39 weeks). We take Θ1 and
Θ2 a priori independent, with a Gaussian prior distribution for Θ1, with mean
µ = 0 and variance 1/λ = 5, and a uniform prior over [0, 1] for Θ2. We moreover
set x0 = 0.8 and σ = 8. We then run the Hastings-within-Gibbs algorithm based
on the partially non centered parametrization. The update of Θ1 is performed
by sampling directly from the conditional distribution Θ1 given Θ2, X̃

[1], X̃ [2],
which is still Gaussian with mean S+λµ

L+λ and variance 1
L+λ , where

S :=
1
σ2




2∑

j=1

∫ y[nj ]

0

(
(sign(x[j]

t )) |x[j]
t |θ2

)
dx

[j]
t




L :=
1
σ2




2∑

j=1

∫ y[nj ]

0

(|x[j]
t |θ2

)2
dt




For the update of Θ2 we use an independence sampler with a Beta proposal
distribution, with parameters (1/2, 1/2). The update of X̃ [1] and X̃ [2] is carried
out as described in the previous sections. The algorithm is run for 200000
iterations and the first 2000 are discarded as burn in.

Figure 6 displays the MCMC estimates of the survival distributions of the
two groups, 6-MP drug and placebo, together with the relative Kaplan-Meier
curves. Note that the MCMC estimates of the two survival distributions are
closer one another than the two Kaplan-Meier curves, thus showing borrowing
of strength for inference among the two groups. Hence, the latent diffusion
model, that gains much flexibility over a fully parametric model by introducing
randomness around it, does not suffer from the opposite problem of being too
data-driven. Figure 6 also displays the MCMC estimates of the hazards of the
two groups.
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Figure 6: Left: posterior mean survival distributions and pointwise approximate 90% highest pos-

terior bands, for the group of patients treated with 6-MP drug (solid) and for the group of patients

treated with the placebo (dashed), together with corresponding Kaplan-Meier curves. Right: posterior

mean hazards for the group of patients treated with 6-MP drug (solid) and for the group of patients

treated with the placebo (dashed).

We could now verify the efficacy of 6-MP drug treatment as proposed in
Damien and Walker (2002). In particular, under the hypothesis that 6-MP drug
is inefficient, we would regard all patients as belonging to 1 single group, instead
of 2. We could then implement the latent diffusion model based on (13), but with
just 1 diffusion process. Call Model1 the model where all patients belong to 1
single group (corresponding to the hypothesis H1 of null efficacy of 6-MP drug),
and call Model2 the one considered above (corresponding to the hypothesis H2

of efficacy of 6-MP drug). If the a priori probabilities of hypothesis H1 and H2

are set equal to 0.5, the Bayes Factor

BF =
probability density of data under model M1

probability density of data under model M2

gives the posterior odds in favor of H1. As expected, the computed Bayes Factor
(BF= 9× 10−6) gives a strong evidence of the efficacy of 6-MP drug.

8 Generalization to the case of unknown diffusion co-

efficient

An important generalization of the model we have considered so far consist
in considering diffusion processes with unknown diffusion coefficient σ, since σ

describes a natural measure of prior uncertainty. We briefly discuss how to deal
with this case.
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Let Σ be a real random variable. Given Θ = θ and Σ = σ, consider the
scalar diffusion process X solution of the SDE (1), and denote by PT,θ,σ the law
of X[0,T ]. Let pΣ(·) be the prior density, with respect to L, of Σ (for simplicity, we
take Θ and Σ be stochastically independent a priori). Then, the joint posterior
distribution of (Θ, Σ, X[0,T ]) has density, with respect to Ld+1 ⊗WT,σ, given by

π(θ, σ, x[0,T ]|y1, . . . , yn) = C pΘ(θ) pΣ(σ) g(x[0,T ]|θ, σ) l(y1, . . . , yn|x[0,y[n]]) (14)

where C is a normalizing constant, and g(x[0,T ]|θ, σ) := dPT,θ,σ

dWT,σ
(x[0,T ]) is given

by Girsanov’s formula (2).
The quadratic variation of a diffusion processes, having diffusion coefficient

σ, satisfies

lim
m→∞

m∑

i=1

(Xti/m −Xt(i−1)/m)2 = tσ2 WT,σ − a.s. for all t.

Therefore, the conditional distribution of Σ, given the diffusion X[0,T ], degene-
rates to a point mass, and Σ is completely determined by the diffusion path.
In practice, we cannot simulate the diffusion path in continuous time, but just
at discrete time instants. Anyway, the finer the time discrete approximation
{XiT/m : i = 1, . . . , m} of the diffusion X[0,T ], the stronger becomes the depen-
dence between {XiT/m : i = 1, . . . , m} and Σ. Consider the algorithm for the
simulation from (14), that alternates between

1. simulation of Θ, conditional on the current value of Σ and the current path
of X[0,T ];

2. simulation of Σ, conditional on the current value of Θ and the current path
of X[0,T ];

3. simulation of X[0,T ], conditional on the observations and the current values
of Θ and Σ.

The finer the approximation of the diffusion path, the worse the convergence of
the algorithm becomes. In the limiting case m = ∞ (that is, if the diffusion
process could be simulated in continuous time), this scheme would be reducible.
See Roberts and Stramer (2001). An alternative way to see this problem is to
note that the collection of measures {WT,σ : σ ∈ R} are mutually singular, and
therefore so are the measures {PT,θ,σ : σ ∈ R}.
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Figure 7: As in Figure (2), but for the model with unknown diffusion coeffient. Bottom right plot

also displays autocorrelation function for σ series (dotdash line).

In this case, the need for a different parametrization of the model is thus
compelling. Following Roberts and Stramer (2001), we parametrize the model
in terms of (Θ, Σ, Ẋ), where Ẋt = (Xt −X0)/Σ. By Îto’s formula,

dẊt =
β(Ẋt,Θ)

Σ
dt + dBt , t ≥ 0 , Ẋ0 = 0.

The distribution of Ẋ[0,T ] depends on Σ, but any realization of Ẋ[0,T ] con-
tains only finite information about Σ. Another possible reparametrization of
the model, along the lines of Section 6, could be in terms of (Θ, Σ, Ẍ), with

Ẍt = 1(t ≤ y[n]) Ẋt + 1(t > y[n])
[
Bt −By[n]

]
t ≥ 0.

MCMC algorithms based on these reparametrizations can be obtained as simple
modifications of the ones previously described.

Consider the toy example described in Section 5, and assume the same model,
but let the diffusion process have an unknown diffusion coefficient. Let the prior
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for this coefficient be exponential with mean 1. Figure 7 displays the results
obtained with the MCMC algorithm based on the reparametrization (Θ, Σ, Ẋ).
Specification of the algorithm are as in Section 5. Note that the mixing for σ is
slow relatively to the very good mixing for θ1 and θ2, but this does not prevent
good estimates of the survival distribution, density and hazard being obtained.
Slow mixing for σ could be probably improved by a further reparametrization
of the model.

Alternatively to the case of unknown diffusion coefficient, it would be pos-
sible to consider models based on diffusion processes having σ = 1, but with
hazard function h(Γ, X), where Γ is a random parameter. Also in this case, a
reparametrization of the model would be necessary.

9 Discussion

In this paper we have described a latent diffusion model for event history analy-
sis, considering both the cases of a single group of observations and of multiple
groups of observations. We have shown that the model can be efficiently treated
by means of MCMC techniques. All analyses presented are computationally
feasible within R c©.

Covariates can be included in this framework in a very natural way, as influ-
encing directly the underlying diffusion. If Zt is the covariate process, we could
for example consider a model based on the diffusion satisfying the SDE

dXt = β(Xt, Zt, θ) + σdBt t ≥ 0

X0 = x0(Z0).

In particular, we could follow what Aalen and Gjessing (2001) suggest for barrier
hitting models. Namely, those covariates which represent measures of how far
the underlying process, that leads to the event, has advanced (such as staging
measures in cancer) may be taken to influence the starting point of the diffusion;
those covariates which instead represent causal influence on the development of
the process may be taken to influence the drift of the diffusion. See Aalen and
Gjessing (2001) for interesting discussions about this choice.

An interesting generalization of the model would be to consider random
probabilities based on jump diffusion processes. As noticed in Section 2, the
cumulative hazard functions, associated with random probabilities based on dif-
fusions, are smooth, being the integrals of continuous processes. By replacing
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the diffusion process with a jump diffusion process it would be possible to cap-
ture sudden changes in the behavior of cumulative hazards, that might be due
to some kind of shock experienced by the population.

Acknowledgments

We would like to thank Robin Henderson and Piercesare Secchi for useful com-
ments, and Omiros Papaspiliopoulos and Alexandros Beskos for their help with
the programming. The second author acknowledge funding by EC Marie Curie
Training Site Human Potential Programme, to visit the Department of Mathe-
matics and Statistics, Lancaster University, and by the Centre for Research in
Statistical Methodology (CRiSM), Warwick University.

References

Aalen, O. O. and Gjessing, H. K. (2001), “Understanding the shape of the hazard rate: a process
point of view,” Statist. Sci., 16, 1–22, with comments and a rejoinder by the authors.

— (2004), “Survival models based on the Ornstein-Uhlenbeck process,” Lifetime Data Anal.,
10, 407–423.

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006), “Exact and com-
putationally efficient likelihood-based estimation for discretely observed diffusion processes,”
J. R. Statist. Soc. B, to appear.

Cox, D. R. (1972), “Regression models and life-tables,” J. Roy. Statist. Soc. Ser. B, 34, 187–
220, with discussion by F. Downton, Richard Peto, D. J. Bartholomew, D. V. Lindley, P. W.
Glassborow, D. E. Barton, Susannah Howard, B. Benjamin, John J. Gart, L. D. Meshalkin,
A. R. Kagan, M. Zelen, R. E. Barlow, Jack Kalbfleisch, R. L. Prentice and Norman Breslow,
and a reply by D. R. Cox.

Damien, P. and Walker, S. (2002), “A Bayesian non-parametric comparison of two treatments,”
Scand. J. Statist., 29, 51–56.

Doksum, K. (1974), “Tailfree and neutral random probabilities and their posterior distribu-
tions,” Ann. Probability, 2, 183–201.

Elerian, O., Chib, S., and Shephard, N. (2001), “Likelihood inference for discretely observed
nonlinear diffusions,” Econometrica, 69, 959–993.

Freireich, E. O. (1963), “The effect of 6 mercaptopurine on the duration of steroid induced
remission in acute leukemia,” Blood, 21, 699–716.

Gehan, E. A. (1965), “A generalized Wilcoxon test for comparing arbitrarily singly-censored
samples,” Biometrika, 52, 203–223.

Gelfand, A. E., Sahu, S. K., and Carlin, B. P. (1995), “Efficient parameterisations for normal
linear mixed models,” Biometrika, 82, 479–488.

— (1996), “Efficient parametrizations for generalized linear mixed models,” in Bayesian statis-
tics, 5 (Alicante, 1994), New York: Oxford Univ. Press, Oxford Sci. Publ., pp. 165–180.

21



Hills, S. E. and Smith, A. F. M. (1992), “Parameterization issues in Bayesian inference,” in
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