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Abstract

This paper proposes a new model describing the dynamics of a rowing boat for general
three dimensional motions. The complex interaction among the different components of
the rowers/oars/boat system is analysed and reduced to a set of ordinary differential
equations governing the rigid motion along the six degrees of freedom. To treat the
unstable nature of the physical problem, a rather simple (but effective) control model is
included, which mimics the main active control techniques adopted by the rowers during
their action.

1 Introduction

Modelling a rowing boat is a challenging task due to the complexity of the rower/oars/hull
system. Rowing boats are extremely narrow and light racing shells on which the rowers move
on sliding seats, holding the handles of long oars, which are connected to the boat by means of
oarlocks mounted on outriggers. With their back turned in the direction of the boat motion,
the rowers produce the thrust needed to propel the boat forward by pulling the oar handles
towards their chest: to make this operation more effective, the rowers start each stroke in a
hunched position, and as they place the oar blades in the water, start pulling the oar handles
towards them, sliding backwards on the seat, to exploit the power of the extending legs. When
the legs are fully extended, and the hands have reached the chest, the drive phase terminates
by removing the oars from the water, and the recovery phase, in which the rowers returns to
the initial position, starts.

The simulation of the dynamics of a rowing scull is made difficult by the strong unsteadi-
ness resulting from this complex kinematics of the rowers on board and by the interaction
with the free surface of the fluid. Since the early works of F.H. Alexander [1], the topic of
rowing boats dynamics in sculls has been widely investigated, although most of the technical
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reports produced have been published only on the world wide web. Some of the most inter-
esting contributions are those by W.C. Atkinson [2], A. Dudhia [6] and M. van Holst [24]. In
[13] a rather complete mathematical model for boat dynamics is provided. However, all these
models focus only on horizontal movements and use empirical formulas to simulate dissipative
effects. The contribution of the vertical (heave) and lateral (sway) movement and angular
rotations of the boat are indeed neglected. Several investigations have also been dedicated
to the biomechanics of rowers movements, focusing on the correlation between forces and
rower/oar kinematics [7] or analysing the different biomechanical factors that affect rowing
performance (see [3] and references therein).

In [18] (see also [8]), a model for the symmetric dynamics of rowing boats has been in-
troduced, accounting for the surge, heave and pitch motion. The model reconstructs the
dynamics of the rower/oars/hull system, making use of experimental measurements for the
imposition of the rowers kinematics and adopting a simplified hydrodynamic model accounting
for the interaction with the water. The effect of shape, wave and viscous drag are computed
using algebraic formulas, while hydrostatic forces, which depend on the wetted surface, are
dynamically computed. The dissipative effects of waves generated by the secondary move-
ments are dealt with by using a linear approximation of the water dynamics. Fluid-structure
interaction procedures which include more complex fluid models (based on the Navier-Stokes
equations) have been considered in [8].

In this paper, we extend the model proposed in [18] to arbitrary boat motions in the six
degrees of freedom in order to be able to face a more general class of problem, including
non-symmetric boat configurations.

The long length of a rowing boat and its semicircular cross-section makes it highly un-
stable, as any rower knows. The boat needs to be actively balanced by the rowers to avoid
tipping. A mathematical description of this kind of human control and its implementation
into the numerical model is not trivial. In this paper, we present a control model for roll
and yaw accounting for the main action that the rowers employ to balance the boat. We will
show through numerical examples the fundamental role that the control plays in simulations
of three-dimensional dynamics of rowing boat.

A comparison between the results obtained using the reduced hydrodynamic model and the
one based on the solution of the Navier-Stokes equations is also presented and discussed. This
comparison highlights the weaknesses of the reduced model and helps formulating possible
strategies to improve it.

2 A 6DOF dynamical model for rowing boats

In this section, we will introduce a mathematical model which describes the complex kinemat-
ics and dynamics of a rowing boat system and its interaction with the external environment.

The position and motion of each component on board (rowers, footboards, seats and
oarlocks) are conveniently described with respect to a reference system fixed on the boat,
while the boat dynamics is more easily described in an inertial frame of reference fixed on the
race field.

The inertial reference system (O;X,Y,Z), which will be referred to as the absolute coordi-

nate system, is fixed with the race field and we denote with eX , eY and eZ the corresponding
unit vectors. The X axis is horizontal, parallel to the undisturbed water free surface, and
oriented along the direction of progression of the boat. The Z axis is vertical and pointing
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Figure 1: Rowing boat with relevant reference frames. The hull reference system is centered
at hull center of mass.

upwards, while eY = eZ×eX . By convention, the origin O is at the start and the undisturbed
water free surface is placed at the constant value Z = h0.

A second reference system is attached to the boat and will be referred to as the hull

coordinate system, (Gh;x, y, z)), see Fig. 1. The unit vectors are ex, ey and ez are defined
so that ex and ez identify the hull symmetry plane and ez is directed from bottom to top,
whereas ex is from stern to bow. We point out that the hull reference system is centered in
the hull center of mass Gh and not in the center of mass arising from hull and rowers system
composition, the latter being not fixed due to the rowers motion.

Points in the absolute reference system will be indicated with uppercase letter, while the
corresponding lowercase letter will indicate points in the hull reference frame. We can relate
a point P = (PX , PY , PZ) in the absolute coordinate system and the corresponding point
p = (px, py, pz) in the hull coordinate system through the following relation

p = R(ψ, θ, φ)
(

P − Gh
)

. (1)

where R(ψ, θ, φ) denotes the rotation matrix

R(ψ, θ, φ) =





cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ cosψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ



 . (2)

and the Euler angles ψ, θ and φ indicate the hull yaw, pitch and roll angles, respectively. With
this conventions, a positive yaw occurs when the boat’s bow displaces towards left; a positive
pitch will instead determine a downwards movement of the bow; finally, with a positive roll
angle, the left side of the boat will move upwards. The absolute velocity V = Ṗ of a generic
point P and that relative to the hull system, v, are related by

V = v + Ġh + ṘTR
(

P − Gh
)

= v + Ġh + ω × (P − Gh), (3a)

where ω is the angular velocity vector. As for the acceleration A of the generic point P, the
transformation between the local and the absolute reference reads

A = a + G̈h + ω̇ × (P − Gh) + ω × ω × (P − Gh) + 2ω × v. (3b)

The dynamics of the boat in the six degrees of freedom is described by the equations of
linear and angular momentum, set in the inertial reference frame, and given by

3



MG̈
c

=

n
X

j=1

(F olj + F orj
) +

n
X

j=1

F sj
(4a)
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X
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+
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X
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“
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h
”

× F sj
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X
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“

Xfj
− G

h
”
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+ M
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.

where IG is the hull tensor of inertia relative to the hull center of mass, expressed in the hull
reference frame; g is the gravity acceleration and M is the mass of the hull. On the right
hand side we have the external forces and momenta applied to the hull. They include the
external forces exerted by the j-th rower on its left (F olj ) and right oarlocks (F orj ), and on
the seats (F sj

) and footboards (F fj
). The hydrodynamic interaction is given by the force Fw

and the moment Mw. In scull boats each rower uses two oars and non-zero values for both
the left and right oarlock forces in (4) are assigned; on the other hand in sweep boats each
rower uses only one oar and the oar forces on one side of each rowers has to be null.

Some of the forces exerted by a rower can be found from the equations governing the dy-
namics of the rowers. We represent the mass distribution of an athlete of given characteristics
(weight, height, sex) by subdividing the body into p = 12 parts of which we infer the mass
mij from anthropometric tables taken from [20]. Each part is then considered as concentrated
in its own center of mass Xij , i.e. we neglect the angular inertia. The momentum equations
for the j-th rower is then given by the following system

p
X

i=1

mij

“

Ẍ ij − g
”

= F hlj + F hrj
+ F slj + F srj

+ F flj + F frj
(5a)

p
X

i=1

mij

“

X ij − G
h

”

×

“

Ẍ ij − g
”

=
“

Xhlj − G
h

”

× F hlj +
“

Xhrj
−G

h
”

× F hrj
(5b)

+
“

Xsj
− G

h
”

× F sj
+

“

Xfj
− G

h
”

× F fj
.

Angular momentum is computed around the hull barycenter Gh. F hlj and F hrj are the
forces at the left and right hand of the j-th athlete, while Xhlj , Xhrj , Xsj

, and Xfj
are the

positions of the left and right hands, seats and foot-boards respectively.

The equations for the hull-rowers system are then obtained substituting into (4) the values
of F si

+ F fi
obtained from (5a) and the values of

(

Xsi
− Gh

)

× F si
+
(

Xfi
− Gh

)

× F fi

obtained from (5b), and read
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Ẍ ij − g
”

+ F
w

RIGR
−1

ω̇ + ω ×RIGR
−1

ω =

n
X

j=1

»

“

Xolj − G
h

”

−
L − rh

L

“

Xhlj − G
h

”

–

× F olj

+

n
X

j=1

»

“

Xorj
− G

h
”

−
L − rh

L

“

Xhrj
− G

h
”

–

× F orj

−

n
X

j=1

p
X

i=1

“

X ij −G
h

”

× mij

“
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Employing equations (3) to express rowers body parts positions and accelerations in the hull
reference frame, we get the final system of ordinary differential equations for the unknowns
Gh and ω
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where MTot = M +
∑

i,jmij indicates the total mass of the scull (encompassing both rowers
and hull), and the indexes i and j in

∑

i,j run from 1 to p and 1 to n, respectively. The
first term in the right-hand-side of (7a) and the last two terms in (7b) include the blade
contribution, where a simple lever model is used (see [19] for details). More sophisticated
blade models accounting for the blade deformation and the local hydrodynamics are available
in the literature [4, 5]; however, a detailed analysis of the blade contribution on the global
rowing performance goes beyond the scope of this paper.

To close equations (7) we need to provide adequate models for the motion law of the
rowers, oarlock forces and the fluid-dynamic forces and momenta Fw and Mw. The rower
kinematics has been reconstructed using image processing techniques on movies of athletes
acting on a rower machine [10].

Each stroke period T is subdivided into an active phase with time length τa and a recovery

phase with time length τr = T − τa. The duration of the active and recovery phases depends
on the cadence (see [19]). We can formulate a simple model for the time evolution of the
longitudinal and vertical oarlock forces over one stroke period based on the following relations
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(well fitting the available measurements):

fo,x =

{

Fmaxx sin(πt
τa

), if 0 ≤ t ≤ τa
0 if τa < t ≤ T

, fo,z =

{

Fmaxz sin(πt
τa

), if 0 ≤ t ≤ τa
0 if τa < t ≤ T

, (8)

where typical values of maximum forces are Fmaxx = 1200 N and Fmaxz = 200 N. In this model
only the cadence and the maximum force is used to parametrize the time distribution of the
oarloak force over a rowing period. When measurements for a specific athlete are available,
these can be easily be included in the model to better characterize the rower force pattern.
The contribution of the hydrodynamic forces and moments in (7) can be computed based on
different models that will be recalled in Section 3.

2.1 Time advancing scheme for the boat dynamics

In order to express in a matrix form the cross products on the left hand side of system (7),
we first define the following skew-symmetric matrices

A = −
∑

i,j

mij





0 −v3
ij v2

ij

v3
ij 0 −v1

ij

−v2
ij v1

ij 0



 , B = −
∑

i,j

mij





0 −v3
ij v2

ij

v3
ij 0 −v1

ij

−v2
ij v1

ij 0





2

where
vij = {v1

ij , v
2
ij , v

3
ij} = RTxij .

We can now write

M(t) =

[

MTotI A
−A RIGR

−1 +B

]

where I is the identity matrix of order 3. The right hand side of system (7) can then be
written in the vector form f = f i + fw, where

f i(Ġh,Gh,ω) =
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. (9)

and

fw =

{

Fw

Mw

}

In this way, once defined the variable u =

{

Ġh

ω

}

, system (7) can be recast in the

following form
M(t)u̇ = f(u, t).

The resulting system can be further modified to obtain a first order non-linear ODE system,
more suitable for the numerical solution. Defining

M(t) =

[

[I] 0
0 [M(t)]

]

, y =

{

Gh

u

}

, F (y, t) =

{

Ġh

f

}
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we can finally write the system

ẏ = (M(t))−1
F (y, t), (10)

which is solved by means of a Runge–Kutta–Fehlberg 45 time advancing scheme available in
the Gnu Scientific Library [9].

For each time step, it will be necessary to compute the rotation matrix R appearing in
the motion equations. To do this, equation (2) is employed, once the unit vectors describing
the orientation of the hull at the new time step n+1 are obtained by means of the trapezoidal
rule, namely

exn+1
= exn +

∆t

2
(ω

n+1
+ ωn) × exn

eyn+1
= eyn +

∆t

2
(ω

n+1
+ ωn) × eyn

ezn+1
= exn+1

× eyn+1
.

3 Hydrodynamic models

In the previous section, we have introduced the complex dynamical system which describes
the motion of a rowing boat. The hydrodynamic forces and moments in (7) accounting for the
interaction between the boat and the surrounding water should also be modelled. Different
modelling choices are possible characterized by different level of accuracy and modeling (and
computational) complexity. Simplified models based on algebraic relations and potential flow
theory can be adopted for a preliminary design or to compare different rowing techniques,
as they are very efficient computationally and can provide solutions in few minutes. More
advanced model based on the solution of the Navier-Stokes equations can also be coupled
to the dynamical system in order to obtain more reliable flow fields and force estimates.
However, in this case, the computational cost rises up to several hours for each simulations.
Hereafter, we briefly describe these two approaches that have been used in our simulations. A
third approach of intermediate complexity, based on nonlinear potential theory and boundary
element discretization, is currently being developed [19].

3.1 Reduced algebraic/potential model

A reduced model for the computation of the hydrodynamic action on the boat has been
developed in the past years [18] which can be used for fast evaluation of the fluid-structure
interaction during a rowing race.

The model is based on the assumption that the boat motion can be decomposed into a
main motion (constant velocity in the course direction) and secondary motions in all the six
degrees of freedom.

The forces and angular moments associated to the mean motion are obtained based on
algebraic formulae. The different component of the drag (shape, viscous and wave resistance)
as well as lift and pitching moment are computed based on the boat velocity, force and moment
coefficients and the hydrostatic contribution given by the actual attitude of the boat. The
forces and moment coefficients are obtained from standard ITTC correlations [11] and classical
Michell’s integrals [16] or based on complete CFD simulation performed off-line on a steady
boat configuration.
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The forces and moments associated to the secondary motions are obtained as the action of
the radiation of the gravity waves generated by the secondary motion. These can be computed
resorting to the solution of a linearized potential problem for the flow generated by a boat
oscillating in the different degrees of freedom. The methodology has been introduced in [15]
(see also [18]) and is used to compute an added mass matrix and a damping matrix which
enter as additional contributions into system (10).

3.2 Full Navier-Stokes model

A more reliable (and more expensive) alternative for the evaluation of the hydrodynamic
action has been developed based on the solution of the incompressible Reynolds-Averaged
Navier–Stokes (RANS) equations . The discrete solution of the Navier–Stokes equations is
achieved using a SIMPLE method [22] for the pressure-velocity decoupling, finite volume
discretization in space and a semi-implicit time integration. In order to solve a turbulent
free-surface flows, the Navier–Stokes equations are coupled with a transport equation for
the phase volume fraction (using the so-called Volume of Fluid (VOF) method) and with a
standard k − ε two equation model for turbulence. The fluid-structure coupling algorithm is
based on a staggered approach where the flow is computed for a given boat position; then,
based on the velocity and pressure distributions, the hydrodynamic force and moment acting
on the boat are computed and passed to the dynamical system (10) which is advanced in
time. The updated values of linear and angular velocity are then passed back to the flow
solver and used to deform the computational grid for the solution of the flow at the new time
step. For details on the flow solver and the fluid-structure interaction we refer to [21, 23, 8].

4 A model for the active rowers control

The three-dimensional rowing boat dynamics model just introduced is inherently unstable. If
we consider the free body diagram for the roll degree of freedom presented in Fig. 2, we notice
that for these boats the hydrostatic buoyancy force is applied in a pressure center which is
lower than the global center of gravity. The resulting roll moment grows with the roll angle,
and makes the system unstable on this degree of freedom. Moreover, possible non-symmetric
oarlock forces (typical of sweep boats) might increase the instability of the system.

Furthermore, due to the lack of a yaw component of the hydrostatic force, the equilibrium
about this degree of freedom is indifferent (see Fig. 3). Thus, if non-symmetric forces are
applied at the oarlocks, the resulting torque will not be counteracted by any restoring term,
and the boat will rotate. Of course, the viscous effects are too small to be able to damp this
movement.

During their rowing action, the athletes constantly apply an active control to the boat, in
order to stabilize the boat roll, and keep the boat moving straight towards the finish line. In
the following sections, we will illustrate how such control has been modeled and implemented
in the rowing boat model.

4.1 Roll control

As illustrated in Fig. 2, we assume that the rowers keep the boat in the equilibrium position by
exerting opposite vertical forces on the left and right oarlock. In this way, whenever the boat
is not perfectly vertical, they produce a restoring moment which stabilizes the system. We
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have modelled the controlling action of the rowers on the roll movement with a restoring force
proportional to the roll angle defining an additional contribution on the vertical component
in (8), namely

∆Fo,z = ±kRollφ,

where kRoll is the gain coefficient. With the assumed conventions, for positive roll angle, ∆Fo,z
is positive (resp. negative) on the left (resp. right) oarlock. The oarlock forces needed to
keep the boat vertical are very small, and the rowers obtain them by moving the oars handles
slightly. Thus, this control is acting also during the recovery phase of the stroke, when the
oars are not in the water.

4.2 Yaw control

A first device to control the boat on the yaw degree of freedom is a fin placed towards the
stern of the hull. This small appendage is usually a flat plate characterized by a surface area
Sf and an aspect ratio λf . The drag and lift coefficients of the fin have been obtained based
on the following relations, valid for wings of finite span [12]

CLf = 2π
|αf |

1 + 1/(λf )
, CDf =

CLf
2

2λf
,

where the fin angle of attack αf is given by

αf = −ψ + arcsin

(

Ġhy − ωxdz + ωzdx

|Ġh|

)

,

dx and dz being respectively the longitudinal and vertical distances between the fin pressure
center and the hull center of gravity.

The fin force in the relative reference frame is finally

f f =
1

2
ρw|Ġ

h|2Sf











(−CDf cosαf + CLf | sinαf |)
αf
|αf |

(CLf cosαf + CDf | sinαf |)

0











φ

S

MTotg

∆F o,z

F o,z

F o,z

∆F o,z

F r

Figure 2: A front view of the boat with the vertical forces applied to the hull.
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Figure 3: A top view of the boat with the longitudinal forces applied to the hull.

The fin acts as a (nonlinear) damper for the yaw motion. Nevertheless, it does not provide
a restoring force able to keep the boat moving straight towards the finish line. During a race,
such restoring force is provided by the rowers, who modulate their oar forces on the right and
left side of the boat in order to prevent it from progressively turn sideways.

In our model, the yaw control is only operating during the active phase of the stroke.
At the beginning of each stroke, the rower evaluates the instantaneous yaw angle ψ0 and
modulates the longitudinal maximum force of the stroke through an additional component
on the longitudinal component in (8), namely

fo,x =

{

(Fmaxx ± kYawψ0) sin(πt
τa

), if 0 ≤ t ≤ τa
0 if τa < t ≤ T

,

kYaw being the gain coefficient of the yaw control. With the assumed conventions, for positive
yaw angle, the additional term ∆Fo,x = ±kYawψ0 is positive (resp. negative) on the right
(resp. left) oarlock.

The assumption that the rowers decide at the beginning of each stroke how to control the
boat yaw is based on the fact that for the rowers it is very difficult to modulate the strength of
the stroke during the active phase, as the latter is usually a short and intense pulling motion.
On the other hand, they can exploit the recovery phase to decide how to adjust the strength
of the next stroke in order to keep the boat moving in the correct direction. Finally, we would
like to emphasize that although the control model proposed is rather simple, it allowed us to
simulate the six degrees of freedom problem, which is physically unstable, thus broadening
the range of rowing boat classes that can be simulated by our model. Further improvements
of this control model can be envisaged for the future and should include, for instance, the
contribution of the active rudder used by the coxswain for boat steering.

5 Numerical results

The model presented in this paper has been adopted to simulate the dynamics of rowing
boats in the framework of the partnership between our research group and Filippi Lido s.r.l.,
a world leader rowing boat manufacturer. Results for symmetric dynamics (with only surge,
heave and pitch degrees of freedom activated) obtained with the reduced hydrodynamic model
have been presented in [18, 8]. In this section we describe an example of simulation obtained
with the reduced model on a 6DOF dynamics highlighting the role of the control. Finally,
an example of fluid-structure interaction based on the Navier–Stokes hydrodynamic model is
presented and discussed.
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5.1 Dynamics of a rowing boat in 6DOF

The idea underlying the effort of developing a complete three-dimensional model for rowing
dynamics was to extend the range of application of the model, enabling the possibility to anal-
yse non-symmetric configurations. Hereafter, we present a test case that has been designed
in order to investigate the behavior of the model for non-symmetric problems. We consider
a men’s coxless four rowing race with a non-symmetric distribution of the oarlock forces. In
particular, each rower exerts on the oarlock longitudinal and vertical forces with maximum
amplitude of Fmaxx = 1200 N and Fmaxz = 200 N, respectively. For only the bowman we
consider different values of forces, Fmaxx = 1300 N and Fmaxx = 230 N, respectively. In these
simulations, we have considered boat and rower weight of 49.6 kg and 85 kg, respectively. The
rowing cadence is 40/min which results in an active phase duration of 0.712 s. The rowing
angle of catch and finish are 65 and 45 degrees, respectively. The non-symmetric distribution
of oarlock forces generates a full dynamics in the six degrees of freedom, as presented in
Fig. 4. As a result of the control described in Section 4 the time evolution of the yaw angle
reaches an asymptotic behavior oscillating around an equilibrium angle. The roll angle also
oscillates around a small asymptotic mean value. This different behavior can be correlated to
the different control system (continuous for roll and discrete for yaw) for the two degrees of
freedom. The sway degree of freedom is not controlled and we noticed that the boat presents
a monotonic sway which, however, can be consider negligible for the performance estimation.

To better appreciate the fundamental role that an active control has when considering
dynamics on the six degrees of freedom, we compare the results obtained with and without
the control contribution. The roll and yaw instabilities that arise when no control is adopted
are displayed in Fig. 5 and confirm the absolute need of a control procedure. The trajectory
on the water plane is presented in Fig. 6 showing the divergence of the sway degree of freedom
when the control is absent.
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Figure 4: Time evolution of the six degrees of freedom for a non-symmetric men’s coxless four
boat configuration.
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Figure 5: Time evolution of roll (left) and yaw (right) angles during the first 60 seconds of
the race simulation with and without the control.
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Figure 6: Boat trajectory during the first 60 seconds of the race simulation with and without
the control (equal scale in x and y axes).
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5.2 FSI with the Navier–Stokes model

In this section we present the results of simulations carried out using the Navier-Stokes equa-
tions to estimate the interaction of the boat with the free-surface flow. Here we consider a
symmetric men’s quadruple scull with only surge, heave and pitch as active degrees of freedom.
The simulation is initialized by the steady solution obtained on a fixed boat configuration
moving at 5.3 m/s. We have considered two different computational grids with 220,000 and
550,000 elements, respectively. In these simulations, we have considered on each oarlock lon-
gitudinal and vertical forces with maximum amplitude of Fmaxx = 625 N and Fmaxz = 104 N,
respectively. Boat and rower weight are 52 kg and 90 kg, respectively. The rowing cadence is
39.5/min which results in an active phase duration of 0.71 s.
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Figure 7: Boat dynamics obtained with the Navier–Stokes model for the two grids and with
the reduced hydrodynamic model. From top to bottom: horizontal position and sink of the
center of mass and pitching angle (left) and correspondent velocities (right).

The results of the simulations on the two computational grids are reported in Fig. 7 and com-
pared with the result obtained with the reduced hydrodynamic model. The time evolution of
the different degrees of freedom obtained with the two grid resolutions are globally very close.
We can notice a slightly higher mean value of the heave oscillation and a larger amplitude of
the pitch dynamics for the fine grid. The comparison with the reduced model shows that the
kinematics along the longitudinal direction (which is the fundamental performance indicator)
is reasonably well captured. However, large discrepancy can be observed for the heave degree
of freedom, where the amplitude of the oscillation is largely overestimated by the reduced
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Figure 8: Drag, lift and pitching moment (left) and correspondent velocities (right) for the
complete and reduced models over two stroke periods; active phase of the stroke is shown as
reference in bottom row.

In Fig. 8 we report the time evolution of forces and moments (and the correspondent ve-
locities) over two rowing periods obtained with the full and reduced hydrodynamic models.
The active phase of the stroke is also shown as reference over the period. We can notice how
the main discrepancy on the heave dynamics is due to an overprediction of the lift oscillation
amplitude which can be correlated to a poor estimation of the damping matrix coefficient
associated to this degree of freedom. A possible strategy to improve the behavior of the
reduced model is to use a finer grid for the numerical solution of the potential flow problem
adopted to estimate the effect on the boat dynamics of the gravitational waves generated
by the secondary motion. Analyses in this direction are currently under investigation. The
estimate for the pitching moment looks reasonably accurate in the reduced model; however,
frequencies higher that the main rowing frequency appear in the time signal for the reduced
model, thus downgrading the predicted dynamics for pitching. This is due to the fact that
the reduced model the damping matrix is here computed based on one single frequency. We
are confident that the ongoing development (see [19]) of a strategy for the damping matrix
evaluation based on the convolution integral over a range of frequency [14] will cure this
problem.
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6 Conclusions

A complete dynamical model for rowing boats has been presented in this work. Such model
is parametrized in function of the athlete and boat characteristics and can be employed for
boat design, performance prediction and as support for training. In particular, the model
predicts the boat motion in all its six degrees of freedom, so that both scull and sweep boats
can be considered. The dynamical model has been coupled with two hydrodynamic models
characterized by different levels of modelling and computational complexity. Numerical results
obtained with the different schemes have been presented and compared in order to highlight
the correspondent advantages and weaknesses. Possible further developments for the reduced
model have also been discussed which could improve its behavior on performance prediction.
At the time being, a validation study is under way using measurements taken from a rowing
boat equipped with accelerometers and ergometers. The results are rather encouraging, yet
too preliminary to be included in this work, which focuses most on the mathematical modelling
side. It will be the subject of a forthcoming paper.
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