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AbstratA setion-averaged shallow water model for appliation to river hy-draulis is derived asymptotially, starting from the three-dimensionalReynolds-averaged Navier-Stokes equations for inompressible free surfae�ows. The resulting setion-averaged equations take into aount the ef-fets of eddy visosity, frition and of the three-dimensional geometry ofthe domain, up to the seond order in the ratio between vertial and lon-gitudinal sales. This novel derivation yields a frition term that is similarto that of the lassial setion-averaged shallow water model, but inludesa orretion that is dependent on the turbulent vertial visosity model.Steady state analyti solutions for open hannel �ow have been omputedfor the derived model, obtaining solutions that are muh loser to those ofthe three-dimensional model than the solutions omputed by the lassialone-dimensional shallow-water models.
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1 IntrodutionThe numerial approximation of three-dimensional free surfae �uid �owin the ontext of environmental modelling appliations an be omputa-tionally very ostly. Therefore, whenever the ratio between the vertialand longitudinal sales is small enough, the so-alled �Shallow Water� ap-proximation is usually onsidered. Models based on this approximationare extensively used to simulate various geophysial phenomena, suh asrivers and oastal �ows [5, 7℄, oeans and even avalanhes [1℄, and theyhave been used in hydraulis for a very long time. When the visosity isnegleted and a retangular hannel setion is assumed, the derivation ofthe one-dimensional Shallow Water system is lassial [12℄. However, thisderivation is unsatisfatory sine visosity e�ets are added a posteriori andthe three-dimensional geometry is not arbitrary.In [6℄, Gerbeau and Perthame derive rigourously, by asymptoti analy-sis, a one-dimensional visous Saint-Venant system from the two-dimensionalNavier-Stokes equations with moleular visosity and �at bottom. The ef-fet of the visosity is reovered in a one-dimensional frition term and in aone-dimensional di�usion term, both obtained through the derivation. The�nal system is a seond order approximation � with respet to the ratiobetween the vertial and longitudinal sales � of the two-dimensional de-parting model. Other systems have been derived in the same spirit. In [11℄,the asymptoti analysis is made through a variable hange in a referenedomain, independent of the ratio parameter and time. Marhe proposes in[9℄ the derivation of a two-dimensional visous shallow water system takinginto aount apillary e�ets, varying topography, and a moleular visos-ity. However, in order to simulate realisti river �ows, three-dimensionalgeometries and turbulene phenomena must be taken into aount. Thus,the Reynolds-averaged Navier-Stokes equations (RANS) on an arbitrarythree-dimensional domain are a more appropriate starting point for thederivation of simpler systems. In [4℄, Saleri et al. derived a two-dimensionalvisous shallow water system from the three-dimensional RANS equations,taking into aount a non-�at bottom, atmospheri pressure e�ets andonsidering a onstant vertial eddy visosity.In this paper, we have hosen to proeed as in [6℄, extending the analysisto the three-dimensional RANS equations with anisotropi Reynolds ten-sor for free surfae �ows in arbitrary geometries. We propose a rigourousderivation of a setion-averaged system, inluding the e�ets of eddy vis-osity and frition. This derivation is also aimed at providing an adequateframework for the rigorous derivation of oupling between three- and one-dimensional free surfae models. The equation system obtained allows toompute the free surfae level of the �ow as well as a setion-averagedveloity. If applied to �ows with retangular ross-setion, this system issimilar to the lassial setion-averaged shallow water equations [10℄, exeptfor the frition term. Indeed, our derivation shows that, in order to takeinto aount e�ets up to the seond order in the asymptoti parameter,the lassial frition term should be orreted by a term whih depends onthe turbulent vertial visosity. This onlusion is in good agreement withthe one ahieved by Gerbeau et al. in [6℄ for two-dimensional �ows with3



onstant visosity over a �at bottom. Indeed, if the vertial visosity istaken onstant and the �ow is homogeneous in the transversal diretion, weretrieve the same frition orretion as in [6℄. However, our derivation pro-vides the expression of the frition orretion term in a more general ase,whih inludes turbulent �ows and three-dimensional arbitrary geometries.In partiular, we ompute the orretion term assoiated to spei� modelfor the vertial pro�le of turbulent veloity. Furthermore, for steady stateopen hannel �ows admitting analyti solutions of the three-dimensionalas well as the simpli�ed models, we show that the solutions omputed in-luding our orretion term are muh loser to those of three dimensionalmodel than those of the standard shallow water model. The frition orre-tion term an be easily inluded in setion averaged models suh as the oneproposed by Deponti ea in [3℄. Its use is also expeted to ease the ouplingof three- and one-dimensional free surfae models in the framework of anintegrated hydrologial basin model.In the �rst setion of this paper we reall the three-dimensional RANSequations and the boundary onditions losing the problem. Then, wederive the setion-averaged shallow water model in setion 3 and in setion4 we give the expression of the frition orretion term in the laminar andturbulent ases. Finally, in setion 5, we ompare the analytial solutionsof the three-dimensional and the setion-averaged models in the partiularase of steady state open hannel �ows with retangular ross-setion, inorder to show the auray gain ahieved by adding the frition orretion.2 The Reynolds-averaged Navier-Stokes equa-tions2.1 The three-dimensional equations with boundaryonditionsWe onsider the motion of an inompressible �uid with onstant density
ρ > 0, in a three-dimensional domain Ωt = Ω(t) with general transver-sal setion ω(t) =

{

(x, y) ∈ R
2 / 0 ≤ x ≤ L, l1(x, t) ≤ y ≤ l2(x, t)

}, where
l1 and l2 are the time and spae dependent transversal limits of the �ow,and L its length. We assume the bottom to be �xed and impervious.We all η and b the funtions desribing the free surfae and the bottom.The water height will be denoted by h, that is h (x, y, t) = η (x, y, t) −
b (x, y) respetively. The three-dimensional domain is then de�ned by
Ωt =

{

(x, y, z) ∈ R
3 / (x, y) ∈ ω(t), b (x, y) ≤ z ≤ η (x, y, t)

} as illustratedin Figure 1.The boundary of the domain Ωt is denoted by ∂Ωt and an be deomposedinto four separate parts: the free surfae Γs(t), the bottom surfae Γb(t),the in�ow boundary Γin(t) and the out�ow boundary Γout(t).The governing equations for the motion of the �uid are the inompress-ible Reynolds-Averaged Navier-Stokes (RANS) equations in Ωt, valid for
4



Figure 1: Three-dimensional domainany t ∈ (0, T ], whih an be written as follows:






dU

dt
− div (1

ρ
σT

)

= f + g,div (U ) = 0,
(1)where U = (u, v, w)T is the total veloity of the �uid, σT is the physialtensor, f = (fx, fy, fz)

T the sum of the external fores applied on the �uid,and g = (0, 0,−g)T the gravity aeleration. We only onsider Newtonian�uids, for whih the tensor σT is written in the following way:
σT = −pI + σ, (2)where p is the pressure and σ the stress tensor. We onsider a turbulenemodel whih is given through an anisotropi relationship between the stresstensor σ and the strain-rate tensor

D = ∇U + (∇U)T .Following Levermore and Sammartino in [8℄, we take:
σ =













σ11 µhD12 µvD13

µhD21 σ22 µvD23

µvD31 µvD32 µeD33













, (3)where
σ11 = µh(D11 −

1

2
(D11 + D22)) + µe

1

2
(D11 + D22),and

σ22 = µh(D22 −
1

2
(D11 + D22)) + µe

1

2
(D11 + D22).The positive oe�ients µh, µv and µe are the eddy visosities. They an5



be interpreted as the eddy visosity relative to the horizontal shear motion,the eddy visosity relative to the vertial shear motion, and the bulk vis-osity relative to the expansion rate in the horizontal diretion respetively.The system is losed by suitable initial and boundary onditions. Wedenote by ns the outward normal to the surfae, wih depends on time:
ns =

1
√

1 + |∇η|2
(−∂η
∂x
,−∂η

∂y
, 1)T ,and by nb the outward normal to the bottom:

nb =
1

√

1 + |∇b|2
(
∂b

∂x
,
∂b

∂y
,−1)T .We hoose tb = (tb,1, tb,2)

T a basis of the tangential surfae to the bottom:
tb,1 =

1
√

1 + | ∂b
∂x

|2
(1, 0,

∂b

∂x
)T ,and

tb,2 =
1

√

1 + | ∂b
∂y

|2
(0, 1,

∂b

∂y
)T .On the bottom we presribe the kinemati ondition traduing impervious-ness,

U · nb = 0 on Γb(t), (4)as well as a dynami ondition whih aounts for frition,
(
1

ρ
σT · nb) · tb = −α|U |U · tb on Γb(t), (5)where α > 0 is a dimensionless frition oe�ient.At the free surfae, the veloity of the �uid is equal to the veloity of thefree surfae itself. This is expressed by the following kinemati ondition:
∂η

∂t
− U · ns = 0 on Γs(t). (6)The dynamial ondition at the free surfae takes into aount the atmo-spheri stress,

1

ρ
σT · ns = −1

ρ
pans on Γs(t), (7)where pa is the atmospheri pressure.
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2.2 Adimensionalization of the systemLet us onsider the following absolute sales: L for the total length, H forthe height and U for the x-omponent of the veloity. We denote by ǫ theratio between the vertial and the longitudinal sales:
ǫ =

H

L
.In addition we introdue the following dimensionless quantities:

νh =
µh

ρU L
, νv =

µv

ρU L
, νe =

µe

ρU L
, G =

H

U2
g, pa =

pa

U2
.We then have that the sale for time is L/U , for the vertial veloity W =

ǫ U , and for the pressure P = U2/ρ. For the sake of simpliity we indiateagain by u, v, w, p, η and b, respetively, veloity omponents, pressure,free surfae and bottom elevation, after resaling. Using these notations in(1) we obtain the following adimensionalized system, written as a funtionof the primitive unknowns u, v, w and p:


































































































































































∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+
∂p

∂x
=

∂

∂x

(

(νh + νe)
∂u

∂x
− (νh − νe)

∂v

∂y

)

+
∂

∂y

(

νh(
∂u

∂y
+
∂v

∂x
)

)

+
1

ǫ2
∂

∂z

(

νv
∂u

∂z

)

+
∂

∂z

(

νv
∂w

∂x

)

,

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
+
∂p

∂y
=

∂

∂x

(

νh(
∂u

∂y
+
∂v

∂x
)

)

+
∂

∂y

(

(νh + νe)
∂v

∂y
− (νh − νe)

∂u

∂x

)

+
1

ǫ2
∂

∂z

(

νv
∂v

∂z

)

+
∂

∂z

(

νv
∂w

∂y

)

,

ǫ2
(

∂w

∂t
+
∂uw

∂x
+
∂vw

∂y
+
∂w2

∂z

)

+
∂p

∂z
= −G+

∂

∂x

(

νv
∂u

∂z
+ ǫ2νv

∂w

∂x

)

+
∂

∂y

(

νv
∂v

∂z

)

+ ǫ2
∂

∂y

(

νv
∂w

∂y

)

+
∂

∂z

(

2νe
∂w

∂z

)

,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (8)Coherently, the resaled boundary onditions are, on the free surfae

Γs(t),
7





































































































































∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w,

∂η

∂x

(

p− (νh + νe)
∂u

∂x
+ (νh − νe)

∂v

∂y

)

− ∂η

∂y

(

νh(
∂v

∂x
+
∂u

∂y

)

+νv

(

1

ǫ2
∂u

∂z
+
∂w

∂x

)

= pa
∂η

∂x
,

−∂η
∂x

(

νh

(

∂v

∂x
+
∂u

∂y

))

+
∂η

∂y

(

p− (νh + νe)
∂v

∂y
+ (νh − νe)

∂u

∂x

)

+νv

(

1

ǫ2
∂v

∂z
+
∂w

∂y

)

= pa
∂η

∂y
,

−∂η
∂x

(

νv

(

∂u

∂z
+ ǫ2

∂w

∂x

))

− ∂η

∂y

(

νv

(

∂v

∂z
+ ǫ2

∂w

∂y

))

− p

+ 2νe
∂w

∂z
= −pa, (9)and on the bottom Γb(t),



















































































































































































u
∂b

∂x
+ v

∂b

∂y
= w,

∂b

∂x

(

(νh + νe)
∂u

∂x
− (νh − νe)

∂v

∂y
− 2νe

∂w

∂z

)

+
∂b

∂y

(

νh

(

∂v

∂x
+
∂u

∂y

))

+

(

(

∂b

∂x

)2

− 1

ǫ2

)

(

νv

(

∂u

∂z
+ ǫ2

∂w

∂x

))

+
∂b

∂x

∂b

∂y

(

νv

(

∂v

∂z
+ ǫ2

∂w

∂y

))

= −α
√
u2 + v2 + ǫ2w2

(

1

ǫ
u+ ǫ

∂b

∂x
w

)

N(b, ǫ),

∂b

∂x

(

νh

(

∂v

∂x
+
∂u

∂y

))

+
∂b

∂y

(

(νh + νe)
∂v

∂y
− (νh − νe)

∂u

∂x
− 2νe

∂w

∂z

)

+

(

(

∂b

∂y

)2

− 1

ǫ2

)

(

νv

(

∂v

∂z
+ ǫ2

∂w

∂y

))

+
∂b

∂x

∂b

∂y

(

νv

(

∂u

∂z
+ ǫ2

∂w

∂x

))

= −α
√
u2 + v2 + ǫ2w2

(

1

ǫ
v + ǫ

∂b

∂y
w

)

N(b, ǫ). (10)8



where
N(b, ǫ) =

√

1 + ǫ2(
∂b

∂x
)2 + ǫ2(

∂b

∂y
)2.3 Derivation of the setion-averaged shallowwater model3.1 Seond order approximation in ǫIn order to derive our setion-averaged shallow water model, a number ofapproximations have to be performed. Firstly, we assume that the vertialeddy visosity is �rst order with respet to the ratio between the vertialand longitudinal sales, that is,

νv = ǫ νv,0, (11)where νv,0 is a given positive quantity. This assumption an be justi�ed bya simple dimensional analysis. Indeed, the eddy visosity is homogeneousto a length times a veloity, and more preisely
µ ∼ l2m ||D||, (12)where lm is the mixing length of the turbulent �ow and ||D|| is the norm ofthe strain-rate tensor. When onsidering the vertial eddy visosity, lm ishomogeneous to a height and the strain-rate tensor redues to the vertialaeleration, then we onlude that

µv ∼ l2m ||∂U

∂z
||. (13)Note that Prandtl's mixing length model � see for instane [10℄ � is basedon this assumption. Adimensionalizing this expression of µv gives:

µ̂v ∼ H2 ˆlm
2

√

U2

H2

(

(
∂û

∂z
)2 + (

∂v̂

∂z
)2 + (ǫ

∂ŵ

∂z
)2
)

∼ UH ˆlm
2 |∂û
∂z

|, (14)where the �hat� denotes here the adimensional variables. Thus
νv =

µ̂v

ρUL
∼ ǫ

ˆlm
2

ρ
|∂û
∂z

| = O(ǫ). (15)Moreover, the horizontal and bulk visosities are of same order as the ver-tial eddy visosity, and therefore we an write:
νh = ǫ νh,0, νe = ǫ νe,0, (16)where νh,0 and νe,0 are two given positive quantities. Finally, we assume aslow varying bathymetry in the longitudinal diretion, as it has been doneoften in these derivations � see for instane [4℄ �, and we onsider a onstantatmospheri pressure, that is
∂b

∂x
= O(ǫ) and ∇pa = 0. (17)9



Sine our aim is to obtain a seond order approximation with respetto ǫ of the three-dimensional system, we neglet quantities whih of order
O(ǫ2). In this way, under the previous assumptions, (8) beomes:


























































































































































∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+
∂p

∂x
= ǫ

∂

∂x

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

+ ǫ
∂

∂y

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

+
1

ǫ

∂

∂z

(

νv,0
∂u

∂z

)

+ ǫ
∂

∂z

(

νv,0
∂w

∂x

)

,

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
+
∂p

∂y
= ǫ

∂

∂x

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

+ ǫ
∂

∂y

(

(νh,0 + νe,0)
∂v

∂y
− (νh,0 − νe,0)

∂u

∂x

)

+
1

ǫ

∂

∂z

(

νv,0
∂v

∂z

)

+ ǫ
∂

∂z

(

νv,0
∂w

∂y

)

,

∂p

∂z
= −G+ ǫ

∂

∂x

(

νv,0
∂u

∂z

)

+ ǫ
∂

∂y

(

νv,0
∂v

∂z

)

+ ǫ
∂

∂z

(

2νe,0
∂w

∂z

)

,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (18)together with boundary onditions on the free surfae Γs(t),















































































































∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w,

∂η

∂x

(

p− ǫ (νh,0 + νe,0)
∂u

∂x
+ ǫ (νh,0 − νe,0)

∂v

∂y

)

− ∂η

∂y

(

ǫ νh,0(
∂v

∂x
+
∂u

∂y
)

)

+
1

ǫ
νv,0

∂u

∂z
+ ǫ νv,0

∂w

∂x
= pa

∂η

∂x
,

−∂η
∂x

(

ǫ νh,0

(

∂v

∂x
+
∂u

∂y

))

+
∂η

∂y

(

p− ǫ (νh,0 + νe,0)
∂v

∂y
+ ǫ (νh,0 − νe,0)

∂u

∂x

)

+
1

ǫ
νv,0

∂v

∂z
+ ǫ νv,0

∂w

∂y
= pa

∂η

∂y
,

−∂η
∂x

(ǫ νv,0
∂u

∂z
) − ∂η

∂y
(ǫ νv,0

∂v

∂z
) − p+ 2ǫνe,0

∂w

∂z
= −pa, (19)10



and on the bottom Γb(t),






























































































































u
∂b

∂x
+ v

∂b

∂y
= w,

∂b

∂x

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y
− 2ǫ νe,0

∂w

∂z

)

+
∂b

∂y

(

ǫ νh,0

(

∂v

∂x
+
∂u

∂y

))

− 1

ǫ
νv,0

∂u

∂z
+ ǫ νv,0

∂w

∂x

= −α
ǫ

√

u2 + v2u,

∂b

∂x

(

ǫνh,0

(

∂v

∂x
+
∂u

∂y

))

+
∂b

∂y

(

ǫ (νh,0 + νe,0)
∂v

∂y
− ǫ (νh,0 − νe,0)

∂u

∂x

− 2ǫ νe,0
∂w

∂z

)

+

(

(
∂b

∂y
)2 − 1

ǫ2

)(

ǫ νv,0
∂v

∂z

)

= −α|u|
(

1

ǫ
v + ǫ

∂b

∂y
w

)

. (20)Notie that, negleting terms in O(ǫ) in (20)2 and (20)3, we obtain thelassial boundary ondition on the bottom (see e.g. [2℄) :
νv,0

∂u

∂z
= −α

√

u2 + v2 u .3.2 Vertial integration of the equationsLet us now vertially-integrate the momentum equation (18)1 for u betweenthe bottom and the free surfae. For any three-dimensional variable f , wedenote with f̄ the average along the vertial diretion,
f̄(x, y, t) =

1

h(x, y, t)

∫ η

b

f(x, y, z, t)dz.Making use of the Leibnitz rule, (18)1 beomes:
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∂hū

∂t
+
∂hū2

∂x
+
∂hūv

∂y
+
∂hp̄

∂x
+ uw(η) − uw(b) − ∂η

∂t
u(η) − ∂η

∂x
u2(η)

+
∂b

∂x
u2(b) − ∂η

∂y
uv(η) +

∂b

∂y
uv(b) − ∂η

∂x
p(η) +

∂b

∂x
p(b)

=
∂

∂x

∫ η

b

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y

)

dz

+
∂

∂y

∫ η

b

(

ǫ νh,0(
∂u

∂y
+
∂v

∂x
)

)

dz

− ∂η

∂x

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y

)

∣

∣

∣

z=η

− ∂η

∂y

(

ǫ νh,0(
∂u

∂y
+
∂v

∂x
)

)

∣

∣

∣

z=η

+
∂b

∂x

(

ǫ (νh,0 + νe,0)
∂u

∂x
− ǫ (νh,0 − νe,0)

∂v

∂y

)

∣

∣

∣

z=b

+
∂b

∂y

(

ǫ νh,0(
∂u

∂y
+
∂v

∂x
)

)

∣

∣

∣

z=b

+
1

ǫ
νv,0

∂u

∂z

∣

∣

∣

η−b
+ ǫ νv,0

∂w

∂x

∣

∣

∣

η−b
.Using now the kinemati boundary onditions (19)1 and (20)1, as well as(19)2 and (20)2, the equation redues to:

∂hū

∂t
+
∂hū2

∂x
+
∂hūv

∂y
+
∂hp̄

∂x
= pa

∂η

∂x
− α|u(b)|

ǫ
u(b) − ∂b

∂x
p(b)

+ 2 ǫ
∂b

∂x
(νe,0

∂w

∂z
)
∣

∣

∣

z=b
+ ǫ

∂

∂x

∫ η

b

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

dz

+ ǫ
∂

∂y

∫ η

b

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

dz . (21)On the other hand, by vertially-integrating equation (18)3 between z andthe free surfae, we obtain:
12



p = p(η) + G(η − z) − ǫ

∫ η

z

(

∂

∂x
(νv,0

∂u

∂δ
) +

∂

∂y
(νv,0

∂v

∂δ
)

)

dδ

− 2 ǫ (νe,0
∂w

∂z
)
∣

∣

∣

z=η
+ 2 ǫ νe,0

∂w

∂z

= p(η) + G(η − z) − ǫ
∂

∂x

∫ η

z

(

νv,0
∂u

∂δ

)

dδ + ǫ
∂η

∂x

(

νv,0
∂u

∂z

)

∣

∣

∣

z=η

− ǫ
∂

∂y

∫ η

z

(

νv,0
∂v

∂δ

)

dδ + ǫ
∂η

∂y

(

νv,0
∂v

∂z

)

∣

∣

∣

z=η

− 2 ǫ (νe,0
∂w

∂z
)
∣

∣

∣

z=η
+ 2 ǫ νe,0

∂w

∂z
.Applying now the dynami ondition (19)4 at the free surfae, we deduethe following expression for the pressure:

p = pa + G(η − z) + 2 ǫ νe,0
∂w

∂z
− ǫ

∂

∂x

∫ η

z

(

νv,0
∂u

∂δ

)

dδ

− ǫ
∂

∂y

∫ η

z

(

νv,0
∂v

∂δ

)

dδ + O(ǫ2).

(22)Note that the pressure at the bottom is given by
p(b) = pa + Gh + 2 ǫ (νe,0

∂w

∂z
)
∣

∣

∣

z=b
− ǫ

∂

∂x

∫ η

b

(

νv,0
∂u

∂z

)

dz

− ǫ
∂

∂y

∫ η

z

(

νv,0
∂v

∂δ

)

dδ + O(ǫ2),

(23)and therefore, realling that ∂b
∂x

= 0(ǫ), we an onlude
∂b

∂x
p(b) = pa

∂b

∂x
+ Gh

∂b

∂x
+O(ǫ2). (24)
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Let us now vertially-integrate this expression of the pressure from thebottom to the surfae:
hp̄ = hpa + G

h2

2
+ 2 ǫ

∫ η

b

(νe,0
∂w

∂z
)dz

− ǫ

∫ η

b

(

∂

∂x

∫ η

z

(νv,0
∂u

∂δ
)dδ +

∂

∂y

∫ η

z

(νv,0
∂v

∂δ
)dδ

)

dz

= hpa + G
h2

2
+ 2 ǫ

∫ η

b

(νe,0
∂w

∂z
)dz

− ǫ

(

∂

∂x

∫ η

b

∫ η

z

(νv,0
∂u

∂δ
)dδdz +

∂

∂y

∫ η

b

∫ η

z

(νv,0
∂v

∂δ
)dδdz

)

+ ǫ

(

∂b

∂x

∫ η

b

(νv,0
∂u

∂z
)dz +

∂b

∂y

∫ η

b

(νv,0
∂v

∂z
)dz

)

= hpa + G
h2

2
+ 2 ǫ

∫ η

b

(νe,0
∂w

∂z
)dz

− ǫ

(

∂

∂x

∫ η

b

∫ η

z

(νv,0
∂u

∂δ
)dδdz +

∂

∂y

∫ η

b

∫ η

z

(νv,0
∂v

∂δ
)dδdz

)

.(25)We thus have
∂hū

∂t
+

∂hū2

∂x
+

∂hūv

∂y
+ G

∂

∂x

h2

2
= − α|u(b)|

ǫ
u(b) − Gh

∂b

∂x

− 2 ǫ
∂

∂x

(
∫ η

b

(νe,0
∂w

∂z
)dz

)

+ ǫ
∂

∂y

∫ η

b

(

νh,0(
∂u

∂y
+
∂v

∂x
)

)

dz

+ ǫ
∂

∂x

∫ η

b

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

dz

+ ǫ
∂

∂x

(

∂

∂x

∫ η

b

∫ η

z

(νv,0
∂u

∂δ
)dδdz +

∂

∂y

∫ η

b

∫ η

z

(νv,0
∂v

∂δ
)dδdz

)

.(26)An analogous equation an be obtained by vertially integrating the onti-nuity equation (18)4:
∂h

∂t
+
∂hū

∂x
+
∂hv̄

∂y
= 0. (27)
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3.3 Setion averaged equationsSine the equations are now vertially-integrated, they are de�ned on ω(x, t)×
I, where

ω(x, t) = { (x, y) / x ∈ [x1, x2] and y ∈ [l1(x, t), l2(x, t) }.We an therefore integrate them along the y-axis between l1(x, t) and
l2(x, t). In addition we point out that, for any salar quantity f ,

(
∫ η

b

fdz

)

∣

∣

∣

y=l1
=

(
∫ η

b

fdz

)

∣

∣

∣

y=l2
= 0. (28)This assumption is justi�ed in the ase of a natural river, whose depth tendsto zero as the banks are approahed. Note however that we an retrievethe same setion averaged model under the hypothesis that

∂l1
∂x

≡ O(ǫ2) and ∂l2
∂x

≡ O(ǫ2), (29)as happens for instane in straight or mildly urved hannels. For the sakeof larity we do only report the derivation in the �rst ase, that is withhypothesis (28).We denote
A(x, t) =

∫ l2

l1

h(x, y, t)dy,

¯̄f(x, y, t) =
1

A(x, t)

∫ l2

l1

∫ η

b

f(x, y, z, t) dzdy,

Q(x, t) =

∫ l2

l1

∫ η

b

u(x, y, z, t) dzdy = A(x, t)¯̄u(x, y, t).Let us �rst integrate the momentum equation (26) on u. Using the Leibnitzrule and (28), we obtain:
∂(A¯̄u)

∂t
+

∂(Au2)

∂x
+ G

∫ l2

l1

∂

∂x

(

h2

2

)

dy = − 1

ǫ

∫ l2

l1

α|u(b)|u(b)dy

− G

∫ l2

l1

h
∂b

∂x
dy − 2 ǫ

∂

∂x

(

∫ l2

l1

∫ η

b

(νe,0
∂w

∂z
)dzdy

)

+ ǫ
∂

∂x

∫ l2

l1

∫ η

b

(

(νh,0 + νe,0)
∂u

∂x
− (νh,0 − νe,0)

∂v

∂y

)

dzdy

+ ǫ
∂2

∂x2

(

∫ l2

l1

∫ η

b

∫ η

z

(νv,0
∂u

∂δ
)dδ dz dy

)

. (30)15



Note that
G

∫ l2

l1

∂

∂x

(

h2

2

)

dy = G

∫ l2

l1

∂h

∂x
hdy = G

∫ l2

l1

(

∂η

∂x
h− ∂b

∂x
h

)

dy .Note also that, from the ontinuity equation,
− 2 ǫ

∂

∂x

(

∫ l2

l1

∫ η

b

(νe,0
∂w

∂z
)dzdy

)

= 2 ǫ
∂

∂x

(

∫ l2

l1

∫ η

b

νe,0(
∂u

∂x
+
∂v

∂y
) dzdy

)

,and then, using this last expression in the right-hand side of (30), we obtainthe following setion averaged momentum equation:
∂Q

∂t
+

∂Q̃2

∂x
+ G

∫ l2

l1

h
∂η

∂x
dy = − 1

ǫ

∫ l2

l1

α|u(b)|u(b)dy

+ ǫ
∂

∂x

∫ l2

l1

∫ η

b

(

νh,0(
∂u

∂x
− ∂v

∂y
)

)

dzdy

+ 3 ǫ
∂

∂x

∫ l2

l1

∫ η

b

(

νe,0(
∂u

∂x
+
∂v

∂y
)

)

dzdy

+ ǫ
∂2

∂x2
(

∫ l2

l1

∫ η

b

∫ η

z

(νv,0
∂u

∂δ
) dδ dz dy) ,

(31)
where

Q̃ =

(

∫ l2

l1

∫ η

b

u2(x, y, z, t) dzdy

)1/2

.Denoting by β the momentum orretion oe�ient (or Boussinesq oe�-ient)
β =

1

A

∫ l2

l1

∫ η

b

u2

¯̄u2
dz dy,we have that

∂Q̃2

∂x
=

∂

∂x

(

β
Q2

A

)

.The integration of the ontinuity equation (27)4 gives
∂A

∂t
+

∂Q

∂x
= 0, (32)that is the lassial ontinuity equation of the one-dimensional open hannelequations. 16



3.4 Asymptoti analysis of the setion-averaged equa-tionsWe now go bak to the three-dimensional equations in order to model thefrition term and show that we an neglet the last visous term in theright-hand side of the momentum equation (31).From the three-dimensional momentum equation (18)1 we dedue that
∂

∂z

(

νv,0
∂u

∂z

)

= O(ǫ).In addition, boundary ondition (19)2 indiates that ∂

∂z

(

νv,0
∂u

∂z

)

= O(ǫ)at the free surfae, from whih we onlude that
νv,0

∂u

∂z
= O(ǫ) on Ωt, (33)and thus

u(x, y, z, t) = ū(x, y, t) +O(ǫ). (34)Equation (33) has two important onsequenes. First, it shows that thefrition term α|u| is neessarily also of the �rst order in ǫ. Indeed, fromboundary ondition (20)2, we have that νv,0
∂u

∂z
= α|u|u + O(ǫ2). Thus,sine νv,0

∂u

∂z
= O(ǫ) on Ωt and u is independent of ǫ, we have that α|u| =

O(ǫ). In the following we will thus assume that
α|u| = ǫα0. (35)On the other hand equation (33) shows that the third visous term in themomentum equation (31) is seond order in ǫ.Furthermore, from (22) we know that

p(x, y, z, t) = pa +G(η − z) +O(ǫ). (36)Using now (34) and (36) in the three-dimensional momentum equation (18)1we an write:
1

ǫ

∂

∂z

(

νv,0
∂u

∂z

)

=
∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+
∂p

∂x
+O(ǫ)

=
∂ū

∂t
+
∂ū2

∂x
+
∂ūv̄

∂y
+
∂ūw

∂z
+G

∂η

∂x
+O(ǫ)

=
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+G

∂η

∂x
+O(ǫ).

(37)
17



Note that for the last step we use the fat that, from ontinuity,
ū
∂w

∂z
= −ū (

∂u

∂x
+
∂v

∂y
) = −ū (

∂ū

∂x
+
∂v̄

∂y
) +O(ǫ).On the other hand the vertially-integrated momentum equation (26) gives

h

{

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+G

∂h

∂x

}

+ ū

{

∂h

∂t
+
∂hū

∂x
+
∂hv̄

∂y

}

= − α0u(b) + O(ǫ),and using the vertially-averaged ontinuity equation (27),
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+G

∂h

∂x
= − α0u(b)

h
+ O(ǫ).Replaing this expression in (37) we have that

1

ǫ

∂

∂z

(

νv,0
∂u

∂z

)

= − α0u(b)

h
+ O(ǫ).Let us now integrate this expression from the bottom b to z:

1

ǫ
νv,0

∂u

∂z
=

1

ǫ
(νv,0

∂u

∂z
)|z=b

− α0(z − b)

h
u(b) + O(ǫ).Using boundary ondition (20)2 we get:

1

ǫ
νv,0

∂u

∂z
= α0u(b)

(

1 − z − b

h

)

+ O(ǫ),so that
∂u

∂z
= ǫα0u(b)

(

η − z

h νv,0

)

+ O(ǫ2).We vertially-integrate again this expression from the bottom b to z, yield-ing
u = u(b) + ǫα0u(b)

∫ z

b

η − δ

h νv,0
dδ + O(ǫ2)

= u(b)

(

1 +
ǫα0

h

∫ z

b

η − δ

νv,0
dδ

)

+ O(ǫ2).

(38)Integrating now on the vertial and dividing by the water height h weobtain:
ū = u(b) (1 + ǫ α0 ν̄v,0) + O(ǫ2) , (39)where for the sake of simpliity we have denoted
ν̄v,0 =

1

h2

∫ η

b

∫ z

b

η − δ

νv,0
dδ dz.18



Equation (39) leads us to two important results. On one hand, it gives ussome information about the Boussinesq oe�ient β. Indeed, from (38) wededue that
u2 = u2(b)

(

1 +
2ǫα0

h

∫ z

b

η − δ

νv,0
dδ

)

+ O(ǫ2),and therefore that
1

h

∫ η

b

u2dz = u2(b) (1 + 2ǫα0ν̄v,0) + O(ǫ2)

= ū2 (1 − 2ǫα0ν̄v,0)(1 + 2ǫα0ν̄v,0) + O(ǫ2)

= ū2 + O(ǫ2).Thus
ū2 = ū2 + O(ǫ2), (40)whih means that, up to the seond order in ǫ, the Boussinesq oe�ient βonly depends on the transversal variations of the veloity u (and not on itsvertial variations). Indeed:

β =
1

A

∫ l2

l1

∫ η

b

u2

¯̄u2
dzdy = A

∫ l2

l1

hū2dy

(

∫ l2

l1

hū dy

)2
+O(ǫ2).On the other hand equation (39) allows to model the frition term. Indeed,we have now the following expression of the veloity on the bottom withrespet to the vertially-averaged veloity ū:

u(b) =
ū

1 + ǫα0ν̄v,0
+ O(ǫ2) = ū (1 − ǫα0ν̄v,0) + O(ǫ2). (41)However, we reall that

α0 =
α|u(b)|

ǫ
.The frition oe�ient α0 depends itself on the value of the veloity at thebottom, therefore expression (41) is unsatisfatory for the purpose of ex-pressing u(b) in terms of ū. To overome this di�ulty we use the followingapproximation of u(b) to the seond order in ǫ given by (41):

u(b) = ū (1 − ǫα0ν̄v,0) +O(ǫ2).Sine ǫ is very small we an assume that |1− ǫα0ν̄v,0| is positive and there-fore:
|u(b)| = |ū| (1 − ǫα0ν̄v,0) +O(ǫ2).We then approximate |u(b)| with |u(b)| in α0, so that we an write:
α0 ≈ α

ǫ
|u(b)| ≈ α

ǫ
|ū|(1 − α|ū|ν̄v,0).19



Thus
α0(1 + αν̄v,0|ū|) ≈

α

ǫ
|ū| +O(ǫ2).Negleting the O(ǫ2) term, we �nally obtain an expression of α0 whih isindependent of the veloity at the bottom:

α0 ≈ α|ū|
ǫ (1 + αν̄v,0|ū|)

. (42)Using this approximation of α0, together with expression (41), we an ap-proximate the frition term in (31) as follows:
− 1

ǫ

∫ l2

l1

α |u(b)|u(b)dy ≈ − 1

ǫ

∫ l2

l1

α |ū|
1 + 2α ν̄v,0 |ū|

ū dy . (43)In this way we have overome the initial di�ulty and we use expression(43) to model the frition term in the momentum equation (31).3.5 The setion averaged shallow water modelWe have derived a setion-averaged shallow water model whih is an ap-proximation of the seond order in ǫ of the initial three-dimensional freesurfae �ow problem (1) with boundary onditions (4)-(7). Swithing tothe dimensional variables, this model writes:














































































∂Q

∂t
+

∂

∂x

(

β
Q2

A

)

+ g

∫ l2

l1

h
∂η

∂x
dy = −

∫ l2

l1

α |ū|
1 + cα

ū dy

+ 3
∂

∂x

(

∫ l2

l1

∫ η

b

µe

ρ

(

∂u

∂x
+
∂v

∂y

)

dzdy

)

+
∂

∂x

(

∫ l2

l1

∫ η

b

µh

ρ

(

∂u

∂x
− ∂v

∂y

)

dzdy

)

∂A

∂t
+

∂Q

∂x
= 0, (44)where

cα =
2α |ū|
h2

∫ η

b

∫ z

b

ρ (η − δ)

µv
dδ dz (45)ats as a orretion to the lassial one-dimensional frition term, and β isthe momentum orretion oe�ient

β = A

∫ l2

l1

hū2dy

(

∫ l2

l1

hū dy )2
. (46)This model results of a diret, rigorous asymptoti derivation from thethree-dimensional free surfae �ow equations. In addition, this derivation20



is very general sine it is valid for �ows with arbitrary ross-setion andnon-onstant, turbulent visosity. Thus, we expet that the oupling ofsuh a redued model to a three-dimensional model to be easier and yieldbetter results.4 Computation of the orreted frition termIn this setion we give an expliit expression of the frition orretion to usein the laminar ase and with a paraboli turbulene model for the vertialeddy visosity.4.1 The laminar aseWe �rst onsider the ase where a onstant vertial visosity µv is used.Note that in order to be onsistent with our analysis, its adimensionalvalue νv =
µv

ρUL
must be O(ǫ). In that ase we have that

∫ η

b

∫ z

b

ρ (η − δ)

µv
dδ dz =

ρ

µv

h3

3
,and therefore the orretion (45) of the frition term is:

cα =
2

3

ρ

µv
αh |ū|. (47)Note that in this ase we retrieve a frition orretion term whih is verysimilar to the one presented by Gerbeau et al. in [6℄, whih is :

cκ =
1

3

ρ

µv
κh, (48)where κ is the frition oe�ient taken in their model. In our analysis, wehave taken κ = α|u(b)|, where α is a dimensionless frition oe�ient and

|u(b)| is the module of the horizontal veloity on the bottom. That explainsthe di�erene between both frition orretion terms.If the �ow is homogeneous in the y-diretion and has a retangular-ross-setion, ū =
Q

A
and the frition term in (44) writes

− α |Q|

h2 l

(

1 +
2

3

ρ

µv
α
|Q|
l

) Q . (49)4.2 Paraboli model for the vertial eddy visosityLet us now onsider a turbulene model whih assumes a paraboli distri-bution of the vertial eddy visosity over the water depth:
µv

ρ
= νm + κu∗(z − b)

(

1 − (z − b)

h

)

, (50)21



where κ is the von Karman onstant, u∗ the modulus of the frition veloityand νm the moleular kinemati visosity. Note that a simple dimensionalanalysis shows that we have νv =
µv

ρUL
= 0(ǫ) as expeted.We remark that we have slightly modi�ed the lassial paraboli turbulenemodel (50) in order to simplify the analytial integration in the omputationof the orretion term (45). Indeed, we have used

µv

ρ
= (νm + κu∗(z − b))

(

1 − (z − b)

h

)

. (51)Note that this modi�ation does not hange signi�antly the pro�le of thevertial visosity.By analytial omputation we have that:
∫ η

b

∫ z

b

ρ (η − δ)

µv
dδ dz =

h2

κu∗

(

(

1 +
νm

κu∗h

)

ln

(

1 +
κu∗h

νm

)

− 1

)

.The frition orretion (45) then writes:
cα =

2α |ū|
κu∗

(

(

1 +
νm

κu∗h

)

ln

(

1 +
κu∗h

νm

)

− 1

)

.Following the Chézy law we have that
|ū|
u∗

=
1√
α
,therefore the frition orretion is

cα =
2
√
α

κ

((

1 +
νm

κ
√
α|ū|h

)

ln

(

1 +
κ
√
α|ū|h
νm

)

− 1

)

. (52)If the �ow is homogeneous in the y-diretion and has a retangular-ross-setion, ū =
Q

A
and the frition term in (44) writes

− α |Q|

h2 l

(

1 +
2
√
α

κ

((

1 +
νm

κ
√
α

l

|Q|

)

ln

(

1 +
κ
√
α

νm

|Q|
l

)

− 1

))

.

Q. (53)
5 Comparison of the three-dimensional and thesetion-averaged solutions in the ase of �owswith retangular ross-setionOur aim is now to illustrate the auray gain ahieved by taking into a-ount the orretion of the frition term in the setion-averaged model. For22



this purpose, we restrit ourselves to the ase of retangular ross-setionopen hannels, for whih steady state solutions are available. Note thatthese �ows are representative of the main physial features of river �owsand are ommonly used as a �rst benhmark in many hydraulis applia-tions.In this ase the water depth h is onstant along the y-diretion and,denoting by l the width of the river, the setion area is A = lh. In additionwe suppose µe = µh = 0. The setion averaged shallow water model thenwrites in the more lassial form:


















∂Q

∂t
+

∂

∂x

(

β
Q2

A

)

+ gA
∂η

∂x
= −

∫ l2

l1

α |ū|
1 + cα

ū dy

∂A

∂t
+

∂Q

∂x
= 0.

(54)
Note that the Boussinesq term (46) then redues to β = l

∫ l2

l1

ū2dy

(

∫ l2

l1

ū dy )2
.We emphasize the fat that in this partiular ase we obtain the lassi-al setion-averaged equations [3℄ with a orretion of the frition term.Remark 5.1 If the �ow is homogeneous in the y-diretion, we have that

ū =
Q

A
and therefore the frition term writes

− α |Q| l
A2 (1 + cα)

Q .Without orretion the frition term redues to
− α |Q| l

A2
Q,whih is the expression of the frition in the lassial setion-averaged shal-low water equations.We hoose a three-dimensional test ase with an analyti solution, tobe ompared to the analyti solution of the setion-averaged model withand without frition orretion. The test ase onsists of a steady stateturbulent �ow in a hannel with a slight slope iF , as illustrated in �gure 2.We take the hannel as the referene on�guration � (x, y, z) in �gure 2 �and we suppose that νh = νe = 0. The �ow is steady and uniform in the

x-diretion, and the free surfae is perfetly parallel to the bottom, that is:
∇η = (

∂b

∂x
, 0)T , U = (u, 0, 0)T . (55)Rewriting the three-dimensional RANS equations (1) in the new referene23
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Figure 2: Uniform �ow in a hanel with slopeon�guration, and onsidering (55), we retrieve the following system:
1

ρ

∂p

∂x
= g sin θ + (cos2 θ − sin2 θ)2

∂

∂z
(
µv

ρ

∂u

∂z
) (56)

1

ρ

∂p

∂z
= −g cos θ + 2 cos θ sin θ(cos2 θ − sin2 θ)

∂

∂z
(
µv

ρ

∂u

∂z
), (57)where θ is the angle of the slope. The boundary onditions on the freesurfae are:

p = pa and µv

ρ

∂u

∂z
= 0, (58)and on the bottom:

µv

ρ

∂u

∂z
= αψ(θ) |u|u, (59)where ψ(θ) =

1

(cos2 θ − sin2 θ)2
. From (56)2 we dedue that the pressureis independent of x, and therefore ∂p

∂x
= 0. Equation (56)1 redues to:

∂

∂z
(
µv

ρ

∂u

∂z
) = −gφ(θ), (60)where φ(θ) =

sin θ

(cos2 θ − sin2 θ)2
. Integrating (60) from an arbitrary eleva-tion z to the free surfae η, and using boundary ondition (58) we obtain:

∂u

∂z
= gφ(θ)

ρ(η − z)

µv
. (61)24



Integrating now (61) from z to the bottom we obtain the following expres-sion of the veloity:
u = u|(z=b)

+ gφ(θ)

∫ z

b

ρ(η − δ)

µv
dδ. (62)This expression an be vertially-integrated on the entire water olumn inorder to retrieve an expression of the �ow. Indeed,

Q =

∫ l2

l1

∫ η

b

udzdy =

∫ l2

l1

(

hu|(z=b)
+ gφ(θ)

∫ η

b

∫ z

b

ρ(η − δ)

µv
dδdz

)

dy,and sine the �ow is homogeneous in the y-diretion:
Q = Au|(z=b)

+ g l φ(θ)

∫ η

b

∫ z

b

ρ(η − δ)

µv
dδdz .Let us now retrieve an expression of the veloity at the bottom. From (61)with z = b we have that

µv

ρ

∂u

∂z |z=b

= gφ(θ)h .Using boundary ondition (59) we obtain:
α|u||z=b

u|z=b
ψ(θ) = ghφ(θ),and sine in the partiular ase we are onsidering the veloity is alwayspositive, we have that:

u|z=b
=

√

g h sin θ

α
. (63)Finally we have derived the following expression of the �ow:

q =
Q

l
= h

√

g h sin θ

α
+ g φ(θ)

∫ η

b

∫ z

b

ρ(η − δ)

µv
dδdz , (64)whih is an analyti solution of the three-dimensional problem onsideredin this setion.This three-dimensional solution is to be ompared with the analytisolution of the setion-averaged model (54) with and without frition or-retion. In the partiular ase onsidered here we an easily derive thefollowing analyti solution to the setion-averaged equations:

q = h

√

g h iF
α

(1 + cα) . (65)Note that if the orretion of the frition term is not taken into aount inthe setion-averaged model, the analyti solution is:
q = h

√

g h iF
α

. (66)25



Sine cα depends on the �ow rate q, and µv also when using a paraboliturbulene model, equations (64), (65) and (66) yield an impliit relationbetween q and h. We have solved this relation for di�erent values of thewater height h, in order to ompare the analyti solutions of the di�erentmodels. Indeed, we have ompared the solutions in the laminar ase � withonstant vertial viosity ν = 0.01 � and in the turbulent ase � using theparaboli model (50) for the turbulent vertial visosity. We use the Chézyfrition term α =
g

χ
with χ = 30 and χ = 60, respetively, in the aseof a slope iF = 10−4. Figure 3 shows the pro�le of the analytial waterheight h as a funtion of the �ow q in the laminar ase for χ = 66.5 (left)and χ = 30 (right). The starred line orresponds to the three-dimensionalsolution given by (64), the dashed line orresponds to the solution to thesetion-averaged model with frition orretion given by (65), wheareas thedotted line orresponds to the solution without frition orretion (66).
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section−averaged without correctionFigure 3: Analyti solutions for the three-dimensional problem (starred line),the setion-averaged problem with frition orretion (dashed line) and withoutorretion (dotted line). Laminar ase with ν = 0.01 and with χ = 66.5 (left)and χ = 30 (right).Figure 4 shows the same pro�le in the turbulent ase.As we an see, the analyti solution of the setion-averaged model ismuh loser to the three-dimensional solution when the frition orretionis taken into aount. This is true when taking a onstant vertial visosity,as well as when using the paraboli turbulene model. The results obtainedin this test ase, whih is a relevant regime for river hydraulis, on�rmthat lassial frition term in the setion-averaged shallow water equationsshould be orreted as de�ned in (44).26
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Figure 4: Analyti solutions for the three-dimensional problem (starred line),the setion-averaged problem with frition orretion (dashed line) and withoutorretion (dotted line ). Case with a paraboli turbulent vertial visosity andwith χ = 66.5 (left) and χ = 30 (right).6 ConlusionIn this paper, we have extended the analysis of [6℄ to the three-dimensionalRANS equations with anisotropi Reynolds tensor for free surfae �owsin arbitrary geometries. A rigourous derivation of a setion-averaged sys-tem has been proposed, inluding the e�ets of eddy visosity and frition.When applied to �ows with retangular ross-setion, this system is similarto the lassial setion-averaged shallow water equations [10℄, exept forthe frition term. Indeed, our derivation shows that, in order to take intoaount e�ets up to the seond order in the asymptoti parameter, thelassial frition term should be orreted by a term whih depends on theturbulent vertial visosity.This onlusion is in good agreement with the one ahieved by Gerbeauet al. in [6℄ for two-dimensional �ows with onstant visosity over a �atbottom. Indeed, if the vertial visosity is taken onstant and the �owis homogeneous in the transversal diretion, we retrieve the same fritionorretion as in [6℄. Our derivation provides the expression of the fritionorretion term in a more general ase than those treated by [6℄, inludingturbulent �ows and three-dimensional arbitrary geometries. In partiular,we ompute the orretion term assoiated to spei� model for the vertialpro�le of turbulent veloity. Furthermore, for steady state open hannel�ows admitting analyti solutions of the three-dimensional as well as thesimpli�ed models, we have shown that the solutions omputed inludingour orretion term are muh loser to those of three dimensional modelthan those of the standard shallow water model. In forthoming work,27
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