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INTERIOR PENALTY CONTINUOUS AND DISCONTINUOUS

FINITE ELEMENT APPROXIMATIONS OF HYPERBOLIC

EQUATIONS.

ERIK BURMAN, ALFIO QUARTERONI, AND BENJAMIN STAMM

Abstract. In this paper we present the continuous and discontinuous Galerkin
methods in a unified setting for the numerical approximation of the transport
dominated advection-reaction equation. Both methods are stabilized by the
interior penalty method, more precisely by the jump of the gradient in the con-
tinuous case whereas in the discontinuous case the stabilization of the jump of
the solution and optionally of its gradient is required to achieve optimal con-
vergence. We prove that the solution in the case of the continuous Galerkin
approach can be considered as a limit of the discontinuous one when the stabi-
lization parameter associated with the penalization of the solution jump tends
to infinity. As a consequence, the limit of the numerical flux of the discontinu-
ous method yields a numerical flux for the continuous method too. Numerical
results will highlight the theoretical results that are proven in this paper.

1. Introduction

The discontinuous Galerkin finite element method (DGFEM) was introduced by
Reed and Hill in 1973 for the neutron transport equation [28]. They compared the
DGFEM with the continuous Galerkin finite element method (CGFEM) by means
of numerical experiments. In their examples they highlighted the good stability
properties of the DGFEM. The first analysis was performed a year later by Lesaint
and Raviart [23]. A sharpened analysis using the stronger stability of the DG-
method was proposed in the 1980s by Johnson et al [20]. More recently, Houston,
Schwab and Süli [17] presented an hp-analysis for the upwind DGFEM applied to
advection–diffusion–reaction equations, while Brezzi, Marini and Süli [5] general-
ized the upwind DGFEM by replacing the standard upwind flux by a consistency
term and a jump stabilization term. Finally, Burman and Stamm [11] proved that
optimal convergence still holds also for quadratic and higher polynomial degrees
when only the jump of the tangential part of the gradient is penalized.
In parallel to this development for hyperbolic problems, Continuous Interior Penalty
(CIP) finite element methods were introduced in the 1970s by Babuška and Zlámal [2]
for the biharmonic operator and by Douglas and Dupont [13] for second-order el-
liptic and parabolic problems. The idea behind CIP consists in penalizing the
jump of the gradient of the discrete solution at interfaces between elements, thus
weakly imposing C1-continuity. More recently, CIP-methods experienced a further
development. A priori error estimates that are uniform with respect to the diffu-
sion coefficient have been obtained for CIP linear finite element approximations to
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advection–diffusion equations by Burman and Hansbo [10]. A unified framework
for the convergence analysis of both conforming and nonconforming linear finite el-
ements with interior penalty (IP) has been proposed by Burman [7]. Finally, a CIP
linear finite element method with a nonlinear shock-capturing term that rigorously
guarantees a discrete maximum principle for advection–diffusion–reaction problems
has been investigated by Burman and Ern [8].
In this paper we will show that the CIP-method for the transport equation can
be seen as the asymptotic limit of the DG-method proposed in [5], provided the
DG-formulation is augmented with the interior penalty term acting on the gradient
jumps. Such a term was proposed as a stabilizing one for DG-methods in the
approximation of elliptic problems by Romkes, Prudhomme and Oden [29] and by
Brezzi, Cockburn, Marini and Süli [3] in a general framework focussing on stabilizing
mechanisms for DG-methods. It does not downgrade the convergence order of the
DG-method, rather it ensures more robustness with respect to variations in the
stabilization parameter γ0 acting on the solution jump. We prove that when γ0

tends to infinity then the solution of the standard DG-method (without stabilization
of the gradient jumps) converges to that of the unstabilized continuous Galerkin
method. Two relevant properties follow. On the one hand a numerical flux can be
defined for the continuous method as limit of the numerical flux of the discontinuous
method as γ0 → ∞ and, on the other hand, the DG-method as proposed in [5] is not
stable if overstabilized (that is when γ0 becomes too large) for advection dominated
problems. A similar phenomenon was observed by Brezzi, Houston, Marini and
Süli [4] for the subgrid viscosity method of Guermond [15] and is certainly true for
the CIP using low order polynomials.
The asymptotic analysis is inspired by that for the elliptic case by Larson and
Niklasson [22] and so is our discussion on the local fluxes in Section 5.
This paper is organized as follows. Section 2 introduces the two methods, the
DGFEM and CGFEM, for the scalar hyperbolic equation. Special emphasis will
be given to finding a uniform formalism for both methods. In Section 3 we recall
h-convergence results for the continuous interior penalty method and for the aug-
mented DG-method. In Section 4 we prove that the CIP-method can be considered
as a limit of the DG-method if the jump stabilization parameter γ0 tends to infinity.
In Section 5 we discuss the local fluxes for the DG-method and the CG-method.
Some numerical examples for interior penalty stabilized finite element methods
using continuous and discontinuous approximations are presented in Section 6,
highlighting the theoretical results of Section 3 and 4. Section 7 is left for the
conclusions.

2. Discontinuous and Continuous Finite Element Approximation with

Interior Penalty

Let Ω be an open bounded and connected set in R
d, d = 2, 3 with Lipschitz bound-

ary ∂Ω and outer normal n. Moreover let β ∈ [W 1,∞(Ω)]d be a given vector
field, µ ∈ L∞(Ω) and f ∈ L2(Ω) two given functions and ∂Ω± = {x ∈ ∂Ω :
±β(x)·n(x) > 0} with ∂Ω+ and ∂Ω− well separated. Consider the problem: find
u : Ω → R such that

(1)

{
µu + β·∇u = f in Ω,

u|∂Ω− = 0.
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Define W = {w ∈ L2(Ω) : β·∇w ∈ L2(Ω)} and observe that functions in W have
traces in

L2(∂Ω; β·n) =

{
v ∈ L2(∂Ω) :

∫

∂Ω

|β · n| v2 < ∞
}

.

Consider the operator A : W ∋ w 7→ µw+β·∇w ∈ L2(Ω). Henceforth, it is assumed
that there is µ0 > 0 such that

(2) µ − 1
2∇·β ≥ µ0, a.e. in Ω.

Then, letting V = {w ∈ W : w|∂Ω− = 0}, A : V → L2(Ω) is an isomorphism, i.e.,
(1) is well-posed; see, e.g., [14, 27].
Let K be a finite element mesh of Ω into non-overlapping d-simplices. For κ ∈ K, hκ

denotes its diameter and set h = maxκ∈K hκ. Assume that (i) K covers Ω exactly,
(ii) K does not contain any hanging nodes, and (iii) K is locally quasi-uniform in
the sense that there exists a constant ρ > 0, independent of h, such that

ρhκ ≤ min
κ′∈N (κ)

hκ′ ,

where N (κ) denotes the set of elements sharing at least one node with κ. Each
κ ∈ K is an affine image of the unit simplex κ̂, i.e., κ = Fκ(κ̂). Let Fint denote the
set of interior faces ((d − 1)-manifolds) of the mesh, i.e., the set of faces that are
not included in the boundary ∂Ω. The sets F± denote the faces that are included
in ∂Ω± respectively and denote F = Fint ∪ F+ ∪ F−. For F ∈ F , hF denotes its
diameter.
Let p ≥ 1 and let Pp(κ̂) be the space of polynomials of total degree p. Introduce
the continuous and discontinuous finite element spaces

V
p
h = { vh ∈ C0(Ω) : ∀κ ∈ K, vh|κ ◦ Fκ ∈ Pp(κ̂) },(3)

W
p
h = {wh ∈ L2(Ω) : ∀κ ∈ K, wh|κ ◦ Fκ ∈ Pp(κ̂) }.(4)

For a subset R ⊂ Ω, (·, ·)R denotes the L2(R)–scalar product, ‖ · ‖R = (·, ·)1/2
R the

associated norm, and ‖ · ‖s,R the Hs(R)–norm.
For s ≥ 1, let Hs(K) be the space of piecewise Sobolev Hs–functions. Let S ⊂ F
and define the scalar product (·, ·)S =

∑
s∈S(·, ·)s and norm ‖ · ‖S = (·, ·)1/2

S .

For v ∈ H2(K) and an interior face F = κ1 ∩ κ2, where κ1 and κ2 are two distinct
elements of K with respective outer normals n1 and n2, introduce the jump [∇v]F =
∇v|κ1

·n1 + ∇v|κ2
·n2 (the subscript F is dropped when there is no ambiguity).

Similarly, for v ∈ H1(K), define the jump [v]F = v|κ1
n1 + v|κ2

n2. The average
is defined for all functions v ∈ H1(K) by {v} = 1

2 (v|κ1
+ v|κ2

). On outer faces
F = ∂κ ∩ ∂Ω with outer normal n, the scalar-valued jump and the average are
defined as [v]F = v|κn resp. {v} = v|κ.

2.1. The discontinuous Galerkin approximation. On W × W define the dis-
continuous Galerkin bilinear form

(5) a(v, w) =
(
(µ −∇·β)v, w

)
Ω
− (v, β·∇w)Ω + ({βv}, [w])Fint∪F+

,

and on Hq(K) × Hq(K), q > 3
2 , define the jump penalty and CIP bilinear form

b0(v, w) = (βn[v], [w])Fint
,(6)

b1(v, w) = (h2
F βn[∇v], [∇w])Fint

(7)
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where βn|F = ‖β·n‖∞,F + ǫ‖β × n‖∞,F , with ǫ ≥ 0 and where ‖ · ‖∞,F denotes
the L∞–norm on the face F ∈ F . For the asymptotic analysis of Section 3.2 we
assume that either ǫ > 0 or ‖β·n‖∞,F > 0 for all faces F of the mesh. Since

W 1,∞(Ω) ⊂ C0(Ω), the field β is continuous by assumption and, therefore, the
quantity βn is single-valued on all faces F ∈ F .
The discontinuous finite element approximation of (1) consists of seeking ud ∈ W

p
h

such that

(8) a(ud, vd) + γ0b0(ud, vd) + γ1b1(ud, vd) = (f, vd)Ω, ∀vd ∈ W
p
h

for γ0 > 0 and γ1 ≥ 0.

Remark 2.1. If the parameters ǫ and γ1 are set equal to zero, then this method
coincides with the one proposed in [5].

2.2. The continuous Galerkin approximation. The continuous finite element
approximation with weakly imposed boundary condition is obtained by replacing
the discontinuous finite element space W

p
h by the continuous finite element space

V
p
h . The problem becomes: find uc ∈ V

p
h such that

(9) a(uc, vc) + γ1b1(uc, vc) = (f, vc)Ω, ∀vc ∈ V
p
h .

Remark that the bilinear form a(·, ·), defined in (5), simplifies to

a(v, w) =
(
(µ −∇·β)v, w

)
Ω
− (v, β·∇w)Ω + (β·nv, w)∂Ω+

and that b0(uc, vc) = 0 since uc is continuous.

2.3. Basic results. For v ∈ Hq(K), q > 3
2 , consider the norm

(10) |‖v‖|2 = ‖µ
1
2

0 v‖2
Ω + 1

2‖β
1
2
n v‖2

∂Ω + γ0b0(v, v) + γ1b1(v, v).

The well-posedness of the approximate problems, (8) and (9), results from the
following lemma.

Lemma 2.2 (Coerciveness). For all v ∈ Hq(K), q > 3
2 ,

a(v, v) + γ0b0(v, v) + γ1b1(v, v) ≥ |‖v‖|2.

Proof. Straightforward verification using integration by parts and condition (2).
�

The next lemma shows the Galerkin orthogonality for both, the continuous and
discontinuous, problems.

Lemma 2.3 (Consistency). Let v ∈ V
p
h and w ∈ W

p
h and assume u ∈ Hq(Ω), for

q > 3
2 , then

a(u − uc, v) + γ1b1(u − uc, v) = 0,(11)

a(u − ud, w) + γ0b0(u − ud, w) + γ1b1(u − ud, w) = 0,(12)

where u, ud and uc denotes the solutions of (1), (8) resp. (9).

Proof. For the first equality, let v ∈ V
p
h and observe that

a(uc, v) + γ1b1(uc, v) = (f, v)Ω
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since uc is the solution of (9). In addition note that

a(u, v) =
(
(µ −∇·β)u, v

)
Ω
− (u, β·∇v)Ω + (β·nu, v)F+

= (µu + β·∇u, v)Ω − (β·nu, v)∂Ω + (β·nu, v)F+

= (µu + β·∇u, v)Ω = (f, v)Ω

having used integration by parts and the fact that u|
∂Ω−

= 0. Moreover b1(u, v) = 0

and consequently (11) holds. For the second equality (12), let w ∈ W
p
h and thus

a(ud, w) + γ0b0(ud, w) + γ1b1(ud, w) = (f, w)Ω.

Finally, using integration by parts on each element, we have

a(u, w) =
(
(µ −∇·β)u, w

)
Ω
− (u, β·∇w)Ω + ({βu}, [w])Fint∪F+

= (µu + β·∇u, w)Ω −
∑

κ∈K
(β·nu, w)∂κ + ({βu}, [w])Fint∪F+

.

Observe that ∑

κ∈K
(β·nu, w)∂κ = ({βu}, [w])F

since u is continuous. Therefore still using u|
∂Ω−

= 0 we obtain

a(u, w) = (µu + β·∇u, w)Ω = (f, w)Ω.

As above, since u ∈ Hq(Ω), q > 3
2 ,

b0(u, w) = 0 and b1(u, w) = 0.

Thus, we have consistency in both cases. �

The convergence analysis for the continuous and discontinuous method with weakly
imposed boundary conditions and interior penalty gives the following result:

Theorem 2.4 (Convergence of CIP, [7]). Let u ∈ Hp+1(Ω), p ≥ 1, solve (1) and
let uc solve (9). Then, there is a constant c, independent of h, such that

|‖u − uc‖| ≤ chp+ 1
2 ‖u‖p+1,Ω.

Theorem 2.5 (Convergence of DGFEM, [5, 17]). Assume that γ0 > 0, γ1 ≥ 0,
and that u ∈ Hp+1(Ω) with p ≥ 1. Further assume that β ∈ [W 1,∞(K)]d. Then,

|‖u − ud‖| ≤ chp+ 1
2 ‖u‖p+1,Ω.

Remark 2.6. The proof of Theorem 2.5 in the case of γ0 > 0, γ1 = 0 is given in
[5, 17]. Adding the stabilization term b1(·, ·) in their analysis is subject to some
minor changes and yields optimal convergence.

Remark 2.7. For polynomial degrees p ≥ 2 and d = 2, stability of the discontinuous
Galerkin method can also be obtained by penalizing only the jump of the tangential
part of the gradient, for more details see [11].

Remark 2.8. Using a more involved analysis, but similar techniques, we may prove
an inf-sup condition in a norm containing the L2-norms of both the jumps of the
discrete solution over element boundaries and the elementwise streamline derivative.
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2.4. Combining continuous and discontinuous finite element spaces. The
above theory is not only limited to either continuous or discontinuous finite element
spaces. Let {Ωi}N

i=1 be a division of Ω into subregions Ωi, i.e. ∪N
i=1Ωi = Ω, and let

Ki be a triangulation of Ωi. Then, define on Ωi the continuous finite element space

V
p
h (Ωi) = { vh ∈ C0(Ωi) : ∀κ ∈ Ki, vh|κ ◦ Fκ ∈ Pp(κ̂) }

and match the subregions in a discontinuous manner

W
p
h,N = { vh ∈ L2(Ω) : ∀i = 1, . . . , N, vh|Ωi

∈ V
p
h (Ωi) }.

Observe that the bilinear form a(·, ·), defined in (5), simplifies to

a(v, w) =
(
(µ −∇·β)v, w

)
Ω
− (v, β·∇w)Ω + ({βv}, [w])FN

int∪F+

for functions v, w ∈ W
p
h,N and where

FN
int = {F ∈ Fint : F ⊂ ∂Ωj ∩ ∂Ωk with 1 ≤ j, k ≤ N, j 6= k}.

The stabilizing terms are then defined by

b0(v, w) = (βn[v], [w])FN
int

,

b1(v, w) = (h2
F βn[∇v], [∇w])Fint\FN

int
+ δ (h2

F βn[∇v], [∇w])Fint∩FN
int

,

with δ ≥ 0. A convergence analysis can be carried out combining the techniques of
DG-methods and the CIP-method, see [12].

3. The Continuous Galerkin Method as a limit of the Discontinuous

Galerkin Method

Hereafter the constant c is considered a generic constant independent of h and γ0.
Its actual value can change at each occurrence.

3.1. Preliminaries. We first recall an interpolation operator between discrete
spaces IOs : W

p
h → V

p
h endowed with a local interpolation property.

Let be κ ∈ K. For a node ν in κ, set Kν = {κ′ ∈ K; ν ∈ κ′}; then, for wh ∈ W
p
h ,

define IOswh locally in κ by the value it takes at all the Lagrangian nodes of κ by
setting

(13) IOswh(ν) =
1

card(Kν)

∑

κ∈Kν

wh|κ(ν).

Clearly, IOswh ∈ V
p
h . The operator IOs is sometimes referred to as the Oswald

interpolation operator; it has been considered in [7, 16, 21]. The next lemma points
out some approximation results.

Lemma 3.1. There exists c, independent of hκ but not of the local mesh geometry,
such that, for all κ ∈ K, the following estimate holds:

∀wh ∈ W
p
h , ‖wh − IOswh‖κ ≤ ch

1
2
κ ‖[wh]‖F(κ),(14)

∀wh ∈ W
p
h , ‖∇(wh − IOswh)‖κ ≤ ch

− 1
2

κ ‖[wh]‖F(κ),(15)

where F(κ) = {F ∈ Fint : F ∩ κ 6= ∅}.
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3.2. Asymptotic limit γ0 → ∞. Since we consider here consequences of an in-
creasing γ0, we may no longer use the triple norm defined in (10) since the parameter
γ0 is included in that definition. Instead a slightly modified norm is defined for this
section

(16) |‖v‖|2m = ‖µ
1
2

0 v‖2
Ω + 1

2‖β
1
2
n v‖2

∂Ω + b0(v, v) + γ1b1(v, v).

Observe that if v ∈ V
p
h , then |‖v‖| = |‖v‖|m. One can easily show coercivity of the

bilinear form a(·, ·) + b0(·, ·) + γ1b1(·, ·) with respect to this norm as well.

Lemma 3.2 (Coerciveness). For all v ∈ Hq(K), q > 3
2 ,

a(v, v) + b0(v, v) + γ1b1(v, v) ≥ |‖v‖|2m.

Proof. The proof is similar to the one of Lemma 2.2. �

Theorem 3.3. Let ud and uc be the solutions of the discontinuous resp. continuous
problem (8) resp. (9). Let u ∈ Hp+1(Ω), with p ≥ 1 , solve (1). Then ud converges
to uc as the parameter γ0 tends to infinity provided the exact solution is sufficiently
regular. Precisely, there exists a constant c > 0, independent of γ0 and h, such that

|‖uc − ud‖|m ≤ c

γ0
hp− 1

2 ‖u‖p+1,Ω.

Proof. Let us denote η = uc − ud. Using coercivity, Lemma 3.2, and consistency
leads to

|‖η‖|2m ≤ a(η, η) + b0(η, η) + γ1b1(η, η)

= a(η, η + v) + b0(η, η + v) + γ1b1(η, η + v)

for all v ∈ V
p
h . Indeed, subtracting (12) from (11) leads to

a(uc − ud, v) + γ1b1(uc − ud, v) = 0

since v is chosen to be continuous. For the same reason we have

b0(uc − ud, v) = 0.

Define for simplicity

I1 = ((µ −∇ · β)η, η + v)Ω I4 = ({βη}, [η + v])F+

I2 = −(η, β·∇(η + v))Ω I5 = b0(η, η + v)
I3 = ({βη}, [η + v])Fint

I6 = γ1b1(η, η + v)

Hence |‖η‖|2m ≤ ∑6
i=1 Ii. Set v = −IOsη ∈ V

p
h . For the first four terms the

Cauchy-Schwarz inequality and Lemma 3.1 are used:

I1 ≤ c ‖µ
1
2

0 η‖Ω‖η − IOsη‖Ω ≤ ch
1
2 |‖η‖|m ‖[η]‖Fint

I2 ≤ ‖η‖Ω‖β·∇(η − IOsη)‖Ω ≤ ch− 1
2 ‖µ

1
2

0 η‖Ω‖[η]‖Fint
≤ ch− 1

2 |‖η‖|m‖[η]‖Fint

I3 = 1
2

∑

κ∈K
(βη, [η − IOsη])∂κ\∂Ω ≤ ch− 1

2

∑

κ∈K
‖η‖κ‖[η]‖∂κ\∂Ω

≤ ch− 1
2 ‖η‖Ω‖[η]‖Fint

≤ ch− 1
2 |‖η‖|m‖[η]‖Fint

I4 =
∑

κ∈K
(β·n η, η − IOsη)∂κ∩∂Ω+ ≤ ch− 1

2

∑

κ∈K
‖|β·n| 12 η‖∂κ∩∂Ω+‖η − IOsη‖κ

≤ c |‖η‖|m‖[η]‖Fint
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where for the third term, the trace inequality and the fact that IOsη ∈ V
p
h is used.

In a similar fashion we obtain

I5 = ‖β
1
2
n [η]‖2

Fint
≤ c |‖η‖|m‖[η]‖Fint

.

For I6 the trace inequality and Lemma 3.1 is used:

I6 ≤ c ‖β‖∞,Ω‖h[∇η]‖Fint
‖h[∇(η − IOsη)]‖Fint

≤ c b1(η, η)
1
2 h

1
2

∑

κ∈K
‖∇(η − IOsη)‖κ ≤ c |‖η‖|m‖[η]‖Fint

.

Respecting all six bounds yields

|‖η‖|m ≤ c(h
1
2 + 2h− 1

2 + 3)‖[η]‖Fint
≤ ch− 1

2 ‖[η]‖Fint
,(17)

since h < 1. Then, using coercivity, Lemma 2.2, and consistency leads to

γ0‖[η]‖2
Fint

≤ a(η, η) + γ0b0(η, η) + γ1b1(η, η)

= a(uc − u, η) + γ0b0(uc − u, η) + γ1b1(uc − u, η)

= a(uc − u, η) + γ1b1(uc − u, η)

= a(uc − u, η − IOsη) + γ1b1(uc − u, η − IOsη)

since uc − u is continuous. Using analogous arguments as for bounding |‖η‖|m, we
conclude that

γ0‖[η]‖2
Fint

≤ c (h
1
2 + 2h− 1

2 + 2)|‖uc − u‖| ‖[η]‖Fint

and hence

‖[η]‖Fint
≤ c

γ0
h− 1

2 |‖uc − u‖|.

The convergence of the continuous approximation, proposition 2.4, leads to the
bound

(18) ‖[η]‖Fint
≤ c

γ0
hp‖u‖p+1,Ω.

Combining (17) and (18) yields

|‖η‖|m ≤ c

γ0
hp− 1

2 ‖u‖p+1,Ω.

�

4. Local Flux Conservation

In this section, we will study the behavior of the numerical flux of the DG-method
in the asymptotic limit and show how this may be used to define a conservative
numerical flux also for the continuous Galerkin method [18, 22].
Consider problem (1) with µ = 0 and ∇·β = 0, i.e. the pure transport problem, and
let Λ ⊂ Ω be a subdomain of Ω. We associate to Λ its outer normal nΛ. Further
denote χΛ the characteristic function on Λ defined by χΛ = 1 on Λ and χΛ = 0 on
Ω\Λ. Multiplying the first line of (1) by χΛ and integrating by parts on Λ yields

∫

∂Λ

σΛ(u) =

∫

Λ

f
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since β is divergence free, ∇χκ|κ = 0 and where σΛ(u) = β·nΛu denotes the problem
flux. For the discontinuous Galerkin method the same relation is true on each
element κ and for a numerical flux Σd

κ,γ0
defined by

(19) Σd
κ,γ0

(w) =






σκ({w}) + γ0βn[w] on Fint ∩ ∂κ

σκ(w) on F+ ∩ ∂κ

0 on F− ∩ ∂κ

for all w ∈ W
p
h . Then, replacing the test function in (8) by the characteristic

function χκ where κ ∈ K, leads to
∫

∂κ

Σd
κ,γ0

(ud) =

∫

κ

f.

Hence there is a local flux conservation for the discontinuous Galerkin method. Now
since the continuous Galerkin method can be considered as the limit of the discon-
tinuous Galerkin method, we define a numerical flux for the continuous Galerkin
method by

(20) Σc
κ(uc) =






σκ(uc) + βn[ρ] on Fint ∩ ∂κ

σκ(uc) on F+ ∩ ∂κ

0 on F− ∩ ∂κ

where ρ is defined by the problem: find ρ ∈ W
p
h\V

p
h such that

(21) b0(ρ, w) = (f, w)Ω − a(uc, w) − γ1b1(uc, w) ∀w ∈ W
p
h .

Lemma 4.1. The problem (21) is well posed.

Proof. Consider the following auxiliary problem: find ρ ∈ W
p
h\V

p
h such that

b0(ρ, w̄) = (f, w̄)Ω − a(uc, w̄) − γ1b1(uc, w̄) ∀w̄ ∈ W
p
h\V

p
h .

Since the trial and test space are equal and since the kernel of b0(·, ·) in W
p
h\V

p
h

is zero, one can apply the standard theory to show the well posedness. Remember
that we assume that either ε > 0 in the definition of βn or ‖β·n‖∞,F > 0 on all
faces of the mesh. Then, observe that one can decompose every function w ∈ W

p
h

in w = w̄ + v with w̄ ∈ W
p
h\V

p
h and v ∈ V

p
h . Then

b0(ρ, v) = 0 and (f, v)Ω − a(uc, v) − γ1b1(uc, v) = 0,

owing to the fact that v is continuous and to the consistency of the continuous
Galerkin method. Therefore this auxiliary problem is equivalent to the original one
and this implies the uniqueness of ρ. �

Lemma 4.2. Let ud = ud(γ0) be the solution of (8) corresponding to a given value
of γ0; then

lim
γ0→∞

γ0b0(ud, w) = b0(ρ, w)

for all w ∈ W
p
h\V

p
h .

Proof. Using the discrete formulation of the discontinuous Galerkin method and
the fact that the bilinear forms a(·, ·) and b1(·, ·) are continuous with respect to
both variables yields

lim
γ0→∞

γ0b0(ud, w) = (f, w)Ω − lim
γ0→∞

a(ud, w) − lim
γ0→∞

γ1b1(ud, w)

= (f, w) − a(uc, w) − γ1b1(uc, w) = b0(ρ, w)

for all w ∈ W
p
h\V

p
h since ‖ud − uc‖Ω → 0 as γ0 → ∞. �
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Proposition 4.3. Let F ∈ F be an arbitrary face of an arbitrary element κ ∈ K.
Then the numerical flux Σd

κ,γ0
(ud) converges to Σc

κ(uc), i.e.

lim
γ0→∞

(Σd
κ,γ0

(ud), [w])F = (Σc
κ(uc), [w])F

for all w ∈ W
p
h\V

p
h .

Proof. On faces contained in F− the limit is obvious since both fluxes are zero.
Since the exact flux σκ(·) is continuous we have on faces contained in F+ that
σκ({ud}) → σκ({uc}) = σκ(uc). On interior faces we use the same argument and
Lemma 4.2. �

Corollary 4.4. For the continuous Galerkin method, we still have the local con-
servation property, i.e. ∫

∂κ

Σc
κ(uc) =

∫

κ

f.

Proof. Choose w = χκ in Proposition 4.3 and sum over all faces of κ. �

4.1. Behavior of the numerical flux as h → 0. Since all fluxes are equal on the
boundary of an element, i.e.

(22)

∫

∂κ

Σc
κ(uc) =

∫

∂κ

Σd
κ,γ0

(ud) =

∫

∂κ

σκ(u) =

∫

κ

f

it is evident that∫

∂κ

(σκ(u) − Σc
κ(uc)) = 0 and

∫

∂κ

(
σκ(u) − Σd

κ,γ0
(ud)

)
= 0

for all h > 0. For what concerns the exact flux of the difference of the solutions
consider the following two lemmas.

Lemma 4.5. The difference of the flux of the exact solution u and the flux of the
numerical solution ud converges to zero as h → 0 with a convergence rate of p, i.e.

∑

κ∈K

∣∣∣∣
∫

∂κ

(σκ(u) − σκ(ud))

∣∣∣∣ ≤ chp‖u‖p+1,Ω.

Proof. Applying equality (22) and the Cauchy-Schwarz inequality yields

∑

κ∈K

∣∣∣∣
∫

∂κ

(σκ(u) − σκ(ud))

∣∣∣∣ =
∑

κ∈K

∣∣∣∣
∫

∂κ

(
Σd

κ,γ0
(ud) − σκ(ud)

)∣∣∣∣

≤
(
∑

κ∈K
h−1

κ ‖Σd
κ,γ0

(ud) − σκ(ud)‖2
∂κ

) 1
2
(
∑

κ∈K

∫

∂κ

hκ

) 1
2

.

Observe that
∑

κ∈K
∫

∂κ
hκ ≤ c using the shape regularity of the mesh. By the

definition of the numerical flux Σd
κ,γ0

, the error estimate of Theorem 2.5 and since

β · nκ({ud} − ud)|∂κ = − 1
2β · [ud]|∂κ ∀κ ∈ K

we get

∑

κ∈K

∣∣∣∣
∫

∂κ

(σκ(u) − σκ(ud))

∣∣∣∣ ≤ c

(
∑

κ∈K
‖h− 1

2
κ β

1
2
n ud‖2

∂κ∩∂Ω− +
∑

κ∈K
‖h− 1

2
κ β

1
2
n [ud]‖2

∂κ\∂Ω

) 1
2

≤ c |‖h− 1
2 (u − ud)‖| ≤ chp‖u‖p+1,Ω.



CG- AND DG-FEM FOR HYPERBOLIC EQUATIONS 11

�

For the next lemma assume for simplicity that β ∈ R
2 and µ ∈ R.

Lemma 4.6. Assume that f ∈ Hp(Ω) and that the mesh is globally quasi-uniform.
The difference of the flux of the exact solution u and the flux of the numerical
solution uc converges to zero as h → 0 with a convergence rate of p, i.e.

∑

κ∈K

∣∣∣∣
∫

∂κ

(σκ(u) − σκ(uc))

∣∣∣∣ ≤ chp (‖f‖p,Ω + ‖u‖p+1,Ω) .

Proof. Applying again equality (22) and the Cauchy-Schwarz inequality yields

∑

κ∈K

∣∣∣∣
∫

∂κ

(σκ(u) − σκ(uc))

∣∣∣∣ =
∑

κ∈K

∣∣∣∣
∫

∂κ

(Σc
κ(uc) − σκ(uc))

∣∣∣∣

≤
(
∑

κ∈K
h−1

κ ‖Σc
κ(uc) − σκ(uc)‖2

∂κ

) 1
2
(
∑

κ∈K

∫

∂κ

hκ

) 1
2

.

Observe that
∑

κ∈K
∫

∂κ hκ ≤ c using the shape regularity of the mesh. Using the
definition of the numerical flux Σc

κ yields

∑

κ∈K

∣∣∣∣
∫

∂κ

(σκ(u) − σκ(uc))

∣∣∣∣ ≤ c

(
∑

κ∈K
‖h− 1

2
κ β

1
2
n uc‖2

∂κ∩∂Ω− +
∑

κ∈K
‖h− 1

2
κ β

1
2
n [ρ]‖2

∂κ\∂Ω

) 1
2

≤ c
(
ch2p‖u‖2

p+1,Ω + h−1b0(ρ, ρ)
) 1

2 .(23)

Now, let πhρ ∈ V
p
h denote the L2-projection of ρ onto the continuous space. By

equations (14) and (15) it follows that

(24) ‖ρ − πhρ‖2
Ω + h‖ρ − πhρ‖2

∂Ω− + γ1hb1(ρ − πhρ, ρ − πhρ) ≤ chb0(ρ, ρ).

On the other hand using integration by parts we have that

a(uc, ρ) = (µuc + β · ∇uc, ρ)Ω − (β · nuc, ρ)∂Ω− .

By the definition of ρ, the Galerkin orthogonality and the orthogonality of the
L2-projection we deduce that

b0(ρ, ρ)

= h−1((f, ρ)Ω − a(uc, ρ) − γ1b1(uc, ρ))

= ((f − πhf, ρ − πhρ)Ω − (β · ∇uc − IOs(β · ∇uc), ρ − πhρ)Ω

+(β · nuc, ρ − πhρ)∂Ω− − γ1b1(uc, ρ − πhρ))
1
2

≤ c
(
‖f − πhf‖Ω + ‖β · ∇uc − IOs(β · ∇uc)‖Ω + h− 1

2 ‖β
1
2
n uc‖∂Ω− + γ

1
2

1 h− 1
2 b1(uc, uc)

1
2

)

(
‖ρ − πhρ‖Ω + h

1
2 ‖ρ − πhρ‖∂Ω− + γ

1
2

1 h
1
2 b1(ρ − πhρ, ρ − πhρ)

1
2

)
.

The inequality (24) leads to the following bound for

b0(ρ, ρ) ≤ h
1
2 b0(ρ, ρ)

1
2

(
hp‖f‖p,Ω + (1 + γ

1
2

1 )h− 1
2 b1(uc, uc)

1
2 + h− 1

2 ‖β
1
2
n uc‖∂Ω−

)

≤ h
1
2 b0(ρ, ρ)

1
2

(
hp‖f‖p,Ω + h− 1

2 |‖u − uc‖|
)

and therefore

(25) h− 1
2 b0(ρ, ρ)

1
2 ≤ hp (‖f‖p,Ω + ‖u‖p+1,Ω)
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Figure 1. The exact solution.

by the estimate of Theorem 2.4. Inserting (25) into (23) leads to the desired result.
�

5. Numerical Results

The following transport problem is considered. Let Ω ⊂ R
2 be the domain defined

by Ω = {(x, y) ∈ R
+×R

+ : 0.1 ≤
√

x2 + y2 ≤ 1}. The problem consists of seeking
u such that {

µu + β·∇u = 0 in Ω,

u|∂Ω− = g(y).

where

β(x, y) =

(
y

−x

)
1√

x2 + y2
and g(y) = arctan

(
y − 0.5

0.1

)
.

Then, the solution writes

u(x, y) = e
µ
√

x2+y2 arcsin( y√
x2+y2

)
arctan

(√
x2 + y2 − 0.5

0.1

)
.

The reaction coefficient µ = 0.01 is chosen sufficiently small such that the transport
is dominating the reaction. Figure 1 shows the exact solution u. We consider
sequences of unstructured triangular meshes for polynomial degrees p = 1, . . . , 5.
For the computations the C++ library life, a unified C++ implementation of the
finite and spectral element methods in 1D, 2D and 3D, is used, see [25, 26].

5.1. Optimal choice of the stabilization parameter of continuous inte-

rior penalty method. For the continuous interior penalty method on rectangu-
lar meshes the optimal choice of the stabilization parameter γ1 with respect to the
polynomial degree is carried out yielding that γ1 ∼ p−3.5, see [9] for more details.
Figure 2 shows the L2-error depending of γ1 for a fixed triangular mesh with size
h = 0.05 and for each polynomial degree. The optimal choice for this example is
illustrated in the following table:
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1x10-6 0.00001 0.0001 0.001 0.01 0.1 1

γ1

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

p = 1

p = 2

p = 3

p = 4

p = 5

Figure 2. Behavior of the error of the continuous interior penalty
method with respect to the stabilization parameter γ1 for different
polynomial degrees and fixed h measured in the L2–norm.

p 1 2 3 4 5
γ1,opt 0.005 0.005 0.001 0.0005 0.0005

These values will be the reference values for the following computations.

5.2. Convergence with respect to h and p. Since u ∈ C∞(Ω), u ∈ Hr(Ω) for
all r ≥ 0. Hence the solution of continuous method satisfies

|‖u − uc‖| ≤ chp+ 1
2 ‖u‖p+1,Ω.

Similarly, for the discontinuous method, we get

|‖u − ud‖| ≤ chp+ 1
2 ‖u‖p+1,Ω.

Observe that the L2–norm is controlled by the triple norm, i.e. ‖v‖Ω ≤ |‖v‖|. Note
that the hp-analysis carried out in [9] for the continuous interior penalty method
and in [17] for the DG-method only hold on rectangular meshes, whereas an h-
analysis can be carried out for any polynomial degree p on triangular meshes for
both methods. Figure 3 shows the L2–norm of the error of the upwind discontinuous
method, i.e. γ0 = 0.5, γ1 = 0, in dashed line and the continuous interior penalty
method with optimal stabilization parameter γ1 according to section 5.1 in solid
line.
Observe the optimal convergence with respect to h and the exponential convergence
with respect to p.

5.3. CG-method as limit of the DG-method. Here we test the case when the
stabilization parameter γ0 of the DG-method increases to infinity for fixed mesh
size h = 0.05. The theoretical result tells us that the L2–norm of the difference
between the solutions of the discontinuous and continuous methods converges to
zero. The order of convergence is predicted as one. That is exactly what can be
observed for a sufficiently large γ0 in figure 4(a) for both cases γ1 = 0 (solid line)
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Figure 3. Convergence behavior with respect to h (a) and p (b) of
the upwind discontinuous method (γ0 = 0.5, γ1 = 0, dashed line)
and the continuous interior penalty method with optimal parameter
γ1 (solid line).

and γ1 > 0 (dashed line). The parameter γ1 > 0 is chosen according to the optimal
criterion for the continuous method as illustrated in section 5.1.
Figure 4(b) shows the L2–norm of the difference between the exact solution u

and the DG-approximation when γ0 tends to infinity. We see that the parameter
γ0 = 0.5 corresponding to upwind stabilisation is a good choice for all polynomial
orders. Although it does not always correspond to the optimal choice for the error
in the L2-norm the difference is very small.
Figure 4(b) also shows that for a fixed h there exists a γ0 such that the DG-
method is more precise than the continuous method without interior penalty. On
the other hand if the DG-method is augmented with the gradient jump stabilization
the solution is robust to overstabilization (that is when γ0 becomes too large),
especially for high order approximations. Finally the results reported in Figure 3
and 4(b) show that the CIP-method yields similar accuracy as the upwind DG-
method. Indeed, in this numerical example, the CIP-method with the optimal
parameter γ1 leads to an approximation with an accuracy very similar to that of
the upwind DG-method, but using much fewer degrees of freedom.

6. Conclusions

In this paper we have compared theoretically and numerically two methods which
are suitable for the approximation of transport dominated advection-reaction prob-
lems: the continuous Galerkin method stabilized by interior penalty on the jumps of
the gradients over interelement faces and the discontinuous Galerkin method with
parametrized interior penalty stabilization both of the jumps of the function itself
and of its gradients over interior faces. We have reviewed the h-convergence analysis
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Figure 4. Difference between the solutions of the discontinuous
method and of the continuous method (a) and between the exact
solution and the solution of the discontinuous method (b) for vari-
able γ0 and fixed h. The solid line corresponds to the choice γ1 = 0
and the dashed line to the optimal choice of γ1 > 0 according to
figure 2.

for the continuous method with interior penalty and the augmented discontinuous
method. We proved that the solution of the discontinuous method converges to the
solution of the continuous method as the stabilization parameter of the interelement
solution jump increases to infinity. This is also showed numerically together with
some comparisons of the behavior of the interior penalty method using continuous
and discontinuous approximations.
The techniques that we have advocated here for the stabilization of transport dom-
inated advection-reaction problems can nowadays be regarded as efficient alterna-
tives to the more classical upwind-based finite element approximations dated back
to the pioneering work by Mitchell and Griffiths [24], the generalization and analy-
sis by Baba and Tabata [1] or the fully consistent SUPG- or GLS-methods, see the
pioneering work [6, 19] or the books [27, 30].
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