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STABILIZATION STRATEGIES FOR HIGH ORDER METHODS FOR TRANSP ORT DOMINATED
PROBLEMS

ERIK BURMAN, ALFIO QUARTERONI, AND BENJAMIN STAMM

ABSTRACT. Standard high order Galerkin methods, such as pure spectigh order finite element methods, have
insufficient stability properties when applied to trangpmtminated problems. In this paper we review some stabiliza
tion strategies for pure spectral methods and spectraldoaigin approaches.

1. INTRODUCTION

1.1. General overview. Finite element upwind approximation techniques have beareldped enormously
since the pioneering work by Mitchell and Griffiths [30] arne tgeneralization and analysis by Baba and Tabata
[1]. The strongly consistent SUPG—method introduced in2lt®8Brooks and Hughes [8] and analyzed by John-
son, Navert and Pitkaranta [24] opened the door to higkrougwind approximations in a finite element frame-
work. Since then, a broad variety of strategies for deteimgiatabilization parameters, generalizations and other
approaches have been proposed, see e.g. the book by Rawes 8hd Tobiska [35].

1.2. Model problem. We will concentrate on the following model problem: find 2 — R such that

Lyu=—-vAu+B-Vu+ou = [ inQ,

1) uw = 0 onof,

where( is an open bounded subsetl®f with boundaryd). For the problem with non-homogenous boundary
conditions standard lifting techniques can be used. Thelpnois defined by the diffusion coefficiemt> 0, the
reaction coefficient > 0 and the velocity fielg3 € [IW1>°(©2)]¢ and we will assume that the following standard
coercivity condition holds

1
U—§V-,8200>0.

We focus on the case where the advection is dominating thesdih process; in particular we will later assume
thato = 0. Nevertheless the case# 0 is meaningful too since the reaction term can be interprasea time-
derivation for time dependent problems. We will also coasithe reduced, pure transport problem obtained by
settingy = 0 in (1) and adapting the boundary condition:

@) B-Vu+ou = [ inQ,
B-nu = g onoQ~,

wheredQ* = {z € 90 : £8 - n(x) > 0}. The reduced problem has no smoothing properties. Indeed
discontinuities in the solution provoked by the dgtandg will propagate with the flow fielgB giving rise to
internal layers. In the presence of such layers Galerkimaot, such as pure spectral methods or finite element
methods, have insufficient stability properties. Indeed thuthe conservation properties of standard Galerkin
schemes, the high frequency content of the solution willdpgesented on the (lower) frequencies present in the
discrete space leading to spurious oscillations. The cusaah instabilities by controlling the onset of spurious
oscillations for high order methods will be the main topiclds article.

Problem (1) provides some smoothing of internal layers,dwan in case the layers are unresolved by the finite
element method, either by the spacial discretization ohkypblynomial degree, the effect will remain the same
as for the problem (2), see Figure 1.
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FIGURE 1. Spectral solutions™ with N = 9 (left), N = 8 (middle) and piecewise linear
finite element solutions;, with h = 0.1 (right) of the advection-diffusion problemvu,, +
u, =0, —1 < x < 1, for several values af.

1.3. Outline. As previously anticipated, in this article we review somsibaesults about the stabilization of
model problem (1) with dominant advection for high orderyp@mial approximations.

In section 2 we will recall some a-priori estimates for thegpspectral Legendre-Galerkin approximation and dis-
cuss the accuracy of transport—dominated problems. Amaggtibased on a maximum principle in the transform
space shows that, for odd polynomial degrees, the maximum pbthe approximation is uniformly bounded.
Consequently, although oscillations do exist, their atagk is controlled. For even polynomial degrees, however,
the situation is different and the maximum norm of the apjpmation can not be uniformly bounded.

In section 3 we will revisit the techniques of stabilizatifon pure spectral methods on single domains. Different
strategies to control the oscillations can be invoked. Apsinapproach consists of applying a filtering procedure,
which damps the highest components of the spectrum of tloeedés solution. Other stabilization techniques
are inspired by procedures that originated in the framewadriow-order schemes, such as theversion of
finite elements. A very common strategy for stabilizationthe SUPG-stabilization (where SUPG stands for
Streamline Upwind Petrov-Galerkin) after Brooks and Hugl8 and Johnson, Navert and Pitkaranta [24], or—
lately—as the bubble stabilization after Brezzi, Bristdaanca, Mallet and Rogé [5] and Brezzi and Russo [7]. An
interpretation of the SUPG-method in a spectral framewsiiven by Canuto [14], Pasquarelli and Quarteroni
[31] and Canuto and Puppo [16]. For a general review see Ttg.use of Petrov-Galerkin approach—in which
test functions are different from trial functions, the f@anbeing biased by the advection (or stream) direction—
dates back to the mid 1970’s (Christie et al. [17]) and cqoesls to the finite element interpretation of upwind
collocation or finite difference methods. More recent depements are done by Melenk and Schwab [29] and
Gerdes, Melenk, Schwab and Schotzau [19]. A third appreaaiists of injecting the right amount of artificial
viscosity. This idea has been introduced by Maday and Tad&Yor37] in the context of high order methods,
leading to the concept of spectral viscosity.

In section 4 we review the developement towards spectraficiouhain approaches, also known/gs or SE
(standing for Spectral Element) -methods, and in sectidalilization techniques for these methods are studied.
The methods can be split into two classes. The former canziglement-based stabilizations techniques. Some
of them share their origin and motivation with spectral noeith Using the analysis for single domain methods
the above introduced techniques can be applied elemertamd results similar to those for spectral methods
can be obtained with the only difference that now a paranfetethe spacial discretizatioh is introduced.
Other high order methods that are not originated from spentethods will be discussed as well. The second
class consists of face-based stabilization proceduresykas interior penalty methods such as CIP (Continuous
Interior Penalty) or discontinuous Galerkin (DG) methads? methods were analysed in thg-framework by
Burman and Ern [9] and DG methods by Houston, Schwab and[&2]jli Both CIP and DG methods use the
solution’s fluctuation between elements to stabilize th@ewical scheme.

Finally we focus on some recent results on interior penaéithmds. Some of the questions that will be considered
are how to construct a minimal stabilization approach a.method that affects the smallest possible portion of
the finite element spectrum or vanishes at optimal rate agdlymomial degree increases. This leads to a natural
interpretation of local mass conservation in the case abdisnuous approximation of the pure transport problem
and to a method with increased robustness with respect tchibiee of stabilization parameters for continuous

approximation of the advection-diffusion equation.
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2. SNGLE DOMAIN METHODS

2.1. Galerkin formulation of model problem. In this section we consider Galerkin methods, i.e. methods
where the test and trial spaces in the variational formutesire the same. The Galerkin weak formulation of
the above problem (1) can be defined as follows. Bg{(Q) c H'(Q) be the space of polynomials, either
trigonometric (Fourier) or algebraic (Legendre and Chéleyg, of degreeV on 2. The approximation space is
defined by

Vn ={v € Pn(Q) : v|ga =0}
and the Galerkin method then writes: Finti € Vy such that

®3) a(u®, ™) = (f,0%) Vol €V,

where(:, -), (+,-)a with A C  denotes an inner product 6f (), resp.L?(A), and might be weighted (as in the
case of Chebychev methods). Further, the bilinear formvisrgby

(4) a(w, o) = Vi, Vo) + (8- Vul¥, o).
As previously mentioned, internal Iayers may appear dueatoshing diffusion. Indeed, the exact solution of

problem (1) in one dimension with constant coefficients aod-homogenous Dirichlet boundary conditions,
that is

—vu" +u = 0 inQ=(-1,1),
u(l) = 1,

is given byu(z) = (e@=1D/v — e=2/¥) /(1 — e~2/¥), which has a boundary layer near= 1 of width O(v).
Obviously, if we fixv and letN tend to infinity, any spectral approximatiar’ to (1) will eventually exhibit
exponential convergence to the exact solution. For instaincthe Legendre case, applying Cea’s Lemma, one
gets the bound o

llu = u™ | gr10,1) < > Nlrelf/ lu = o™l a1.0,1)-
Further estimations for the best approximation gives ttieang bound

c’ c" (1N

N —s

llu —u™ || g10,1) < 7N [u| grot1(—1,1) < — (m)

forall s > 1. This proves the claimed result and, in particular, thatspéconvergence is achieved as soon as
the boundary layer can be fully resolved by the polynomigirdeN.

2.2. Maximum principle. Still assuming problem (5), the spectral approximation barinvestigated by the
so called error equation technique (see e.g. [15] chaptali@ying an exact study of the error. For Chebychev
approximations we seek for a function

N
N .23) = Zﬂka (a:)
k=0

whereT}, denotes the Chebychev polynomial of degteklowever, results similar to the forthcoming ones hold
for Legendre discretizations as well. The resulting erguragion writes

—vull +ul =Ty,
In this context Canuto [13] proved that for all> 0 andN > 0,
up >0 fork=1,...,N,

which implies the bound™ (z) < 1 on Q. In the unresolved regime, the asymptotic behavionfdepends
on the parity ofN. If IV is odd, the first coefficient, is strictly positive, too. An important implicaton of the
positivity of all coefficients is that” is uniformly bounded irf2, independently ofV andwv. In fact,

N
M) <) | Ti(a |<Zukm ) <uN(1) = 1.
k=0

More precisely, the analysis yields
1 1
N H
~—+ =Ty InQ.
u B 5 N
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On the other hand, iV is eveniy is negative and one has

uN ~ g +unTn in €,

with || ~ 4x ~ C(vN?)~1. Hence, in this case” is not bounded from below independently.of

C
—— < <1.
vIN u()_l

Such a rigorous analysis allows to understand the behal/ggrextral solutions to problems with internal layers.
These theoretical limits are reflected in numerical exasdee Figure 1.

3. STABILIZATION TECHNIQUES FOR SPECTRAL METHODS

We focus on stabilized Galerkin methods that can be writtegeneral as follows: find™ € Vy such that
(6) a(u™, o) + s, o) = (f,0N) + 5" (0N) Vol € Va,

wheres(-, -) is a stabilization b|||near formsr(-) the corresponding linear form, being either strongly or kixea
consistent. Different approaches have been proposed:

e SUPG-methodA tighter control on the variation of the discrete solutismbtained by modifying (3) in
a strongly consistent way, i.e. the stabilization operataefined as:

(7) Ssupg (uN, UN) = (£UN, 6 . V'UN)T,
®) Supe @) = (£.8-T0Y),,

where (-, ), denotes a weighted?-inner product, with nonnegative weightdepending on the dis-

cretization but virtually independent ofin the singular perturbation limit. The added terms givestia

on the SUPG-norm of the streamline derivative, j8. Vu'V ||, using a standard coercivity argument.
The acronym SUPG stands for Streamline Upwind/Petrovi®&ialeActually, as pointed out by

Hughes [23], this name is motivated by the fact that the noktiam be formulated as a Petrov-Galerkin

with trial spacel/y and test space

Wy ={we L*Q) : N e Vystw=0v"+58-Vo}.

On the other hand the SUPG method formulated as done in (@)eaggarded as a stabilized Galerkin
method.

The above mentioned weight function yields some freedonteéd, there are two strategies for its
choice. The first is a constructive recipe and its realizetibthe weight function has been proposed by
Canuto [14] and Pasquarelli and Quarteroni [31], which mearthe accuracy of global polynomial ex-
pansions with the flexibility of local low-order finite elemts. In one dimension Ietz; } ¥, be theN +1
Gauss-Lobatto nodes of the computational dontaand letiV, o andV}, ; be the discontinuous piece-
wise constant, resp. continuous linear finite element spacthe elementSe; 1, z;) forj =1,..., N.
Further defineJ;, : L2(Q) — W0 the L?(Q)-local orthogonal projection anf, : C°(Q) — V;, 1 the
piecewise linear interpolation. The interpolatiGnhas some interesting uniform low-order/high-order
interpolation properties, i.e. there exists constants = 1,...,4, such that for alb’v € Py (),

Cy vV 2 ) < v p2) < Collo™ 120y,
Cs v L2 < 1Znv™)all i) < Callvd |22(0)-
Then, following Canuto [14], introduce the SUPG-stabtiiaa term by

Ssupg(uN;UN) = ZTJ / 6hIh( )d )

S (0Y) = er / 1Bl (oY) de,

wheref, = Ji (). The choice

T; = min —hj h2
J 2018 Lo (21 ,25) "12v
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yields a uniformly stable scheme:

N
N N N
Vg 12ai) + Y TillBrIn ()72, 0y + 00l 17200y < ¢l1f 1 Z20)-
=1

The second strategy is an interpretation by bubble funst@nthe same subgrid as introduced above.
Let us enrich the test and trial space of polynomials by souidble functions on the subgrid, i.e. set
Wy = Pn(Q) @ By, with B, being such thatv® € By, v*(z;) = 0Vj = 0,..., N. Then, seek
u € Pn(Q) andub € By, such that
a(u™, o) +ap(u,0N) = (f,0V) Vol € Py (),
(Jn(LuN), v°) + ap(ub,v®) = (Jnf,v°) Vb € By,
with ap(u,v) = v(ug,v,) + (Brus, v,). The equation associated to the bubble test functions s the

eliminated from the system. This scheme is proven (CanutbRarppo [16]) to be equivalent to the
SUPG spectral scheme (6) with specific choice of (7) and 8yided

(7 b, dx)2

T U [ (b .)2da
3 Je;_, 4,

The local bubble functions; € By, ; are defined through

ah(bj,v?) = (1,1}?) Vv;? € By, 4,

with By, ; being the restriction of3;, to the subgrid elemerits;_;, z;). There are two variants for the
choice of B, resp.By, ;. Canuto and Puppo [16] proposed a discrete finite elemesespad conse-
quently equation (9) defines local finite element problemthersubgrid. Brezzi and Russo [7] proposed
(in a general finite element Galerkin context) an infinitexeinsional spacB;, ; = H} (z;—_1,z;) known

as residual-free bubble strategy. Thersimplifies tor; = f;_{l b; with analytic expression for

- 1 hj eﬁh(ﬂﬂ*fﬂj)/l’ _ efﬁhhj/”
= E(x —@j-1) = Bn 1 — e—Bnhi/v

As a result of the bubble enrichment strategy, the variatibn’¥ at the Gauss-Lobatto points can be
controlled and the boundary layer is captured in one subgldathent. A further post-processing =

I, vV would filter out spurious oscillations which leads to spaityraccurate solutions. This strategy can
be extended straightforwardly to multidimensional profgewith tensorized domains.

Filtering. A technique in the spirit of post-processing is to applytaifibn the coefficients of the approx-
imation, in which case no further stabilization is needesl,we can set = 0 ands” = 0. In the one
dimensional case let us write the approximation as

uN (z) = Z Uk (),

|k|<N

bj

with { } being the family of orthogonal polynomials, either trigometric{e***} (Fourier) or algebraic
with {Ly(x)} (Legendre) o{T%(x)} (Chebychev). Then, the filtered solution writes as

uécv(a:) = Z orlkpr(T),

[k|I<N
where the smoothing factoes, satisfy
or = o(k/N) k=0,...,N, intheLegendre/Chebychev case, or
or = o(rk/N) k=—N,...,N, inthe Fourier case.

The functiono = o(0) is real, even, and satisfies the following three conditions:
(i) ois(p — 1)-times continuously differentiable iR, for somep > 1,

(i) o(0) =0if |0] > 1,

(iiy o(0)=1,09(0)=0for1 <j<p-—1.
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Such a function is termed a filter of ordefVandeven [38]). Applying filters does not allow to recover
spectral convergence near discontinuities or steep gredidowever filters reduce oscillations and allow
to obtain spectral convergence away from internal layerghvivould not be possible otherwise since
the oscillations occur on a global scale.

e Spectral viscosity methodlhe spectral viscosity method was introduced by Tadmohaday [27, 37].
The basic idea is to introduce numerical dissipation onlyh@nhigh order modes of the approximation,
those responsible for the Gibbs oscillations. Thus, thesehis only weakly consistent. In the one
dimensional case, let us write the approximatidhas

uN (z) = Z Uk ().

|[k|<N
In a Galerkin framework, the spectral viscosity method sake form
sspo (U, 0N) = en(QouN, 0,0") and Sepw = 0,

with Qa,u™ = 37,-,,, Qrilkey (). The method is characterized by the three following ingetie
— the viscosity amplitude,, which vanishes in the limilv — oc;
— the spectral viscosity smoothing factQy,, that behaves as

P

my A

I1—|—+ ) SQr <1,
(Ikl)

with a method dependent factor
— the inviscid spectrunm ~ N?, for somed < 1.
Spectral superviscosity can be introduced if the specisgiogity filtering is applied on higher order
derivatives of the solution, say

sspy(uN,vN) = eN(QﬁiuN, 8;UN), fors > 1.
4. MULTIDOMAIN SPECTRAL METHODS

The application of classical spectral methods is limiteditople geometries. Multidomain spectral methods (or
spectral element methods) merge geometrical flexibiliti&f with high-order (spectral) accuracy of classical
spectral methods.

The multidomain approach consists of introducing a splitof the domain into elements: € K of maximal
diameterh,. such that) = U,.cxk. Let us denote the set of algebraic polynomials of degfgen an element
asPy, (k). Then the approximation spa&g, J representing the discretization factdrs, },.cx and{ Ny }.ex,
is either made of continuous functions

Vs ={veC%Q) : v|. €Py,(k), V& € K, v|gq = 0},

or by discontinuous functions. Discontinuous approxiorai will be discussed in section 5.2. The Galerkin
method of problem (1) then writes: Fing € Vs such that

(10) a(us,vs) = (f,vs) Yvs € Vs,
where(-, ), resp.(-, -)» denotes thd.?(2)- resp.L?(A)-scalar product. Further, the bilinear forrty, -) is given
by
a(us,vs) = (WVugs, Vus) + (8 - Vug, vs).
Remark thahp or h N discretizations can be cast in this form and depend entirefne finite element spadg.
It is well known that the solution of (10) may exhibit interior outflow layers in case the advection dominates.
Unless the local Peclet number (Pe W#) is smaller tharl, i.e. these layers are fully resolved by the finite

element space, they give rise to spurious oscillationsrttaat propagate throughout the computational domain.
The reason for this loss of stability can be explained by €kahma:
8l .
— < (C— f — 1 .

lu—usllm @) < C= Jnf, v —vsllm(a)
If v < 1, we observe that the constéﬁi becomes large and the estimate essentially useless. Bef lstability
comes from the loss of coercivity for smadlcombined with the nonsymmetric term that is continuous @n th
spaced.? andH".
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5. MULTIDOMAIN METHODS: STABILIZATION TECHNIQUES

We focus on stabilization techniques of the form: finde Vs such that
a(us,vs) + s(us,vs) = (f,vs) + 5" (vs) Vs € Vs,

with some method dependent stabilization bilinear foefm-) and its linear counterpast (-) to guarantee strong
consistency. The bilinear forax-, -) is defined by (4). We address two cases:

e Element-based stabilizatiaperators:

s(ug,vs) = Z (L1(us), L2(vs)),., s (vs) = Z L3 (vs)dz.

KEK rEKLYE
e Face-based stabilizatiooperators:

s(us,vs) = Y (L1(us), La(vs)) 8" (v5) =0,

FeF;
whereF; denotes the set of interior faces of the m&sh

The operatorg.; are method specific operators that act either on the eleroentstheir faces.

5.1. Element-based stabilization techniquesThis family of methods uses stabilization operators thatoac
the elements. The investigations of a stability- and convergence-asialfor spectral methods can be reused
applying affine transformations, which will introduce thgatial discretization parametér, to the reference
element. Let us further introduce the method dependentibmé/ (h,;, N,;) that is chosen in a way to guarantee
the best possible approximation properties of the scheme.

e The SUPG-methoavas introduced by Brooks and Hughes [8], Johnson, NaverPatkaranta [24] and
analyzed in ap-framework by Houston, Schwab and Suli [21]. The stabiicraoperator in this case
is essentially the same as for the spectral approach, wétlotly difference that for reasons of well-
posedness of the integrals the bilinear form has to be writementwise as

Seupg(Us,vs) = > (H(he, No)|BI™  Lus, B Vvs)
KEK
Seupg(V5) = (H(hH7NH)|/6|71faﬁ'v'U6)~

Observe that the stencil and the data-structure of the Steted is still the same compared with
standard FEM. On the other hand, this method has severahMdistages. Firstly, stiff source terms must
be included in the stabilization. Secondly, when applietini@-dependent problems the time derivation
has to be included in the stabilization which prompts a sytimce finite element scheme for high order
time steps. And thirdly, in the analysis the stabilizati@rgmetery turns out to be dependent on the
diffusion parameter which is unconvenient for non-linear problems where th&udibn depends on the
solution itself or for linear problems with anisotropicfdigion coupling.

Nevertheless there are several approaches not origirratedspectral methods. All the methods presented below
share the property that = 0. Consequently, the drawback of the SUPG-method, that ifatlie¢hat the source
terms and time derivatives has to be included in the stalitin, is eliminated, allowing more flexibility with
respect to time-stepping and stiff source terms.

e Theorthogonal subscale methd®S) introduced by Blasco and Codina [3] consists of usimgstabi-
lization operator

Sosm (s, v5) = (H (hie, No)|B] 7 (1g = Hs)(B - Vus), (Ig — ILs) (B - Vug))
wherell; : L2(Q2) — Vs denotes a suitable weighted glotiz-projection defined by
(H(hy, N, B ls(w), vs) = (H(h, No)|Bl " w,v5) Vs € Vs, w € L*(Q).

The stabilization parameter is now independent of the siiffiu parameter. However, since the global
projection has to be computed, the number of unknowns islddwind the matrix have approximately
four times more nonzero entries than standard FEM.
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e Thesubgrid viscosity metho@BV) introduced by Guermond [20] is defined by
Sev(ug, vs) = (H (e, No)|B|I 7' B - V(lg — i2s)us, B - V(I — izs)vs)

whereiys denotes a local interpolation operator onto a continuouie felement space of characteristic
mesh sizeh and polynomial degre&’ or of mesh sizéh and polynomial degre®& — 1. This method
shares with the previous one the property that the stabdiz@arameter is independent of the diffusion
coefficient. The introduction of a fine grid introduces arr@ase of the number of unknowns, the stabi-
lization operator introduces non-standard couplings betwbasis functions which yields a larger system
matrix. In addition, an extra data-structure is needediferdcomputation of the local interpolation.

e Thelocal projection stabilization methodPS) introduced by Becker and Braack [2], Braack and Bur-
man [4] and analyzed for arbitrary polynomial orders by Mit$, Skrzypacz and Tobiska [28] consists
of

Stps (s, vs) = (H(hye, N,o)|BI™ (la — m26)B - Vg, (g — m25)B8 - Vvs)
wheremys denotes a local projection operator onto a discontinuoits fslement space of characteristic
mesh size2h and polynomial degre&’ — 1. In certain cases this method coincides with the subgrid
viscosity method. The stabilization parameter is indepanhdf the diffusion coefficient. This method
shares the same disadvantages of the subgrid viscositptheth

In all the above described methods &analysis leads to the following a priori estimate. kebe the exact
solution of problem (1) satisfying € H*(2) for some intege > 1. Then, for any integes, 1 < s <
min(k, N + 1), there holds

I = wsl| 2y + 172 B V(u = us) |l 220y + [V2 (u = us) iy < c(v? + B2 h2)h*~ |ul (0,
with ¢ > 0 being independent of the mesh sizebut possibly dependent on the polynomial degkee

The previous three methods use artificial viscosity that aoty on the finest scales, thus a scale separation is
inevitable. Let us either write

up, = Pup, + (Ig — P)uy,  (subgrid viscosity withP = i55), or
B-Vuy =P(B-Vuy)+ (I — P)(B- Vuy)  (OS with P = TT; and LPS withP = ;)

for the method dependent interpolation/projection omer&tand the identity operatdy;. Then, artificial viscos-

ity is added only on the fine scales defined®yV (1; — P)us, resp.(Is — P)(B - Vus). Figure 2 illustrates the
different scales of the above mentioned quantities for lodepapproximations where the SV- and LPS-method
coincides.

5.2. Face-based stabilization techniquesFace-based stabilization methods are known as interi@lfyemeth-
ods. This name is originated by the fact that a consistehiligi@tion operator is added that acts only on the inte-
rior faces of the mesh. This stabilization- or penalizatierm gives sufficient control on the oscillations. From a
theoretical point of view it is advantageous to considerkiseanposed boundary conditions for such methods.
We present two kind of methods, one using continuous and ttier @liscontinuous finite element spaces. Let
us first introduce some additional notations in order to lattte supplementary terms on the faces. Denote by
F = F; U F, the set of all faces of the mesh wheFe denotes the interior an&, C 99 the exterior faces.
Further let us splifF, = F_ U F, with . the faces contained id*. The operatofus]| » denotes the jump of

us over the face’ = Jk1 N Oka, i.€.

[usl|F = sl 1 + usn, M2,
with n; being the outer normal of;. Similarly we define the normal resp. tangential jump of thedient by
[Vusln|r = Vs, - 11 4+ Vugle, -n2 1esp. [Vuslilr = Vusle, X 11 + Vg, X no
and the average operators by
{us}r = 5(usley +usls,) r€SP. {Vus}r = 5(Vusle, + Vs, ).

e Thecontinuous interior penalty methd€IP) introduced by Douglas and Dupont [18] and analyzed by
Burman and Hansbo [10] uses a stabilization operator thalzes the normal jump of the gradient of
the solution, i.e.

SCiP(u(S’ U5) = (’YH(h’ N)'ﬁ ) n|[Vu,;]n, [V’Ué]n)}-i )
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FIGURE 2. Different scales related to the projection/interpalatoperators of the OS-, SV-
and LPS-method for an example where the SV- and LPS-methiadide and for low order
approximations.

wherey > 0 andH (h, N) = h?N~3°, Recently, arhp-analysis (for the finite element community,

is the local polynomial degree, which is denotedMyin our case) for optimal convergence in the case
of interior penalty stabilization leading to the followimgiasi optimal convergence for (2) and in the
transport dominated regime for (1) was carried out [9]: Ldte the exact solution of problem (1) and

satisfyu € H*(Q) for some integek > 1. Then, for any integes, 1 < s < min(k, N + 1), there holds

B\
<N> |U|HS(Q),

with ¢ > 0 being a constant independent/ofand N. We make two remarks. Firstly, the graph-norm
could be included into (11), but the estimate is not expettelle optimal with respect t&v due to
the inverse inequality involved in the proof. Secondly, shight sub-optimality yielded by the presence
of the factorN# in (11) vanishes in the context of dominating diffusion whéne standard optimal
estimate is recovered. Figure 3 shows the convergenceioenasasured in thé&2-norm of this method
underh- and N-refinement for problem (2). Observe the optimal convergamerh-refinement with
expected super-convergence (order- 1 instead ofN + 1/2) and the exponential convergence under
N-refinement (V-refinement in fact means increasing.

This method is flexible with time-stepping, source termsraseincluded in stabilization and that
the stabilization parameter is robust with respect to tlilsglon coefficient for approximation of the
advection-diffusion equation. On the other hand, the stéhincreased leading to an increase in the
number of non-zero elements in the system matrix. Additlgnan extra mesh data-structure is needed
for the computations of the gradients jumps.

(S
Bl

lu —us| L2() + Scip(u — us, u —us)2 < cN
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FIGURE 3. Convergence behavior of the CIP-method for the advecawtion equation under
h-refinement (left) andV-refinement (right) measured in tié-norm.

e Thediscontinuous Galerkin methd®G) introduced by Reed and Hill [34] and analyzed by Lesand

Raviart [26], and Johnson and Pitkaranta [25] uses appration functions that are discontinuous on
mesh faces, but restricted to an element being still a pahyalapproximation of degre®’. Thus, let us
introduce the discontinuous finite element space by

Ws ={ve L*Q) : v, € Py, (k), V& € K}.

Since this is a non-conforming finite element space,Wg.¢ H'((2), integration by parts have to be
computed elementwise which leads to supplementary terntseofaces

adg(us, vs) = ({vVus}, [vs]) 7 + ([us], {vVvs}) 7 + ([us], {Bvs}) FuF, -

The discontinuities give sufficient liberty to capture diations providing that the jumps of the solution
are controlled. This leads to the following stabilizatiqueoator

sag(us,v5) = ((vavh™" +7alB - n|)[us], [vs]) . + (vavh™ us, vs) .,
with v4,v, > 0. The problem reads: finds € s such that
a(us, vs) + aag(us,vs) + sag(us,vs) = (f,vs) Vvs € Ws.

The hp-analysis carried out in [22] gives us the following optireatimates: Let, be the exact solution
of problem (1) satisfying: € H'(Q) andu € H*(x) for all s € K and for some intege¥ > 1. Then,
for any integer, 1 < s < min(k, N + 1), there holds
b\ 2
<c (N) Ul 75 () 5

with ¢ > 0 being a constant independent/ond N. In the diffusion dominated case, the estimates are
suboptimal with respect t&/ due to the presence of the factyr: .

This method is flexible with time-stepping schemes and sotaens are not included in the stabiliza-
tion. The local support of the basis functions makes the aueuitable forhp-strategies with hanging
nodes. On the other hand in the case of convection-diffysioblems, the stabilization parameter de-
pends on the diffusion coefficient since also the Laplaceaipehas to be stabilized and the a priori
estimates for diffusion dominated problems are subpoptimta a factor N'z. However, this subopti-
mality is not observed numerically and can be circumventeddding another stabilization term, see
[36]. Further the number of unknowns is increased compareditinuous methods which yields a larger
matrix and some extra data-structure is needed for the ctatipioi of the jumps.

The argument to obtain control of the jumps relies on codiciVhe interpretation of the upwind
method as a penalty method was pointed out by Brezzi and éenf6]. Recently Burman and Stamm
[11, 12] showed that for quadratic or higher approximatithesprevious choice of stabilization can be

=

lu — usll L2y + Sag(u — us, u — us)
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FIGURE 4. Convergence behavior of the upwind DG-method and the @@&wod using the
jump of the gradient for the advection-reaction equatiotieuh-refinement for a smooth solu-
tion (left) and a irregular solution (right) measured in firenorm.

reduced, still controlling the whole jump of the solutiomt bhis time using an inf-sup argument. They
only stabilize the tangential jump of the gradient, i.e.

Sdg,min (U5, V5) = ((fydyh_l + 7|8 - n|)[Vus]t, [Vva]t)ﬂ + (yavh™'Vus x n, Vus x n) £,

and use a mixed formulation. In this approach the stabitinaaffects a smaller portion of the finite
element spectrum. This leads to a very natural interpoetadf local mass conservation of the pure
transport problem, i.e.

8K,8-n,<,{u(5}ds:/nfdx.

In spite of the fact that only the tangential jump of the geadiis stabilized, quasi optimal convergence
can be recovered for (2) and for (1) in the transport domahedgime. More precisely the convergence
result reads as follows: Letbe the exact solution of problem (1) satisfyinge H'(Q) andu € H* (k)
for all x € K and for some integet > 1. Then, for any integes, 1 < s < min(k, N + 1), there holds

[ — ugl| L2gqy + 02 B - V(u — ug)|| L2y + Sag(u — us,u — ug)? < ch® 2 |ul (0,

¢ > 0 being a constant independentiorNote that this provides a better error control thanfRenorm,
similarly to what we have obtained in (12) for the standard-mé&thod.

Figure 4 illustrates thé-convergence of the standard upwind DG-method and the dhtreeluced
DG-method for problem (2) with smooth solution (left) andtrected Sobolev regularity (right). The
errors are measured in ti&-norm. Observe the optimal convergence with respeatwich is N + 1
resp.3 (with the expected super—convergencehéf) and in general the similar behavior of the two
methods.

6. CONCLUSION

Comparing the DG- with the continuous versions of the finiégreent method is not easy. A discontinuous finite
element space allows easier implementatiomgbtrategies with hanging nodes. On the other hand the dasadv
tage is the increased number of degrees of freedom. Butrtusreent gets less and less relevant while increasing
the local polynomial degre® since basis-functions having its support on the edgesaserproportionally tav
while basis-functions having their support only on theriiateof the element increase a&. In general we con-
clude that DG-methods are successful for pure transpobligmts and stabilization parameter independent local
mass conservation can be achieved, see (13). For convatifiosion problems continuous approximations are
attractive since the stabilization can be made indeperafehée diffusion parameter. A comparison with respect
to different aspects of the continuous methods can be faumdble 6.
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SUPG| OS| SV | LPS| CIP

Time-stepping, source terms - + | + + +
Stabilization par. indep. on diffusion coefficient - + | + + +
Same degree of freedom as standard FEM - + + +

+ - - -
+ - - -

Same stencil as standard FEM
Data-structure

+| +|+

TaBLE 1. Comparison of some relevant aspects for different sceembleed use of hierar-
chical meshes or to know solution on heighbor elements, mtrast to standard FEM.
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