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Abstract

The contribution of this paper is twofold: firstly, a general approach
to the goal-oriented a posteriori analysis of nonlinear partial differential
equations is laid down, generalizing the standard DWR method to Petrov-
Galerkin formulations. This accounts for: different approximations of the
primal and dual problems; nonhomogeneous Dirichlet boundary conditions,
even different on passing from the primal to the dual problem; the error
due to data approximation; the effect of stabilization (e.g. for advective-
dominated problems). Secondly, moving from this framework, and em-
ploying anisotropic interpolation error estimates, a sound anisotropic mesh
adaption procedure is devised for the numerical approximation of the Navier-
Stokes equations by continuous piecewise linear finite elements. The re-
sulting adaptive procedure is thoroughly addressed and validated on some
relevant test cases.
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1 Introduction and motivation

In this work we set up a theoretical framework for the a posteriori error es-
timation to nonlinear variational problems. What we have in mind are some
problems commonly met in computational science and engineering, described by
partial differential equations, e.g., the Navier-Stokes equations for incompress-
ible flows in fluid dynamics ([22]), elasto-plasticity models in solid mechanics
([24]), charge transport models in semiconductor device simulation ([31]), etc.
All of these problems are actually characterized by nonlinear features. We are
interested in the numerical approximation of these equations, and primarily in
the estimation of the corresponding discretization error via a proper a posteriori
analysis. In particular, this error is measured in terms of a suitable output func-
tional of the solution representing derived quantities of particular engineering
or scientific relevance (e.g., an averaged force on a body immersed in a fluid, a
mean normal stress in a loaded material, the electric current at the terminals
of a semiconductor device). Thus, in the spirit of a goal-oriented analysis, we
wish to approximate, within a user-defined tolerance, the exact (but unknown)
functional, evaluating the functional itself on a suitable (computable) approxi-
mation of the solution (see, e.g., [2, 5, 18, 28]). The overhead of this analysis is
the introduction of an auxiliary problem, the so-called adjoint (or dual) problem.
In more detail, our theoretical framework for goal-oriented a posteriori analysis
provides room for: a Petrov-Galerkin approximation of the primal and dual prob-
lems that allows us to deal with nonhomogeneous Dirichlet boundary conditions,
even different moving from the primal to the dual problem; the error due to the
approximation of these data; the effect of stabilization, this latter being manda-
tory when considering finite element spaces violating the inf-sup conditions and
in the presence of a high Reynolds number. A general and self-contained theory
accounting for all these issues seems to be lacking in the current literature. In
particular, we merge the two goal-oriented Dual Weighted Residual (DWR) ap-
proaches of [5, 18]. On the one hand, a general theory for nonlinear problems is
presented in [5], however, without covering the case of Petrov-Galerkin formula-
tions. On the other hand, [18] deals essentially with linear problems, though in
the ambit of Petrov-Galerkin approximations, and the focus is drained towards
postprocessing techniques of the discrete output functional for the purpose of
increasing its accuracy.
After introducing the abstract setting, we firstly particularize it to the Navier-
Stokes equations, and then we devise an effective technique for numerically com-
puting a given functional associated with their solution. In this case, suitable
quantities related to the fluid under investigation may be the total kinetic en-
ergy, the vorticity or the drag and lift coefficients (if the fluid flows past some
immersed body). In addition, under certain conditions, for example when the
Reynolds number is sufficiently high, the flow may show evident directional fea-
tures, e.g., internal or boundary layers. To sharply capture these troublesome
aspects without compromising the overall computational cost, an efficient rem-
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edy is provided by the widely employed mesh adaption technique. With this
respect, a further improvement in terms of saving on the computational cost can
be achieved via an anisotropic adaptivity (see, for instance, [8, 12, 1, 11, 14, 32]).
We stress that the a posteriori error estimators provide a straightforward tool
for driving the mesh adaptivity.

With this aim, we combine our theoretical framework with suitable anisotropic
interpolation error estimates ([14, 15]) with a view to an optimized mesh. This
means that the mesh elements, each characterized by shape, orientation, and
stretching, are distributed over the computational domain, such that, e.g., the
number of elements is minimized for a given accuracy or, alternatively, the ac-
curacy is maximized for a prescribed number of elements. To be practical, we
may think of the above geometrical properties of the triangulation as control
variables which are automatically tuned by our procedure in order to solve an
optimal constrained control problem. With respect to previous works in the
literature, the approach here pursued has the following advantages: it is thor-
oughly automatic, i.e., the user has just to enter the data for the problem and
the functional at hand, and the procedure returns the approximation of the out-
put functional along with the corresponding optimized computational mesh; the
whole procedure is theoretically sound, that is, it relies on a rigorous mathemat-
ical background without resorting to any heuristic approach; the computational
mesh is fully unstructured, thus providing a more flexible tool for the approxi-
mation of both the domain and the functional.

The layout of the paper comprises the start up § 2 where the main nota-
tion used throughout the paper are introduced along with the anisotropic tools
employed in the later sections; the main body of the theoretical analysis is es-
tablished in § 3, where the DWR approach is addressed in a Petrov-Galerkin
framework, together with the corresponding a posteriori error analysis. Then
we move on to considering the particular case of the Navier-Stokes equations in
§ 4. With a view to the numerical validation, we first illustrate the theoretical
background at the basis of our adaptive procedure in § 5, and then we assess it
on some test cases in § 6.

2 Preliminaries

This section is essentially meant to start up the reader on the notation used
throughout the paper as well as on the anisotropic framework exploited in the
a posteriori analysis of § 3.

2.1 The analytical glossary

Let us introduce the functional spaces used to guarantee the well-posedness of
the problems analyzed below. For further details, we refer, for instance, to [23].

Let Ω be a polygonal domain of R
2 with Lipschitz continuous boundary ∂Ω.

First, let Hk(Ω) denote the standard Sobolev space of functions for which the
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Figure 1: Geometrical interpretation of the affine map TK and main anisotropic
quantities.

distributional derivatives of order up to k ≥ 0 is Lebesgue-square-integrable,
with norm and seminorm ‖ · ‖Hk(Ω) and | · |Hk(Ω), respectively. As first partic-

ular subset of H1(Ω), we consider the space H1
Γ(Ω) of the functions in H1(Ω)

satisfying homogeneous Dirichlet boundary conditions on a subset Γ 6= ∅ of ∂Ω.
Then the choice k = 0 identifies the space L2(Ω) of the functions only Lebesgue
square-integrable, with corresponding norm ‖ · ‖L2(Ω) and inner product (·, ·),
respectively. We have to define apart the space L∞(Ω) of the functions bounded
a.e. in Ω, as well as the space C0(Ω) of the functions continuous on Ω.
Finally the notation ‖ · ‖L2(S), ‖ · ‖Hk(S) and | · |Hk(S) will be adopted to refer the
norms and seminorms previously defined to a proper subset S of Ω or of ∂Ω.

2.2 The anisotropic tool-box

In this section we introduce the anisotropic setting used to enrich the a posteriori
analysis below with directional information. In more detail we resort to the
anisotropic framework in [14], the leading ideas being here recalled.
Let Th = {K} be a conformal partition of Ω, consisting of triangular elements K
(see, e.g., [9]). We associate with Th the finite element space of piecewise affine
functions Yh = {vh ∈ C0(Ω) : vh|K ∈ P1, ∀K ∈ Th}, with P1 = span{1, x1, x2}
the space of polynomials of (global) degree less than or equal to one on K.
According to [14], the source of the anisotropic information is identified with
the standard affine map TK : K̂ → K between the reference triangle K̂ and the
general one K, given by the relation

~x = (x1, x2)
T = TK(~̂x) = MK

~̂x+ ~tK , ∀ ~x ∈ K,

with ~̂x = (x̂1, x̂2)
T ∈ K̂. For example, when K̂ is picked as the equilat-

eral triangle inscribed in the unit circle centered at the origin, with vertices
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K), for i = 1, 2, 3, the vertices of the triangle K.

We introduce the polar decomposition MK = BK ZK of MK , where the matrix
BK is symmetric positive definite and ZK is orthogonal (see e.g., [20]). Diago-
nalizing BK in terms of its eigenvectors ~ri,K and eigenvalues λi,K , with i = 1, 2,
yields BK = RT

KΛKRK , where

RK =

[
~r T
1,K

~r T
2,K

]
and ΛK =

[
λ1,K 0

0 λ2,K

]
.

The geometrical information provided by the quantities λi,K , ~ri,K is displayed

in Figure 1. The map TK strains the circle circumscribed to K̂ into an ellipse
circumscribed to K, centered at the barycenter of K: the eigenvalues λ1,K , λ2,K

measure the length of the major and of the minor semi-axis, aligned with the
directions given by ~r1,K and ~r2,K , respectively. Notice that ZK and ~tK do not
play any role as associated with a rigid rotation and a shift, respectively.
Without loss of generality, henceforth we assume λ1,K ≥ λ2,K , i.e., that the so
called stretching factor sK = λ1,K/λ2,K , providing us with a measure of the
deformation of the triangle K, is always greater than or equal to 1, with sK = 1
whenever K is an equilateral triangle.

2.2.1 Anisotropic interpolation error estimates

Moving from the above geometrical framework, we now recall some anisotropic
interpolation error estimates proved in [14, 15]. They turn out to be a crucial tool
with a view to the a posteriori analysis below. Moreover we point out that the
adjective anisotropic understands the explicit dependence of the interpolation
estimates on the geometrical parameters λi,K , ~ri,K and sK of the mesh element
K in contrast with classical (isotropic) interpolation estimates, where only the
diameter hK of the element K plays a role. In particular, according to a higher
or a reduced regularity of the solution at hand, we will consider the standard
Lagrange interpolant as well as the Clément interpolation operator, respectively.
In view of the Lagrange interpolant, for any function v such that v|K ∈ H2(K),
let Li,j

K (v) be the real number defined by

Li,j
K (v) =

∫

K

(
~r T
i,K HK(v)~rj,K

)2
dK, with i, j = 1, 2, (1)

and where HK(v) ∈ [L2(K)]2×2 is the Hessian matrix of v|K given by

[HK(v)]i, j =
∂2v

∂xi∂xj
, for i, j = 1, 2.
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Notice that via Li,j
K (v) the information provided by the second-order partial

derivatives, is projected along the directions ~r1,K and ~r2,K rather than lumped
into the H2-seminorm |v|H2(K) as in the isotropic case.

Let Πh : C0(Ω) → Yh denote the Lagrange linear interpolant and let ΠK :
C0(K) → P1 be the corresponding restriction to K, such that ΠK(v|K) =
(Πhv)|K . Then it can be proved the following

Lemma 2.1 Let v ∈ H1(Ω) be such that v|K ∈ H2(K), ∀K ∈ Th. Then there
exist three constants Ci = Ci(K̂), with i = 1, 2, 3, such that,

‖v −ΠKv‖L2(K) ≤ C1

[ 2∑

i,j=1

λ2
i,Kλ

2
j,KL

i,j
K (v)

]1/2
, (2)

|v −ΠKv|H1(K) ≤ C2
1

λ2,K

[ 2∑

i,j=1

λ2
i,Kλ

2
j,KL

i,j
K (v)

]1/2
, (3)

‖v −ΠKv‖L2(e) ≤ C3

(
λ2

1,K + λ2
2,K

λ3
2,K

)1/2[ 2∑

i,j=1

λ2
i,Kλ

2
j,KL

i,j
K (v)

]1/2
, (4)

with e ∈ ∂K the generic edge of K.

Now let us move to the case of a less regular function, i.e. a function not
necessarily continuous over Ω. For any function v ∈ H 1(Ω), let GK(v) ∈ R

2×2

be the symmetric positive semi-definite matrix given by

[GK(v)]i, j =

∫

∆K

∂v

∂xi

∂v

∂xj
dK, with i, j = 1, 2,

and with ∆K the union (patch) of all the elements sharing at least a vertex with
K.

Let Ih : L2(Ω) → Yh denote the Clément interpolant (see [10]), and let
IK : L2(K) → P1 be the corresponding restriction to K, such that IK(v|K) =
(Ihv)|K . Then the following estimates can be proved:

Lemma 2.2 Let v ∈ H1(Ω). Then under the assumptions that, for any K in
Th, card(∆K) ≤M , and diam(∆ bK) ≤ Ĉ, with ∆ bK = T−1

K (∆K), it holds

‖v − IKv‖L2(K) ≤ C4

[ 2∑

i=1

λ2
i,K

(
~r T
i,K GK(v)~ri,K

)]1/2

, (5)

‖v − IKv‖L2(e) ≤ C5

(
hK

λ1,Kλ2,K

)1/2 [ 2∑

i=1

λ2
i,K

(
~r T
i,K GK(v)~ri,K

)]1/2

, (6)

where Ci = Ci(M, Ĉ), for i = 4, 5.
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Notice the explicit dependence of all the estimates above on the anisotropic
quantities highlighted in Figure 1. In particular, when λ1,K ' λ2,K ' hK , that
is when the triangle is equilateral, (2)-(4), (5)-(6) reduce to the corresponding
standard isotropic results (see, for instance, [9]).

Remark 2.1 The reference patch ∆ bK
is obtained by mapping back all the el-

ements T ∈ ∆K by means of the same transformation T−1
K . The conditions

constraining estimates (5) and (6) essentially avoid too distorted patches in the
reference framework. On the other hand, they do not limit the anisotropic fea-
tures (stretching factor and orientation) of each T ∈ ∆K, but rather the variation
over ∆K of the geometrical quantities of Figure 1 (see [27] for more details). Fi-
nally the constants C4 and C5 in (5) and (6) are an O(M, Ĉ) as, according to
the analysis in [14], all the interpolation estimates above are actually derived in
the reference setting and then mapped back to the general one.

3 Goal-oriented a posteriori analysis

In this section we establish the theoretical framework of the pursued goal-
oriented analysis on grounds of the standard dual-based a posteriori setting.
In particular our approach turns out quite general as including nonlinear prob-
lems, generalized Galerkin approximation (e.g., stabilized formulations), differ-
ent functional spaces for the primal and dual problems (in the spirit of a Petrov-
Galerkin method), as well as nonhomogeneous Dirichlet data. For this purpose,
we combine the Dual Weighted Residual (DWR) approach of [5] with the theory
in [18]. The later analysis of the Navier-Stokes equations will exactly fit this
abstract environment.
In more detail, after providing some concepts and notation handy for the a pos-
teriori analysis, we introduce the DWR approach from which we move in view
of the desired error estimator.

3.1 Some notation

In the sequel we deal essentially with semilinear forms defined on some linear
space V . More precisely, with the notation b(u)(·, . . . , ·) : V × V × . . .× V → R

it is understood that the form b(u)(·, . . . , ·) is nonlinear with respect to the
argument in the first bracket while it depends linearly on all the arguments in
the second one.
Let us recall the definition of the Gâteaux derivative of a given form b(u)(·, . . . , ·),
depending linearly, for instance, on i arguments. We have to distinguish between
the derivative with respect to the first argument and the derivatives with respect
to the arguments in the second bracket. In the first case, we get a linear operator
b′(u)(·, . . . , ·, ·) : V ×V ×. . .×V ×V → R linearly dependent on (i+1)-arguments,
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which, evaluated on ϕ is provided by the relation

b′(u)(·, . . . , v, ϕ︸︷︷︸
(i+1)−th

) = lim
ε→0

1

ε

[
b(u+ εϕ)(·, . . . , v︸︷︷︸

i−th

)− b(u)(·, . . . , v︸︷︷︸
i−th

)
]
. (7)

On the other hand, the derivative of b(u)(·, . . . , ·) with respect to the j-th linear
argument, say v, with 1 ≤ j ≤ i, is given by

b(u)(·, . . . , φ︸︷︷︸
j−th

, . . . , ·) = lim
ε→0

1

ε

[
b(u)(·, . . . , v + εφ︸ ︷︷ ︸

j−th

, . . . , ·)−b(u)(·, . . . , v︸︷︷︸
j−th

, . . . , ·)
]

(8)
when evaluated on ϕ. Notice that, in the case of (8) the resulting derivative
returns the operator b itself while the number of arguments in the second bracket
remains equal to i. On the contrary in the case of (7), this number increases to
i+ 1, thus being b′ 6= b.
Further, suppose that V and W are two real Hilbert spaces with norms ‖ · ‖V
and ‖ · ‖W , respectively and that V0 ⊆ V and W0 ⊆ W are two corresponding
real Hilbert subspaces, still equipped with the norms ‖ ·‖V and ‖ ·‖W . Now if V0

is a proper subspace of V and c is a fixed element of V , we define the affine space
Vc = c+V0 of the elements which can be written as c+ v, with v ∈ V ; similarly,
if W0 is a proper subspace of W and d ∈ W is fixed, we let Wd = d +W0. Of
course, if c ∈ V0 then, by linearity, Vc = V0; likewise, if d ∈W0 then Wd = W0.
Finally, we denote by V ′ the dual of a Hilbert space V , and the duality pairing
between V ′ and V is designated by V ′〈·, ·〉V .

3.2 The DWR approach

Let J(u) be the goal quantity we are interested in and let J(uh) be a corre-
sponding computable approximation, with J(·) a continuous functional, possibly
nonlinear, u and uh the exact and the approximate solution to the problem at
hand, respectively. Several instances of the functional J(·) have been proposed
during the last twenty years in the literature. In the CFD framework typical
examples are the kinetic energy or the vorticity of a fluid, the lift or drag in a
flow past a body; in structural mechanics J(·) can represent the torsion moment,
rather than the stress values or the total surface tension, and so on.

We now introduce the abstract setting from which the goal-oriented analysis
in §3.3 stems. The basic idea to estimating the functional error J(u) − J(uh)
relies on embedding the given problem into the framework of optimal control.
The notation adopted in the sequel are compliant with §3.1.

Let us assume that the problem at hand, henceforth denoted by primal prob-
lem, is represented by the strong form

A(u) = f in W ′, (9)
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for the unknown u ∈ V , with A : V → W ′ a given nonlinear operator, f ∈ W ′

the source term, supplied with suitable boundary conditions, compatible with
A(·). With (9) it is associated the weak form: find u ∈ Vc ⊆ V such that

a(u)(ϕ) = F (ϕ) ∀ϕ ∈W0 ⊆W, (10)

where a(·)(·) : V ×W → R, F (·) : W → R are suitable semilinear and linear
forms, respectively. Typically it holds that V ≡W ≡ [H 1(Ω)]n, for some integer
n ≥ 1, while the subspaces Vc andW0 hinge on the boundary conditions assigned
to the problem at hand. In practice, the existence and the uniqueness of the
solution u in Vc to the variational equation (10) has to be guaranteed: the
argument used for this purpose is outside the present framework. Here, we only
assume that the form a(·)(·) is sufficiently regular on Vc×W0 so that the solution
u is uniquely determined and depends continuously on the data of the problem.

Let J(·) : V → R be the (linear or nonlinear) functional identifying the goal
quantity we are interested in.

The key point is that the solution of (10) can be equivalently characterized
as the solution of the following (trivial) constrained optimization problem: find
u ∈ Vc ⊆ V such that

J(u) = min
v∈M

J(v) (11)

with M = {v ∈ Vc : a(v)(w) = F (w), ∀w ∈W0}. The problem is trivial as the
space of the constraints M consists of only one element, that is M = {u}, so
that (11) is equivalent to evaluating J(u) on the solution to the primal problem.
Let us solve the minimization problem (11) via the Lagrangian approach. With
this aim we momentarily neglect the boundary conditions and we introduce the
Lagrangian L : V ×W → R, such that

L(u, z) = J(u) + F (z)− a(u)(z) ∀(u, z) ∈ V ×W, (12)

with z the so-called Lagrangian multiplier (or influence function). As the min-
imum u coincides with the first component of the saddle point (u, z) of the
Lagrangian L, we are interested in finding the critical points of L, that is the
pair (u, z) ∈ V ×W satisfying the Euler-Lagrange relation

L′(u, z)(ψ,ϕ) = J ′(u)(ψ)+F (ϕ)−a(u)(ϕ)−a′(u)(z, ψ) = 0, ∀ (ψ,ϕ) ∈ V ×W,
(13)

L′(u, z)(ψ,ϕ) denoting the derivative of the Lagrangian L(u, z) applied to (ψ,ϕ).
Coming back to the specific problem (10), we have to rewrite relation (13) on
suitable subspaces taking into account the boundary conditions on the primal
problem as well as the possibly different dual boundary conditions: find (u, z) ∈
Vc ×Wd such that

L′(u, z)(ψ,ϕ) = J ′(u)(ψ)+F (ϕ)−a(u)(ϕ)−a′(u)(z, ψ) = 0, ∀ (ψ,ϕ) ∈ V0×W0,
(14)
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with Wd ⊆W . Relation (14) returns the primal problem (10) and the so-called
adjoint problem to be solved for the Lagrangian multiplier: find z ∈ Wd ⊆ W
such that

a′(u)(z, ψ) = J ′(u)(ψ) ∀ψ ∈ V0 ⊆ V. (15)

As for the primal problem, the existence of the adjoint solution z satisfying (15)
is separately proved via proper arguments depending on the problem at hand.
The strong form of the dual problem is given by

A′(u)∗z = j in V ′, (16)

reinforced with appropriate (adjoint) boundary conditions, where

A′(u) v = lim
ε→0

1

ε

[
A(u+ ε v)−A(u)

]
∀ v ∈ V,

is the Jacobian of A, evaluated at u and acting on v, while A′(u)∗ is the linear
operator obtained by computing the formal adjoint of A′(u) via the Lagrange
identity ([25])

W ′〈A′(u)v, w〉W = V ′〈v,A′(u)∗w〉V ∀ (v, w) ∈ V ×W. (17)

The quantity j ∈ V ′ in (16) represents the density function associated with
J ′(u)(·) such that

J ′(u)(ψ) = V ′〈 j, ψ 〉V , ∀ψ ∈ V.

Let us now deal with the discrete counterpart. Suppose that {V0,h}h and {W0,h}h
are two families of finite-dimensional subspaces of V0 and W0, respectively, pa-
rameterized by h ∈ (0, 1]. When V0 is a proper Hilbert subspace of V , we consider
the affine variety Vc,h = ch+V0,h 6⊂ Vc, where ch is a suitable approximation of c,
obtained, e.g., by interpolation or projection. In the same fashion, when W0 is a
proper subspace of W , we introduce the affine variety Wd,h = dh+W0,h 6⊂Wd, dh

being an approximation to d. Essentially we are dealing with a non-conforming
approximate formulation. In the present setting, the discrete formulations and
the corresponding error analysis are nontrivial due to both data approximation,
i.e. the approximation of c, d by ch, dh, respectively, and to stabilization. This
latter is mandatory when considering finite element spaces violating the inf-sup
conditions and in the presence of a large Reynolds number.
The discrete counterpart of the Euler-Lagrange equations (14) reads: find (uh, zh) ∈
Vc,h ×Wd,h such that

L′(uh, zh)(ψh, ϕh) + 〈R(uh, zh),S(uh)(ψh, ϕh)〉τ = 0 ∀ (ψh, ϕh) ∈ V0,h ×W0,h,
(18)

where the stabilization term 〈·, ·〉τ is to be understood as

〈·, ·〉τ =
∑

K∈Th

τK(·, ·)L2(K), (19)
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for convenient piecewise constant stabilization parameters τK (see, e.g., [4]).
With

R(u, z) =

[
f −A(u)

j −A′(u)∗z

]

we denote the strong form of both the primal and dual residuals, while

S(uh)(ψh, ϕh) =

[
Sp(uh)ϕh

Sd(uh)ψh

]
∀ (ψh, ϕh) ∈ V0,h ×W0,h, (20)

collects appropriate stabilizing operators for both the primal (Sp) and the dual
(Sd) problems, evaluated at uh. For example, in the case of Galerkin Least
Squares (GALS) stabilization ([16]), it holds Sp(uh) = A(uh) while Sd(uh) =
A′(uh)∗. Another choice corresponding to the so-called subgrid stabilization,
mentioned in [4] and derived in the Appendix, may be adopted. Thus, via (18),
the actual primal and dual discrete problems read: find (uh, zh) ∈ Vc,h ×Wd,h

such that

F (ϕh)− a(uh)(ϕh) + 〈f −A(uh),Sp(uh)ϕh〉τ = 0 ∀ϕh ∈W0,h,

J ′(uh)(ψh)− a′(uh)(zh, ψh) + 〈j −A′(uh)∗zh,Sd(uh)ψh〉τ = 0 ∀ψh ∈ V0,h.
(21)

We are now in a position to address the a posteriori error analysis.

3.3 The a posteriori analysis

In view of estimating the discretization error J(u)− J(uh) on the functional of
interest J(·), we move from a corresponding exact representation, generalizing
the theory in [5].

Proposition 3.1 Let u and uh be the solution to the weak and to the discrete
primal problem (10) and (21)1, respectively, and zh be the solution to the discrete
dual problem (21)2. Then it holds

J(u)− J(uh) = L(u, z)−L(uh, zh)︸ ︷︷ ︸
A

+ a(u)(d) − a(uh)(dh)− F (d− dh)︸ ︷︷ ︸
B

− 〈 f −A(uh),Sp(uh)(zh − dh) 〉τ︸ ︷︷ ︸
C

.

(22)

Proof. From (12), evaluating L(·, ·) first at (u, z) and then at (uh, zh), and properly
rearranging the terms, we have

J(u)− J(uh) = L(u, z) + a(u)(z)− F (z)−L(uh, zh)− a(uh)(zh) + F (zh). (23)

From (10), choosing ϕ = z − d ∈W0, we obtain

a(u)(z)− F (z) = a(u)(d)− F (d), (24)
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while, using the discrete primal problem (21)1 with ϕh = zh − dh ∈ W0,h yields

F (zh)− a(uh)(zh) = F (dh)− a(uh)(dh)− 〈f −A(uh),Sp(uh)(zh − dh)〉τ . (25)

Substituting (24) and (25) into (23) allows us to rewrite the error on the goal functional

J(·) as in (22). �

Notice the different meaning of the terms in the right-hand side of (22): the
first one A is associated with the Galerkin approximation procedure only, so that
we may name it Galerkin defect; the quantity B is due to data approximation
and it vanishes when d = dh and dh ∈ W0,h, while the last term C is related to
stabilization.

We now provide an alternative expression for the Galerkin defect term.

Proposition 3.2 Let eu = u − uh and ez = z − zh be the primal and the dual
discretization error, respectively. Then the Galerkin defect term can be rewritten
as

L(u, z)−L(uh, zh) =
1

2

[
L′(uh, zh)(eu, ez) + F (d− dh)− a(u)(d − dh)︸ ︷︷ ︸

D

+ J ′(u)(c − ch)− a′(u)(z, c − ch)︸ ︷︷ ︸
E

]
+R(3),

(26)
where the remainder

R(3) =
1

2

∫ 1

0
L′′′(uh + seu, zh + sez)(eu, ez, eu, ez, eu, ez)s(1− s) ds (27)

is a third order term with respect to both eu and ez.

Proof. Using simple calculus, we have

L(u, z)−L(uh, zh) =

∫ 1

0

L′(uh + s(u− uh), zh + s(z − zh))(eu, ez) ds

− 1

2
[L′(uh, zh)(eu, ez) + L′(u, z)(eu, ez)] +

1

2
L′(uh, zh)(eu, ez)

+
1

2
L′(u, z)(c− ch + e0,u, d− dh + e0,z),

(28)
where we have split the errors as eu = c− ch + e0,u, ez = d − dh + e0,z, with e0,u ∈ V0

and e0,z ∈ W0. Moreover, using the Euler-Lagrange equations (14), it holds

L′(u, z)(c−ch+e0,u, d−dh+e0,z) = J ′(u)(c−ch)+F (d−dh)−a(u)(d−dh)−a′(u)(z, c−ch).

Result (26) follows on recognizing in the second term at the right-hand side of (28)

the approximation of the integral coinciding with the first term via the trapezoidal

quadrature rule, the corresponding remainder being given by (27). �

We remark that the terms D and E at the right-hand side of (26) may be
thought of as residual-like quantities associated with the primal and the dual
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problem, respectively, taking into account the non-conformity of the adopted
discretization framework. In particular, they vanish only when c − ch ∈ V0 and
d − dh ∈ W0, i.e. when the spaces Vc,h and Wd,h are subset of Vc and Wd,
respectively.

In view of a compact notation, let us introduce the so-called primal ρp : W →
R and dual ρd : V → R weak residuals, given by

ρp(·) = F (·)− a(uh)(·), ρd(·) = J ′(uh)(·)− a′(uh)(zh, ·), (29)

measuring the failure of the discrete solutions uh and zh at satisfying the weak
primal and dual problem, respectively. The two residuals ρp(·) and ρd(·) are
generally equal in the presence of a thoroughly linear problem, when a standard
Galerkin approximation is adopted and the same choice is done for the primal
and dual spaces. On the contrary this is not yet guaranteed when the problem
at hand is nonlinear. In both the cases it is always possible to relate one another
the two residuals (see [5]). Nevertheless, if one exploits this relation in view of a
final estimate written in terms of only one out of the two residuals, the remainder
term R(3) turns out to be only second order in the discretization errors instead
of third order.

We can thus state the final result of this abstract goal-oriented setting, rep-
resented by the following

Proposition 3.3 Let u and uh be the solution to the weak and to the discrete
primal problem (10) and (21)1, respectively, and zh be the solution to the discrete
dual problem (21)2. Then the following identity holds:

J(u) − J(uh) =
1

2
ρp((I − PW )e0,z) +

1

2
ρd((I − PV )e0,u)

︸ ︷︷ ︸
I

+
1

2
ρp(d− dh)

︸ ︷︷ ︸
II

+
1

2
ρd(c− ch)

︸ ︷︷ ︸
III

−1

2
〈R(uh, zh),S(uh)(PV e0,u,PW e0,z) 〉τ

︸ ︷︷ ︸
IV

+ [a(u)(dh)− a(uh)(dh)]︸ ︷︷ ︸
V

+
1

2
[a(u)(d − dh)− F (d− dh)]

︸ ︷︷ ︸
VI

−〈 f −A(uh),Sp(uh)(zh − dh) 〉τ︸ ︷︷ ︸
VII

+
1

2
[J ′(u)(c − ch)− a′(u)(z, c − ch)]

︸ ︷︷ ︸
VIII

+R(3)
︸︷︷︸
IX

,

(30)
with ρp(·) and ρd(·) the residuals defined in (29), I the identity operator, R(3) the
remainder term in (27), e0,u, e0,z the “homogeneous” components of the primal
(eu) and of the dual (ez) discretization error, respectively, and where PV and
PW denote suitable interpolation operators.

Proof. First we combine Propositions 3.1 and 3.2, summing (18) after multiplication
by one half. This yields the identity
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J(u)− J(uh) =
1

2
L′(uh, zh)(eu + ψh, ez + ϕh) +

1

2
〈R(uh, zh),S(uh)(ψh, ϕh) 〉τ

+ a(u)(d)− a(uh)(dh)− F (d− dh) +
1

2
[F (d− dh)− a(u)(d− dh)]

+
1

2
[J ′(u)(c− ch)− a′(u)(z, c− ch)]− 〈 f −A(uh),Sp(uh)(zh − dh) 〉τ +R(3),

(31)
∀(ψh, ϕh) ∈ V0,h ×W0,h. Now, the second line in (31) can be rewritten as

1

2
[a(u)(d− dh)− F (d− dh)] + [a(u)(dh)− a(uh)(dh)],

namely as a term due to data approximation, vanishing when d− dh ∈W0, summed to

a second one linked, somehow, to the well-known Galerkin orthogonality property and

identically equal to zero for dh ∈W0,h in the absence of stabilization.

We now choose in (31) the arbitrary test functions (ψh, ϕh) by picking ψh = −PV e0,u ∈
V0,h and ϕh = −PW e0,z ∈W0,h, with PV and PW interpolant operators properly chosen

according to the problem at hand.

Then result (30) immediately follows after recalling the explicit expression (14) of the

Lagrange derivative, the error decompositions eu = c− ch +e0,u, ez = d−dh +e0,z, with

e0,u ∈ V0, e0,z ∈W0, and exploiting the definition (29) of the weak residuals. �

We underline that we are still dealing with the exact expression of the goal
error J(u)−J(uh), no upper bound being involved at this stage. Moreover, with
a view to the a posteriori analysis of § 4.1, we anticipate that just the first term
I in (30), being the only one significant for an anisotropic grid adaption, will be
employed to drive the adaptive procedure.

Remark 3.1 The stabilization term 〈 f −A(uh),Sp(uh)(zh−dh) 〉τ at the right-
hand side of (31) is thoroughly computable as depending only on the discrete
solutions uh and zh and on some known data. One can consequently identify
this term with a correction quantity, say J̃ , so that the new corrected functional
Jcorr = J(uh) − J̃ can be exploited to estimate the goal-quantity J(u), sharing
the same spirit as the functional correction approach reviewed in [18]. However
this approach will not be pursued in the following.

We are now ready for introducing the Navier-Stokes equations and the asso-
ciated goal-oriented a posteriori analysis, perfectly fitting the general framework
just settled.

4 The Navier-Stokes equations

Let us consider the standard Navier-Stokes equations for an incompressible fluid
completed with mixed boundary conditions:
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



−∇ · σ + (~v · ∇)~v = ~f in Ω,

∇ · ~v = 0 in Ω,

σ~n = ~g on ΓN ,

~v = ~vD on ΓD,

(32)

where the stress rate σ = σ(~v, p) = 2µ ε(~v)− pI depends on the velocity ~v and
on the pressure p, while µ > 0 is the kinematic viscosity, ε(~v) = 1

2

(
∇~v+ (∇~v)T

)

represents the strain rate, and I denotes the identity tensor. The 1D-varieties
ΓD and ΓN , with ΓD 6= ∅, coincide with two disjoint boundary portions such
that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. Notice that ΓD as well as ΓN may
each comprise disjoint subsets of the boundary. Concerning the data problem,
the functions ~f ∈ [L2(Ω)]2 and ~g ∈ [L2(ΓN )]2 stand for the force per unit mass
and the traction, respectively, while, with an abuse of notation, ~vD ∈ [H1(Ω)]2

defines the extension into Ω of the actual Dirichlet datum ~vD ∈ [H1/2(ΓD)]2.
Finally ~n stands for the unit outward normal vector to ∂Ω.
System (32) represents the reference strong form for our a posteriori analysis. In
particular we are referring to the conservative form (with respect to the stress
rate σ) of the incompressible Navier-Stokes equations, also accommodating pos-
sible nonhomogeneous Dirichlet conditions, typically prescribed at the inflow
sections of the boundary.

In view of the weak form associated with (32), we first introduce the spaces
V = W = [H1(Ω)]2 × L2(Ω), V0 = W0 = [H1

ΓD
(Ω)]2 × L2(Ω); then we split the

velocity ~v as ~v = ~v0 + ~vD, with ~v0 ∈ [H1
ΓD

(Ω)]2, while introducing the compact
notation UD = (~vD, 0) ∈ V such that U = (~v, p) ∈ Vc ≡ UD +V0. Thus the weak
form corresponding to (32) is: find U = UD + (~v0, p) ∈ Vc, with (~v0, p) ∈ V0,
such that

a(U)(ϕ) = F (ϕ) ∀ϕ = (~ϕ v, ϕp) ∈W0, (33)

where the semilinear and linear forms a(·)(·) and F (·) are given by

a(U)(ϕ) =

∫

Ω
2µ ε(~v) : ε(~ϕ v) dΩ +

∫

Ω
(~v · ∇)~v · ~ϕ v dΩ

−
∫

Ω
p∇ · ~ϕ v dΩ +

∫

Ω
ϕp∇ · ~v dΩ,

F (ϕ) =

∫

Ω

~f · ~ϕ v dΩ +

∫

ΓN

~g · ~ϕ v ds,

(34)

respectively. Problem (32) perfectly fits the general strong primal problem (9)
after identifying U with the dummy unknown u, the operator A(u) and the
source term f with

A(U) =

[
−∇ · σ(~v, p) + (~v · ∇)~v

∇ · ~v

]
and f = [ ~f, 0]T ,
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respectively, and choosing as boundary conditions the mixed ones (32)3-(32)4.
Likewise the weak form (33) conforms to the weak primal problem (10), upon
choosing the spaces V,W, V0 and W0 as above, the quantity c linking the spaces
Vc and V0 as UD, and the forms a(·)(·) and F (·) as in (34).

Remark 4.1 To guarantee the well-posedness of the weak form (33) in the case
when ΓN = ∅, the space V has to be replaced by the new one V = [H 1(Ω)]2 ×
L2

0(Ω), with L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω p dΩ = 0} (see, for instance, [19, 33]).

Concerning the dual framework, it can be checked, via the identity (17), that
the strong form of the adjoint Navier-Stokes equations is given by

{
−∇ · σA + (∇~v)T ~w − (∇ · ~v) ~w − (~v · ∇) ~w = jw in Ω,

−∇ · ~w = jr in Ω,
(35)

where σA = σA(~w, r) = 2µ ε(~w) + rI is the adjoint stress rate depending on the
dual velocity ~w and on the dual pressure r. Identifying the dummy dual unknown
z in (16) with Z = (~w, r), we recover the strong form of the dual problem upon
recognizing the operator A′(u)∗ and the vector density j as

A′(U)∗Z =

[
−∇ · σA(~w, r) + (∇~v)T ~w − (∇ · ~v) ~w − (~v · ∇) ~w

−∇ · ~w

]
, j = [jw, jr]

T .

We underline that the dual problem is always linear independently of the linear
or nonlinear nature of the corresponding primal formulation. In particular in
(35) three linear terms of the first order replace the nonlinear term (~v · ∇)~v of
the primal formulation.

Let us move to the dual boundary conditions issue. According to the theory
in [13], we have that a dual Robin condition corresponds to a primal Neumann
one, while primal Dirichlet conditions are preserved in the dual framework. In
more detail we complete problem (35) with both nonhomogeneous Robin and
Dirichlet boundary conditions

σA~n+ (~v · ~n) ~w = ~q on ΓN , ~w = ~wD on ΓD, (36)

with ~wD ∈ [H1(Ω)]2 the extension into Ω of the actual Dirichlet datum ~wD ∈
[H1/2(ΓD)]2, and ~q ∈ [L2(ΓN )]2.
Before providing the weak form associated with the dual problem (35)-(36), let
us split the velocity unknown as ~w = ~wD+~w0, with ~w0 ∈W0, W0 being defined as
above. Correspondingly, we introduce ZD = (~wD, 0) ∈W so that Wd = ZD+W0

and Z = ZD +(~w0, r) is the actual dual unknown. The weak form corresponding
to (35)-(36) is: find Z = ZD + (~w0, r) ∈Wd, with (~w0, r) ∈W0, such that

a′(U)(Z,Ψ) = J ′(U)(Ψ) ∀Ψ = (~ψw, ψr) ∈ V0, (37)
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where V0 = W0, and

a′(U)(Z,Ψ) =

∫

Ω
2µ ε(~ψw) : ε(~w) dΩ +

∫

Ω
(~ψw · ∇)~v · ~w dΩ

+

∫

Ω
(~v · ∇) ~ψw · ~w dΩ +

∫

Ω
r∇ · ~ψw dΩ−

∫

Ω
ψr∇ · ~w dΩ,

J ′(U)(Ψ) =

∫

Ω
jw · ~ψw dΩ +

∫

Ω
jr ψ

r dΩ +

∫

ΓN

~q · ~ψw ds.

(38)
Let us now deal with the discretization setting by introducing the finite dimen-
sional counterparts of (33) and (37). They are easily obtained particularizing
relations (21) to the problem at hand: find (Uh, Zh) ∈ Vc,h ×Wd,h such that

a(Uh)(ϕh)− 〈 f −A(Uh),Sp(Uh)ϕh 〉τ = F (ϕh) ∀ϕh ∈W0,h,

a′(Uh)(Zh,Ψh)− 〈 j −A′(Uh)∗Zh,Sd(Uh)Ψh 〉τ = J ′(Uh)(Ψh) ∀Ψh ∈ V0,h.
(39)

With a view to the a posteriori analysis below and, in particular, of our interest
into the anisotropic setting, we resort to a finite element approximation, thus
identifying both the spaces V0,h and W0,h in (39) with [Yh ∩H1

ΓD
(Ω)]2, Yh being

the finite element space defined in § 2.2. In more detail we consider the discrete
counterpart of the (weak) variables U and UD represented by Uh = (~vh, ph) ∈
Y 2

h × Yh, with ~vh = ~vD,h + ~v0,h and ~v0,h ∈ V0,h, and UD,h = (~vD,h, 0) ∈ Y 2
h × Yh,

respectively. Likewise for the dual variables: we let Zh = (~wh, rh) ∈ Y 2
h × Yh,

with ~wh = ~wD,h + ~w0,h and ~w0,h ∈ W0,h, and ZD,h = (~wD,h, 0) ∈ Y 2
h × Yh as

discrete counterparts of Z and ZD. Notice that ~vD,h, ~wD,h ∈ Y 2
h are proper

finite element approximations of the extension of the Dirichlet data ~vD, ~wD,
respectively, into Ω. Moreover, the quantities ch, dh approximating the data
c, d, are thus identified with UD,h, ZD,h, respectively. To summarize the choices
Vc,h = UD,h + V0,h and Wd,h = ZD,h +W0,h are made for the discrete spaces.

4.1 An anisotropic a posteriori error estimator for the Navier-

Stokes equations

We are now in a position to merge the DWR “philosophy” of § 3 with the
anisotropic setting provided into § 2.2. The resulting “machinery” is directly
particularized to the Navier-Stokes system (32). With a view to the error esti-
mate stemming from this compound analysis, let us anticipate some fundamental
notation. For anyK ∈ Th, we first introduce the primal (ρ1,p,K = [ρ1

1,p,K , ρ
2
1,p,K]T

and ρ2,p,K) and the dual (ρ1,d,K = [ρ1
1,d,K , ρ

2
1,d,K ]T and ρ2,d,K) internal residuals

associated with the approximations Uh and Zh, given by

ρ1,p,K = (~f +∇ · σ(~vh, ph)− (~vh · ∇)~vh)
∣∣
K
, ρ2,p,K = (−∇ · ~vh)

∣∣
K
, (40)
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and

ρ1,d,K = (jw +∇ · σA(~wh, rh)− (∇~vh)T ~wh + (∇ · ~vh) ~wh + (~vh · ∇) ~wh)
∣∣
K
,

ρ2,d,K = (jr +∇ · ~wh)
∣∣
K
,

(41)
respectively. We then define the primal and dual boundary residuals, identified
by

jp,e = [j1p,e, j
2
p,e]

T =





−2σ(~vh, ph)~nK

∣∣
e

∀e ∈ ∂K ∩ Eh,D,

2(~g − σ(~vh, ph)~nK)
∣∣
e
∀e ∈ ∂K ∩ Eh,N ,

−[σ(~vh, ph)~nK ]e ∀e ∈ ∂K ∩ E int
h ,

(42)

and

jd,e = [j1d,e, j
2
d,e]

T =





−2(σA(~wh, rh)~nK + (~vh · ~nK) ~wh)
∣∣
e

∀e ∈ ∂K ∩ Eh,D,

2(~q − σA(~wh, rh)~nK − (~vh · ~nK) ~wh)
∣∣
e
∀e ∈ ∂K ∩ Eh,N ,

−[σA(~wh, rh)~nK + (~vh · ~nK) ~wh]e ∀e ∈ ∂K ∩ E int
h ,
(43)

respectively, where E int
h denotes the set of the internal edges of the skeleton Eh of

the triangulation Th, while Eh,D and Eh,N stands for the Dirichlet and Neumann
subset of Eh, respectively. Finally, with the notation [v]e we identify the standard
jump function across the edge e given by

[v]e(~x) = lim
ε→0+

v(~x+ ε ~ne)− v(~x− ε ~ne), ∀~x ∈ e,

with v any given real- or vector-valued function, and with ~ne any fixed unit
outward normal vector to e.
The main result of this section is thus delivered via the following

Proposition 4.1 Let U and Z be the solutions to the primal and to the dual
problem (33) and (37), respectively, and let Uh and Zh be the corresponding
approximations, solutions to (39)1 and (39)2, respectively. Let J(·) be the func-
tional of interest identifying the goal quantity J(U). Then the following estimate
holds

|J(U)− J(Uh)| ≤ C
9∑

i=1

ηi, (44)

where:

η1 =
1

2

∑

K∈Th

(
ρp,K · ωd,K + ρd,K · ωp,K

)
, (45)

with

ρp,K · ωd,K =
3∑

j=1

Rj
p,K ωj

d,K , ρd,K · ωp,K =
3∑

j=1

Rj
d,K ωj

p,K,
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where the “composite” primal and dual residuals Rj
p,K and Rj

d,K, defined as

Rs
p,K = ‖ρs

1,p,K‖L2(K) +
1

2

(
λ2

1,K + λ2
2,K

λ3
2,K

)1/2

‖jsp,e‖L2(∂K), R
3
p,K = ‖ρ2,p,K‖L2(K),

Rs
d,K = ‖ρs

1,d,K‖L2(K) +
1

2

(
λ2

1,K + λ2
2,K

λ3
2,K

)1/2

‖jsd,e‖L2(∂K), R
3
d,K = ‖ρ2,d,K‖L2(K),

for s = 1, 2, blend the information of the internal and boundary residuals (40)-
(43), while the weights

ωs
p,K =

[ 2∑

i,j=1

λ2
i,Kλ

2
j,KL

i,j
K (es0,v)

]1/2
, ω3

p,K =

[ 2∑

i=1

λ2
i,K

(
~r T
i,K GK(ep)~ri,K

)]1/2

,

ωs
d,K =

[ 2∑

i,j=1

λ2
i,Kλ

2
j,KL

i,j
K (es0,w)

]1/2
, ω3

d,K =

[ 2∑

i=1

λ2
i,K

(
~r T
i,K GK(er)~ri,K

)]1/2

.

(46)
for s = 1, 2, collect the anisotropic information of the estimator, e0,v = ~v0 −
~v0,h = [e10,v, e

2
0,v ]

T (e0,w = ~w0 − ~w0,h = [e10,w, e
2
0,w]T ) being the “homogeneous”

part of the primal (dual) velocity error ev = ~v − ~vh = [e1v , e
2
v]

T (ew = ~w − ~wh =
[e1w, e

2
w]T ), and with ep = p− ph (er = r− rh) the primal (dual) error associated

with the pressure unknown;

η2 =
1

2

∑

K∈Th

[ ∫

K
ρ1,p,K · ewD

dK +
1

2

∫

∂K
jp,e · ewD

ds
]
,

η3 =
1

2

∑

K∈Th

[ ∫

K
ρ1,d,K · evD

dK +
1

2

∫

∂K
jd,e · evD

ds
]
,

with evD
= ~vD−~vD,h and ewD

= ~wD− ~wD,h the errors related to the primal and
dual data approximation, respectively;

η4 = −1

2

∑

K∈Th

τK

∫

K

{
ρ1,p,K · S1

p(~vh, ph)Πh(e0,w) + ρ2,p,K S2
p(~vh, ph) Ih(er)

+ρ1,d,K · S1
d(~vh, ph)Πh(e0,v) + ρ2,d,K S2

d(~vh, ph) Ih(ep)
}
dK,

with τK suitable stabilization parameters (to be defined later), Πh and Ih the
linear Lagrange and Clément interpolant introduced in § 2.2, and Sp = [S1

p, S
2
p ]T

and Sd = [S1
d, S

2
d ]T the stabilization terms associated with the primal and the

dual problem, respectively, according to the notation in (20);

η5 =

∫

Ω
2µ ε(ev) : ε(~wD,h) dΩ−

∫

Ω
ep∇·~wD,h dΩ+

∫

Ω

[
(~v·∇)~v−(~vh·∇)~vh

]
·~wD,h dΩ;

η6 =
1

2

[ ∫

Ω

{
2µ ε(~v) : ε(ewD

)+(~v·∇)~v·ewD
−p∇·ewD

−~f ·ewD

}
dΩ−

∫

ΓN

~g·ewD
ds

]
;
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η7 = −
∑

K∈Th

τK

∫

K

{
ρ1,p,K · S1

p(~vh, ph) ~w0,h + ρ2,p,K S2
p(~vh, ph) rh

}
dK;

η8 =
1

2

[ ∫

ΓN

~q · evD
ds+

∫

Ω

{
jw · evD

− 2µ ε(evD
) : ε(~w)

−(evD
· ∇)~v · ~w − (~v · ∇) evD

· ~w − r∇ · evD

}
dΩ

]
;

η9 =
1

2

[ ∫ 1

0
J ′′′({~vh+sev, ph+sep})(EU ,EU ,EU ) s(1−s) ds−

∫

Ω
(ev·∇)ev·ew dΩ

]

still representing a third order remainder term in compliance with (27), with
EU = U − Uh = (ev, ep) the “global” primal error.

Proof. The thesis follows essentially from the abstract result of Proposition 3.3. In
particular, we focus on the term I, by showing that it can bounded by the quantity
η1 defined in (45). With this aim, we first exploit the definitions (29) of the weak
residuals, while recalling that the primal and the dual error can be decomposed as
U − Uh = UD − UD,h + e0,U , Z − Zh = ZD − ZD,h + e0,Z , respectively, with e0,U =
(e0,v, ep)

T ∈ V0 and e0,Z = (e0,w, er)
T ∈W0. This yields

I =
1

2

[
F ((I − PW )e0,Z)− a(Uh)((I − PW )e0,Z)

]

+
1

2

[
J ′(Uh)((I − PV )e0,U )− a′(Uh)(Zh, (I − PV )e0,U )

]
= Ia + Ib,

I denoting the identity operator and with PV and PW defined in terms of the Lagrange
and Clément interpolant assigned in § 2.2, as PV = PW = (Πh , Ih ). We deal now with
Ia and Ib in turn, starting from the first term. We employ the definitions (34) identifying
the primal formulation, to get

Ia =
1

2

[ ∫

Ω

~f · ((I −Πh)e0,w) dΩ +

∫

ΓN

~g · ((I −Πh)e0,w) ds

−
∫

Ω

2µ ε(~vh) : ε((I −Πh)e0,w) dΩ−
∫

Ω

(~vh · ∇)~vh · ((I −Πh)e0,w) dΩ

+

∫

Ω

ph∇ · ((I −Πh)e0,w) dΩ−
∫

Ω

((I − Ih)er)∇ · ~vh dΩ
]
.

(47)

Now let us resort to a routine procedure in the context of a posteriori error estimator
(see, for instance, [34]). In more detail we first split all the integrals in (47) using
the identities

∫
Ω
· dΩ =

∑
K∈Th

∫
K
· dK and

∫
ΓN

· ds =
∑

K∈Th

∫
∂K∩ΓN

· ds; then we

integrate by parts the terms stemming from the third and fifth integrand in (47). After
grouping the resulting terms, this yields

Ia =
1

2

∑

K∈Th

{ ∫

K

[
~f +∇ · σ(~vh, ph)− (~vh · ∇)~vh

]
· (I −Πh)e0,w dK

+

∫

K

(−∇ · ~vh)(I − Ih)er dK −
∫

∂K∩E int

h

σ(~vh, ph)~nK · (I −Πh)e0,w ds

−
∫

∂K∩ΓD

σ(~vh, ph)~nK · (I −Πh)e0,w ds

+

∫

∂K∩ΓN

(~g − σ(~vh, ph)~nK) · (I −Πh)e0,w ds

}
.

(48)
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Notice that the second boundary integral vanishes as (I − Πh)e0,w = 0 on ΓD. How-
ever, since the boundary residual jp,e on ΓD plays a meaningful role in our final error
estimator, we keep and involve it in the following even if aware of introducing a slight
overestimation. On the other hand, the inclusion of this term could allow a reliable
control of the data approximation if one took into account the quantities η2 and η3 for
the purpose of mesh adaption.

Let us now address the dual contribution Ib: still using (29) combined with the
definition of the dual forms (38), we obtain

Ib =
1

2

[ ∫

Ω

jw · (I −Πh)e0,v dΩ +

∫

Ω

jr (I − Ih)ep dΩ +

∫

ΓN

~q · (I −Πh)e0,v ds

−
∫

Ω

2µ ε((I −Πh)e0,v) : ε(~wh) dΩ−
∫

Ω

((I −Πh)e0,v · ∇)~vh · ~wh dΩ

−
∫

Ω

(~vh · ∇) (I −Πh)e0,v · ~wh dΩ−
∫

Ω

rh∇ · (I −Πh)e0,v dΩ

+

∫

Ω

(I − Ih)ep∇ · ~wh dΩ
]
.

Proceeding in an analogous fashion as for the primal contribution via a proper integra-
tion by parts, we obtain

Ib =
1

2

∑

K∈Th

{ ∫

K

[
jw +∇ · σA(~wh, rh)− (∇~vh)T ~wh + (∇ · ~vh) ~wh

+ (~vh · ∇) ~wh

]
· (I −Πh)e0,v dΩ +

∫

K

(jr +∇ · ~wh)(I − Ih)ep dΩ

−
∫

∂K∩E int

h

[
σA(~wh, rh)~nK + (~vh · ~nK) ~wh

]
· (I −Πh)e0,v ds

+

∫

∂K∩ΓN

[
~q − σA(~wh, rh)~nK − (~vh · ~nK) ~wh

]
· (I −Πh)e0,v ds

−
∫

∂K∩ΓD

[
σA(~wh, rh)~nK + (~vh · ~nK) ~wh

]
· (I −Πh)e0,v ds

}
.

(49)

Also in (49) we have a term, the last integral, vanishing and we still keep it in the
analysis, exactly for the same reasons as above. In both (48) and (49), we now rewrite
the integrals involving the interior edges using the property

∑

K∈Th

∫

∂K∩E int

h

(·)~nK ds =
1

2

∑

K∈Th

∫

∂K∩E int

h

[ (·)~nK ] ds,

[·] standing for the jump function. The anisotropic interpolation error estimates in
Lemmas 2.1-2.2 are then applied. Finally the definitions (40)-(43) of the internal and
boundary residuals deliver the estimator η1.

As for the terms η2, η3, they are associated with the weak residuals II and III in

(30), respectively. Their expression is obtained following the same steps as for the term

I, but applied to the data errors ~vD−~vD,h and ~wD− ~wD,h. Note that in such a case the

anisotropic error estimates are not exploited. As for the other terms in (44), η4−η9, they

are a straightforward translation of the terms IV-IX in (30). In particular, η9 yields the

expression of (27) for the Navier-Stokes equations, and this concludes the proof. �
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With a view to the actual numerical simulation, some remarks are in order,
essentially as the structure of the terms constituting (44) is complex and all
the quantities ηi, for i = 1, · · · , 9, are not explicitly computable, due to the
dependence on the unknown primal and dual errors. To overcome this drawback,
firstly we decided in favor of the computationally cheap option of implementing
only the estimator η1 and neglecting the other terms ηi, i = 2, · · · , 9. The
rationale behind this choice is that we expect these latter to be of a higher order
than η1, with respect to the mesh size. A rigorous justification of this statement,
in an anisotropic context, is beyond the purpose of this paper, a corresponding a
priori analysis being involved. In the isotropic case, an attempt in this direction
is considered in [3]. Secondly, to make the estimator η1 effective, in the spirit
of what done in [26], we adopt the philosophy of the Zienkiewicz-Zhu gradient
recovery procedure [35, 36]. In more detail, as the weights (46) depend on the
first and second derivatives of the exact solution, we substitute these derivatives
with suitably recovered ones, moving from the approximate solutions (~vh, ph)
and (~wh, rh). The actual implementation for the first derivatives is based on the
area-weighted strategy of [29], while that for the second derivatives just relies
on the already recovered first derivatives.

Remark 4.2 Throughout the numerical computations we employ the GALS sta-
bilization of [16] plus the anisotropic recipe for the parameters τK proposed in
[27].

5 The adaptive procedure

We employ, in a predictive fashion, a metric-based adaptive procedure exploiting
the estimator η1 in (45), embedded with the Zienkiewicz-Zhu recovery procedure.

Either of two different approaches are typically pursued in a mesh adaption
framework:

a) given a constraint on the maximum number of elements, find the mesh
providing the most accurate numerical solution;

b) given a constraint on the accuracy of the numerical solution, find the mesh
with the least number of elements.

We here detail the approach b), while providing some comments on a) in Remark
5.1.
We recall that a metric is induced by a symmetric positive definite tensor field
M̃ : Ω → R

2×2 (see, e.g., [17]). We first aim at clarifying the link existing
between metric and mesh. With any given mesh Th, we can associate a piecewise
constant metric M̃Th

, such that, M̃Th
|K = M̃K = B−2

K = RT
KΛ−2

K RK , ∀K ∈ Th,
the matrices RK and ΛK being the ones defined in § 2.2. With respect to this
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metric, any triangle K of Th is unit equilateral, i.e.

‖e‖fMTh

=

∫ |e|

0

√
~t T M̃Th

(s)~t ds = 1,

with ~t the unit tangent vector aligned with the generic edge e of K.
Suppose now that a metric M̃ is given. We show how an optimal mesh with
respect to M̃ can be defined in terms of a so-called matching condition. With
this respect, it is first of all convenient to diagonalize the tensor field M̃ as
M̃ = R̃T Λ̃−2R̃, with Λ̃ = diag(λ̃1, λ̃2) and R̃T = [~̃r1, ~̃r2] positive diagonal and
orthogonal matrices, respectively. For practical reasons, we approximate the
quantities λ̃1, λ̃2, ~̃r1 and ~̃r2 identifying M̃ via functions piecewise constant over
the triangulation Th, such that ~̃ri|K = ~̃ri,K ∈ R

2, λ̃i|K = λ̃i,K ∈ R, ∀K ∈ Th and
with i = 1, 2. We can thus introduce the matching condition:

Definition 5.1 A mesh Th matches an assigned metric M̃ if, ∀K ∈ Th,

M̃ |K = M̃Th
|K , (50)

i.e. ~̃ri,K = ~ri,K, λ̃i,K = λi,K, for i = 1, 2, the notation in § 2.2 being maintained.

We stress that in our case the tensor field M̃ is not explicitly given. Rather
it must be obtained by solving the optimization problem b) reformulated with
respect to the optimal metric (rather than the optimal mesh) in view of Defini-
tion 5.1.
The optimal metric turns out to be consequently our actual unknown.
In more detail, the computation of M̃ (and of the corresponding matching trian-
gulation) is obtained via an iterative procedure: at each iteration, say j, we are

dealing with three entities, namely the actual mesh T (j)
h , the new metric M̃ (j+1)

computed on T (j)
h , and the updated mesh T (j+1)

h matching M̃ (j+1). Both the

problems (39) are first solved on T (j)
h . Then their solutions are used to set

up suitable local optimization problems (one for each K ∈ T (j)
h ), with the aim

of identifying the metric M̃ (j+1) approximating the optimal metric M̃ , satis-

fying criterion b). Via the matching condition (50), the new mesh T (j+1)
h is

then built. This last task can be accomplished via proper metric-based mesh
generators, such as, for instance, BAMG ([21]).

Let us now detail the local optimization procedure. We exemplify it on a
typical term constituting the estimator η1 represented by a product of the form
Rs

p,K ωs
d,K (or Rs

d,K ωs
p,K), for s = 1, 2. The term identified by the choice s = 3

will be separately managed. We aim at rewriting the term Rs
p,K ωs

d,K as

Rs
p,K ωs

d,K = αs
p,K R̂s

p,K ω̂s
d,K , (51)

where αs
p,K depends only on the area |K| ofK, R̂s

p,K is approximately a pointwise
value (for a sufficiently fine mesh), while ω̂s

d,K = ω̂s
d,K(~r1,K , sK) gathers the
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anisotropic information (i.e. the stretching and the orientation) associated with
K. In view of b) we first observe that minimizing the number of elements is
equivalent to maximizing the area of each element. Thus as we are also interested
in enforcing the equidistribution of the error by requiring that the term in (51)
is equal to a local tolerance, say τ , ∀K, the only way to satisfy b) is to minimize
ω̂s

d,K with respect to ~r1,K , sK . Then the values of λ1,K , λ2,K are computed, via
the equidistribution constraint, starting from the optimal value identified for sK.
Let us begin by recovering identity (51). Moving from (46) it suffices to make
the following choices:

αs
p,K =

|K|2
|K̂|

, R̂s
p,K =

Rs
p,K

|K|1/2
,

ω̂s
d,K =

[
s2K

L1,1
K (es0,w)

|K| + 2
L1,2

K (es0,w)

|K| +
1

s2K

L2,2
K (es0,w)

|K|

]1/2

,

(52)

the relation |K| = |K̂|λ1,Kλ2,K having being exploited. We are now in a position
to identify the following local constrained minimization:

min
sK≥1,~ri,K ·~rj,K=δij

ω̂s
d,K(~r1,K , sK), (53)

δij being the Kronecker symbol and where it is understood that ~r1,K and ~r2,K

are orthonormal vectors. The following statement provides us with the desired
result:

Proposition 5.1 Let the Hessian matrix HK(es0,w) be constant over K and

let {~hi,K , hi,K} denote the eigenvector-eigenvalue pair of HK(es0,w)/|K|1/2, with
|h1,K | ≥ |h2,K | > 0. Then the minimum (53) is reached for the choices

~r1,K = ~h2,K and sK =

∣∣∣∣
h1,K

h2,K

∣∣∣∣
1/2

,

and
√

2 |h1,Kh2,K | is the minimum value thus attained by ω̂s
d,K.

The single values λ1,K , λ2,K are then obtained by solving the two equations

|K|2
|K̂|

R̂s
p,K

√
2|h1,Kh2,K | = τ and

λ1,K

λ2,K
= sK =

∣∣∣∣
h1,K

h2,K

∣∣∣∣
1/2

, (54)

under the assumption that the dependence of R̂s
p,K on λ1,K , λ2,K is treated ex-

plicitly, using the corresponding known values at the previous iterate. With
simple algebraic manipulations we obtain from (54) the sought recipes for λ1,K

and λ2,K given by

λ1,K =

(
1√

2 |K̂| R̂s
p,K

∣∣∣∣
h1,K

h3
2,K

∣∣∣∣
1/2

τ

)1/4

, λ2,K =

(
1√

2 |K̂| R̂s
p,K

∣∣∣∣
h2,K

h3
1,K

∣∣∣∣
1/2

τ

)1/4

.
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In the same spirit let us now deal with the term R3
p,K ω3

d,K (or R3
d,K ω3

p,K). We
rewrite it as

R3
p,K ω3

d,K = α3
p,K R̂3

p,K ω̂3
d,K , (55)

where α3
p,K =

|K|3/2

|K̂|1/2
, R̂3

p,K =
R3

p,K

|K|1/2
and

ω̂3
d,K =

[
sK

(
~r T
1,K

GK(er)

|K| ~r1,K

)
+

1

sK

(
~r T
2,K

GK(er)

|K| ~r2,K

)]1/2

.

The local constrained minimum we are looking for is

min
sK≥1,~ri,K ·~rj,K=δij

ω̂3
d,K(~r1,K , sK), (56)

with corresponding solution provided by the following

Proposition 5.2 Let {~gi,K , gi,K} be the eigenvector-eigenvalue pair of GK(er)/|K|
with g1,K ≥ g2,K > 0. Then the minimum (56) is identified by the choices

~r1,K = ~g2,K and sK =

(
g1,K

g2,K

)1/2

,

yielding the value
(
2
√
g1,Kg2,K

)1/2
for ω̂3

d,K.

The corresponding optimal values for λ1,K , λ2,K are finally obtained by solv-
ing the two equations

|K|3/2

|K̂|1/2
R̂3

p,K

(
2
√
g1,Kg2,K

)1/2
= τ and

λ1,K

λ2,K
= sK =

(
g1,K

g2,K

)1/2

(57)

still assuming that R̂3
p,K depends on the values λ1,K , λ2,K at the previous iterate.

System (57) provides us with the distinct values

λ1,K =

(
1√

2 |K̂| R̂3
p,K

(
g1,K

g2
2,K

)1/2

τ

)1/3

, λ2,K =

(
1√

2 |K̂| R̂3
p,K

(
g2,K

g2
1,K

)1/2

τ

)1/3

.

Both the proofs of Propositions 5.1 and 5.2 are omitted for brevity.

By carrying out similar procedures for all the terms comprising the estimator
η1 in (45), we end up with a total of six metrics, three identified by the primal
weights and three from the dual ones. The matter is now how to merge these
six sources of anisotropic meshes in view of a single adapted anisotropic grid
to contain the computational burden. We explain below how the six metrics
can be combined into only two collecting the contributions due to the velocities
and to the pressures, respectively. In such a case only two local optimization
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problems need to be solved. In doing so, we aim at replacing η1 with two new
contributions, enjoying, at the same time, both reliability and the format (51).
Then the new structure of the weights will still allow for an exact solution of
the two corresponding minimization problems, similar to the ones tackled in
Propositions 5.1 and 5.2. For this purpose, we rename the velocity and pressure
contributions in (45) as

Tv,K =
2∑

s=1

{
Rs

p,K ωs
d,K+Rs

d,K ωs
p,K

}
and Tp,K = R3

p,K ω3
d,K+R3

d,K ω3
p,K,∀K ∈ Th.

(58)
The next result can thus be stated:

Proposition 5.3 The velocity and pressure contributions Tv,K and Tp,K in (58)
can be bounded as

Tv,K ≤ 2αv,K ω̂v,K , Tp,K ≤
√

2αp,K ω̂p,K, (59)

where:

αv,K =
|K|2
|K̂|

; ω̂v,K =

[
s2K

L1,1
v,K

|K| + 2
L1,2

v,K

|K| +
1

s2K

L2,2
v,K

|K|

]1/2

, (60)

with

Li,j
v,K =

∫

K

(
~r T
i,K

[ 2∑

s=1

(
R̂s

p,K|HK(es0,w)|+R̂s
d,K |HK(es0,v)|

)]
~rj,K

)2
dK, for i, j = 1, 2,

(61)
the symbol | · | denoting now the modulus matrix, and with R̂s

p,K (R̂s
d,K) defined

according to (52), for s = 1, 2;

αp,K =
|K|3/2

|K̂|1/2
; ω̂p,K =

[
sK

(
~r T
1,K

Gp,K

|K| ~r1,K

)
+

1

sK

(
~r T
2,K

Gp,K

|K| ~r2,K

)]1/2

,

the matrix Gp,K being defined by

Gp,K = (R̂3
p,K)2GK(er) + (R̂3

d,K)2GK(ep),

with R̂3
p,K (R̂3

d,K) as in (55).

Notice that the quantities Li,j
v,K in (61) enjoy the same form as (1), the

Hessian H(v) being now replaced by the average

2∑

s=1

(
R̂s

p,K |HK(esw)|+ R̂s
d,K |HK(esv)|

)
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of the Hessian matrices associated with the primal and dual errors, each weighted
by the complemental residual. The matrix Gp,K averages in a similar way
both primal (GK(ep)) and dual (GK(er)) contributions. Moreover also the new
weights ω̂v,K and ω̂p,K preserve the same structure as the corresponding ones
ω̂s

p,K and ω̂s
d,K , with s = 1, 2 in the case of the velocity contribution ans s = 3

for the pressure.
The proof of Proposition 5.3 requires two preliminary Lemmas.

Lemma 5.1 Let A = QΛQT ∈ R
2×2 be a symmetric matrix, with Q and Λ =

diag(λ1,A, λ2,A) the orthogonal and the diagonal factor, respectively. Then it
holds

s2K(~r T
1,KA~r1,K)2 + 2 (~r T

1,KA~r2,K)2 + s−2
K (~r T

2,KA~r2,K)2

≤ s2K(~r T
1,K |A|~r1,K)2 + 2 (~r T

1,K |A|~r2,K)2 + s−2
K (~r T

2,K |A|~r2,K)2,
(62)

where |A| = Q|Λ|QT is the modulus matrix of A, with |Λ| = diag(|λ1,A|, |λ2,A|).
Proof. The thesis is equivalent to proving that ‖A‖F ≤ ‖Ā‖F, with ‖ · ‖F the
Frobenius norm of a matrix, where

A =

[
sK ~r T

1,KA~r1,K ~r T
1,KA~r2,K

~r T
1,KA~r2,K s−1

K ~r T
2,KA~r2,K

]
, Ā =

[
sK ~r T

1,K |A|~r1,K ~r T
1,K |A|~r2,K

~r T
1,K |A|~r2,K s−1

K ~r T
2,K |A|~r2,K

]
.

Moreover, it suffices to consider a diagonal matrix A. Indeed, we have

~r T
i,KA~rj,K = ~r T

i,KQΛQT ~rj,K = ~q T
i,KΛ ~qj,K ,

with ~qi,K = QT~ri,K , and ~qi,K · ~qj,K = δij . Thus the ~qi,K ’s can replace the ~ri,K ’s which
are orthonormalized too. Then let ~q1,K = [cos θ, sin θ]T and ~q2,K = [− sin θ, cos θ]T , with
0 ≤ θ < π. A straightforward calculation shows that

A =

[
sK(λ1,A cos2 θ + λ2,A sin2 θ) (λ2,A − λ1,A) cos θ sin θ

(λ2,A − λ1,A) cos θ sin θ s−1
K (λ1,A sin2 θ + λ2,A cos2 θ)

]
,

Ā =

[
sK(|λ1,A| cos2 θ + |λ2,A| sin2 θ) (|λ2,A| − |λ1,A|) cos θ sin θ

(|λ2,A| − |λ1,A|) cos θ sin θ s−1
K (|λ1,A| sin2 θ + |λ2,A| cos2 θ)

]

and
‖Ā‖F − ‖A‖F = 2 (|λ1,Aλ2,A| − λ1,Aλ2,A)(sK − s−1

K )2 cos2 θ sin2 θ ≥ 0.

This concludes the proof. �

Lemma 5.2 Let A,B ∈ R
2×2 be symmetric matrices. Then the following rela-

tion can be proved:

s2K [(~r T
1,K |A|~r1,K)2 + (~r T

1,K |B|~r1,K)2] + 2 [(~r T
1,K |A|~r2,K)2 + (~r T

1,K |B|~r2,K)2]

+ s−2
K [(~r T

2,K |A|~r2,K)2 + (~r T
2,K |B|~r2,K)2] ≤ s2K [~r T

1,K(|A|+ |B|)~r1,K ]2

+ 2 [~r T
1,K(|A| + |B|)~r2,K ]2 + s−2

K [~r T
2,K(|A| + |B|)~r2,K ]2,

(63)
|A| and |B| coinciding with the modulus matrices of A and B, respectively.
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Proof. The assertion amounts to proving that ‖Ā‖2F + ‖B̄‖2F ≤ ‖Ā+ B̄‖2F, if we make
the identifications

Ā =

[
sK ~r T

1,K |A|~r1,K ~r T
1,K |A|~r2,K

~r T
1,K |A|~r2,K s−1

K ~r T
2,K |A|~r2,K

]
, B̄ =

[
sK ~r T

1,K |B|~r1,K ~r T
1,K |B|~r2,K

~r T
1,K |B|~r2,K s−1

K ~r T
2,K |B|~r2,K

]
.

Using the definition of the Frobenius norm, we first observe that

‖Ā+ B̄‖2F − ‖Ā‖2F − ‖B̄‖2F = 2
[
s2K(~r T

1,K |A|~r1,K)(~r T
1,K |B|~r1,K)

+ 2 (~r T
1,K |A|~r2,K)(~r T

1,K |B|~r2,K) + s−2
K (~r T

2,K |A|~r2,K)(~r T
2,K |B|~r2,K)

]
= 2 Ā : B̄,

where Ā : B̄ =
∑2

i,j=1 ĀijB̄ij is the tensor scalar product. We then prove that both

Ā, B̄ are symmetric and positive semi-definite. We check this only for Ā, the proof
for B̄ being analogous. The symmetry of Ā trivially holds. To verify the positive semi-
definiteness, we prove that Ā11 ≥ 0, detĀ ≥ 0. For this purpose, let ~r1,K = [cos θ, sin θ]T

and ~r2,K = [− sin θ, cos θ]T , with 0 ≤ θ < π. Moreover, as in the proof of Lemma 5.1, it
suffices to consider a diagonal matrix A. Then we have,

Ā11 = sK

(
~r T
1,K |A|~r1,K

)
= sK

(
|λ1,A| cos2 θ + |λ2,A| sin2 θ

)
≥ 0,

and

detĀ = (|λ1,A| cos2 θ + |λ2,A| sin2 θ) (|λ1,A| sin2 θ + |λ2,A| cos2 θ)

− [ cos θ sin θ (|λ2,A| − |λ1,A|) ]2 = |λ1,A| |λ2,A| (cos2 θ + sin2 θ)2 = |λ1,A| |λ2,A| ≥ 0.

Thus, thanks to the positive semi-definiteness, it holds also Ā22 ≥ 0, B̄22 ≥ 0, and

|Ā12| ≤
√
Ā11Ā22, |B̄12| ≤

√
B̄11B̄22. It follows that

‖Ā+ B̄‖2F − ‖Ā‖2F − ‖B̄‖2F = 2 Ā : B̄ = 2 (Ā11B̄11 + 2 Ā12B̄12 + Ā22B̄22)

≥ 2 (Ā11B̄11 + Ā22B̄22 − 2
√
Ā11Ā22

√
B̄11B̄22) = 2 (

√
Ā11B̄11 −

√
Ā22B̄22)

2 ≥ 0,

and this ends the proof. �

Result (63) can be easily generalized by induction to the case of n symmetric
matrices. We can now close Proposition 5.3. Proof. Let us first consider the
velocity term Tv,K . Moving from identity (51), we can write that

Tv,K =
2∑

s=1

{
Rs

p,K ωs
d,K +Rs

d,K ωs
p,K

}
= αv,K

2∑

s=1

{
R̂s

p,K ω̂s
d,K + R̂s

d,K ω̂s
p,K

}
, (64)

where αv,K = αs
p,K = αs

d,K = |K|2/|K̂| according to (52). Now, using the property

( n∑

i=1

a2
i

)1/2

≤
n∑

i=1

ai ≤
√
n

( n∑

i=1

a2
i

)1/2

∀n ∈ N (65)

and with ai ≥ 0, ∀i = 1, · · · , n, we can bound (64) as

Tv,K ≤ 2αv,K

[ 2∑

s=1

{
(R̂s

p,K ω̂s
d,K)2 + (R̂s

d,K ω̂s
p,K)2

}]1/2

. (66)
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Via (52), let us now rewrite the right-hand side of (66) by expanding the definition of
the weights ω̂s

p,K , ω̂s
d,K as

Tv,K ≤ 2αv,K

[ 2∑

s=1

{
s2K
|K|

[
(R̂s

p,K)2L1,1
K (es

0,w) + (R̂s
d,K)2L1,1

K (es
0,v)

]

+
2

|K|
[
(R̂s

p,K)2L1,2
K (es

0,w) + (R̂s
d,K)2L1,2

K (es
0,v)

]

+
1

s2K

1

|K|
[
(R̂s

p,K)2L2,2
K (es

0,w) + (R̂s
d,K)2L2,2

K (es
0,v)

]} ]1/2

,

i.e., using (1), as

Tv,K ≤ 2αv,K

[ 2∑

s=1

∫

K

{
s2K
|K|

[(
~r T
1,KR̂

s
p,KHK(es

0,w)~r1,K

)2
+

(
~r T
1,KR̂

s
d,KHK(es

0,v)~r1,K

)2
]

+
2

|K|
[(
~r T
1,KR̂

s
p,KHK(es

0,w)~r2,K

)2
+

(
~r T
1,KR̂

s
d,KHK(es

0,v)~r2,K

)2
]

+
1

s2K

1

|K|
[(
~r T
2,KR̂

s
p,KHK(es

0,w)~r2,K

)2
+

(
~r T
2,KR̂

s
d,KHK(es

0,v)~r2,K

)2
]}

dK

]1/2

.

(67)
The corresponding estimate in (59) now easily follows by properly applying to (67)
Lemma 5.1 and the generalization of Lemma 5.2 to the case of four matrices. In more de-
tail let us focus on what’s up to the term associated with the factor s2K/|K|: from Lemma

5.1 used by identifying the matrix A in (62) in turn with the matrices R̂1
p,KHK(e10,w),

R̂2
p,KHK(e20,w), R̂1

d,KHK(e10,v), R̂
2
d,KHK(e20,v), we first get

∫

K

[(
~r T
1,KR̂

1
p,KHK(e10,w)~r1,K

)2
+

(
~r T
1,KR̂

1
d,KHK(e10,v)~r1,K

)2

+
(
~r T
1,KR̂

2
p,KHK(e20,w)~r1,K

)2
+

(
~r T
1,KR̂

2
d,KHK(e20,v)~r1,K

)2
]
dK

≤
∫

K

[(
~r T
1,KR̂

1
p,K |HK(e10,w)|~r1,K

)2
+

(
~r T
1,KR̂

1
d,K |HK(e10,v)|~r1,K

)2

+
(
~r T
1,KR̂

2
p,K |HK(e20,w)|~r1,K

)2
+

(
~r T
1,KR̂

2
d,K |HK(e20,v)|~r1,K

)2
]
dK.

Then we employ the extension of Lemma 5.2 to the four matrices A = R̂1
p,KHK(e10,w),

B = R̂1
d,KHK(e10,v), C = R̂2

p,KHK(e20,w), D = R̂2
d,KHK(e20,v), yielding

∫

K

[(
~r T
1,KR̂

1
p,KHK(e10,w)~r1,K

)2
+

(
~r T
1,KR̂

1
d,KHK(e10,v)~r1,K

)2

+
(
~r T
1,KR̂

2
p,KHK(e20,w)~r1,K

)2
+

(
~r T
1,KR̂

2
d,KHK(e20,v)~r1,K

)2
]
dK

≤
∫

K

[
~r T
1,K

(
R̂1

p,K |HK(e10,w)|+ R̂1
d,K |HK(e10,v)|

+ R̂2
p,K |HK(e20,w)|+ R̂2

d,K |HK(e20,v)|
)
~r1,K

]2

dK,

i.e., the corresponding term L1,1
v,K in (60) according to the definition (61).

After analyzing the terms related to the primal and dual velocities, let us consider the
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pressure-dependent ones. Thanks to (55) we first have

Tp,K = R3
p,K ω3

d,K +R3
d,K ω3

p,K = αp,K(R̂3
p,K ω̂3

d,K + R̂3
d,K ω̂3

p,K), (68)

with αp,K = α3
p,K = α3

d,K = |K|3/2/|K̂|1/2. The right-hand side of (68) can be rewritten

taking advantage from the definition of the weights ω̂3
p,K , ω̂3

d,K as

Tp,K = αp,K

[
sK

(
~r T
1,K (R̂3

p,K)2
GK(er)

|K| ~r1,K

)
+

1

sK

(
~r T
2,K (R̂3

p,K)2
GK(er)

|K| ~r2,K

)]1/2

+

[
sK

(
~r T
1,K (R̂3

d,K)2
GK(ep)

|K| ~r1,K

)
+

1

sK

(
~r T
2,K (R̂3

d,K)2
GK(ep)

|K| ~r2,K

)]1/2

,

and, using (65) yields the corresponding estimate in (59). �

Proposition 5.3 thus allows us to manage just two metrics rather than the six
ones identified by the estimator η1 in (45). Likewise we are led to solve just
two local optimization problems in the same spirit as Proposition 5.1 and 5.2,
respectively. The only slight difference is the presence of the residuals into the
weights in the case of (59) rather than as a factor multiplying the weight itself
as in (51) or (55). This impasse is overcome simply by introducing a fictitious
residual identically equal to 1 in (59).
To summarize, the adaptive algorithm used in practice reads:

Algorithm 5.1 Set j = 0:

1. build the background mesh T (j)
h ;

2. solve the primal and dual problems (39);

3. solve the local minimization problems involving ω̂v,K and ω̂p,K

for the pairs (s̃v,K , ~̃r1,v,K) and (s̃p,K, ~̃r1,p,K), respectively;

4. via the equidistribution principle, compute (λ̃1,v,K , λ̃2,v,K) and

(λ̃1,p,K , λ̃2,p,K) starting from the optimal values s̃v,K, s̃p,K,

respectively;

5. build up the new metrics M̃
(j+1)
v and M̃

(j+1)
p ;

6. construct the new mesh T (j+1)
h matching either of the two metrics

or a suitable intersection of them;

7. if a suitable stopping criterion is met, exit; else j ← j + 1
and go to 2.

For the concept of metric intersection we refer, for instance, to [17].

Remark 5.1 If one is interested in the approach a) stated at the beginning of
the section, the above adaptive procedure can be recycled except for the choice of
the tolerance τ , now depending on the desired number of elements.
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6 Numerical results

For the purpose of validating the overall adaptive procedure itemized in the
Algorithm 5.1, we report some numerical test cases.

6.1 The Brenner & Scott test case

0 0.2 0.4 0.6 0.8
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Γ Γin out

Figure 2: Domain Ω for the Brenner & Scott test case.

Let us identify the computational domain Ω with the one sketched in Fig-
ure 2. It models a FEM-shaped channel, and it is faithfully inspired by the
Brenner & Scott’s book cover [6]. Full Dirichlet boundary conditions are as-
signed on ∂Ω: in particular, we choose¡

~v =
103

6.4
(0, x1 (0.16 − x1))

T on Γin = {x2 = 0} ∩ {0 < x1 < 0.16},

~v =
103

6.4
(0, (0.81 − x1)(0.97 − x1))

T on Γout = {x2 = 0} ∩ {0.81 < x1 < 0.97},
~v = ~0 elsewhere,

Γin and Γout representing the inflow and the outflow section, respectively (see
Figure 2). Finally, the kinematic viscosity µ is set equal to 4/2175, so that the
Reynolds number Re = µ−1

∫
Γin

~v · ~nds based on the flux at the inflow, is equal
to 58.

We consider the (global) functional J(U) associated with the kinetic energy
over the whole domain Ω

Ekin =
1

2

∫

Ω
|~v|2 dΩ. (69)

We employ Algorithm 5.1: in particular, for generating the successive grids,
we adopt the metric M̃v only, for a target number of elements fixed to 3000.
Figure 3 gathers the initial grid (top-left) together with the adapted meshes
yielded by the first three iterations of the procedure. The final mesh (bottom-
center) highlights the regions which most influence the computation of the kinetic
energy: we recall that the orientation and the stretching of the elements depend
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Figure 3: Brenner & Scott test case with J(U) = Ekin, Re = 58, and a target
number of elements fixed to 3000. Sequence of adapted meshes: initial (top-left),
first (top-center), second (bottom-left) and third adapted grid (bottom-center).
Details of the third adapted mesh (top-right and bottom-right).

on the weighted Hessian, merging the primal and dual contributions of the errors
on the velocities, and that the area of the triangles is inversely proportional to
the size of the residuals (see, e.g., (54)). Note that there are zones, such as the
ones on top of the domain, which contribute less, as the main bendy flow skips
them. The two figures on the right of Figure 3 zoom in on some details of the
last adapted mesh: in more detail, the lateral expansions characterizing the F
and E letters (top-right) emphasize the presence of recirculation, while the two
legs of the M (bottom-right) stress the bendy pattern of the main flow.

As a second run we decrease by a factor 5 the viscosity, so that the Reynolds
number grows five times as large as in the previous case, i.e., Re = 290. The
same velocity profiles are enforced at both the inflow and outflow sections. The
initial mesh (top-left) plus the three resulting adapted meshes are collected in
Figure 4 (left and center) as well as some details (right). On contrasting the
two final (bottom-center) meshes in Figures 3-4 as well as their corresponding
zoomed details, we observe that, in the case of the higher Reynolds number, the
flow strengthens and straightens out, exhibiting a trend away from the lateral
zones. Moreover, after the final turn, the higher velocity causes the flow to hit
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Figure 4: Brenner & Scott test case with J(U) = Ekin, Re = 290, and a target
number of elements fixed to 3000. Sequence of adapted meshes: initial (top-left),
first (top-center), second (bottom-left) and third adapted grid (bottom-center).
Details of the third adapted mesh (top-right and bottom-right).

on the vertical border of the domain before coming back towards the center of
the channel. The structure of the adapted mesh is also different: in the right
M leg of Figure 3 the elements cluster around the center of the pipe, while in
Figure 4 around the lateral boundaries.

6.2 The double ring test case

We consider a test case where the anisotropic features of the solution are em-
phasized. In particular we let the domain Ω = (0, 1)2, µ = 0.01, and we choose
the source term ~f such that the exact solution (~v, p), with ~v = [vr, vθ]

T , in polar
coordinates pinned at (0.5,0.5), coincides with

vr = 0, vθ = exp
[
−

(r − r1
δ

)2 ]
+ exp

[
−

(r − r2
δ

)2 ]
, p = 0,

with r =
√

(x1 − 0.5)2 + (x2 − 0.5)2, r1 = 0.15, r2 = 0.3 and δ = 0.01. The
flow field describes two thin concentric ring-like vortices, whose width is O(δ)
around r = r1 and r = r2, respectively. This flow may arise, for instance, due to
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the effect of a particular wind pattern, or of a stirring force modeled by ~f . The
Reynolds number computed as Re = maxr vθ(r)r2/µ is equal to 30.
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Figure 5: Double ring test case with J(U) = Ekin, Re = 30, and a target
number of elements equal to 3000. Sequence of adapted meshes: initial (top-left),
first (top-center), second (bottom-left) and sixth adapted grid (bottom-center).
Particulars of the last adapted mesh (top-right and bottom-right).

We are interested in computing the total kinetic energy of the fluid so that
the functional J(·) still coincides with (69). Algorithm 5.1 is adopted and

only the metric M̃v is employed for driving the adaptive process, tuned on a
desired number of elements equal to 3000. Figure 5 collects the initial mesh (top-
left), along with the first (top-center), second (bottom-left) and sixth (bottom-
center) adapted mesh. In the two zooms on the left, one can appreciate that
the directional features of the velocity field are quickly captured by the adaptive
procedure: a few iterations suffice to get a quite accurate approximation of the
two vortices, and the mesh elements follow closely the tangential behavior of the
flow pattern.

6.3 The flow past a cylinder test case

This test case represents a typical benchmark problem for the Navier-Stokes
equations ([30]). It aims at computing both the lift and drag coefficients for a
cross-section of a cylinder in a channel flow. This allows us to investigate the
adaptive procedure in a situation where the functional J(·) has a local nature as
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well as the dual problem is fed on nonhomogeneous Dirichlet conditions different
from the ones pertaining to the primal problem.
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Figure 6: Domain Ω for the flow past a cylinder test case.

The computational domain Ω is a rectangular channel, with a width H =
0.41, drilled with a circular hole representing the cross-section of a cylinder
and characterized by a slightly asymmetric configuration (see Figure 6). The
boundary conditions are prescribed as follows: on the inflow section Γin = {x1 =
0} ∩ {0 < x2 < H}, ~v = [vin, 0]

T , with vin = 4Umx2(H − x2)/H
2 the inlet

parabolic profile, and Um = 0.3 the peak velocity; on the outlet section Γout =
{x1 = 2.2} ∩ {0 < x2 < H} the zero-traction condition σ~n = ~0 applies, while
on the remaining rigid walls Γcyl ∪ Γwall, the no-slip constraint ~v = ~0 holds,
where Γcyl,Γwall denote the cylinder and horizontal boundary, respectively. The
viscosity is equal to µ = 0.001, such that the Reynolds number Re = v̄D/µ based
on the mean velocity v̄ = 0.2 and on the cylinder diameter D = 0.1, amounts to
20. The body force ~f vanishes everywhere. The chosen functionals

Jdrag = c0

∫

Γcyl

σ(~v, p)~n · ~1‖ ds and Jlift = c0

∫

Γcyl

σ(~v, p)~n · ~1⊥ ds, (70)

represent the so-called drag and lift coefficients, where ~1‖,~1⊥ are the unit vectors
parallel and orthogonal, respectively to the main flow direction (the horizontal
one), with c0 = 2/Dv̄2. As observed in [18, 2], the employment of (70) does
not yield accurate results, due to the need of computing numerically first-order
derivatives along the cylinder. A more stable and accurate form is obtained by
resorting to an interior rather than a boundary integral. In particular, if we
define the two vector fields

~wdrag =

{
[1, 0]T on Γcyl

~0 on ∂Ω\Γcyl

and ~wlift =

{
[0, 1]T on Γcyl

~0 on ∂Ω\Γcyl,
(71)

associated with the drag and the lift, respectively, it is possible to replace (70)
by the equivalent form

Jdrag = c0 a(U)(Zd) and Jlift = c0 a(U)(Zl), (72)

where a(U)(·) is defined in (34), Zd = [~wdrag, 0]
T , Zl = [~wlift, 0]

T . The vector
fields ~wdrag and ~wlift can thus be profitably thought of as dual velocity fields
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Figure 7: Flow past a cylinder test case for the drag (first and third row) and
the lift (second and fourth row) coefficients, with Re = 20 and a target number
of 3000 elements. Sequence of the third (final) adapted meshes: optimal metric

driven by M̃v (first and second row) and by M̃p (third and fourth row).

satisfying the boundary conditions (71), or, likewise, as suitable extensions into
Ω of the two unit vectors ~1‖,~1⊥, respectively. The dual problem is consequently

obtained after choosing the data jw = ~0, jr = 0 in (35), completed with the
boundary conditions (71). The approximate counterpart of the expressions (72)
is then obtained by replacing each variable with its corresponding numerical
approximation, i.e., as

Jdrag,h = c0 a(Uh)(Zd,h) and Jlift,h = c0 a(Uh)(Zl,h), (73)

with Uh = [~vh, ph]T the primal pair, and Zd,h, Zl,h the discrete dual solutions
corresponding to Zd and Zl, respectively.

We apply Algorithm 5.1 by comparing its performance according to both
the choices M̃v and M̃p in view of the optimal metric. The target number of
elements is always set to 3000. We gather the results of the simulations in
Figure 7: it shows the final (third) adapted mesh associated with the drag (first

and third row) and with the lift (second and fourth row) corresponding to M̃v

(first and second row) and to M̃p (third and fourth row).
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Figure 8: Flow past a cylinder test case for the drag (first and third column)
and the lift (second and fourth column) coefficients, with Re = 20 and a target
number of 3000 elements. Details of the third (final) adapted meshes: optimal

metric driven by M̃v (first and second column) and by M̃p (third and fourth
column).

Table 1: Computation of the drag and lift coefficients: drag (first column),
error on the drag (second column); lift (third column), error on the lift (fourth

column); optimal metric equal to M̃v (top) and to M̃p (bottom).

Jd,h |Jd − Jd,h| Jl,h |Jl − Jl,h|
fMv 5.5437 · 10+0 3.5835 · 10−2 1.0345 · 10−2 2.7399 · 10−4

fMp 5.5463 · 10+0 3.3235 · 10−2 1.0253 · 10−2 3.6600 · 10−4

A zoom around the cylinder of the four adapted meshes in Figure 7 is col-
lected in Figure 8. We can observe that, as far as both coefficients are concerned,
the employment of the pressure based metric M̃p allows for a less clustering of
the mesh elements around the cylinder, while for a fixed metric, both Figures 7
and 8 highlight that the pattern of the mesh associated with the lift exhibits, on
the one hand, some refinement in a wider area downwind the cylinder, but on
the other hand, a more stressed coarseness upwind the cylinder.

The numerical values of the coefficients Jdrag and Jlift obtained through (73)
are shown in Table 1. The errors are obtained using the reference values, correct
up to seven digits, Jdrag = 5.579535 and Jlift = 0.010619 cited in [3]. Firstly
we point out that, as the lift coefficient is two order of magnitude smaller than
the drag coefficient, it is quite difficult to achieve a relative error smaller than
1% for both quantities ([2]). The observed relative errors are of the order of
0.6% and 3% for the drag and lift, respectively; we also emphasize that these
results are obtained with as few elements as about 3000. Moreover, the numerical
computation of the coefficients does not seem to depend much on the type of
metric employed.
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Appendix: Subgrid stabilization

Let us briefly discuss the subgrid stabilization of (9) under the hypothesis V0 =
V = W = W0. The idea is to split the exact solution u ∈ V as u = uh+uB , where
uh ∈ Vh is the computable (finite dimensional) approximation and uB ∈ VB

is the subgrid correction (which is supposed to be unresolved by the current
grid, infinite dimensional and “small”), and V = Vh

⊕
VB . Moreover, it turns

out that VB =
∏

K∈Th
H1

0 (K), that is, the subgrid-scale space comprises infinite
dimensional “bubble” functions, one for each mesh element ([7]). Then it follows
that

〈A(uh + uB), vh + vB〉 = 〈f, vh + vB〉 ∀vh ∈ Vh, ∀vB ∈ VB ,

vh, vB being the corresponding computable and unresolved test functions. Using
the first order Taylor expansion A(uh + uB) ' A(uh) + A′(uh)uB , and taking
into account the independence of vh and vB , we obtain the split problems

〈A(uh) +A′(uh)uB , vh〉 = 〈f, vh〉 ∀vh ∈ Vh,

〈A(uh) +A′(uh)uB , vB〉 = 〈f, vB〉 ∀vB ∈ VB .
(74)

The idea is to solve, in an approximate fashion, (74)2 for uB in terms of uh and
to plug the resulting expression back into (74)1 in view of a single equation for
uh only. Thus we have

〈A′(uh)uB , vB〉 = 〈f −A(uh), vB〉 ∀vB ∈ VB,

and, picking vB independently on each triangle K, we obtain

A′(uh)uB = f −A(uh) ∀K ∈ Th.

It follows that

uB = [A′(uh)]−1 (f −A(uh)) ' τK (f −A(uh)) ∀K ∈ Th, (75)

with τK a suitable approximation to [A′(uh)]−1, typically in algebraic form.
Using the definition of the adjoint operator, the computable problem (74)1 can
be rewritten as

〈A(uh), vh〉+ 〈uB ,A′(uh)∗vh〉 = 〈f, vh〉 ∀vh ∈ Vh,

namely, thanks to (75),

〈A(uh), vh〉+ 〈f −A(uh),A′(uh)∗vh〉τ = 〈f, vh〉 ∀vh ∈ Vh,

the definition (19) having also been employed.
As for the dual problem (16), we can proceed similarly, except that now the
problem is linear. Firstly, as we are actually interested in the discrete dual
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problem, we approximate u through uh, then we introduce the decomposition
z = zh + zB , with zh ∈ Vh and zB ∈ VB , from which we get the split problems

〈A′(uh)∗(zh + zB), vh〉 = 〈j, vh〉 ∀vh ∈ Vh,

〈A′(uh)∗(zh + zB), vB〉 = 〈j, vB〉 ∀vB ∈ VB .
(76)

The problem for the unresolved part is then

〈A′(uh)∗ zB , vB〉 = 〈j −A′(uh)∗ zh, vB〉 ∀vB ∈ VB ,

whose elementwise solution is given by

zB = [A′(uh)∗]−1(j −A′(uh)∗ zh) ' τ∗K(j −A′(uh)∗ zh) ∀K ∈ Th,

τ∗K being a suitable approximation on K to [A′(uh)∗]−1. The final form of the
computable problem (76)1 is thus

〈A′(uh)∗ zh, vh〉+ 〈j −A′(uh)∗ zh,A′(uh) vh〉τ∗ = 〈j, vh〉 ∀vh ∈ Vh.

Summing up what we have obtained so far, we gather the primal and dual
problems for the resolvable scales as

〈A(uh), vh〉+ 〈f −A(uh),A′(uh)∗vh〉τ = 〈f, vh〉 ∀vh ∈ Vh

〈A′(uh)∗ zh, vh〉+ 〈j −A′(uh)∗ zh,A′(uh) vh〉τ∗ = 〈j, vh〉 ∀vh ∈ Vh

(77)

with τK ' [A′(uh)]−1 and τ∗K ' [A′(uh)∗]−1 on K.
Comparing (77) with (21), we deduce that, in the case of subgrid stabiliza-

tion, it holds

Sp(uh) = −A′(uh)∗ and Sd(uh) = −A′(uh),

the piecewise stability constants τK , τ
∗
K being taken equal.

Acknowledgments. The authors thank Professor L.R. Scott for providing
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