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Abstract

A section-averaged shallow water model for application to river hy-
draulics is derived asymptotically, starting from the three-dimensional
Reynolds-averaged Navier-Stokes equations for incompressible free surface
flows. The resulting section-averaged equations take into account the ef-
fects of eddy viscosity, friction and of the three-dimensional geometry of
the domain, up to the second order in the ratio between vertical and lon-
gitudinal scales. This novel derivation yields a friction term that is similar
to that of the classical section-averaged shallow water model, but includes
a correction that is dependent on the turbulent vertical viscosity model.
Steady state analytic solutions for open channel flow have been computed
for the derived model, obtaining solutions that are much closer to those of
the three-dimensional model than the solutions computed by the classical
one-dimensional shallow-water models.



1 Introduction

The numerical approximation of three-dimensional free surface fluid flow
in the context of environmental modelling applications can be computa-
tionally very costly. Therefore, whenever the ratio between the vertical
and longitudinal scales is small enough, the so-called “Shallow Water” ap-
proximation is usually considered. Models based on this approximation
are extensively used to simulate various geophysical phenomena, such as
rivers and coastal flows [5, 7], oceans and even avalanches [1], and they
have been used in hydraulics for a very long time. When the viscosity is
neglected and a rectangular channel section is assumed, the derivation of
the one-dimensional Shallow Water system is classical [12]. However, this
derivation is unsatisfactory since viscosity effects are added a posteriori and
the three-dimensional geometry is not arbitrary.

In [6], Gerbeau and Perthame derive rigourously, by asymptotic analy-
sis, a one-dimensional viscous Saint-Venant system from the two-dimensional
Navier-Stokes equations with molecular viscosity and flat bottom. The ef-
fect of the viscosity is recovered in a one-dimensional friction term and in a
one-dimensional diffusion term, both obtained through the derivation. The
final system is a second order approximation with respect to the ratio
between the vertical and longitudinal scales of the two-dimensional de-
parting model. Other systems have been derived in the same spirit. In [11],
the asymptotic analysis is made through a variable change in a reference
domain, independent of the ratio parameter and time. Marche proposes in
[9] the derivation of a two-dimensional viscous shallow water system taking
into account capillary effects, varying topography, and a molecular viscos-
ity. However, in order to simulate realistic river flows, three-dimensional
geometries and turbulence phenomena must be taken into account. Thus,
the Reynolds-averaged Navier-Stokes equations (RANS) on an arbitrary
three-dimensional domain are a more appropriate starting point for the
derivation of simpler systems. In [4], Saleri et al. derived a two-dimensional
viscous shallow water system from the three-dimensional RANS equations,
taking into account a non-flat bottom, atmospheric pressure effects and
considering a constant vertical eddy viscosity.

In this paper, we have chosen to proceed as in [6], extending the analysis
to the three-dimensional RANS equations with anisotropic Reynolds ten-
sor for free surface flows in arbitrary geometries. We propose a rigourous
derivation of a section-averaged system, including the effects of eddy vis-
cosity and friction. This derivation is also aimed at providing an adequate
framework for the rigorous derivation of coupling between three- and one-
dimensional free surface models. The equation system obtained allows to
compute the free surface level of the flow as well as a section-averaged
velocity. If applied to flows with rectangular cross-section, this system is
similar to the classical section-averaged shallow water equations [10], except
for the friction term. Indeed, our derivation shows that, in order to take
into account effects up to the second order in the asymptotic parameter,
the classical friction term should be corrected by a term which depends on
the turbulent vertical viscosity. This conclusion is in good agreement with
the one achieved by Gerbeau et al. in [6] for two-dimensional flows with



constant viscosity over a flat bottom. Indeed, if the vertical viscosity is
taken constant and the flow is homogeneous in the transversal direction, we
retrieve the same friction correction as in [6]. However, our derivation pro-
vides the expression of the friction correction term in a more general case,
which includes turbulent flows and three-dimensional arbitrary geometries.
In particular, we compute the correction term associated to specific model
for the vertical profile of turbulent velocity. Furthermore, for steady state
open channel flows admitting analytic solutions of the three-dimensional
as well as the simplified models, we show that the solutions computed in-
cluding our correction term are much closer to those of three dimensional
model than those of the standard shallow water model. The friction correc-
tion term can be easily included in section averaged models such as the one
proposed by Deponti ea in [3]. Its use is also expected to ease the coupling
of three- and one-dimensional free surface models in the framework of an
integrated hydrological basin model.

In the first section of this paper we recall the three-dimensional RANS
equations and the boundary conditions closing the problem. Then, we
derive the section-averaged shallow water model in section 3 and in section
4 we give the expression of the friction correction term in the laminar and
turbulent cases. Finally, in section 5, we compare the analytical solutions
of the three-dimensional and the section-averaged models in the particular
case of steady state open channel flows with rectangular cross-section, in
order to show the accuracy gain achieved by adding the friction correction.

2 The Reynolds-averaged Navier-Stokes equa-
tions

2.1 The three-dimensional equations with boundary
conditions

We consider the motion of an incompressible fluid with constant density
p > 0, in a three-dimensional domain Q; = Q(t) with general transver-
sal section w(t) = {(z,y) e R?/0<x < L, li(x,t) <y < lo(x,t)}, where
l1 and [y are the time and space dependent transversal limits of the flow,
and L its length. We assume the bottom to be fixed and impervious.
We call n and b the functions describing the free surface and the bottom.
The water height will be denoted by h, that is h(z,y,t) = n(z,y,t) —
b(x,y) respectively. The three-dimensional domain is then defined by
Q= {(z,y,2) €R3/ (z,y) €w(t), b(z,y) <z <n(z,y,t)} as illustrated
in Figure 1.

The boundary of the domain €, is denoted by 9€2; and can be decomposed
into four separate parts: the free surface I';(¢), the bottom surface T'y(t)
the inflow boundary T';, (t) and the outflow boundary Ty, (t).

3

The governing equations for the motion of the fluid are the incompress-
ible Reynolds-Averaged Navier-Stokes (RANS) equations in €, valid for



z="(xy,t)

h(x,y,t)

1) \_) / Lo x

z=b(x.y)

Figure 1: Three-dimensional domain

any t € (0,7, which can be written as follows:

dU . 1
- div (;UT) = f+g, (1)
div(U) = 0,

where U = (u,v,w)? is the total velocity of the fluid, oz is the physical
tensor, f = (fa, fy, f-)T the sum of the external forces applied on the fluid,
and g = (0,0, —g)T the gravity acceleration. We only consider Newtonian
fluids, for which the tensor o is written in the following way:

where p is the pressure and o the stress tensor. We consider a turbulence
model which is given through an anisotropic relationship between the stress
tensor o and the strain-rate tensor

D=VU + (VU)".
Following Levermore and Sammartino in [8], we take:
o1 prDi2 peDDis
o = | pDar o2 peDas |, (3)

oDz D3z peD3sz
where 1 1
o1 = pp(Di — §(D11 + Do) + ueE(Du + Dg2),

and
1 1
022 = pp (D2 — §(D11 + Do) + ueE(Du + Dg2).

The positive coefficients pp, @, and pe are the eddy viscosities. They can



be interpreted as the eddy viscosity relative to the horizontal shear motion,
the eddy viscosity relative to the vertical shear motion, and the bulk vis-
cosity relative to the expansion rate in the horizontal direction respectively.

The system is closed by suitable initial and boundary conditions. We
denote by ng the outward normal to the surface, wich depends on time:

;(_@ _@ 1)T
V14 |Vn? oz’ 9y’

and by n; the outward normal to the bottom:

1 0b % s

ny, = _5_5_1
v e or y

We choose t, = (tp,1, tb72)T a basis of the tangential surface to the bottom:

)

1 ob
ty1 = ——— (1,0, —)"
b,1 1+|@|2(’078$) )
Ox
and 1 b
tyo = ——— (0,1, —)7.
" 1+|@I2( o
dy

On the bottom we prescribe the kinematic condition traducing impervious-
ness,

U-n, =0 on T'y(t), (4)
as well as a dynamic condition which accounts for friction,

1
(;O’T-nb)-tb = —alU|U -t on Ty(t), (5)

where o > 0 is a dimensionless friction coefficient.

At the free surface, the velocity of the fluid is equal to the velocity of the
free surface itself. This is expressed by the following kinematic condition:

I

—U-ng =0 Ts(2). 6
5 n, on Dy(¢) (6)
The dynamical condition at the free surface takes into account the atmo-

spheric stress,

1 1
—or-n, = ——p,ns on I (t), (7)
p p

where p, is the atmospheric pressure.



2.2 Adimensionalization of the system

Let us consider the following absolute scales: L for the total length, H for
the height and U for the z-component of the velocity. We denote by € the
ratio between the vertical and the longitudinal scales:

€= —.

L

In addition we introduce the following dimensionless quantities:

pUL’ v LU cT UL Uz « T

Vp =

We then have that the scale for time is L/U, for the vertical velocity W =
€U, and for the pressure P = U?/p. For the sake of simplicity we indicate
again by u, v, w, p, n and b, respectively, velocity components, pressure,
free surface and bottom elevation, after rescaling. Using these notations in
(1) we obtain the following adimensionalized system, written as a function
of the primitive unknowns u, v, w and p:

@+8i+%+8uw+8p_ 0 v _H/)au_(y —y)@
ot dx Oy | 9z ox oz \ " or VM 7%y

L) B () ()
2 (s 2)

_|_2 (1/ —I—I/)@—(V —V)% +l2 V@
Oy h oy b O €20z \ "0z

v  Ouww Ov: Ovw Op

o " or T oy T o: oy

) 8_w+8uw+8v_w+8_102 o G+8 8u+zyaw
“\ar " or "oy o oz ¢

T T "o T e
+ 2 (1,20 L2 (,00) L D (5, %
ay \"az) T ay\"ay ) T a2 92 )

ou o ow
Oz Oy oz

(8)
Coherently, the rescaled boundary conditions are, on the free surface
s (t),



on ou v an ov  Ou
o <p — (vn + Ve)% + (vn — Ve)a_y) - 8_2/ (Vh(% + a—y)

L (Lou o)
Y\e@o: Tox) T P

20z Oy
ou(, (Pu, 20w\ _On(, (00 a0w))
Ox (Vv<8z+6 83:)) Oy (Vv <82+6 Oy b
ow
+2Ve£ = —Pa,

and on the bottom I'y(¢),

ox Vh T Ve ox Vh = Ve dy Ve 0z dy Vh oxr 0Oy
+ @ 2_i @4_ Qa_w
Oz €2 Yo 0z ¢ Oz
T @@ v @4_ 28_10
ox oy "\ 0z ¢ oy
ob

1
= —avu? +v? + 2w? <—u + e—w) N(b,e),
€ Oz

o () (00 DNy Db (O ou
oz \" "\ 9z dy dy T Ve dy b o “ 0z
T @ 2_i v @4_ 28_10
Oy €2 v\5: "€ Oy
T %@ v %4_ 28_11)
oz oy ' "\ 0z ¢ Ox

1
= —avu? +v? + w? (—v + e@w) N (b,e).
€ dy

(10)



where

b b
N(b,e) = \/1 + 52(%)2 + ez(g—y)?

3 Derivation of the section-averaged shallow
water model

3.1 Second order approximation in ¢

In order to derive our section-averaged shallow water model, a number of
approximations have to be performed. Firstly, we assume that the vertical
eddy viscosity is first order with respect to the ratio between the vertical
and longitudinal scales, that is,

Vy = €Uy, (11)

where v, o is a given positive quantity. This assumption can be justified by
a simple dimensional analysis. Indeed, the eddy viscosity is homogeneous
to a length times a velocity, and more precisely

po~ Lo D, (12)

where l,,, is the mixing length of the turbulent flow and ||D|| is the norm of
the strain-rate tensor. When considering the vertical eddy viscosity, I, is
homogeneous to a height and the strain-rate tensor reduces to the vertical
acceleration, then we conclude that

ou
2 _
o~ |G (13

Note that Prandtl’s mixing length model — see for instance [10] — is based
on this assumption. Adimensionalizing this expression of ., gives:

2 ~ ~ A~ ~
iy ~ HL \/U— (G2 + Gor+o?) ~ om 150 o

H2 \‘0z 0z 0z

where the “hat” denotes here the adimensional variables. Thus

0 I ? o1

v m u

Yy = ~ e 122 = . 1
v € | O(e) (15)

Moreover, the horizontal and bulk viscosities are of same order as the ver-
tical eddy viscosity, and therefore we can write:

Vp = € Vh0, Ve = € Ve, (16)

where v}, o and v, ¢ are two given positive quantities. Finally, we assume a
slow varying bathymetry in the longitudinal direction, as it has been done
often in these derivations — see for instance [4] —, and we consider a constant
atmospheric pressure, that is

ab

P O(e) and Vp, =0. (17)



Since our aim is to obtain a second order approximation with respect
to € of the three-dimensional system, we neglect quantities which of order
O(€?). In this way, under the previous assumptions, (8) becomes:

R (T -
ot~ dx Oy 92 " 0x oz \hoTVedlgy 0 R0y

+2y(@+@)+121/@+2y8_w
Gay Y9y T ox 0z \ "0z ‘9z \""%% )

@+%+8_1)2+%_w+@— 2 v (@ @)
ot " oxr oy 0z "oy “ox \'M°

oy oz
2 (V + v )%—(V — v )% +12 v @
€ 8y h,0 e,0 ay h,0 e,0 - p v,0 02
Lo ow
oz \"0 oy )’

@——G—kgu@—kgl/%—i—g%a—w
9z ‘oz "2 eay v092 ‘oz 09z )

_|_

ou, v, o
ox dy 0z

(18)

together with boundary conditions on the free surface T's(¢),

on ,  on On
ot +u8x +U8y -
0 0 0 0 0 0
3 (o ctna s ctua=si) -8 (omal+ 5)
Lo 0w o
c Vy,0 92 €Uy,0 Oz = Pa 8$,
on ov  Ou on v ou
o <6 Vh,0 (83: + 8y)> + 3y <P €(Vho+ Ve,o)ay + € (Vho0 Ve,o)ax)
—|—1 v, @ + eV 8_w = @
v,0 Oz v,0 ay = Da 8y7
on Ju an v ow
—8.13 (6 Vy,0 (92:) - 8y (6 Vy,0 82) —-p+ 26”6,0 92 —Pa,

(19)
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and on the bottom I'y(¢),

Notice that, neglecting terms in O(e) in (20)2 and (20)s, we obtain the

classical boundary condition on the bottom (see e.g. [2]) :
0
Vv,oa—u = —avur+ov?u.
2

3.2 Vertical integration of the equations

Let us now vertically-integrate the momentum equation (18); for u between
the bottom and the free surface. For any three-dimensional variable f, we

denote with f the average along the vertical direction,

1 n
flx,y,t) = m/b flz,y, z,t)dz.

Making use of the Leibnitz rule, (18); becomes:

11

% + 'Ua—y =w,
ob 0 0 0
E (e (Vh,0 + Ve70)a—z —e(vpo — Ve70)8—;; — 2¢ 1/@706—1;])
SO (0 oY L o
8y €Vh,0 Oz 8y v,0 92 €Vy,0 O

(20)



oht  Ohu?  Ohuv  Ohp on on
% T T 3y to, T uw(n) — uw(b) at“(”) 7 (n)
ob , on ob on ob
+ 5 (0) 3 (n)+ayu (b) o ( )+8x (0)

z=b

z=b

n 1 8u‘ n 8w‘
- Vpo— € Vyp.o—— .
e 0%, n—b V09 n—b

Using now the kinematic boundary conditions (19); and (20)1, as well as
(19)2 and (20)2, the equation reduces to:

Ohu  Ohu®>  Ohuv  Ohp On  alu(b)] ob
o o oy Tae T e - e 0 g
o, 0 o (" 0 0
+ 2 %(V6708_1;}) . + € %/b ((1/;,,70 + Ve70)8—z — (Uho — Ve70)8—';) dz

+ 2/77 v, (%—i-&) dz
anb O\oy " ox '

On the other hand, by vertically-integrating equation (18)3 between z and
the free surface, we obtain:

(21)

12



o ou 0 ov
b= o)+ G- — ¢ [ (Gr0nngs) + g tnags)) @

b 2en 2
€Ve.0)—
z=n 0 0z

2¢ (Ve’()

w
5

o [ ou on ou
- p(n) + G(n_z) — € %/z <VU,O%)CZ5 + € % <Vv,06_

9

o (" ov on v
— € 8_yl (Vv,()%> dé + € 8_y <1/U70§)

I ow
EVe 0 -
z=n &0 0z

z=n

— 2€ (Veyo

w
5

z=n

Applying now the dynamic condition (19)4 at the free surface, we deduce

the following expression for the pressure:

ow a [ ou
p =ps + Gn—2) + 261/6705 - 6%/2; (V1),0%>d5
o (" v )
T oy ] <Vv,0%> ds + O(e”).

Note that the pressure at the bottom is given by

8w) o (" ou d
— — € — Vo= | dz
0z "lz=b ox J, "0z

o [ Ov 9
— € 8—y‘/z <I/U7()%) dd + 0(6 ),

and therefore, recalling that ? = 0(e), we can conclude
x

p(b) = pa + Gh + 2€(vep

0b 0b 0b

- — - - 2
8xp(b) pa&x + Gh o + O(€?).
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Let us now vertically-integrate this expression of the pressure from the
bottom to the surface:

_ h? n ow
hp = hp, + G7 + 2e/b (1/6705)6&

oM ou o [ o
_e/b <%/ (z/voad)dé—ka—y/ (VD,O%)CM) dz

h? g ow
= hp, + G7 + 2e/b (1/6705)6&

o [ [ ou a (" [ v
— € < %‘/b l (Vv’()% )d5d2'+ 8_y\/b L (VU’O%)d(SdZ>
ob [ ou ob [ v
€ < %‘/b (Vv’()a)dz + 8_y \ (I/U’O%)dZ)

2 n
= hps + Gh— + 26/ (Veoaw)dz

0z
— <8x/ / Vv() )dodz +8y/ / 1/1,0 d5dz>.
(25)
We thus have
ohu  Ohu?  Ohuw d h? alu(b)| ob
T ety Y G T T ulb) - Ghyy

0 n ow o (" Oou Ov
I P o 2 o,
€5 (/b (Ve,0 8z)dz) + € 3y/b (Vh@(ay + &E)) dz
+ 2/77 (Vho + v, )@—(1/ ez )@ dz
€ B A ho F Ve0) 5 h,0 — Ve,0 oy

+ 8x(8x// Vvoé)& dédz—l——// ””085 d5dz).

(26)

An analogous equation can be obtained by vertically integrating the conti-
nuity equation (18)4:

Oh Ohu Ohv

E—FW—Fa—y:O. (27)
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3.3 Section averaged equations

Since the equations are now vertically-integrated, they are defined on w(z, t) x
I, where

w(z,t) =1 (z,y) / = € [x1,22] and y € [l1(x,t),la(x,t) }.

We can therefore integrate them along the y-axis between li(x,t) and
l3(z,t). In addition we point out that, for any scalar quantity f,

</bnfdz) = </bnfdz) ’y:b _— (28)

This assumption is justified in the case of a natural river, whose depth tends
to zero as the banks are approached. Note however that we can retrieve
the same section averaged model under the hypothesis that

811 812

— = 0(%) and —=— = O(é 29

L= 0(@) and S = 0(), (29)
as happens for instance in straight or mildly curved channels. For the sake
of clarity we do only report the derivation in the first case, that is with
hypothesis (28).

We denote

l2

A(z,t) = h(z,y,t)dy,

5t
_ 1 la
r,Y,t) = — Ty, z,t) dzdy,
Fawt) = o [ ] Szt dedy

L2 n
Q) = / / e,y =, t) dedy = Az, t)ii(e, y, ).

Let us first integrate the momentum equation (26) on w. Using the Leibnitz
rule and (28), we obtain:

9(AT)  O(AW?) 2y [h? ! /lz
5 + B + G . or \ 2 dy = ) alu(b)|u(b)dy
L ob o ([ ow
_ ZZdy — 2¢ — o0 —
G s haxdy €5 /l1 /b (Ve,0 P )dzdy

ou ov

o [l
+ € pe . /b <(Vh,0 + Ve,o)% — (vho — Ve,())a—y) dzdy

92 l2 ou
+ ew</ll /b/z(uv,()%)dédzdy>.

(30)
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Note that

l 2 l l
29 (h B 2 Oh 2 (0n. b
G/h - ( 2>dy G| Fohdy = G ) <8xh (%h)d

5

Note also that, from the continuity equation,

_26_</l2/ ueo dzdy) - 2e—</12/ Ou , )dzdy) :

and then, using this last expression in the right-hand side of (30), we obtain
the following section averaged momentum equation:

0Q  0Q? on 1/l2
5 + B + G ; haxd ). alu(b)|u(b)dy

o [t [ ou v
€ %/ll /b <1/h70(% 8y)) dzdy
b2 u ov
+ 3¢ —/ / Veolz— + ) | dzdy
8
l2
8x2 /l1 / / 1/1,0 )dd dz dy) ,

where
1/2

l2 n
( / / (. 7, 1) dzdy)
11 b

Denoting by £ the momentum correction coefficient (or Boussinesq coeffi-

cient)
l2 2
— dz dy,
AL

0Q? Q?
Br Oz (5 )

The integration of the continuity equation (27)4 gives

@

we have that

0A oQ

E‘F%:O, (32)

that is the classical continuity equation of the one-dimensional open channel
equations.
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3.4 Asymptotic analysis of the section-averaged equa-
tions

We now go back to the three-dimensional equations in order to model the
friction term and show that we can neglect the last viscous term in the
right-hand side of the momentum equation (31).

From the three-dimensional momentum equation (18); we deduce that
0 ou
=— (wom=] = O(e).
0z <V 0 8z> (©

In addition, boundary condition (19)9 indicates that 82 <1/v,0—> = Oe)
z

at the free surface, from which we conclude that

)
””’Oa_z —0(¢) on Q, (33)
and thus
u(z,y,2,t) = u(z,y,t) + O(e). (34)

Equation (33) has two important consequences. First, it shows that the
friction term a|u| is necessarily also of the first order in e. Indeed, from

0
boundary condition (20)2, we have that Vv,Oa_u = alulu + O(€?). Thus,
z

ou
since v, 0= = O(e) on £ and u is independent of ¢, we have that a|u| =
z
O(e). In the following we will thus assume that

alu| = eag. (35)

On the other hand equation (33) shows that the third viscous term in the
momentum equation (31) is second order in e.

Furthermore, from (22) we know that

p(x,y,2,t) = pa+G(n—2)+0(e). (36)

Using now (34) and (36) in the three-dimensional momentum equation (18);
we can write:

10 (V 8u) ou Ou® Ouwv Ouw Op
v,0 a

<92 \""%; ot " or Ty To: Tox
ou Ou? Ouv Ouw on
“w e Tyt T 09

ou  ou __ou __dn
ot " “or Yoy T Vo
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Note that for the last step we use the fact that, from continuity,

_ Ow _ Ou Ov _Ou Ov

U& = —U(%ﬂ-a—y) = —u(%-l—a—y)-f—O(e).

On the other hand the vertically-integrated momentum equation (26) gives

h @-l—ﬂ@ﬁ-ﬁ@-f—c;@ +u @4-%4—%
ot Ox dy Ox ot Ox dy

= —aou(b) + O(e),

and using the vertically-averaged continuity equation (27)

ou ou _Ou oh aou(b)

a‘f’ﬂ%ﬁ-va—y-f—c;%: — h +O(6).

Replacing this expression in (37) we have that

19 <y @) )

coz \""z h

Let us now integrate this expression from the bottom b to z:

1 O0u 1 Ou ~ ag(z—D)
GI/U’OaZ = €(Vv’0(9z)|z=b 7]1 u(b) + O(E)

Using boundary condition (20)2 we get:

1 ou z—0b
;l/v’()g = OZQU(b) (1 — h ) + O(E),
so that 5
gu _ n—z 2
% eaou(b) (huv,0> + O(e%).

We vertically-integrate again this expression from the bottom b to z, yield-
ing

u = u(b)+ eaou(b)/bz nV_v((S) ds + O(é?)
| (38)
= u(b) <1+%/b "VU_O‘S d6> + 0(e).

Integrating now on the vertical and dividing by the water height h we
obtain:
u = ulb) (1 +eapio) + O(?), (39)

where for the sake of simplicity we have denoted

nopz .
Uyo = i/ / n=9 dd dz.
' 2 )y Jy o
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Equation (39) leads us to two important results. On one hand, it gives us
some information about the Boussinesq coefficient 5. Indeed, from (38) we
deduce that

2eqy [ —0

2 _ 2
U —u(b)<1+—h Y oo

dd) + O(é?),
and therefore that

1 /M
ﬁ/ wldz = u?(b) (1 + 2eqiy o) + O(e?)
b

= 2 (1—260{091),0)(14—260(091),0) + 0(62)
= a2 + O(é?).

Thus -
u? = a* + O(e?), (40)

which means that, up to the second order in ¢, the Boussinesq coefficient 3
only depends on the transversal variations of the velocity u (and not on its
vertical variations). Indeed:

l2
Ll g2 ha?dy
B == / = dxdy = A~ L O().

b U2 lo
/ hu dy
5

On the other hand equation (39) allows to model the friction term. Indeed,
we have now the following expression of the velocity on the bottom with
respect to the vertically-averaged velocity u:
u(b) = v + O(%) = a (1 —ealyg) + O(?). 41
1+ €Qly,0 ’ ( )

However, we recall that
afu(b)]

€

ag =

The friction coefficient g depends itself on the value of the velocity at the
bottom, therefore expression (41) is unsatisfactory for the purpose of ex-
pressing u(b) in terms of @. To overcome this difficulty we use the following
approximation of u(b) to the second order in e given by (41):

ud) = @ (1 — eapin) + O(e?).

Since € is very small we can assume that |1 — eaoDy 0| is positive and there-
fore:
lu(b)] = [a] (1 = eaopo) + O(%).

We then approximate |u(b)| with |u(b)| in ag, so that we can write:

« «
a0 = Zlu(b)] ~ 2Jal(1 - alal7.o).
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Thus o
ao(1+ ab, gla|) = ;|a| + O(€?).

Neglecting the O(e?) term, we finally obtain an expression of ag which is
independent of the velocity at the bottom:

alal

e+ ameolal)’ (42)

ap ~

Using this approximation of g, together with expression (41), we can ap-
proximate the friction term in (31) as follows:

L2 L2 alu
- %/ o [u(®) | u(b)dy ~ — 1/ ol L s

—— U
I €J, 1+2av,0|ul

In this way we have overcome the initial difficulty and we use expression
(43) to model the friction term in the momentum equation (31).

3.5 The section averaged shallow water model

We have derived a section-averaged shallow water model which is an ap-
proximation of the second order in € of the initial three-dimensional free
surface flow problem (1) with boundary conditions (4)-(7). Switching to
the dimensional variables, this model writes:

Q 9 (., /b@ __/l2a|ﬂ|—
at+ax(5A>+g "oty = T4ee VW

0A oQ
E "
where 2alal [ (7 p( )
o\t p(n—
Co = —— —dddz 45
h? /b/b [ (45)

acts as a correction to the classical one-dimensional friction term, and 3 is
the momentum correction coefficient

l2
/ hady
l

—
(/ ha dy )?
1

This model results of a direct, rigorous asymptotic derivation from the
three-dimensional free surface flow equations. In addition, this derivation

B=A (46)
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is very general since it is valid for flows with arbitrary cross-section and
non-constant, turbulent viscosity. Thus, we expect that the coupling of
such a reduced model to a three-dimensional model to be easier and yield
better results.

4 Computation of the corrected friction term

In this section we give an explicit expression of the friction correction to use
in the laminar case and with a parabolic turbulence model for the vertical
eddy viscosity.

4.1 The laminar case

We first consider the case where a constant vertical viscosity p, is used.
Note that in order to be consistent with our analysis, its adimensional

value v, = v hust be O(e). In that case we have that

pUL
n  rz o 3
/ / P=9) 50 — ﬁh_7
b Jb Ko Po 3

and therefore the correction (45) of the friction term is:

2
Ca = giah Ial. (47)

v
Note that in this case we retrieve a friction correction term which is very
similar to the one presented by Gerbeau et al. in [6], which is :

Lp

= p 48
S (48)

Cr

where k is the friction coefficient taken in their model. In our analysis, we
have taken k = a|u(b)|, where « is a dimensionless friction coefficient and
|u(b)| is the module of the horizontal velocity on the bottom. That explains
the difference between both friction correction terms.

If the flow is homogeneous in the y-direction and has a rectangular-cross-

section, 4 = % and the friction term in (44) writes

a|Q|

i (142219
3y 1

(49)

4.2 Parabolic model for the vertical eddy viscosity

Let us now consider a turbulence model which assumes a parabolic distri-
bution of the vertical eddy viscosity over the water depth:

% = Upm + Ku*(z—b) (1—@), (50)
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where k is the von Karman constant, ux the modulus of the friction velocity

and v, the molecular kinematic viscosity. Note that a simple dimensional
analysis shows that we have v, = I[LJUL = 0(e) as expected.
p

We remark that we have slightly modified the classical parabolic turbulence
model (50) in order to simplify the analytical integration in the computation
of the correction term (45). Indeed, we have used

“_p” = (vm + KU (z—b)) <1—(Z—;b)) : (51)

Note that this modification does not change significantly the profile of the
vertical viscosity.

By analytical computation we have that:

n z _ 2 *
/ / P =0) 15 4. :h_<(1+ Ym )ln<1+m h)—l).
b Jb Mo Ku* Kku*h Vm

The friction correction (45) then writes:
2a|u 'm *h
ca:_o‘|“|<(1+—” )zn(1+’w )—1).
Ku* Ku*h VUm

Following the Chézy law we have that

luf 1
w o

therefore the friction correction is

Ca = ?((1—#%)171(1—#@)—1). (52)

If the flow is homogeneous in the y-direction and has a rectangular-cross-

section, 4 = % and the friction term in (44) writes

_ o |Q
h21 (1+¥ (<1+;—m\/a|clg_|) In <1+Hf|il?|) —1)).

Q. (53)

5 Comparison of the three-dimensional and the
section-averaged solutions in the case of flows
with rectangular cross-section

Our aim is now to illustrate the accuracy gain achieved by taking into ac-
count the correction of the friction term in the section-averaged model. For
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this purpose, we restrict ourselves to the case of rectangular cross-section
open channels, for which steady state solutions are available. Note that
these flows are representative of the main physical features of river flows
and are commonly used as a first benchmark in many hydraulics applica-
tions.

In this case the water depth h is constant along the y-direction and,
denoting by [ the width of the river, the section area is A = [h. In addition
we suppose . = pp = 0. The section averaged shallow water model then
writes in the more classical form:

2 lo -
9 i(ﬁQ—> 1+ gadn _ —/l alal g g

ot ox A ox 1+c,

(54)
0A 0Q
ot + o 0

l2
/ wdy
1
lo .
( / udy)?
5t

We emphasize the fact that in this particular case we obtain the classi-
cal section-averaged equations [3] with a correction of the friction term.

Note that the Boussinesq term (46) then reduces to 8 = [

Remark 5.1 If the flow is homogeneous in the y-direction, we have that

u= 1 and therefore the friction term writes

a|Q[l

B A2 (].+Co¢) Q

Without correction the friction term reduces to

_alQll
A2

Q,

which is the expression of the friction in the classical section-averaged shal-
low water equations.

We choose a three-dimensional test case with an analytic solution, to
be compared to the analytic solution of the section-averaged model with
and without friction correction. The test case consists of a steady state
turbulent flow in a channel with a slight slope ip, as illustrated in figure 2.

We take the channel as the reference configuration — (z,y, z) in figure 2 —
and we suppose that v, = v, = 0. The flow is steady and uniform in the
z-direction, and the free surface is perfectly parallel to the bottom, that is:

0b

Vi = (%aO)Tv U= (u70a0)T' (55)

Rewriting the three-dimensional RANS equations (1) in the new reference
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U(x)

)8

Figure 2: Uniform flow in a chanel with slope

configuration, and considering (55), we retrieve the following system:

10p zguvau

lop _ : 20 w2
e gsinf + (cos®6 — sin” 0) 8z( 5 8z) (56)
19p -~ - 29 _gn2g) O (Mo Ou

p Oz = gcos® + 2cosfsinf(cos”f — sin” 0) 82( ; 82)7 (57)

where 6 is the angle of the slope. The boundary conditions on the free
surface are:

Ly Ou
= a d _— = O, 58
P = pa and ZRor (58)
and on the bottom: 9
o = avO)llu, (59)
1

where ¥(0) =

. From (56)2 we deduce that the pressure
(cos? @ — sin? 9)2 (56): P

is independent of x, and therefore 8_p = 0. Equation (56); reduces to:
x

0,y Ou

&(7 %) = —g9(0), (60)

sin

(cos? § — sin? 9)2
tion z to the free surface 1), and using boundary condition (58) we obtain:

where ¢(0) =

. Integrating (60) from an arbitrary eleva-

ou _ g¢(9)m.

= - (61)
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Integrating now (61) from z to the bottom we obtain the following expres-
sion of the velocity:

U= U, t 9¢(9)/b Wd& (62)

This expression can be vertically-integrated on the entire water column in
order to retrieve an expression of the flow. Indeed,

ls 1 Iy n gz _
Q = / / udzdy = / (hukzb) + g6(6) / / Mdédz) dy,
L Jb Iy B b Jb Mo

and since the flow is homogeneous in the y-direction:

n oz -5
Q = Au_, + gl(b(@)/ / P01 =9) 5.
b Jb Hu
Let us now retrieve an expression of the velocity at the bottom. From (61)

with z = b we have that

Ho Ou

7&\2:17 = 9¢(9)h-

Using boundary condition (59) we obtain:
aful),_,u,_,(0) = ghe(0),

and since in the particular case we are considering the velocity is always

positive, we have that:
ghsinf
u.., = 2 (63)

Finally we have derived the following expression of the flow:

_Q _ ghsiné T % p(n—9)
¢ =7 = hwia +g¢(9)/b /b ST dédz , (64)

which is an analytic solution of the three-dimensional problem considered
in this section.

This three-dimensional solution is to be compared with the analytic
solution of the section-averaged model (54) with and without friction cor-
rection. In the particular case considered here we can easily derive the
following analytic solution to the section-averaged equations:

g =h ghip

(1+ca) - (65)

Note that if the correction of the friction term is not taken into account in
the section-averaged model, the analytic solution is:
ghip

panlt

qg=nh (66)
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Water Depth (m)

25

Since ¢, depends on the flow rate ¢, and p, also when using a parabolic
turbulence model, equations (64), (65) and (66) yield an implicit relation
between g and h. We have solved this relation for different values of the
water height h, in order to compare the analytic solutions of the different
models. Indeed, we have compared the solutions in the laminar case — with
constant vertical vicosity ¥ = 0.01 — and in the turbulent case — using the

parabolic model (50) for the turbulent vertical viscosity. We use the Chézy

friction term o = 9 with x = 30 and xy = 60, respectively, in the case

of a slope i = 107%. Figure 3 shows the profile of the analytical water
height h as a function of the flow ¢ in the laminar case for x = 66.5 (left)
and x = 30 (right). The starred line corresponds to the three-dimensional
solution given by (64), the dashed line corresponds to the solution to the
section-averaged model with friction correction given by (65), wheareas the
dotted line corresponds to the solution without friction correction (66).

Chezy coefficient of 30
45 . :

=
o
T

051

25
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Figure 3: Analytic solutions for the three-dimensional problem (starred line),
the section-averaged problem with friction correction (dashed line) and without
correction (dotted line). Laminar case with v = 0.01 and with xy = 66.5 (left)
and y = 30 (right).

Figure 4 shows the same profile in the turbulent case.

As we can see, the analytic solution of the section-averaged model is
much closer to the three-dimensional solution when the friction correction
is taken into account. This is true when taking a constant vertical viscosity,
as well as when using the parabolic turbulence model. The results obtained
in this test case, which is a relevant regime for river hydraulics, confirm
that classical friction term in the section-averaged shallow water equations
should be corrected as defined in (44).
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Figure 4: Analytic solutions for the three-dimensional problem (starred line)
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the section-averaged problem with friction correction (dashed line) and without
correction (dotted line ). Case with a parabolic turbulent vertical viscosity and

with x = 66.5 (left) and x = 30 (right).

6 Conclusion

In this paper, we have extended the analysis of [6] to the three-dimensional
RANS equations with anisotropic Reynolds tensor for free surface flows
in arbitrary geometries. A rigourous derivation of a section-averaged sys-
tem has been proposed, including the effects of eddy viscosity and friction.
When applied to flows with rectangular cross-section, this system is similar
to the classical section-averaged shallow water equations [10], except for
the friction term. Indeed, our derivation shows that, in order to take into
account effects up to the second order in the asymptotic parameter, the
classical friction term should be corrected by a term which depends on the
turbulent vertical viscosity.

This conclusion is in good agreement with the one achieved by Gerbeau
et al. in [6] for two-dimensional flows with constant viscosity over a flat
bottom. Indeed, if the vertical viscosity is taken constant and the flow
is homogeneous in the transversal direction, we retrieve the same friction
correction as in [6]. Our derivation provides the expression of the friction
correction term in a more general case than those treated by [6], including
turbulent flows and three-dimensional arbitrary geometries. In particular,
we compute the correction term associated to specific model for the vertical
profile of turbulent velocity. Furthermore, for steady state open channel
flows admitting analytic solutions of the three-dimensional as well as the
simplified models, we have shown that the solutions computed including
our correction term are much closer to those of three dimensional model
than those of the standard shallow water model. In forthcoming work,
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we plan to take advantage of the present results by including the friction
correction term in section averaged models such as the one proposed by
Deponti ea in [3]. Its use is also expected to ease the coupling of three-
and one-dimensional free surface models in the framework of an integrated
hydrological basin model.
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