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STABILIZATION STRATEGIES FOR HIGH ORDER METHODS FOR TRANSP ORT DOMINATED
PROBLEMS

ERIK BURMAN, ALFIO QUARTERONI, AND BENJAMIN STAMM

ABSTRACT. Standard high order Galerkin methods, such as pure spectral or high order finite element methods, have
insufficient stability properties when applied to transport dominated problems. In this paper we review some stabiliza-
tion strategies for pure spectral methods and spectral multidomain approaches.

1. INTRODUCTION

1.1. General overview. Finite element upwind approximation techniques have been developed enormously
since the pioneering work by Mitchell and Griffiths [30] and the generalization and analysis by Baba and Tabata
[1]. The strongly consistent SUPG–method introduced in 1982 by Brooks and Hughes [8] and analyzed by John-
son, Nävert and Pitkäranta [24] opened the door to high order upwind approximations in a finite element frame-
work. Since then, a broad variety of strategies for determining stabilization parameters, generalizations and other
approaches have been proposed, see e.g. the book by Roos, Stynes and Tobiska [35].

1.2. Model problem. We will concentrate on the following model problem: findu : Ω → R such that

(1)
Lu ≡ −ν∆u + β · ∇u + σu = f in Ω,

u = 0 on∂Ω,

whereΩ is an open bounded subset ofR
d with boundary∂Ω. For the problem with non-homogenous boundary

conditions standard lifting techniques can be used. The problem is defined by the diffusion coefficientν > 0, the
reaction coefficientσ ≥ 0 and the velocity fieldβ ∈ [W 1,∞(Ω)]d and we will assume that the following standard
coercivity condition holds

σ −
1

2
∇ · β ≥ σ0 > 0.

We focus on the case where the advection is dominating the diffusion process; in particular we will later assume
thatσ = 0. Nevertheless the caseσ 6= 0 is meaningful too since the reaction term can be interpretedas a time-
derivation for time dependent problems. We will also consider the reduced, pure transport problem obtained by
settingν = 0 in (1) and adapting the boundary condition:

(2)
β · ∇u + σu = f in Ω,

β · nu = g on∂Ω−,

where∂Ω± = {x ∈ ∂Ω : ±β · n(x) > 0}. The reduced problem has no smoothing properties. Indeed
discontinuities in the solution provoked by the dataf andg will propagate with the flow fieldβ giving rise to
internal layers. In the presence of such layers Galerkin methods, such as pure spectral methods or finite element
methods, have insufficient stability properties. Indeed due to the conservation properties of standard Galerkin
schemes, the high frequency content of the solution will be represented on the (lower) frequencies present in the
discrete space leading to spurious oscillations. The cure of such instabilities by controlling the onset of spurious
oscillations for high order methods will be the main topic ofthis article.

Problem (1) provides some smoothing of internal layers, however, in case the layers are unresolved by the finite
element method, either by the spacial discretization or by the polynomial degree, the effect will remain the same
as for the problem (2), see Figure 1.
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FIGURE 1. Spectral solutionsuN with N = 9 (left), N = 8 (middle) and piecewise linear
finite element solutionsuh with h = 0.1 (right) of the advection-diffusion problem−νuxx +
ux = 0, −1 < x < 1, for several values ofν.

1.3. Outline. As previously anticipated, in this article we review some basic results about the stabilization of
model problem (1) with dominant advection for high order polynomial approximations.

In section 2 we will recall some a-priori estimates for the pure spectral Legendre-Galerkin approximation and dis-
cuss the accuracy of transport–dominated problems. An argument based on a maximum principle in the transform
space shows that, for odd polynomial degrees, the maximum norm of the approximation is uniformly bounded.
Consequently, although oscillations do exist, their amplitude is controlled. For even polynomial degrees, however,
the situation is different and the maximum norm of the approximation can not be uniformly bounded.

In section 3 we will revisit the techniques of stabilizationfor pure spectral methods on single domains. Different
strategies to control the oscillations can be invoked. A simple approach consists of applying a filtering procedure,
which damps the highest components of the spectrum of the discrete solution. Other stabilization techniques
are inspired by procedures that originated in the frameworkof low-order schemes, such as theh-version of
finite elements. A very common strategy for stabilization isthe SUPG-stabilization (where SUPG stands for
Streamline Upwind Petrov-Galerkin) after Brooks and Hughes [8] and Johnson, Nävert and Pitkäranta [24], or–
lately–as the bubble stabilization after Brezzi, Bristeau, Franca, Mallet and Rogé [5] and Brezzi and Russo [7]. An
interpretation of the SUPG-method in a spectral framework is given by Canuto [14], Pasquarelli and Quarteroni
[31] and Canuto and Puppo [16]. For a general review see [15].The use of Petrov-Galerkin approach–in which
test functions are different from trial functions, the former being biased by the advection (or stream) direction–
dates back to the mid 1970’s (Christie et al. [17]) and corresponds to the finite element interpretation of upwind
collocation or finite difference methods. More recent developements are done by Melenk and Schwab [29] and
Gerdes, Melenk, Schwab and Schötzau [19]. A third approachconsists of injecting the right amount of artificial
viscosity. This idea has been introduced by Maday and Tadmor[27, 37] in the context of high order methods,
leading to the concept of spectral viscosity.

In section 4 we review the developement towards spectral multidomain approaches, also known ashp- or SE
(standing for Spectral Element) -methods, and in section 5 stabilization techniques for these methods are studied.
The methods can be split into two classes. The former consists of element-based stabilizations techniques. Some
of them share their origin and motivation with spectral methods. Using the analysis for single domain methods
the above introduced techniques can be applied element-wise and results similar to those for spectral methods
can be obtained with the only difference that now a parameterfor the spacial discretizationh is introduced.
Other high order methods that are not originated from spectral methods will be discussed as well. The second
class consists of face-based stabilization procedures, known as interior penalty methods such as CIP (Continuous
Interior Penalty) or discontinuous Galerkin (DG) methods.CIP methods were analysed in thehp-framework by
Burman and Ern [9] and DG methods by Houston, Schwab and Süli[22]. Both CIP and DG methods use the
solution’s fluctuation between elements to stabilize the numerical scheme.

Finally we focus on some recent results on interior penalty methods. Some of the questions that will be considered
are how to construct a minimal stabilization approach, i.e.a method that affects the smallest possible portion of
the finite element spectrum or vanishes at optimal rate as thepolynomial degree increases. This leads to a natural
interpretation of local mass conservation in the case of discontinuous approximation of the pure transport problem
and to a method with increased robustness with respect to thechoice of stabilization parameters for continuous
approximation of the advection-diffusion equation.
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2. SINGLE DOMAIN METHODS

2.1. Galerkin formulation of model problem. In this section we consider Galerkin methods, i.e. methods
where the test and trial spaces in the variational formulation are the same. The Galerkin weak formulation of
the above problem (1) can be defined as follows. LetPN(Ω) ⊂ H1(Ω) be the space of polynomials, either
trigonometric (Fourier) or algebraic (Legendre and Chebychev), of degreeN on Ω. The approximation space is
defined by

VN = {v ∈ PN(Ω) : v|∂Ω = 0}

and the Galerkin method then writes: FinduN ∈ VN such that

(3) a(uN , vN ) = (f, vN ) ∀vN ∈ VN ,

where(·, ·), (·, ·)Λ with Λ ⊂ Ω denotes an inner product ofL2(Ω), resp.L2(Λ), and might be weighted (as in the
case of Chebychev methods). Further, the bilinear form is given by

(4) a(uN , vN ) = (ν∇uN ,∇vN ) + (β · ∇uN , vN ).

As previously mentioned, internal layers may appear due to vanishing diffusion. Indeed, the exact solution of
problem (1) in one dimension with constant coefficients and non-homogenous Dirichlet boundary conditions,
that is

(5)
−νu′′ + u′ = 0 in Ω = (−1, 1),

u(−1) = 0,
u(1) = 1,

is given byu(x) = (e(x−1)/ν − e−2/ν)/(1 − e−2/ν), which has a boundary layer nearx = 1 of width O(ν).
Obviously, if we fixν and letN tend to infinity, any spectral approximationuN to (1) will eventually exhibit
exponential convergence to the exact solution. For instance, in the Legendre case, applying Cea’s Lemma, one
gets the bound

‖u − uN‖H1(0,1) ≤
C

ν
inf

vN∈VN

‖u − vN‖H1(0,1).

Further estimations for the best approximation gives the following bound

‖u − uN‖H1(0,1) ≤
C′

ν
N−s|u|Hs+1(−1,1) ≤

C′′

ν

(

1

ν1/2N

)s

for all s ≥ 1 . This proves the claimed result and, in particular, that spectral convergence is achieved as soon as
the boundary layer can be fully resolved by the polynomial degreeN .

2.2. Maximum principle. Still assuming problem (5), the spectral approximation canbe investigated by the
so called error equation technique (see e.g. [15] chapter 6)allowing an exact study of the error. For Chebychev
approximations we seek for a function

uN (x) =

N
∑

k=0

ûkTk(x),

whereTk denotes the Chebychev polynomial of degreek. However, results similar to the forthcoming ones hold
for Legendre discretizations as well. The resulting error equation writes

−νuN
xx + uN

x = ηT ′
N .

In this context Canuto [13] proved that for allν > 0 andN > 0 ,

ûk > 0 for k = 1, . . . , N,

which implies the bounduN (x) ≤ 1 on Ω̄. In the unresolved regime, the asymptotic behavior ofuN depends
on the parity ofN . If N is odd, the first coefficient̂u0 is strictly positive, too. An important implicaton of the
positivity of all coefficients is thatuN is uniformly bounded in̄Ω, independently ofN andν. In fact,

|uN(x)| ≤

N
∑

k=0

ûk|Tk(x)| ≤

N
∑

k=0

ûk|Tk(1)| ≤ uN (1) = 1.

More precisely, the analysis yields

uN ≃
1

2
+

1

2
TN in Ω.



4 E. BURMAN, A. QUARTERONI, AND B. STAMM

On the other hand, ifN is evenû0 is negative and one has

uN ≃ û0 + ûNTN in Ω,

with |û0| ≃ ûN ≃ C(νN2)−1. Hence, in this caseuN is not bounded from below independently ofν

−
C

νN
≤ uN(x) ≤ 1.

Such a rigorous analysis allows to understand the behavior of spectral solutions to problems with internal layers.
These theoretical limits are reflected in numerical examples, see Figure 1.

3. STABILIZATION TECHNIQUES FOR SPECTRAL METHODS

We focus on stabilized Galerkin methods that can be written in general as follows: finduN ∈ VN such that

(6) a(uN , vN ) + s(uN , vN ) = (f, vN ) + sr(vN ) ∀vN ∈ VN ,

wheres(·, ·) is a stabilization bilinear form,sr(·) the corresponding linear form, being either strongly or weakly
consistent. Different approaches have been proposed:

• SUPG-method. A tighter control on the variation of the discrete solutionis obtained by modifying (3) in
a strongly consistent way, i.e. the stabilization operatoris defined as:

ssupg(uN , vN ) = (LuN , β · ∇vN )τ ,(7)

sr
supg(v

N ) = (f, β · ∇vN )τ ,(8)

where(·, ·)τ denotes a weightedL2-inner product, with nonnegative weightτ depending on the dis-
cretization but virtually independent ofν in the singular perturbation limit. The added terms gives control
on the SUPG-norm of the streamline derivative, i.e.‖β · ∇uN‖τ , using a standard coercivity argument.

The acronym SUPG stands for Streamline Upwind/Petrov-Galerkin. Actually, as pointed out by
Hughes [23], this name is motivated by the fact that the method can be formulated as a Petrov-Galerkin
with trial spaceVN and test space

WN = {w ∈ L2(Ω) : ∃vN ∈ VN s.t.w = vN + δβ · ∇vN}.

On the other hand the SUPG method formulated as done in (6) canbe regarded as a stabilized Galerkin
method.

The above mentioned weight function yields some freedom. Indeed, there are two strategies for its
choice. The first is a constructive recipe and its realization of the weight function has been proposed by
Canuto [14] and Pasquarelli and Quarteroni [31], which marries the accuracy of global polynomial ex-
pansions with the flexibility of local low-order finite elements. In one dimension let{xj}

N
i=0 be theN +1

Gauss-Lobatto nodes of the computational domainΩ and letWh,0 andVh,1 be the discontinuous piece-
wise constant, resp. continuous linear finite element space, on the elements(xj−1, xj) for j = 1, . . . , N .
Further defineJh : L2(Ω) → Wh,0 theL2(Ω)-local orthogonal projection andIh : C0(Ω̄) → Vh,1 the
piecewise linear interpolation. The interpolationIh has some interesting uniform low-order/high-order
interpolation properties, i.e. there exists constantsCi, i = 1, . . . , 4, such that for allvN ∈ PN (Ω),

C1 ‖v
N‖L2(Ω) ≤ ‖IhvN‖L2(Ω) ≤ C2 ‖v

N‖L2(Ω),

C3 ‖v
N
x ‖L2(Ω) ≤ ‖(IhvN )x‖L2(Ω) ≤ C4 ‖v

N
x ‖L2(Ω).

Then, following Canuto [14], introduce the SUPG-stabilization term by

ssupg(uN , vN ) =

N
∑

j=1

τj

∫ xj

xj−1

Jh(LuN )βhIh(vN
x ) dx,

sr
supg(v

N ) =

N
∑

j=1

τj

∫ xj

xj−1

Jh(f)βhIh(vN
x ) dx,

whereβh = Jh(β). The choice

τj = min

(

hj

2‖β‖L∞(xj−1,xj)
,

h2
j

12ν

)
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yields a uniformly stable scheme:

ν‖uN
x ‖2

L2(Ω) +

N
∑

j=1

τj‖βhIh(uN
x )‖2

L2(xj−1,xj)
+ σ0‖u

N‖2
L2(Ω) ≤ c ‖f‖2

L2(Ω).

The second strategy is an interpretation by bubble functions on the same subgrid as introduced above.
Let us enrich the test and trial space of polynomials by some bubble functions on the subgrid, i.e. set
WN = PN (Ω) ⊕ Bh, with Bh being such that∀vb ∈ Bh, vb(xj) = 0 ∀j = 0, . . . , N . Then, seek
uN ∈ PN(Ω) andub ∈ Bh such that

a(uN , vN ) + ah(ub, vN ) = (f, vN ) ∀vN ∈ PN (Ω),

(Jh(LuN ), vb) + ah(ub, vb) = (Jhf, vb) ∀vb ∈ Bh,

with ah(u, v) = ν(ux, vx) + (βhux, vx). The equation associated to the bubble test functions is then
eliminated from the system. This scheme is proven (Canuto and Puppo [16]) to be equivalent to the
SUPG spectral scheme (6) with specific choice of (7) and (8), provided

τj =

(

∫ xj

xj−1
bj dx

)2

νhj

∫ xj

xj−1
(bj,x)2dx

.

The local bubble functionsbj ∈ Bh,j are defined through

(9) ah(bj , v
b
j) = (1, vb

j) ∀vb
j ∈ Bh,j ,

with Bh,j being the restriction ofBh to the subgrid element(xj−1, xj). There are two variants for the
choice ofBh, resp.Bh,j . Canuto and Puppo [16] proposed a discrete finite element space and conse-
quently equation (9) defines local finite element problems onthe subgrid. Brezzi and Russo [7] proposed
(in a general finite element Galerkin context) an infinite-dimensional spaceBh,j = H1

0 (xj−1, xj) known
as residual-free bubble strategy. Thenτj simplifies toτj =

∫ xj

xj−1
bj with analytic expression for

bj =
1

βh
(x − xj−1) −

hj

βh

eβh(x−xj)/ν − e−βhhj/ν

1 − e−βhhj/ν
.

As a result of the bubble enrichment strategy, the variationof uN at the Gauss-Lobatto points can be
controlled and the boundary layer is captured in one subgrid-element. A further post-processinguh =
IhuN would filter out spurious oscillations which leads to spectrally accurate solutions. This strategy can
be extended straightforwardly to multidimensional problems with tensorized domains.

• Filtering. A technique in the spirit of post-processing is to apply a filter on the coefficients of the approx-
imation, in which case no further stabilization is needed, i.e. we can sets ≡ 0 andsr ≡ 0. In the one
dimensional case let us write the approximation as

uN (x) =
∑

|k|≤N

ûkϕk(x),

with {ϕk} being the family of orthogonal polynomials, either trigonometric{eikx} (Fourier) or algebraic
with {Lk(x)} (Legendre) or{Tk(x)} (Chebychev). Then, the filtered solution writes as

uN
f (x) =

∑

|k|≤N

σkûkϕk(x),

where the smoothing factorsσk satisfy

σk = σ(k/N) k = 0, . . . , N, in the Legendre/Chebychev case, or

σk = σ(πk/N) k = −N, . . . , N, in the Fourier case.

The functionσ = σ(θ) is real, even, and satisfies the following three conditions:
(i) σ is (p − 1)-times continuously differentiable inR, for somep ≥ 1,
(ii) σ(θ) = 0 if |θ| ≥ 1,
(iii) σ(0) = 1, σ(j)(0) = 0 for 1 ≤ j ≤ p − 1.
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Such a function is termed a filter of orderp (Vandeven [38]). Applying filters does not allow to recover
spectral convergence near discontinuities or steep gradients. However filters reduce oscillations and allow
to obtain spectral convergence away from internal layers which would not be possible otherwise since
the oscillations occur on a global scale.

• Spectral viscosity method. The spectral viscosity method was introduced by Tadmor andMaday [27, 37].
The basic idea is to introduce numerical dissipation only onthe high order modes of the approximation,
those responsible for the Gibbs oscillations. Thus, the scheme is only weakly consistent. In the one
dimensional case, let us write the approximationuN as

uN(x) =
∑

|k|≤N

ûkϕk(x).

In a Galerkin framework, the spectral viscosity method takes the form

sspv(uN , vN ) = ǫN (Q∂xuN , ∂xvN ) and sr
spv ≡ 0,

with Q∂xuN =
∑

|k|>mN
Q̂kûkϕ

′

k(x). The method is characterized by the three following ingedients:
– the viscosity amplitudeǫN , which vanishes in the limitN → ∞;
– the spectral viscosity smoothing factorQ̂k, that behaves as

1 −

(

mN

|k|

)ρ

≤ Q̂k ≤ 1,

with a method dependent factorρ;
– the inviscid spectrummN ≈ Nθ, for someθ < 1.

Spectral superviscosity can be introduced if the spectral viscosity filtering is applied on higher order
derivatives of the solution, say

sspv(uN , vN ) = ǫN(Q∂s
xuN , ∂s

xvN ), for s > 1.

4. MULTIDOMAIN SPECTRAL METHODS

The application of classical spectral methods is limited tosimple geometries. Multidomain spectral methods (or
spectral element methods) merge geometrical flexibility ofFEM with high-order (spectral) accuracy of classical
spectral methods.

The multidomain approach consists of introducing a splitting of the domainΩ into elementsκ ∈ K of maximal
diameterhκ such that̄Ω = ∪κ∈Kκ̄. Let us denote the set of algebraic polynomials of degreeNκ on an elementκ
asPNκ

(κ). Then the approximation spaceVδ, δ representing the discretization factors{hκ}κ∈K and{Nκ}κ∈K,
is either made of continuous functions

Vδ = {v ∈ C0(Ω̄) : v|κ ∈ PNκ
(κ), ∀κ ∈ K, v|∂Ω = 0},

or by discontinuous functions. Discontinuous approximations will be discussed in section 5.2. The Galerkin
method of problem (1) then writes: Finduδ ∈ Vδ such that

(10) a(uδ, vδ) = (f, vδ) ∀vδ ∈ Vδ,

where(·, ·), resp.(·, ·)Λ denotes theL2(Ω)- resp.L2(Λ)-scalar product. Further, the bilinear forma(·, ·) is given
by

a(uδ, vδ) = (ν∇uδ,∇vδ) + (β · ∇uδ, vδ).

Remark thathp or hN discretizations can be cast in this form and depend entirelyon the finite element spaceVδ.
It is well known that the solution of (10) may exhibit interior or outflow layers in case the advection dominates.
Unless the local Peclet number (Peκ = |β|hκ

ν ) is smaller than1, i.e. these layers are fully resolved by the finite
element space, they give rise to spurious oscillations thatmay propagate throughout the computational domain.
The reason for this loss of stability can be explained by Cea’s lemma:

‖u − uδ‖H1(Ω) ≤ C
|β|

ν
inf

vδ∈Vδ

‖u − vδ‖H1(Ω).

If ν ≪ 1, we observe that the constant|β|
ν becomes large and the estimate essentially useless. The loss of stability

comes from the loss of coercivity for smallν combined with the nonsymmetric term that is continuous on the
spacesL2 andH1.
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5. MULTIDOMAIN METHODS : STABILIZATION TECHNIQUES

We focus on stabilization techniques of the form: finduδ ∈ Vδ such that

a(uδ, vδ) + s(uδ, vδ) = (f, vδ) + sr(vδ) ∀vδ ∈ Vδ,

with some method dependent stabilization bilinear forms(·, ·) and its linear counterpartsr(·) to guarantee strong
consistency. The bilinear forma(·, ·) is defined by (4). We address two cases:

• Element-based stabilizationoperators:

s(uδ, vδ) =
∑

κ∈K

(L1(uδ), L2(vδ))κ , sr(vδ) =
∑

κ∈K

∫

κ

L3(vδ)dx.

• Face-based stabilizationoperators:

s(uδ, vδ) =
∑

F∈Fi

(L1(uδ), L2(vδ))F , sr(vδ) = 0,

whereFi denotes the set of interior faces of the meshK.

The operatorsLi are method specific operators that act either on the elementsor on their faces.

5.1. Element-based stabilization techniques.This family of methods uses stabilization operators that act on
the elementsκ. The investigations of a stability- and convergence-analysis for spectral methods can be reused
applying affine transformations, which will introduce the spatial discretization parameterh, to the reference
element. Let us further introduce the method dependent function H(hκ, Nκ) that is chosen in a way to guarantee
the best possible approximation properties of the scheme.

• TheSUPG-methodwas introduced by Brooks and Hughes [8], Johnson, Nävert and Pitkäranta [24] and
analyzed in ahp-framework by Houston, Schwab and Süli [21]. The stabilization operator in this case
is essentially the same as for the spectral approach, with the only difference that for reasons of well-
posedness of the integrals the bilinear form has to be written elementwise as

ssupg(uδ, vδ) =
∑

κ∈K

(

H(hκ, Nκ)|β|−1Luδ, β · ∇vδ

)

κ
,

sr
supg(vδ) =

(

H(hκ, Nκ)|β|−1f, β · ∇vδ

)

.

Observe that the stencil and the data-structure of the SUPG-method is still the same compared with
standard FEM. On the other hand, this method has several disadvantages. Firstly, stiff source terms must
be included in the stabilization. Secondly, when applied totime-dependent problems the time derivation
has to be included in the stabilization which prompts a space-time finite element scheme for high order
time steps. And thirdly, in the analysis the stabilization parameterγ turns out to be dependent on the
diffusion parameterν which is unconvenient for non-linear problems where the diffusion depends on the
solution itself or for linear problems with anisotropic diffusion coupling.

Nevertheless there are several approaches not originated from spectral methods. All the methods presented below
share the property thatsr ≡ 0. Consequently, the drawback of the SUPG-method, that is thefact that the source
terms and time derivatives has to be included in the stabilization, is eliminated, allowing more flexibility with
respect to time-stepping and stiff source terms.

• Theorthogonal subscale method(OS) introduced by Blasco and Codina [3] consists of using the stabi-
lization operator

sosm(uδ, vδ) =
(

H(hκ, Nκ)|β|−1(Id − Πδ)(β · ∇uδ), (Id − Πδ)(β · ∇uδ)
)

,

whereΠδ : L2(Ω) → Vδ denotes a suitable weighted globalL2-projection defined by
(

H(hκ, Nκ)|β|−1Πδ(w), vδ

)

=
(

H(hκ, Nκ)|β|−1w, vδ

)

∀vδ ∈ Vδ, w ∈ L2(Ω).

The stabilization parameter is now independent of the diffusion parameter. However, since the global
projection has to be computed, the number of unknowns is doubled and the matrix have approximately
four times more nonzero entries than standard FEM.
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• Thesubgrid viscosity method(SV) introduced by Guermond [20] is defined by

ssv(uδ, vδ) =
(

H(hκ, Nκ)|β|−1β · ∇(Id − i2δ)uδ, β · ∇(Id − i2δ)vδ

)

,

wherei2δ denotes a local interpolation operator onto a continuous finite element space of characteristic
mesh size2h and polynomial degreeN or of mesh sizeh and polynomial degreeN − 1. This method
shares with the previous one the property that the stabilization parameter is independent of the diffusion
coefficient. The introduction of a fine grid introduces an increase of the number of unknowns, the stabi-
lization operator introduces non-standard couplings between basis functions which yields a larger system
matrix. In addition, an extra data-structure is needed for the computation of the local interpolation.

• The local projection stabilization method(LPS) introduced by Becker and Braack [2], Braack and Bur-
man [4] and analyzed for arbitrary polynomial orders by Matthies, Skrzypacz and Tobiska [28] consists
of

slps(uδ, vδ) =
(

H(hκ, Nκ)|β|−1(Id − π2δ)β · ∇uδ, (Id − π2δ)β · ∇vδ

)

,

whereπ2δ denotes a local projection operator onto a discontinuous finite element space of characteristic
mesh size2h and polynomial degreeN − 1. In certain cases this method coincides with the subgrid
viscosity method. The stabilization parameter is independent of the diffusion coefficient. This method
shares the same disadvantages of the subgrid viscosity method.

In all the above described methods anh-analysis leads to the following a priori estimate. Letu be the exact
solution of problem (1) satisfyingu ∈ Hk(Ω) for some integerk ≥ 1. Then, for any integers, 1 ≤ s ≤
min(k, N + 1), there holds

‖u − uδ‖L2(Ω) + ‖h
1
2 β · ∇(u − uδ)‖L2(Ω) + |ν

1
2 (u − uδ)|H1(Ω) ≤ c(ν

1
2 + |β|

1
2 h

1
2 )hs−1|u|Hs(Ω),

with c > 0 being independent of the mesh sizeh, but possibly dependent on the polynomial degreeN .

The previous three methods use artificial viscosity that acts only on the finest scales, thus a scale separation is
inevitable. Let us either write

uh = Puh + (Id − P )uh (subgrid viscosity withP = i2δ), or

β · ∇uh = P (β · ∇uh) + (Id − P )(β · ∇uh) (OS withP = Πδ and LPS withP = π2δ)

for the method dependent interpolation/projection operator P and the identity operatorId. Then, artificial viscos-
ity is added only on the fine scales defined byβ · ∇(Id − P )uδ, resp.(Id − P )(β · ∇uδ). Figure 2 illustrates the
different scales of the above mentioned quantities for low order approximations where the SV- and LPS-method
coincides.

5.2. Face-based stabilization techniques.Face-based stabilization methods are known as interior penalty meth-
ods. This name is originated by the fact that a consistent stabilization operator is added that acts only on the inte-
rior faces of the mesh. This stabilization- or penalization-term gives sufficient control on the oscillations. From a
theoretical point of view it is advantageous to consider weakly imposed boundary conditions for such methods.
We present two kind of methods, one using continuous and the other discontinuous finite element spaces. Let
us first introduce some additional notations in order to handle the supplementary terms on the faces. Denote by
F = Fi ∪ Fe the set of all faces of the mesh whereFi denotes the interior andFe ⊂ ∂Ω the exterior faces.
Further let us splitFe = F− ∪F+ with F± the faces contained in∂Ω±. The operator[uδ]|F denotes the jump of
uδ over the faceF = ∂κ1 ∩ ∂κ2, i.e.

[uδ]|F = uδ|κ1
n1 + uδ|κ2

n2,

with ni being the outer normal ofκi. Similarly we define the normal resp. tangential jump of the gradient by

[∇uδ]n|F = ∇uδ|κ1
· n1 + ∇uδ|κ2

· n2 resp. [∇uδ]t|F = ∇uδ|κ1
× n1 + ∇uδ|κ2

× n2

and the average operators by

{uδ}|F = 1
2 (uδ|κ1

+ uδ|κ2
) resp. {∇uδ}|F = 1

2 (∇uδ|κ1
+ ∇uδ|κ2

).

• Thecontinuous interior penalty method(CIP) introduced by Douglas and Dupont [18] and analyzed by
Burman and Hansbo [10] uses a stabilization operator that penalizes the normal jump of the gradient of
the solution, i.e.

scip(uδ, vδ) = (γH(h, N)|β · n|[∇uδ]n, [∇vδ]n)Fi
,
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FIGURE 2. Different scales related to the projection/interpolation operators of the OS-, SV-
and LPS-method for an example where the SV- and LPS-method coincide and for low order
approximations.

whereγ > 0 andH(h, N) = h2N−3.5. Recently, anhp-analysis (for the finite element community,p
is the local polynomial degree, which is denoted byN in our case) for optimal convergence in the case
of interior penalty stabilization leading to the followingquasi optimal convergence for (2) and in the
transport dominated regime for (1) was carried out [9]: Letu be the exact solution of problem (1) and
satisfyu ∈ Hk(Ω) for some integerk ≥ 1. Then, for any integers, 1 ≤ s ≤ min(k, N + 1), there holds

(11) ‖u − uδ‖L2(Ω) + scip(u − uδ, u − uδ)
1
2 ≤ cN

1
4

(

h

N

)s− 1
2

|u|Hs(Ω),

with c > 0 being a constant independent ofh andN . We make two remarks. Firstly, the graph-norm
could be included into (11), but the estimate is not expectedto be optimal with respect toN due to
the inverse inequality involved in the proof. Secondly, theslight sub-optimality yielded by the presence
of the factorN

1
4 in (11) vanishes in the context of dominating diffusion where the standard optimal

estimate is recovered. Figure 3 shows the convergence behavior measured in theL2-norm of this method
underh- andN -refinement for problem (2). Observe the optimal convergence underh-refinement with
expected super-convergence (orderN + 1 instead ofN + 1/2) and the exponential convergence under
N -refinement (N -refinement in fact means increasingN ).

This method is flexible with time-stepping, source terms arenot included in stabilization and that
the stabilization parameter is robust with respect to the diffusion coefficient for approximation of the
advection-diffusion equation. On the other hand, the stencil is increased leading to an increase in the
number of non-zero elements in the system matrix. Additionally, an extra mesh data-structure is needed
for the computations of the gradients jumps.
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FIGURE 3. Convergence behavior of the CIP-method for the advection-reaction equation under
h-refinement (left) andN -refinement (right) measured in theL2-norm.

• Thediscontinuous Galerkin method(DG) introduced by Reed and Hill [34] and analyzed by Lesaintand
Raviart [26], and Johnson and Pitkäranta [25] uses approximation functions that are discontinuous on
mesh faces, but restricted to an element being still a polynomial approximation of degreeN . Thus, let us
introduce the discontinuous finite element space by

Wδ = {v ∈ L2(Ω) : v|κ ∈ PNκ
(κ), ∀κ ∈ K}.

Since this is a non-conforming finite element space, i.e.Wδ 6⊂ H1(Ω), integration by parts have to be
computed elementwise which leads to supplementary terms onthe faces

adg(uδ, vδ) = ({ν∇uδ}, [vδ])F + ([uδ], {ν∇vδ})F + ([uδ], {βvδ})Fi∪F+
.

The discontinuities give sufficient liberty to capture oscillations providing that the jumps of the solution
are controlled. This leads to the following stabilization operator

sdg(uδ, vδ) =
(

(γdνh−1 + γa|β · n|)[uδ], [vδ]
)

Fi
+ (γdνh−1uδ, vδ)Fe

,

with γd, γa > 0. The problem reads: finduδ ∈ Wδ such that

a(uδ, vδ) + adg(uδ, vδ) + sdg(uδ, vδ) = (f, vδ) ∀vδ ∈ Wδ.

Thehp-analysis carried out in [22] gives us the following optimalestimates: Letu be the exact solution
of problem (1) satisfyingu ∈ H1(Ω) andu ∈ Hk(κ) for all κ ∈ K and for some integerk ≥ 1. Then,
for any integers, 1 ≤ s ≤ min(k, N + 1), there holds

(12) ‖u − uδ‖L2(Ω) + sdg(u − uδ, u − uδ)
1
2 ≤ c

(

h

N

)s− 1
2

|u|Hs(Ω),

with c > 0 being a constant independent ofh andN . In the diffusion dominated case, the estimates are
suboptimal with respect toN due to the presence of the factorN

1
2 .

This method is flexible with time-stepping schemes and source terms are not included in the stabiliza-
tion. The local support of the basis functions makes the method suitable forhp-strategies with hanging
nodes. On the other hand in the case of convection-diffusionproblems, the stabilization parameter de-
pends on the diffusion coefficient since also the Laplace operator has to be stabilized and the a priori
estimates for diffusion dominated problems are subpoptimal with a factorN

1
2 . However, this subopti-

mality is not observed numerically and can be circumvented by adding another stabilization term, see
[36]. Further the number of unknowns is increased compared to continuous methods which yields a larger
matrix and some extra data-structure is needed for the computation of the jumps.

The argument to obtain control of the jumps relies on coercivity. The interpretation of the upwind
method as a penalty method was pointed out by Brezzi and coworkers [6]. Recently Burman and Stamm
[11, 12] showed that for quadratic or higher approximationsthe previous choice of stabilization can be
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FIGURE 4. Convergence behavior of the upwind DG-method and the DG-method using the
jump of the gradient for the advection-reaction equation underh-refinement for a smooth solu-
tion (left) and a irregular solution (right) measured in theL2-norm.

reduced, still controlling the whole jump of the solution, but this time using an inf-sup argument. They
only stabilize the tangential jump of the gradient, i.e.

sdg,min(uδ, vδ) =
(

(γdνh−1 + γa|β · n|)[∇uδ]t, [∇vδ]t
)

Fi
+ (γdνh−1∇uδ × n,∇vδ × n)Fe

and use a mixed formulation. In this approach the stabilization affects a smaller portion of the finite
element spectrum. This leads to a very natural interpretation of local mass conservation of the pure
transport problem, i.e.

(13)
∫

∂κ

β · nκ{uδ} ds =

∫

κ

f dx.

In spite of the fact that only the tangential jump of the gradient is stabilized, quasi optimal convergence
can be recovered for (2) and for (1) in the transport dominated regime. More precisely the convergence
result reads as follows: Letu be the exact solution of problem (1) satisfyingu ∈ H1(Ω) andu ∈ Hk(κ)
for all κ ∈ K and for some integerk ≥ 1. Then, for any integers, 1 ≤ s ≤ min(k, N + 1), there holds

‖u − uδ‖L2(Ω) + ‖h
1
2 β · ∇(u − uδ)‖L2(Ω) + sdg(u − uδ, u − uδ)

1
2 ≤ chs− 1

2 |u|Hs(Ω),

c > 0 being a constant independent onh. Note that this provides a better error control than theL2-norm,
similarly to what we have obtained in (12) for the standard DG-method.

Figure 4 illustrates theh-convergence of the standard upwind DG-method and the aboveintroduced
DG-method for problem (2) with smooth solution (left) and restricted Sobolev regularity (right). The
errors are measured in theL2-norm. Observe the optimal convergence with respect toh which isN + 1

resp.3 (with the expected super-convergence ofh
1
2 ) and in general the similar behavior of the two

methods.

6. CONCLUSION

Comparing the DG- with the continuous versions of the finite element method is not easy. A discontinuous finite
element space allows easier implementation ofhp-strategies with hanging nodes. On the other hand the disadvan-
tage is the increased number of degrees of freedom. But this argument gets less and less relevant while increasing
the local polynomial degreeN since basis-functions having its support on the edges increase proportionally toN
while basis-functions having their support only on the interior of the element increase asN2. In general we con-
clude that DG-methods are successful for pure transport problems and stabilization parameter independent local
mass conservation can be achieved, see (13). For convection-diffusion problems continuous approximations are
attractive since the stabilization can be made independentof the diffusion parameter. A comparison with respect
to different aspects of the continuous methods can be found in Table 6.
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SUPG OS SV LPS CIP
Time-stepping, source terms - + + + +
Stabilization par. indep. on diffusion coefficient - + + + +
Same degree of freedom as standard FEM + - + + +
Same stencil as standard FEM + + - - -
Data-structure⋆ + + - - -

TABLE 1. Comparison of some relevant aspects for different schemes. ⋆: Need use of hierar-
chical meshes or to know solution on heighbor elements, in contrast to standard FEM.
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