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Abstract

We study a functional equation whose unknown maps a eu-
clidean space into the space of probability distributions on [0, 1].
We prove existence and uniqueness of its solution under suitable
regularity and boundary conditions and we characterize solutions
that are diffuse on [0, 1]. A canonical solution is obtained by means
of a Randomly Reinforced Urn with different reinforcement distri-
butions having equal means.
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1 Introduction

The present work treats a particular functional equation whose unknown
maps a euclidean space into the space P([0, 1]) of probability distributions
on [0, 1].

Consider two probability distributions µ and ν on the interval [0, β],
with β > 0, and assume that µ and ν have the same mean and this is greater
than 0. Then, for (x, y) ranging over the subspace S = [0,∞)×[0,∞)\(0, 0)
of R2, define the following equation with parameters µ and ν:

x

∫ β

0

(G(x, y)−G(x+k, y))µ(dk)+y

∫ β

0

(G(x, y)−G(x, y+k))ν(dk) = 0; (1)

the unknown is the function

G : S→ P([0,1]).

Without additional constraints or requirements, equation (1) in its com-
plete generality admits infinitely many solutions. For instance, any con-
stant function G satisfies (1). We will show that under suitable regularity
and boundary conditions, the problem described by (1) is well-posed in the
sense that its solution exists, it is unique and depends continuously on the
boundary datum. Moreover, we will also prove that the solution depends
continuously on the parameters µ and ν and we will characterize a class
of solutions G mapping the interior of S into the subspace of probability
distributions diffuse on [0, 1].

A particular case of the problem considered in this paper has been
studied in [1] where it is proved that, when the two parameters µ and ν are
equal, there exists one and only one continuous solution to (1) that maps
the x-axis and y-axis borders of S in the point mass at 1 or at 0, respectively,
and that approaches the point mass at x/(x + y) as x + y tends to infinity.
We here extend this result to the case of different parameters µ and ν with
the same mean, and to more general boundary conditions. These will be
described by means of a continuous function ϕ : [0, 1] → P([0, 1]) that will
represent the boundary datum of the problem.

In the next section we set notation and terminology, we formally de-
scribe the functional equation problem and we state three results concern-
ing its solution; they will be proved in the rest of the paper. Section 3
deals with the construction of the canonical solution to (1) for the special
case when the boundary datum ϕ(t) is the point mass at t, for all t ∈ [0, 1];
indeed, the canonical solution is obtained by means of a Randomly Rein-
forced Urn (see [1, 2, 6, 7] and references therein), which represents the
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original stimulus to study the functional equation considered in the paper.
Canonical solutions are the building block for proving existence, unique-
ness and regularity properties of the solution to the functional equation
problem with a general boundary datum; this will be shown in Section 4.
Section 5 describes functional equation problems whose solution maps the
interior of S into the subspace of P([0, 1]) consisting of probability distri-
butions with no point masses. The final Section 6 presents some examples.
Auxiliary technical results have been postponed to the Appendix.

2 Problem and main results

In this section we set notation and terminology and we describe the func-
tional equation problem in detail. We also state three main results con-
cerning its solution; they will be proved in the rest of the paper.

2.1 The Wasserstein metric for spaces of probability
distributions

For any β ∈ (0,∞), we endow the set P([0, β]) of probability distributions
on the real interval [0, β] with the 1–Wasserstein metric dW which metrizes
weak convergence. Recall that, for ξ1, ξ2 ∈ P([0, β]),

dW (ξ1, ξ2) =

∫ β

0

|Fξ1(t)− Fξ2(t)|dt =

∫ 1

0

|qξ1(t)− qξ2(t)|dt, (2)

where Fξ and qξ are the cumulative distribution function and the quantile
function of ξ ∈ P([0, β]), respectively (see [3] for more details). Moreover,
by Kantorovich-Rubinstein Theorem,

dW (ξ1, ξ2) = inf{E(|X1 −X2| : X1 ∼ ξ1, X2 ∼ ξ2)} (3)

where the infimum is taken over all joint distributions for the vector of
random variables (X1, X2) with marginal distributions equal to ξ1 and ξ2,
respectively. The metric space (P([0, β]), dW ) is complete and compact.

2.2 The set P of parameters

For 0 < m0 ≤ β < ∞, endow the cartesian product P([0, β]) × P([0, β])
with the Manhattan-distance

dM((µ1, ν1), (µ2, ν2)) = dW (µ1, µ2) + dW (ν1, ν2)
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and consider the subset P of couples (µ, ν) of probability distributions with
support in [0, β] having means that are equal and that are both greater than
or equal to m0, i.e. such that

∫ β

0

kµ(dk) =

∫ β

0

kν(dk) ≥ m0. (4)

The elements of P will act as the parameters for the functional equation
(1); note that P is a closed subset of the metric space P([0, β])×P([0, β])
and therefore it is compact.

2.3 The set C([0, 1],P([0, 1])) of boundary data

A boundary datum ϕ is defined as a continuous map from [0, 1] to P([0, 1]).
We endow the set of boundary data C([0, 1],P([0, 1])) with the sup-distance

d∞(ϕ1, ϕ2) = sup
t∈[0,1]

dW (ϕ1(t), ϕ2(t));

then (C([0, 1],P([0, 1])), d∞) is a complete metric space.
From now on, δ will indicate the element of C([0, 1],P([0, 1])) defined

by setting δ(t) = δt for t ∈ [0, 1], where δt denotes the point mass at t.

2.4 The set C(S,P([0, 1])) where solutions are to be
found

Let S = [0,∞)× [0,∞) \ (0, 0) and C(S,P([0, 1])) be the set of the contin-
uous maps G : S→ P([0,1]).

For n = 1, 2, ... let Sn = S
⋂{(x, y) ∈ S : x + y ≥ 1/n} and consider the

distance between elements G1,G2 ∈ C(Sn,P([0, 1])) defined by

dn(G1,G2) = sup
(x,y)∈Sn

dW (G1(x, y),G2(x, y)).

We then define a new distance d by setting, for all G1,G2 ∈ C(S,P([0, 1])),

d(G1,G2) =
∞∑

n=1

1

2n
· dn(G1 |Sn ,G2 |Sn)

1 + dn(G1 |Sn ,G2 |Sn)

where G |Sn indicates the restriction to Sn of a G ∈ C(S,P([0, 1])).
The distance d metrizes the uniform weak convergence in any closed

subset of S
⋃{(0, 0)} which does not contain the origin. Note that conver-

gence with respect to d is equivalent to convergence with respect to all dn

of the corresponding restrictions. The set (C(S,P([0, 1])), d) is a complete
metric space; we will look for elements of this space that are solutions of
the functional equation (1).
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2.5 The functional equation problem

The Problem object of this paper is now easily stated:
given

(µ, ν) ∈ P and the boundary datum ϕ ∈ C([0, 1],P([0, 1])),

find
G ∈ C(S,P([0, 1])) (5a)

such that, for all (x, y) ∈ S,

x

∫ β

0

(G(x, y)− G(x + k, y))µ(dk) + y

∫ β

0

(G(x, y)− G(x, y + k))ν(dk) = 0,

(5b)

G(0, y) = ϕ(0), (5c)

G(x, 0) = ϕ(1), (5d)

dW

(
G(x, y), ϕ

( x

x + y

)) −→
x+y→∞

0. (5e)

2.6 Main results

Our first result states that Problem (5) is well-posed in the sense of Hadamard.

Theorem 2.1 A solution to Problem (5) exists, it is unique, and it de-
pends continuously on the boundary datum.

In the rest of the paper, we denote with Gϕ
(µ,ν) the unique solution to

Problem (5). Theorem 2.1 will be proved first in the special case when the
boundary datum is the map δ. Indeed Gδ

(µ,ν) is a canonical solution for the
problem since, for any other boundary datum ϕ ∈ C([0, 1],P([0, 1])), we
will show that

Gϕ
(µ,ν) = Ψϕ(Gδ

(µ,ν)), (6)

where
Ψϕ : C(S,P([0, 1])) → C(S,P([0, 1]))

is the linear map defined by setting, for all G ∈ C(S,P([0, 1])),

Ψϕ(G)(x, y) =

∫ 1

0

ϕ(t)G(x, y)(dt)

with (x, y) ranging over S.
The second theorem concerns the continuity of the solution to Problem

(5) when the parameters of the equation are let to change. Indicate with Gϕ
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the set of solutions to Problem (5) obtained by holding fixed the boundary
datum ϕ ∈ C([0, 1],P([0, 1])) and by letting the parameters (µ, ν) range
over P :

Gϕ =
{
Gϕ

(µ,ν) : (µ, ν) ∈ P
}

.

Theorem 2.2 For any given boundary datum ϕ ∈ C([0, 1],P([0, 1])), the
map

(µ, ν) 7→ Gϕ
(µ,ν),

from P to Gϕ, is uniformly continuous and Gϕ is compact.

To prove Theorem 2.2 we will first show that it holds for canonical
solutions, i.e. for Gδ, and then we will prove that the map Ψϕ is continuous.

The third result regards a different regularity property of the solution
to Problem (5), which depends on the boundary datum ϕ but not on the
parameters (µ, ν). Indeed we characterize solutions Gϕ

(µ,ν) mapping the in-

terior of S into the class of probability distributions on [0, 1] having no
point masses; such solutions will be called diffuse.

A boundary datum ϕ ∈ C([0, 1],P([0, 1])) is said to be monotonic if,
for all s, t ∈ [0, 1], s ≤ t,

ϕ(s) ≤st ϕ(t).

For a given ϕ ∈ C([0, 1],P([0, 1])), indicate with Φ the probability distri-
bution on [0, 1] obtained as the convex combination with uniform weights

of the members of the family {ϕ(t) : t ∈ [0, 1]}; i.e. Φ =
∫ 1

0
ϕ(t)dt.

Theorem 2.3 Assume that the boundary datum ϕ is monotonic and let
Gϕ

(µ,ν) be the unique solution to Problem (5). Then:

1. If there is (x0, y0) in the interior of S such that Gϕ
(µ,ν)(x0, y0) has no

point masses in [0, 1], then Φ =
∫ 1

0
ϕ(t)dt has no point masses in

[0, 1].

2. If Φ =
∫ 1

0
ϕ(t)dt has no point masses in [0, 1], then Gϕ

(µ,ν)(x, y) has

no point masses in [0, 1] for all (x, y) in the interior of S.

Once again, in Section 5, we will first prove Theorem 2.3 for canonical
solutions and then for the general solution Gϕ

(µ,ν) .
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3 Existence of canonical solutions: a Ran-

domly Reinforced Urn

In this section we assume that the boundary datum of Problem (5) is the
map δ ∈ C([0, 1],P([0, 1])); we prove the existence of a solution for this
special instance of the problem, by constructing it through a generalized
urn scheme. This solution will be called canonical since the solution to
Problem (5) for a general boundary datum will be obtained by transform-
ing the canonical solution through a suitable map. The generalized urn
scheme that we are going to consider is the Randomly Reinforced Urn
(RRU) introduced in [6, 7] and further studied in [1, 2, 5, 8]. This is an
urn containing balls of different colors, say black and white. The urn is
sequentially sampled; whenever a black ball is extracted from the urn, it
is replaced in it together with a random number of black balls having dis-
tribution µ, whereas if the color of the extracted ball is white, the ball is
replaced in the urn together with a random number of white balls having
distribution ν. The extra balls added every time the urn is sampled are
called reinforcements.

On a rich enough probability space (Ω,A,P), define two independent
infinite sequences of random elements, {Un} and {(Vn,Wn)}; {Un} is a
sequence of i.i.d. random variables uniformly distributed on [0, 1], while
{(Vn,Wn)} is a sequence of i.i.d. bivariate random vectors with compo-
nents uniformly distributed on [0, 1]. Then, define an infinite sequence
{(RX(n), RY (n))} of bivariate random vectors by setting, for all n,

RX(n) = qµ(Vn) and RY (n) = qν(Wn),

where qµ and qν are the quantile functions of two distributions µ and ν
having support in [0, β], with β > 0. Let x and y be two non-negative real
numbers such that x + y > 0. Set X0 = x, Y0 = y, and, for n = 0, 1, 2, ...,
let {

Xn+1 = Xn + RX(n + 1)I(n + 1),
Yn+1 = Yn + RY (n + 1)(1− I(n + 1)),

(7)

where the variable I(n + 1) is the indicator of the event {Un+1 ≤ Xn(Xn +
Yn)−1}. The law of {(Xn, Yn)} is that of the stochastic process counting,
along the sampling sequence, the number of black and white balls present
in a RRU with initial composition (x, y) and reinforcement distributions
equal to µ and ν, respectively.

For n = 0, 1, 2, . . . let Dn = Xn+Yn be the total number of balls present
in the urn at time n and set

Zn(x, y) = Xn/Dn;
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Zn(x, y) represents the proportion of black balls in a RRU with initial
composition (x, y), before the (n+1)-th ball is sampled from it. In [7] it is
proved that {Zn(x, y)} is eventually a bounded sub- or super-martingale,
and it thus converges almost surely, and in Lp, for 1 ≤ p ≤ ∞, to a random
variable Z∞(x, y) ∈ [0, 1]; moreover, when µ and ν have different means,
Z∞(x, y) is the point mass concentrated in 1 or 0, according to whether the
mean of µ is greater or smaller than that of ν. However, when the means
of µ and ν are the same, the distribution of Z∞(x, y) is unknown, apart
from a few special cases, see [1] and [5].

For a given couple (µ, ν) ∈ P , let

F (µ,ν) : S→ P([0, 1])

be the map which assigns to every (x, y) ∈ S the distribution of the limit
proportion Z∞(x, y) of a RRU with initial composition (x, y) and rein-
forcement distributions µ and ν. In the special case where µ = ν, the map
F (µ,µ) has been characterized in [1] as the unique solution to Problem (5)
when the boundary datum is δ. We now extend this result to the general
case (µ, ν) ∈ P .

Proposition 3.1 F (µ,ν) is a solution to Problem (5) when its boundary
datum is equal to δ.

In order to prove Proposition 3.1 we need some auxiliary results; when
they do not depend on the parameters (µ, ν) ∈ P , and there is no place
for misunderstanding, we write F for F (µ,ν). Some technicalities connected
with the Doob’s decomposition of the process {Zn} have been postponed
to the Appendix.

The distance between F , evaluated at (x, y), and the boundary datum,
evaluated at x/(x + y), is controlled in the following lemma; this distance
is uniformly bounded, provided that the size of the urn initial composition
is sufficiently large.

Lemma 3.1 If x + y ≥ 2β,

dW

(F(x, y), δ x
x+y

)
< 2

√
β

x + y
.

Proof Note that, by (3), dW

(F(x, y), δ x
x+y

)
= E(|Z∞(x, y)− x

x+y |). Set

m =
∫ β

0
kµ(dk) =

∫ β

0
kν(dk);
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then m ≥ m0. From Lemma A.2 and Lemma A.3 with n = 0, and because
x + y ≥ 2β implies

√
β

x+y < 1, we have

dW

(F(x, y), δ x
x+y

) ≤
√

β

x + y
+

β

x + y
<

√
β

x + y
+

√
β

x + y
.

¤

The Markov inequality together with Lemma 3.1 imply the following
corollary.

Corollary 3.1 If x + y ≥ 2β,

P
(∣∣Z∞(x, y)− x

x + y

∣∣ > h0

)
≤ 2

h0

√
β

x + y

for every h0 > 0.

Lemma 3.2 For all n0 ≥ 1 and ε > 0, there is N = N(ε, n0) such that,

E
(|Zn(x, y)− Z∞(x, y)|) ≤ ε,

if n ≥ N and x + y ≥ 1/n0.

Proof Equation (A.36) yields

P(Dn < t) = P
( 1

Dn
>

1
t

)
≤ t E

1
Dn

< t
1 + n0(β −m0)
m0(n− 1) + β

(8)

for all t > 0. Set
t = max{16β/ε2, 2β} (9)

and

N ≥
2t
ε (1 + n0(β −m0))− β

m0
+ 1. (10)

From (8) and (10), we get
P(DN < t) <

ε

2
. (11)

Moreover, since the process {(Xn, Yn)} is Markov, it follows from Lemma 3.1
and (9) that, for n ≥ N and ω ∈ {DN ≥ t},

E
(
|Z∞ − Zn|

∣∣∣(Xn, Yn)
)
(ω) = dW

(
F(Xn(ω), Yn(ω)), δ Xn(ω)

Xn(ω)+Yn(ω)

)
≤ ε

2
. (12)
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Since {Dn+1 < t} ⊆ {Dn < t} for all n, (11) and (12) imply that

E[|Z∞ − Zn|] = E[|Z∞ − Zn|; {Dn ≥ t}] + E[|Z∞ − Zn|; {Dn < t}]
≤ E

(
E(|Z∞ − Zn|1{Dn≥t}

∣∣(Xn, Yn))
)

+ P(DN < t)

≤ ε

for n ≥ N. ¤

The next result can be read as a bound on the modulus of continuity
of F when evaluated at the inner points of S.

Lemma 3.3 For all n0 ≥ 1 and ε > 0, there is η = η(ε, n0), increasing
with ε and 1/n0, such that

dW (F(x, y),F(x̄, ȳ)) < ε,

if |x− x̄|+ |y − ȳ| < η and min{x + y, x̄ + ȳ} ≥ 1/n0.

Proof Let N = N(ε/4, n0) be given by Lemma 3.2. Then:

dW (F(x, y),F(x̄, ȳ)) (13)
≤ E[|Z∞(x, y)− ZN (x, y)|] + E[|Z∞(x̄, ȳ)− ZN (x̄, ȳ)|] + E[|ZN (x, y)− ZN (x̄, ȳ)|]
≤ ε

2
+ E[|ZN (x, y)− ZN (x̄, ȳ)|].

For controlling the last term, we adopt a coupling argument as in [1]. Consider
two different randomly reinforced urns, the first one with initial composition
(x, y) and second one with (x̄, ȳ). The two urns are coupled in the sense that the
same processes {Un} and {(Vn,Wn)} generate both {(Xn(x, y), Yn(x, y))} and
{(Xn(x̄, ȳ), Yn(x̄, ȳ)) according to the dynamics described in (7). With the same
arguments as in [1, pages 701-702], one may show that

E[|ZN (x, y)− ZN (x̄, ȳ)|] ≤ (1 + N)
|x− x̄|+ |y − ȳ|

min{x + y, x̄ + ȳ} ;

therefore, if η ≤ ε
2(1+N)n0

,

E[|ZN (x, y)− ZN (x̄, ȳ)|] ≤ ε

2
.

¤

Proof of Proposition 3.1 By considering the conditional distribution of
Z∞(x, y), given I(1), RX(1) and RY (1), and taking the expected values, one im-
mediately verifies that F (µ,ν) satisfies equation (5b) for all (x, y) ∈ S. Conditions

10



(5c) and (5d) are also easily verified when ϕ = δ. Finally, (5a) and (5e) are con-
sequences of Lemma 3.3 and of Lemma 3.1, respectively. ¤

The next result proves a further regularity property of F (µ,ν) .

Proposition 3.2 The map

(µ, ν) 7→ F (µ,ν),

from (P , dM) to (C(S,P([0, 1])), d), is uniformly continuous.

Proof Let A : C(S,P([0, 1]))×P → C(S,P([0, 1])) be the operator defined by
setting, for every H ∈ C(S,P([0, 1])) and (µ, ν) ∈ P ,

A(H, (µ, ν))(x, y) = x
x+y

∫ β

0
H(x + k, y)µ(dk) + y

x+y

∫ β

0
H(x, y + k)ν(dk) (14)

= x
x+y

∫ 1

0
H(x + qµ(t), y)dt + y

x+y

∫ 1

0
H(x, y + qν(t))dt, (15)

where (x, y) ranges over S.
Let n ≥ 1. Then

dn(A(H1, (µ, ν))|Sn , A(H2, (µ, ν))|Sn) ≤ dn(H1|Sn ,H2|Sn), (16)

for every H1,H2 ∈ C(S,P([0, 1])) and (µ, ν) ∈ P . Indeed, for every (x, y) ∈ Sn,

dW (A(H1, (µ, ν))(x, y), A(H2, (µ, ν))(x, y))

≤ x

x + y

∫ β

0
dW (H1(x + k, y),H2(x + k, y))µ(dk)

+
y

x + y

∫ β

0
dW (H1(x, y + k),H2(x, y + k))ν(dk)

≤ sup
(x′,y′)∈Sn

dW (H1(x′, y′),H2(x′, y′)).

Moreover, if H ∈ C(S,P([0, 1])) is Lipschitz on Sn with Lipschitz constant Kn,
then, for every (µ1, ν1), (µ2, ν2) ∈ P ,

dn(A(H, (µ1, ν1))|Sn , A(H, (µ2, ν2))|Sn) ≤ KndM ((µ1, ν1), (µ2, ν2)), (17)

since, for every (x, y) ∈ Sn,

dW (A(H, (µ1, ν1))(x, y), A(H, (µ2, ν2))(x, y))

≤ x

x + y

∫ 1

0
dW (H(x + qµ1(t), y),H(x + qµ2(t), y))dt

+
y

x + y

∫ 1

0
dW (H(x, y + qν1(t)),H(x, y + qν2(t)))dt

≤ Kn( x
x+ydW (µ1, µ2) + y

x+ydW (ν1, ν2))

≤ KndM ((µ1, ν1), (µ2, ν2)).

(18)
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Now, for every H ∈ C(S,P([0, 1])) and (µ, ν) ∈ P , set A0(H, (µ, ν)) = H
and, for N = 1, 2, ... define iteratively

AN (H, (µ, ν)) = A(AN−1(H, (µ, ν)), (µ, ν)).

Consider H0 ∈ C(S,P([0, 1])) defined by setting H0(x, y) = δ( x
x+y ) for every

(x, y) ∈ S; then Z
(µ,ν)
0 (x, y) has distribution H0(x, y), while, for N = 1, 2, ...,

Z
(µ,ν)
N (x, y) has distribution AN (H0, (µ, ν))(x, y), where, for clarity of exposition,

the exponent of the Z variables is evidence for the reinforcement distributions of
the RRU under consideration. Note that, for n ≥ 1, H0 is a Lipschitz map from
Sn to P([0, 1]) with Lipschitz constant n. Moreover, it is not difficult to show,
with computations analogous to those appearing in (18), that the operator A
preserves the Lipschitz property with the same constant; hence, for (µ, ν) ∈ P
and N = 1, 2, ..., AN (H0, (µ, ν)) is a Lipschitz map from Sn to P([0, 1]) with
Lipschitz constant n.

Let (µ1, ν1), (µ2, ν2) ∈ P , n, N ≥ 1 and, for ease of notation, set Hi =
AN−1(H0, (µi, νi)), for i = 1, 2; then

dn(AN (H0, (µ1, ν1))|Sn ,AN (H0, (µ2, ν2))|Sn) = dn(A(H1, (µ1, ν1))|Sn , A(H2, (µ2, ν2))|Sn)
≤ dn(A(H1, (µ1, ν1))|Sn , A(H2, (µ1, ν1)|Sn))

+ dn(A(H2, (µ1, ν1))|Sn , A(H2, (µ2, ν2))|Sn)
≤ dn(H1|Sn ,H2|Sn) + ndM ((µ1, ν1), (µ2, ν2)),

(19)
the last inequality being a consequence of (16) and (17). By iteratively applying
(19), it follows that

dn(AN (H0, (µ1, ν1)), AN (H0, (µ2, ν2))) ≤ nNdM ((µ1, ν1), (µ2, ν2)).

Therefore, for every n ≥ 1 and ε > 0, if N = N(ε, n) is chosen according to
Lemma 3.2, we obtain

dn(F (µ1,ν1) |Sn ,F (µ2,ν2) |Sn) ≤ dn(F (µ1,ν1) |Sn , AN (H0, (µ1, ν1))|Sn)

+ dn(AN (H0, (µ1, ν1))|Sn , AN (H0, (µ2, ν2))|Sn)

+ dn(AN (H0, (µ2, ν2))|Sn ,F (µ2,ν2) |Sn)

≤ nNdM ((µ1, ν1), (µ2, ν2))

+ sup
(x,y)∈Sn

[
E

(|Z(µ1,ν1)
∞ (x, y)− Z

(µ1,ν1)
N (x, y)|)

+ E
(|Z(µ2,ν2)

N (x, y)− Z(µ2,ν2)
∞ (x, y)|)

]

≤ nNdM ((µ1, ν1), (µ2, ν2)) + 2ε.

This shows that the map (µ, ν) 7→ F (µ,ν) |Sn , from (P , dM ) to (C(Sn,P([0, 1])), dn),
is continuous for every n. Hence the map (µ, ν) 7→ F (µ,ν) from (P , dM ) to
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(C(S,P([0, 1])), d) is continuous; since P is compact, it is also uniformly contin-
uous. ¤

4 The solution to the functional equation

problem

In this section we prove Theorem 2.1 and Theorem 2.2. In particular we
show existence and uniqueness of the solution to Problem (5) when the
boundary datum is a generic element of C([0, 1],P([0, 1])). Existence is
shown by means of a constructive proof based on the canonical solution
described in Section 3. Uniqueness is proved through a fixed point argu-
ment.

Given ϕ ∈ C([0, 1]P([0, 1])), define the map Γϕ : P([0, 1]) → P([0, 1])
by setting, for every ξ ∈ P([0, 1]),

Γϕ(ξ)(B) =

∫ 1

0

ϕ(t)(B)ξ(dt),

where B ranges over the Borel sets in [0, 1].

Lemma 4.1 For any given ϕ ∈ C([0, 1]P([0, 1])), the map Γϕ is uniformly
continuous.

Proof Since ϕ ∈ C([0, 1],P([0, 1])), ϕ is uniformly continuous and bounded:
i.e. for any ε > 0, there is an η = η(ε, ϕ) such that

dW (ϕ(t1), ϕ(t2)) ≤ ε, if |t1 − t2| ≤ η, (20)

while
dW (ϕ(t1), ϕ(t2)) ≤ 1, for all t1, t2 ∈ [0, 1]. (21)

Now, take ξ1, ξ2 ∈ P([0, 1]) such that dW (ξ1, ξ2) < εη. We are going to prove
that dW (Γϕ(ξ1), Γϕ(ξ2)) ≤ 2ε.

Because of (3), there is a probability space (Ω̃, Ã, P̃) carrying a couple of
random variables X1, X2 such that X1 ∼ ξ1, X2 ∼ ξ2, and dW (ξ1, ξ2) = E(|X1−
X2|) ≤ εη; by Markov inequality,

P̃(|X1 −X2| > η) ≤ ε. (22)

On the product probability space (Ω̃ × [0, 1], Ã ⊗ B([0, 1]), P̃ ⊗ Leb) define the
random variables

ζ1(ω, t) = inf
{

z :
∫

[0,z]
ϕ(η1(ω))(ds) ≥ t

}
= qϕ(η1(ω))(t)
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and
ζ2(ω, t) = inf

{
z :

∫

[0,z]
ϕ(η2(ω))(ds) ≥ t

}
= qϕ(η2(ω))(t),

where qξ indicates the quantile function relative to the probability distribution
ξ ∈ P([0, 1]).

For i = 1, 2, note that ϕ(Xi) is the conditional distribution of ζi, given Xi;
thus, ζi ∼ Γϕ(ξi). Moreover, for all ω ∈ Ω̃,

dW (ϕ(X1(ω)), ϕ(X2(ω))) =
∫ 1

0
|qϕ(X1(ω))(t)− qϕ(X2(ω))(t)|dt

=
∫ 1

0
|ζ1(ω, t)− ζ2(ω, t)|dt.

Hence,

dW (Γϕ(ξ1),Γϕ(ξ2)) ≤ E(|ζ1 − ζ2|)
= E

(
E

(|ζ1 − ζ2|
∣∣X1, X2

))

= E
(
dW (ϕ(X1), ϕ(X2))

)
. (23)

Now, let F = {|X1 −X2| > η}. From (20), (21) and (22) one obtains:

E
(
dW (ϕ(X1), ϕ(X2))

)
= E

(
dW (ϕ(X1), ϕ(X2));F

)
+ E

(
dW (ϕ(X1), ϕ(X2));F c

)

≤ P̃(F ) + εP̃(F c) ≤ 2ε.

The last inequality, together with (23), concludes the proof. ¤

Proof of Theorem 2.1.
(i) Existence. When the boundary datum ϕ = δ, the existence of a solution

Gδ
(µ,ν) is guaranteed by Proposition 3.1, and this is F(µ,ν).

Now let ϕ ∈ C([0, 1],P([0, 1])) and define, for all (x, y) ∈ S,

Gϕ
(µ,ν)(x, y) = Γϕ(Gδ

(µ,ν)(x, y)); (24)

we are going to show that Gϕ
(µ,ν) is indeed a solution to Problem (5) when the

bondary datum is ϕ. In other words, the composition

(x, y) 7→ Gδ
(µ,ν)(x, y) 7→ Γϕ(Gδ

(µ,ν)(x, y))

gives a solution to Problem (5), i.e., (6) holds if the map Ψϕ is defined by setting,
for all G ∈ C(S,P([0, 1])),

Ψϕ(G)(x, y) = Γϕ(G(x, y)) =
∫ 1

0
ϕ(t) G(x, y)(dt) (25)

with (x, y) ranging over S.
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Because of Proposition 3.1, Gδ
(µ,ν) satisfies (5b) when the border datum is δ.

Since Γϕ is linear, this implies that, for all (x, y) ∈ S,

Ψϕ(Gδ
(µ,ν))(x, y) = Γϕ(Gδ

(µ,ν)(x, y))

= Γϕ

( x

x + y

∫
Gδ

(µ,ν)(x + k, y)µ(dk) +
y

x + y

∫
Gδ

(µ,ν)(x, y + k)ν(dk)
)

=
x

x + y

∫
Ψϕ(Gδ

(µ,ν))(x + k, y)µ(dk) +
y

x + y

∫
Ψϕ(Gδ

(µ,ν))(x, y + k)ν(dk);

hence Ψϕ(Gδ
(µ,ν)) satisfies (5b) when the border datum is ϕ. Now, by Lemma 4.1,

Ψϕ(Gδ
(µ,ν)) is a continuous map from S to P([0, 1]), being the composition of the

continuous maps Γϕ and Gδ
(µ,ν); hence (5a), (5c), (5d) and (5e) also hold true.

(ii) Uniqueness. Sketch of the argument. Our argument in [1, Section 5] can
be easily extended to this more general situation.

Condition (5e) requires G to be continuous at the projective infinite points.
It is therefore convenient to transform the space S along the projective automor-
phism τ of P2 so defined:

(x : y : u) τ7→(u : x : x + y).

The automorphism τ has the following properties:

- the space S is mapped into the affine space S∗ = [0,∞)× [0, 1];

- the positive x–axis is mapped into itself by (x, 0) → (1/x, 0);

- the positive y–axis is mapped into the semiline {y∗ = 1, x∗ > 0} by
(0, y) 7→ (1/y, 1);

- the projective infinite point relative to the direction x
x+y = k is mapped

in the point (0, k);

- the origin is mapped in the projective infinite point (1 : 0 : 0).

The inverse map of τ is (x∗ : y∗ : u∗) τ−17→ (y∗ : u∗ − y∗ : x∗). Problem (5) can be
equivalently formulated on S∗ as follows:
given

(µ, ν) ∈ P and the boundary datum ϕ ∈ C([0, 1],P([0, 1])),

find
G∗ ∈ C(S∗,P([0, 1])) (26a)
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such that, for all (x, y) ∈ S∗,

G∗(x∗, y∗) = y∗
∫
G∗

( x∗

1 + kx∗
,
y∗ + kx∗

1 + kx∗
)
µ(dk)+

+ (1− y∗)
∫
G∗

( x∗

1 + kx∗
,

y∗

1 + kx∗
)
ν(dk),

(26b)

G∗(x∗, 0) = ϕ(0), (26c)
G∗(x∗, 1) = ϕ(1), (26d)
G∗(0, y∗) = ϕ(y∗). (26e)

In fact, (26b) is just (5b) in the new coordinates. Indeed, the transformations

G(x, y) = G∗(τ(x, y))

G∗(x∗, y∗) =

{
G(τ−1(x∗, y∗)) if (x∗, y∗) ∈ (0,∞)× [0, 1];
lim

s∗→0
G(τ−1(s∗, y∗)) if x∗ = 0, y∗ ∈ [0, 1],

show the equivalence of Problem (5) and Problem (26).
Now, let C∗ϕ(S∗) be the space of continuous function H∗ : S∗ → P([0, 1]) such

that, for every (x∗, y∗) ∈ S∗,

H∗(x∗, 0) = ϕ(0), H∗(x∗, 1) = ϕ(1) and H∗(0, y∗) = ϕ(y∗).

Define the following operator A∗ mapping C∗ϕ(S∗) into C∗ϕ(S∗):

A∗(H∗)(x∗, y∗) = y∗
∫
H∗

( x∗

1 + kx∗
,
y∗ + kx∗

1 + kx∗
)
µ(dk)+

+ (1− y∗)
∫
H∗

( x∗

1 + kx∗
,

y∗

1 + kx∗
)
ν(dk)

with (x∗, y∗) ranging over S∗.
With the same argument used in [1, Theorem 5.2], one can prove that A∗

has at most one fixed point; hence Problem (26) has at most one solution.

(iii) Continuity with respect to the boundary datum. We prove this last part
by showing that

d(Gϕ1

(µ,ν),Gϕ2

(µ,ν)) ≤ d∞(ϕ1, ϕ2) (27)

for all ϕ1, ϕ2 ∈ C([0, 1],P([0, 1])). We recall here that (see, e.g., [3])

dW (η1, η2) = sup
{∣∣∣

∫
h(t)η1(dt)−

∫
h(t)η2(dt)

∣∣∣ : ‖h‖L ≤ 1
}

(28)

where ‖h‖L is the Lipschitz norm. Then, for h such that ‖h‖L ≤ 1 and (x, y) ∈ S,
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we get

∣∣∣
∫

h(s)Gϕ1

(µ,ν)(x, y)(ds)−
∫

h(s)Gϕ2

(µ,ν)(x, y)(ds)
∣∣∣

=
∣∣∣
∫

h(s)
∫

ϕ1(t)(ds)Gδ
(µ,ν)(x, y)(dt)

−
∫

h(s)
∫

ϕ2(t)(ds)Gδ
(µ,ν)(x, y)(dt)

∣∣∣

≤
∫ ∣∣∣

∫
h(s)ϕ1(t)(ds)−

∫
h(s)ϕ2(t)(ds)

∣∣∣Gδ
(µ,ν)(x, y)(dt)

≤
∫

dW (ϕ1(t), ϕ2(t))Gδ
(µ,ν)(x, y)(dt) ≤ d∞(ϕ1, ϕ2);

hence dW (Gϕ1

(µ,ν)(x, y),Gϕ2

(µ,ν)(x, y)) ≤ d∞(ϕ1, ϕ2), again by (28). Inequality (27)
follows easily. ¤

Remark 4.1 Given (µ, ν) ∈ P , the inequality (27) can be completed as
follows: for all ϕ1, ϕ2 ∈ C([0, 1],P([0, 1]),

d(Gϕ1

(µ,ν),Gϕ2

(µ,ν)) ≤ d∞(ϕ1, ϕ2) ≤ 2d(Gϕ1

(µ,ν),Gϕ2

(µ,ν)). (29)

Hence, for any given (µ, ν) ∈ P , we have an embedding

C([0, 1],P([0, 1]))
Ψϕ

↪→C(S,P([0, 1])).

Indeed, for n = 1, 2, ..., (5e) implies that

d∞(ϕ1, ϕ2) ≤ dn(Gϕ1

(µ,ν),Gϕ2

(µ,ν));

since dn ≤ 1, and thus dn ≤ 2 dn

1+dn
, this implies the right inequality in (29).

Remark 4.2 Let m be the common mean of (µ, ν) ∈ P. For p ∈ [m0/m, 1],
set (µ′, ν ′) = (pµ + (1− p)δ0, pν + (1− p)δ0). Then (µ′, ν ′) ∈ P and

Gϕ
(µ′,ν′) = Gϕ

(µ,ν) .

Remark 4.3 Let h : [0, 1] → [0, 1] be a continuous function and ϕ ∈
C([0, 1],P([0, 1])) a boundary datum. For ξ ∈ P([0, 1]), denote with h ◦ ξ
the distribution of the random variable h(W ), where W is a random variable
with probability distribution ξ. Then

Gh◦ϕ
(µ,ν)(x, y) = h ◦ Gϕ

(µ,ν)(x, y),

for all (x, y) ∈ S.

17



Remark 4.4 One may notice that the boundary conditions (5c) and (5d)
are redundant. Indeed, if (5b) and (5e) are true for a G : S → P([0, 1]),
then G satisfies (5c) and (5d). To see this, let x > 0 and consider G(x, 0).
By iteratively applying (5b), one obtains

G(x, 0) =

=

∫ β

0

G(x + k1, 0)µ(dk1)

=

∫ β

0

∫ β

0

G(x + k1 + k2, 0)µ(dk1)µ(dk2)

· · ·
=

∫ β

0

· · ·
∫ β

0

G(x + k1 + · · ·+ kn, 0)µ(dk1) · · ·µ(dkn)

for all n = 1, 2, .... However, because of (5e), if
∑n

i=1 ki →∞ as n →∞,
then

lim
n→∞

dW (G(x +
n∑

i=1

ki, 0), ϕ(1)) = 0.

Hence, the Law of Large Numbers and the Dominated Convergence Theo-
rem imply that

G(x, 0) = ϕ(1).

The argument for proving that G(0, y) = ϕ(0), if y > 0, is analogous.

We are finally in the position to prove Theorem 2.2.
Proof of Theorem 2.2. The theorem is true when the boundary datum is
δ, as follows from Proposition 3.2 and the fact that P is compact. For a general
boundary datum ϕ ∈ C([0, 1],P([0, 1])) the result follows once it is proved that
the map Ψϕ is continuous; but this is a consequence of Lemma 4.1. ¤

5 Diffuse solutions

As an immediate consequence of Proposition 3.1 and [2, Theorem 3.2] we
have the following result, which is a particular instance of Theorem 2.3 and
represents a tool for proving it.

Proposition 5.1 For all (x, y) in the interior of S and z ∈ [0, 1],

Gδ
(µ,ν)(x, y)({z}) = 0.
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Proof of Theorem 2.3 Given z ∈ [0, 1], note that ϕz(t) = ϕ(t)({z}) is
a measurable function of t, since it is the monotone limit of the sequence of
continuous functions k

(n)
z defined by setting, for n = 1, 2, ... and t ∈ [0, 1],

k(n)
z (t) =

∫
h(n)

z (s)ϕ(t)(ds),

where

h(n)
z (s) =





ns− nz + 1, if z − 1/n ≤ s ≤ z,

nz − ns + 1, if z < s ≤ z + 1/n,

0, otherwise.

The two functions

ϕ−z (t) = sup
w<z

Fϕ(t)(w), ϕ+
z (t) = Fϕ(t)(z)

are monotonically nonincreasing in t, since ϕ is monotone. Moreover, ϕz(t) =
ϕ+

z (t)− ϕ−z (t). Therefore ϕz is a bounded variation function and it thus has at
most a countable number of points of discontinuity. Note that

Φ({z}) =
∫ 1

0
φz(t)dt =

∫ 1

0
(φ+

z (t)− φ−z (t))dt.

Proof of part 1. Let (x0, y0) be a point in the interior of S such that Gϕ
(µ,ν)(x0, y0)

has no point masses in [0, 1]. By way of contradiction, suppose there is a z ∈ [0, 1]
such that Φ({z}) > 0.

Since Φ({z}) > 0, there are ε > 0, a > 0 and z∗ ∈ [0, 1] such that

ϕz(t) > ε, for all t ∈ I∗ = [z∗ − a, z∗ + a] ∩ [0, 1]. (30)

Set
R =

{
(x, y) ∈ S : x ≥ max(2β,

64β
a2

),

y =
(1
z
− 1

)
x

(
z =

x

x + y

)
,

z ∈ [
z∗ − a

2
, z∗ +

a

2
] ∩ [0, 1]

}
.

For all (x, y) ∈ R, Corollary 3.1 with h0 = a
4 implies that

P
(
Z∞(x, y) 6∈ I∗

)
≤ P

(
|Z∞(x, y)− z| > a

2

)
≤ 4

a

√
β

x
≤ 1

2

and thus Gδ
(µ,ν)(x, y)(I∗) ≥ 1

2 . Then, because of (30), for all (x, y) ∈ R,

Gϕ
(µ,ν)(x, y)({z}) =

∫ 1

0
ϕz(t)Gδ

(µ,ν)(x, y)(dt)

≥ ε

∫

I∗
Gδ

(µ,ν)(x, y)(dt) ≥ ε

2
.
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Now, set

τ = inf{n ≥ 0: (Xn(x0, y0), Yn(x0, y0)) ∈ R} (inf{∅} = ∞);

it is not difficult to show that P(τ < ∞) = p > 0. Thus the strong Markov
property implies that Gδ

(µ,ν)(x0, y0)(I∗) ≥ p
2 ; therefore Gϕ

(µ,ν)(x0, y0)({z}) ≥ p ε
2

contradicting the assumption that Gϕ
(µ,ν)(x0, y0) has no point masses in [0, 1].

This concludes the proof of part 1.

Proof of part 2. Let now z ∈ [0, 1]; by assumption Φ({z}) = 0. Since ϕz has at
most a countable number of points of discontinuity, ϕz ≥ 0 and

∫
ϕz(t)dt = 0,

there is a sequence t1, t2, ... such that ϕz(t) = 0 for all t ∈ F = (∪i{ti})c. Then,
given any (x, y) in the interior of S,

Gϕ
(µ,ν)(x, y)({z}) =

∫

[0,1]
ϕz(t)Gδ

(µ,ν)(x, y)(dt)

=
∫

[0,1]∩F
ϕz(t)Gδ

(µ,ν)(x, y)(dt) +
∑
ti

ϕz(ti)Gδ
(µ,ν)(x, y)({ti})

= 0

the last term being zero because of Proposition 5.1. ¤

6 Examples

In this section we give explicit descriptions of the solution Gϕ
(µ,ν) for some

specific choices of the reinforcement distributions (µ, ν) ∈ P and of the
boundary datum ϕ ∈ C([0, 1],P([0, 1])). The first example is prototypical
since it considers the Polya urn scheme and the family of Beta distributions,
whose properties had a central role in originating most of the problems
tackled in this paper.

6.1 The Polya urn scheme and the family of Beta
distributions

We indicate with Beta(x, y) the beta distribution on [0, 1] with parameters
(x, y) ∈ S. If (x, y) is a point in the interior of S, Beta(x, y) has a density
given by

fBeta(x,y)(t) =
Γ(x + y)

Γ(x)Γ(y)
tx−1(1− t)y−1,

for t ∈ [0, 1]; it is convenient to indicate with Beta(0, y) and Beta(x, 0) the
point mass at 0 or at 1, respectively.
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The random limit composition of a Polya urn with initial composition
(x, y) ∈ S and constant reinforcement equal to 1 has distribution Beta(x, y).
Indeed a Polya urn is a special RRU with reinforcements µ = ν = δ1; hence

Gδ
(δ1,δ1)(x, y) = Beta(x, y)

for all (x, y) ∈ S.
The Polya urn scheme, where both reinforcement distributions are equal

to the same point mass and the boundary datum is δ, may be easily ex-
tended by considering a more general boundary datum along the hint given
in Remark 4.3. For instance, let γ > 0, define ϕγ : [0, 1] → P([0, 1]) by set-
ting ϕγ(t) = δ(t1/γ), for t ∈ [0, 1], and consider Problem (5) with µ = ν = δ1

and boundary datum equal to ϕγ. Note that ϕγ is monotone and thus the
unique solution to the problem is diffuse. Indeed for (x, y) in the interior
S, the distribution Gϕγ

(δ1,δ1)(x, y) has density

fGϕγ
(δ1,δ1)

(x,y)(t) = γ
Γ(x + y)

Γ(x)Γ(y)
tγx−1(1− tγ)y−1,

for t ∈ [0, 1]. For x = 1 and y > 0, the solution Gϕγ

(δ1,δ1)(1, y) is called the

Kumaraswami distribution with shape parameters γ and y; see [4].

6.2 Bernoulli reinforcements

A more intriguing extension of the Polya urn scheme is obtained by con-
sidering reinforcement distributions (µ, ν) ∈ P different from equal point
masses; we here treat the case where µ and ν are scaled Bernoulli distri-
butions with the same mean. Let m ≥ kµ ≥ kν > 0, and assume that µ
and ν are the distributions of two random variables, say RX and RY , such
that RX/kµ has distribution Bernoulli(m/kµ) while RY /kν has distribution
Bernoulli(m/kν).

Equation (1), with (µ, ν) as above, reads

x

kµ

(
G(x, y)− G(x + kµ, y

))
+

y

kν

(
G(x, y)− G(x, y + kν

))
= 0, (31)

which does not depend on m. One easily verifies that the equation is sat-
isfied by the continuous map G : S → P([0, 1]) defined by setting, for all
(x, y) ∈ S,

G(x, y) = Beta(
x

kµ

,
y

kν

).

Moreover, note that,

dW

(
Beta(

x

kµ

,
y

kν

), δ(
xkν

xkν + ykµ

)
) −→

(x+y)→∞
0.
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Hence, if h : [0, 1] → [0, 1] is defined by setting

h(t) =
tkν

tkν + (1− t)kµ

for all t ∈ [0, 1], then

Gh◦δ
(µ,ν)(x, y) = Beta(

x

kµ

,
y

kν

),

for (x, y) ∈ S, is the unique solution to Problem (5) when µ and ν are the
scaled Bernoulli distributions defined above and the boundary datum is
the continuous map h ◦ δ : [0, 1] → P([0, 1]) defined by setting

h ◦ δ(t) = δ(
tkν

tkν + (1− t)kµ

)

for all t ∈ [0, 1].
We now want to find the distribution of the limit composition of a RRU

whose reinforcements are distributed according to the scaled Bernoulli dis-
tributions µ and ν. Note that h is continuous, monotonically increasing
and its inverse is

h−1(u) =
ukµ

ukµ + (1− u)kν

for u ∈ [0, 1]. Then it follows from Remark 4.3 that,

Gδ
(µ,ν)(x, y) = Gh−1◦h◦δ

(µ,ν) (x, y) = h−1 ◦ Beta(
x

kµ

,
y

kν

),

for all (x, y) ∈ S. For (x, y) in the interior of S, Gδ
(µ,ν)(x, y) has a density

and this is

fGδ
(µ,ν)(x,y)(t) = k

y
kν
µ k

x
kµ
ν

Γ(x/kµ + y/kν)

Γ(x/kµ)Γ(y/kν)

t
x

kµ
−1

(1− t)
y

kν
−1

[tkν + (1− t)kµ]
x

kµ
+ y

kν

(32)

for t ∈ [0, 1].

A Doob decomposition of the RRU process

This Appendix provides a series of auxiliary results necessary to prove
Propositions 3.1 and 3.2. We will refer to the notations introduced in Sec-
tion 3. For n = 1, 2, ... let An = σ(δ1, RX(1), RY (1), . . . , δn, RX(n), RY (n))
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and consider the filtration {An}; then, given the initial urn composition
(x, y) ∈ S, the Doob’s semi-martingale decomposition of Zn(x, y) is

Zn(x, y) = Z0(x, y) + Mn(x, y) + An(x, y)

where {Mn} is a zero mean martingale and the previsible process {An} is
eventually increasing (decreasing), again by [7, Theorem 2]. We also denote
by {〈M〉n} the bracket process associated to {Mn}, i.e. the previsible
process obtained by the Doob’s decomposition of M2

n.
We first provide some auxiliary inequalities. As a consequence of [2,

Lemma 4.1], we can bound the increments ∆An of the Zn-compensator
process and the increments ∆〈M〉n of the bracket process associated to
{Mn}. In fact, an easy computation gives

∆An+1 = E(∆Zn+1|An) = Zn(1− Zn)A∗
n+1

and
E((∆Zn+1)

2|An) = Zn(1− Zn)Z∗
n+1.

where

A∗
n+1 = E

( RX(n+1)
Dn

1 + RX(n+1)
Dn

−
RY (n+1)

Dn

1 + RY (n+1)
Dn

∣∣∣An

)
,

and

Z∗
n+1 = E

(
(1− Zn)

( RX(n+1)
Dn

1 + RX(n+1)
Dn

)2

+ Zn

( RY (n+1)
Dn

1 + RY (n+1)
Dn

)2∣∣∣An

)
.

Now, [2, Lemma 4.2] with m =
∫ β

0
kµ(dk) =

∫ β

0
kν(dk) gives

|A∗
n+1| ≤

m

m + Dn

− m

β + Dn

. (A.33)

By applying [2, Lemma 4.1] with h(x, t) = ( x
x+t

)2, BD = [2β,∞), D = Dn,
R = RX(n + 1) or R = RY (n + 1) and A = An, one obtains:

Zn(1− Zn)
( m

m + Dn

)2

≤ E((∆Zn+1)
2|An) ≤ Zn(1− Zn)

mβ

(β + Dn)2
,

(A.34)
on the set {Dn ≥ 2β}. Since

E((∆Zn+1)
2|An) = E((∆An+1 + ∆Mn+1)

2|An) = (∆An+1)
2 + ∆〈M〉n+1,
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if D0 ≥ 2β, and thus β + Dn ≥ 3β, (A.33) together with (A.34) yields

∆〈M〉n+1 ≥ Zn(1− Zn)
( m

m + Dn

)2(
1−

( β −m

β + Dn

)2)

≥ 8

9
Zn(1− Zn)

( m

m + Dn

)2

,

∆〈M〉n+1 ≤ Zn(1− Zn)
mβ

(β + Dn)2
.

(A.35)

Lemma A.1 For all k = 1, 2, ...,

E(
1

Dk

) ≤ 1 + (β −m)/D0

D0 + m(k − 1) + β
. (A.36)

If, in addition, D0 ≥ 2β then, for all k, n = 1, 2, ...,

∣∣∣ E
( 1

c + Dk+n

− 1

d + Dk+n

∣∣∣An

)∣∣∣ ≤ β −m + d

m

( 1

bk

− 1

bk+1

)
, (A.37)

when d ≥ c ≥ 0 and bk = c + Dn − β + mk.

Proof Let η∗ be a random variabile independent of A∞ and let η1 be a ran-
dom variable independent of σ(A∞, η∗) and such that η1/β has distribution
Binomial(1,m/β). Define A∗k+n− = σ(η∗,Ak+n−1, I(k + n)); by [2, Lemma 4.1],
if D > 0 is A∗k+n−-measurable and 0 ≤ R ≤ β with E(R) = m is independent of
A∗k+n− , one obtains

E
( 1

D + R

∣∣∣A∗k+n−

)
≤ m

β

1
D + β

+
β −m

β

1
D

= E
( 1

D + η1

∣∣∣A∗k+n−

)
,

and thus

E
( 1

Dk+n + η∗
∣∣∣A∗k+n−

)

= I(k + n) E
( 1

Dk+n−1 + η∗ + RX(k + n)

∣∣∣A∗k+n−

)

+ (1− I(k + n)) E
( 1

Dk+n−1 + η∗ + RY (k + n)

∣∣∣A∗k+n−

)

≤ I(k + n) E
( 1

Dk+n−1 + η∗ + η1

∣∣∣A∗k+n−

)

+ (1− I(k + n)) E
( 1

Dk+n−1 + η∗ + η1

∣∣∣A∗k+n−

)

= E
( 1

Dk+n−1 + η∗ + η1

∣∣∣A∗k+n−

)
.

(A.38)
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Therefore, for c ≥ 0, by applying (A.38) k-times, we get

E
( 1

Dk+n + c

∣∣∣An

)
≤ E

( 1
Dn + c + ηk

∣∣∣An

)
(A.39)

where ηk is independent of σ(A∞) and ηk/β has distribution Binomial(k, m/β).
Equation (A.36) is now a consequence of [9, Eq. (21)]: if η̃k ∼ Binomial(k, r)
and l > 0,

E
( 1

l + η̃k

)
≤

(
1 +

1− r

l

) 1
l + kr + (1− r)

.

Apply this to (A.39) with n = 0, η̃k = ηk/β, l = D0/β and r = m/β to obtain
(A.36).

Equation (A.37) is a consequence of [9, Eq. (25)]: if η̃k ∼ Bino(k, r) and
l > 1,

E
( 1

l + η̃k

)
≤ 1

l + kr − (1− r)
.

Apply this to (A.39) with η̃k = ηk/β, l = Dn + c/β (which is greater than 2)
and r = m/β to obtain

E
( 1

c + Dn+k

∣∣∣An

)
≤ 1

c + Dn + m(k + 1)− β
.

Jensen’s inequality yields E((d + Dn+k)−1|An) ≥ (d + Dn + mk)−1, and thus

∣∣∣ E
( 1

c + Dn+k
− 1

d + Dn+k

∣∣∣An

)∣∣∣ ≤ β −m + d− c

(c + Dn + m(k + 1)− β)(d + Dn + mk)
.

Since
1
bk
− 1

bk+1
=

m

(c + Dn − β + mk)(c + Dn − β + m(k + 1))

we get (A.37):
∣∣∣E

(
1

c+Dn+k
− 1

d+Dn+k

∣∣∣An

)∣∣∣
1
bk
− 1

bk+1

≤ β −m + d− c

m

c + Dn − β + mk

d + Dn + mk

≤ β −m + d− c

m
.

¤

The following Lemma A.2 and Lemma A.3 provide inequalities which
control the previsible and the martingale part of the process Zn respec-
tively; they require that the initial composition of the urn is sufficiently
large.
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Lemma A.2 If D0 ≥ 2β, then

E(sup
r
|Ar|) ≤ β

D0

.

Proof Apply (A.37) with n = 0, c = m, d = β. Equation (A.33) then reads

E(|A∗k+1|) ≤ (2β −m)
( 1

bk
− 1

bk+1

)
,

if bk = km + D0 − (β −m). Since A0 = 0,

E(sup
r
|Ar|) ≤ E

(∑

k

|∆Ak+1|
)
≤

∑

k

1
4

E(|A∗k+1|)

≤ 2β −m

4

∑

k

( 1
bk
− 1

bk+1

)
=

2β −m

4
1

D0 − (β −m)

≤ β

D0
,

where the last inequality is true beacause β −m ≤ β ≤ D0/2. ¤

Lemma A.3 Let D0 ≥ 2β. For all n ≥ 0,

E(〈M〉∞ − 〈M〉n|An) ≤ β

D0

.

Proof Since Zn+k(1− Zn+k) ≤ 1/4, by (A.35), one gets

∆〈M〉n+k+1 ≤ mβ

4(β + Dn+k)2
≤ m

4

( 1
Dn+k

− 1
β + Dn+k

)
.

Apply (A.37) with c = 0 and d = β, obtaining

E(∆〈M〉n+k+1|An) ≤ m

4
2β −m

m

( 1
bk
− 1

bk+1

)
,

if bk = km + Dn − β. Thus

E(〈M〉∞ − 〈M〉n|An) = E
(∑

k≥0

∆〈M〉k+n+1

∣∣∣An

)

≤ 2β −m

4

∑

k≥0

( 1
bk
− 1

bk+1

)

≤ 2β

2
1

2(Dn − β)
≤ β

D0
,

since 2(Dn − β) ≥ 2(D0 − β) ≥ D0. ¤
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