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Abstract

Cation-based (or electrochemical) resistive memory devices are gaining increasing
interest in neuromorphic applications due to their capability to emulate the dynamic
behaviour of biological neurons and synapses. The utilization of such devices in neu-
romorphic systems necessitates a reliable physical model for the resistance switching
mechanism, which is based on the formation and dissolution of a conductive filament
in a thin dielectric layer, sandwiched between two metal electrodes. We propose a
comprehensive model to simulate the evolution of the filament geometry under the
effect of both surface diffusion caused by curvature gradient and electromechani-
cal stress, and mass injection due to electrodeposition of cations. The model has
been implemented in a C++ platform using a level-set approach based on a mixed
finite element formulation, enriched by a mesh adaptation strategy to accurately
and efficiently track the evolution of the filament shape. The numerical scheme is
initially validated on various benchmark case studies. We then simulate the growth
and self-dissolution of the filamentary geometry, incorporating an electrical model
allowing a comparison with conventional cation-based memories. The simulations
showcase filament formation under varying applied voltages and filament dissolution
under different initial resistances.

Keywords: RRAM memristive devices; resistive switching memory device; electro-
chemical metallization; level-set method; anisotropic adapted mesh; finite elements.

1 Introduction

Resistive random access memories (RRAMs) constitute an emerging class of memory
technologies that has been widely investigated over the last 20 years [59, 13, 5]. RRAMs
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are two-terminal devices capable of altering their resistance between at least two values.
This characteristic has made them particularly attractive for neuromorphic comput-
ing architectures. Specifically, certain dynamic aspects of synapses and neurons have
recently been replicated by cation-based RRAMs [62, 49, 57]. This advancement has
propelled the realization of artificial brain-inspired chips closer to reality.
Cation-based RRAMs fall under the broader category of memristors, also referred to in
the literature as electrochemical metallization cells, programmable metallization cells,
or conductive bridge memories [59, 51, 18]. Cation-based RRAMs are structured with a
metal/ionic conductor/metal configuration, where one electrode remains chemically in-
ert (e.g., Pt, TiN), while the other is composed of electrochemically active species (e.g.,
Ag or Cu), as illustrated in Fig. 1. The ionic conductor is typically dielectric, such as
oxides like HfO2, ZrO2, and SiO2, as considered in [59, 32, 61]. A cation-based RRAM
undergoes a transition from a very high to a low resistance state, through a series of elec-
tric field-activated processes [32, 59, 51, 57, 58, 61]. When a positive voltage is applied to
the active electrode, cations are generated through the oxidation of the electrode atoms
and are then injected into the dielectric (represented by the transformation from a green
ball to a blue circle in Fig. 1a). These charged species undergo electric field-induced drift
towards the inert electrode (illustrated by blue dashed circles in Fig. 1a) and ultimately
deposit through reduction (from dashed blue circles to a purple ball in Fig. 1a) on the
interface with the opposite electrode, leading to the formation of a metallic conductive
filament (CF). The process continues until the CF shorts the two electrodes or leaves
a small tunneling gap towards the active electrode, resulting in a low resistance state,
as depicted in Fig. 1b). In Fig. 1c), a representative experimental current response of
an Ag/SiOx/Pt device is shown when a positive voltage is applied (indicated by the
red voltage pulse in the inset). An abrupt transition occurs within a specific delay time
(≈ 2·10−5 s). It’s worth noting that we intentionally overlook the CF nucleation process,
which may be significant under certain experimental conditions [32].

In volatile cation-based devices, the formed metallic CF becomes unstable due to
excess energy accumulated at the CF/dielectric interface [4, 10]. This excess energy is
reduced through interface area minimization, leading to CF dissolution, electrical dis-
connection of the top and bottom electrodes, and ultimately the restoration of a high
resistance state. Unlike CF formation, its dissolution is a spontaneous process not driven
by an electric field [56, 11, 12, 57]. The physical process can be described in terms of
surface (specifically, interface) diffusion of atoms driven by curvature gradient [56], as
illustrated in Fig. 1d)-e). In Fig. 1f), a representative evolution of the device current dur-
ing spontaneous relaxation is depicted when a small non-perturbing voltage (indicated
by the blue box in the inset) is applied. The transition from low to high resistance occurs
within a specific relaxation time (≈ 10−4 s in the reported case) after the programming
voltage is released.

While there is a generally accepted understanding of the cation-based devices, a
physics-based mathematical tool for simulating the device’s operation in both CF growth
and dissolution is only partially available in the literature. The processes of CF growth
and retraction are well-described, including their temporal progression, by accurate com-

2



Figure 1: Growth of a CF driven by the oxidation of atoms at the active electrode,
followed by cation drift and dissolution at the opposite interface (a). Formation of a
connection between the active and inert electrodes (b). Representative current evolution
of a Ag/SiOx/Pt device when a 0.8 V - programming voltage is applied (c). Sponta-
neous rearrangement of the CF due to surface diffusion (d), leading to CF disconnection
(e). Representative current evolution of a Ag/SiOx/Pt device during self-CF-dissolution
when a 0.05 V - non perturbing voltage is applied (f).

pact models. However, these models often do not account for CF geometry [32, 11, 55,
54]. The morphology of the CF, specifically during its growth, is considered in contin-
uum [9, 18, 26] or Monte Carlo models [30, 16, 23, 41], whereas limited work is available
on simulating only the CF dissolution [56].

The novelty of this study lies in the introduction within a finite element (FE) frame-
work of electric field-activated processes in nanoscale geometries, incorporating surface
diffusion driven by curvature gradients. We reframe the model presented in [56] into a
level-set formulation, enabling the incorporation of the electric field-assisted evolution
of the CF morphology. Notably, a level-set formulation applied to cation-based devices
is sparsely documented in the literature [31, 18]. Additionally, given that the typical
size of the CF is much smaller than the device dimension, we incorporate a tailored
mesh adaptation strategy which ensures accurate solutions of the mathematical model
within a reasonable computational time. The simulations reproduce the processes of CF
growth and self-dissolution in agreement with the general interpretation of the opera-
tion principles of cation-based RRAMs. Furthermore, with the help of a simple electrical
conduction model, the simulations also qualitatively reproduce the expected resistance
evolution of formation and dissolution experiments.

The paper is structured as follows. In Sec. 2, we delve into the physical model adopted
to describe the formation and dissolution of the CF, encompassing the effects of surface
diffusion and the electric field. Section 3 focuses on the level-set approach, highlighting
how it allows tracking the geometric evolution of the CF. The mathematical formulation
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is summarized in Sec. 4, accompanied by the corresponding Galerkin approximation
based on a mixed FE discretization. Mesh adaptation takes center stage in Sec. 5,
leveraging an a posteriori anisotropic error estimator for the gradient of the level-set
function. Section 6 outlines the entire computational workflow. In Sec. 7, we present
results from various benchmark tests to illustrate the reliability of the proposed model.
Section 8 applies the modeling framework to simulate filament formation and dissolution
in a cation-based RRAM, including comparisons with typical electrical trends. Finally,
Sec. 9 draws conclusions and offers perspectives on potential future developments.

2 The physical model

We introduce the physical model employed to simulate the evolution of a conductive
filament (CF) in cation-based Resistive Random Access Memories (RRAMs). The first
section details the impact of surface diffusion assisted by the electric field, while the
second section enhances the model by incorporating electro-chemical deposition.

2.1 Morphological change of a conductor in an electric field

According to [39, 2, 44], the filament conductor surface tends to minimize the potential,
µ = µ(K), associated with the filament curvature K, being

µ = γsΩAK, (1)

with γs the surface free energy per unit area and ΩA the atomic volume.
The inclusion of the electric field E in this framework requires an important generaliza-
tion. To this aim, the most straightforward way to proceed is to consider the variation
per atom of a generalized potential, µ = µ(K,En), under the effect of the surface cur-
vature and of the electric field normal to the surface of the CF, En = E · n, with n the
unit outward normal vector to the conductor surface, Sg (see Fig. 2 for a sketch). Thus,
the generalized potential energy can be expressed by

µ = γsΩAK +
1

2
εΩAE

2
n, (2)

with ε the dielectric constant of the material, where the second term accounts for the
normal component of the Maxwell stress produced by the electric field [33]. The gradient
of µ along the surface induces a movement of atoms along the conductor surface, with
an average velocity given by

v = −Ds

kT
∇sµ = −DsΩA

kT
(γs∇sK +

1

2
ε∇sE

2
n), (3)

after assuming valid the Nernst-Einstein relation [24], where Ds is the surface diffusion
coefficient, k represents the Boltzmann constant, T is the temperature which is assumed
constant, and

∇su = ∇u− (∇u · n)n, (4)
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denotes the surface gradient of a generic scalar function u, namely the tangential com-
ponent of the gradient.
The flux of atoms, Js, along the metal surface (see Fig. 2) coincides with the product

Figure 2: Sketch of the conductor surface, Sg, of the associated unit outward normal
vector, n, and of the surface flux, Js.

of the average surface velocity, v, by the number of atoms per unit area, νs, being

Js = −DsΩAνs
kT

(γs∇sK +
1

2
ε∇sE

2
n). (5)

Following [39], we can calculate the modulus vn0 of the normal velocity, vn0 = vn0n, to
the surface element by multiplying the divergence of −Js by ΩA, being

vn0 = ΩA∇ ·
(
− Js

)
=
DsΩ

2
Aνs

kT
(γs∇ · ∇sK +

1

2
ε∇ · ∇sE

2
n) (6)

(for a more formal derivation, we refer the interested reader to [7, 6]). Notice that
definition (6) holds in a neighborhood of Sg, due to the local feature of the surface
current Js. Now, we rewrite (6) in a compact form by introducing the quantities

Cs =
DsΩ

2
Aνsγs
kT

, Cel =
DsΩ

2
Aνsε

2kT

and the surface Laplacian (or Laplace-Beltrami) operator, ∇2
s = ∇ · ∇s, thus obtaining

vn0 =
(
Cs∇2

sK + Cel∇2
sE

2
n

)
. (7)

Relation (7) encompasses surface diffusion due to the curvature gradient and the elec-
tromechanical stress. In the next section, the definition of vn0 will be enriched by a
reaction term in order to model the metal atom electro-deposition.
We observe that the evaluation of the normal electric field, En, in the equations above
requires the solution of the generalized Poisson equation, ε0∇ · (−εr∇φ) = q

∑Mion
α=1 zαnα in Ωdielectric

∇ · (−σ∇φ) = ∇ · (σ∇αTT ) in Ωmetal,
(8)

which models the electrostatic potential, φ, being E = −∇φ in Ω = Ωdielectric ∪ Ωmetal,
with Ωdielectric and Ωmetal the dielectric and the metallic part of the simulation domain Ω,
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respectively, and where ε0 = 8.85410−14 F/cm is the absolute permittivity (in vacuum),
εr is the relative permittivity, q is the elementary charge, Mion denotes the ion species in
the device, zα and nα are the ionic charge and the number density of the species α, σ is
the electrical conductivity and αT represents the thermal conductivity [28]. Appropriate
boundary conditions complete (8), to describe the polarization of the simulation domain
(we refer to Sec. 8 for more details).

2.2 Metal atom deposition on the conductor surface

Growing a CF in a cation-based RRAM involves moving material from the active elec-
trode to the inert electrode (or the growing CF). This occurs through a sequence of
electric-field-driven processes, including atom oxidation, ionic drift, and ionic reduction.
The dominant process among these depends on the applied device voltage [32]. In the
current model, we assume that cation drift in the dielectric layer is significantly faster
than the rates of oxidation and reduction at the metal/dielectric interfaces. This is
equivalent to assuming that only the redox processes predominantly drive CF growth.

To model the metal atom deposition on the conductor surface, we have to modify
the definition of the normal velocity by including an additional contribution which takes
into account the inflow (outflow) of ionized atoms from the dielectric (the metal bulk)
through the conductor surface, so that we define vn = vnn = vn0 + F (En)n with

vn = Cs∇2
sK + Cel∇2

sE
2
n + F (En). (9)

Definition (9) is limited to a neighborhood of the conductor surface, analogously to (7).
In the redox-dominated regime, we can define the term F (En) in (9) as the velocity of
the oxidation/reduction process. In particular, we have

F (En) = vr exp

(
−∆Eox,r − γEn

kT

)
= Cr exp

(
γEn

kT

)
, (10)

with Cr = vr exp
(
−∆Eox,r

kT

)
, where vr denotes the reaction velocity, ∆Eox,r is the ac-

tivation energy, and where we account for the effect of the normal electric field as a
reduction of the reaction barrier process through coefficient γ.
We highlight that equation (9) ultimately involves all the physical quantities character-
izing the modeling of interest for the paper. In particular, the morphological change
of a metallic inclusion in a dielectric under the effect of the surface atom diffusion, to-
gether with the electric field (i.e., electromechanical stress and chemical reactions) are
now taken into account by the normal velocity, vn, of each local element along the metal
surface. This modeling choice will be exemplified in Sec. 7.
Finally, in order to track the growth and dissolution of the metallic CF, we have to
introduce a law which models the evolution of the conductor surface Sg (i.e., of a one-
dimensional (1D) manifold in a two-dimensional (2D) framework, defining the shape of
the CF in the device), so that Sg = Sg(t). This goal will be reached by resorting to a
level-set formulation, as detailed in the next section.
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Figure 3: Sketch of typical cation-based RRAM device: Ωmetal and Ωdielectric constitute
the computational domain; Γtop, Γbottom and ΓN the associated boundary portions, with
Sg the metal/dielectric interface.

3 Evolution of the conductor surface: a level-set formula-
tion

We describe the temporal evolution of the CF in a cation-based RRAMs by resorting
to the level-set method [40, 47, 46]. This approach allows describing, in a reliable and
computationally efficient way, evolving curves and surfaces, that change morphology
with time. The level-set method identifies the surface to be tracked with the zero level
of a higher dimensional function. This approach has been successfully applied in several
application contexts (see, e.g., [52, 3, 8]). Below, we detail, for completeness, the main
steps of the adopted level-set approach, as it is preparatory to set the model proposed
in Sec. 4 to describe the evolution of the CF.

Due to the model’s complexity and the computational expense of a 3D domain, we
opted for a 2D domain by cutting the CF with a plane normal to the electrode in the
center, while avoiding any a-priori pre-established symmetry. Specifically, the domain,
Ω, for the simulation of the CF evolution in a RRAM device consists of a metallic
section (i.e., the electrodes and the CF), Ωmetal, and a dielectric part, Ωdielectric, so that
Ω = Ωdielectric ∪Ωmetal, with Sg = Ωdielectric ∩Ωmetal being the curve describing the CF
shape (see Fig. 3 for a sketch). The evolution of the CF makes the subdomains Ωdielectric

and Ωmetal varying in time.
Concerning the domain boundary ∂Ω of Ω, we discriminate the contact region Γcontact =
Γtop ∪ Γbottom, where the bias to the device is applied, and the device floating portion,
ΓN , where no direct bias is enforced (see Fig. 3).

The level-set method consists in defining Sg as the level zero of a sufficiently smooth
function, ϕ : Ω× R+ → R, varying in time, i.e.,

Sg(t) =
{
x ∈ Ω : ϕ(x, t) = 0

}
. (11)
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The evolution in time of the level-set function is driven by the velocity vn, after extending
definition (9) from a neighborhood of Sg to the whole domain Ω. Thus, the function ϕ
coincides with the solution to the partial differential equation (PDE)

∂ϕ

∂t
+ vn · ∇ϕ = 0 in Ω. (12)

In more detail, at time t = 0, the function ϕ can be assumed to coincide with a function
h of the signed distance function, d = d(x), in a neighbourhood of Sg of amplitude δ,
namely,

ϕ(x, 0) = ϕ0(x) = h(d(x)) with |d(x)| ≤ δ, (13)

while taking positive and negative values outside and inside the region delimited by Sg,
respectively. Following [7, 6], we choose

h(d(x)) =
2δ

π
sin

(
πd(x)

2δ

)
. (14)

Then, we extend ϕ0 to the whole domain Ω by setting ϕ0(x) = 2δ/π for d(x) > δ (i.e.,
outside Sg) and ϕ0(x) = −2δ/π for d(x) < −δ (i.e., inside Sg). This definition ensures
ϕ0 to be differentiable across the boundaries of the narrow band around Sg. The com-
putation of the distance function d(x), in general, is not a trivial task due to the generic
shape CF may take. To this aim, we can resort, for instance, to a standard minimization
of the distance between a given point external to Sg and any point internal to Sg. In such
a case, the assignment of the sign to the distance is straightforward. As an alternative
to the distance minimization, we can adopt the heat approach. This method exploits
a classical geometric result, relating heat diffusion with geodesic distance, so that the
distance is computed along shortest curves through the domain [15]. In such a context,
the assignment of the sign is less trivial.
In the numerical assessment below, we adopt one approach rather than the other, de-
pending on the application at hand.

Finally, we exploit the function ϕ to compute the normal direction, n, to the surface
Sg and the mean curvature, K, of the surface involved in the definition of the advective
field vn. In particular, following [47, 40], we define

n =
∇ϕ

||∇ϕ||
(15)

and

K = ∇ · ∇ϕ
||∇ϕ||

, (16)

with ∥ · ∥ the L2(Ω)-norm, standard notation being used for function spaces [19]. Notice
that definitions (15) and (16) generalize to the whole domain Ω through problem (12)-
(14).
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4 A new model model for the CF evolution

In this section, we formalize the PDE model proposed to describe the evolution of the CF
geometry in a cation-based RRAM device due to surface diffusion and redox reactions.
Successively, we adopt a finite element discretization to approximate the problem.

4.1 The PDE system

The complete system of equations modeling the CF evolution gathers the level-set equa-
tion (12) together with the generalized Poisson equations in (8), namely, we look for ϕ
and φ such that 

∂ϕ

∂t
+ vn · ∇ϕ = 0 in Ω

ε0∇ · (−εr∇φ) = q
∑Mion

α=1 zαnα in Ωdielectric

∇ · (−σ∇φ) = ∇ · (σ∇αTT ) in Ωmetal,

(17)

with
vn = vnn =

(
Cs∇ · (Pϕ∇K) + Cel∇ · (Pϕ∇E2

n) + F (En)
)
n in Ω, (18)

where we have exploited relation ∇s· = Pϕ∇· between the surface gradient ∇s and the
standard operator ∇,

Pϕ = I − ∇ϕ
||∇ϕ||

⊗ ∇ϕ
||∇ϕ||

(19)

denoting the projection matrix which extracts the normal direction to the surface Sg.
Model (17) is completed with suitable boundary data, depending on the specific config-
uration. In particular, since both the curvature and the normal velocity vanish outside
a narrow band close to Sg, we assign homogeneous Neumann boundary conditions on
the whole boundary ∂Ω to the level-set function ϕ. Concerning function φ, we enforce
non-homogeneous Dirichlet data on the electrical contacts, Γtop and Γbottom, in order to
enforce the bias voltage condition, while homogeneous Neumann boundary values are
selected on ΓN .

4.2 Dicretization of the PDE system

With the aim of providing a discrete counterpart to system (17), we need to consider
several issues. First, we observe that system (17) is nonlinear since the level-set function
in (17)1 depends on the normal velocity vn which, in turn, depends on ϕ through the
curvature K (see relation (16)) and the projection matrix Pϕ (see relation (19)). In
addition, problems (17)1 and (17)2-(17)3 are coupled due to the dependence of vn on φ
through the electric field, being En = −∇φ ·n. As a second matter, we notice that only
equation (17)1 explicitly depends on the time. On the contrary, the temporal depen-
dence of problem (17)2-(17)3 is implicit, being linked to the fact that domains Ωdielectric

and Ωmetal change as function of ϕ.
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To approximate the temporal evolution, we introduce a uniform time partition char-
acterized by the constant step ∆t (we refer to the numerical validation for additional
comments regarding the selection of this quantity).
In practice, at each time t of the temporal partition, under the assumption that ϕ = ϕt

is known: i) we update the dielectric and the metallic portions of Ω, i.e., we identify
domains Ωt

dielectric and Ωt
metal; ii) we solve the generalized Poisson problem ε0∇ · (−εr∇φt) = q

∑Mion
α=1 zαnα in Ωt

dielectric

∇ · (−σ∇φt) = ∇ · (σ∇αTT ) in Ωt
metal,

(20)

to compute the normal electric field Et
n associated with the potential φt; iii) we update

the mean curvature Kt of the level-set function and the projection operator P t
ϕ through

relation (16) and (19), respectively; iv) we compute the surface velocity, vt
n, as in (18); v)

we evolve the level-set function from t to t+∆t, by solving problem (17)1. In particular,
the nonlinearity of this equation is addressed by explicitly treating the velocity, so that
we have

ϕt+∆t = ϕt −∆tvtn
∇ϕt · ∇ϕt

||∇ϕt||
= ϕt −∆tvtn||∇ϕt||, (21)

definition (15) being exploited. Of course, this time-stepping strategy has to be initial-
ized through equations (13)-(14). We remark that items ii) and iv) enable the manage-
ment of the coupling between problems (17)1 and (17)2-(17)3. Moreover, analogous to
what was observed in [7, 6], the straightforward computation of Kt and vt

n at items iii)
and iv), followed by the evolution of ϕt in v) to time t+∆t may result in numerical os-
cillations of the level-set function. To overcome this issue, we adopt a similar approach
to that in [7]. Thus, the update of Kt in iii) through relation (16) is carried out by
replacing ϕt with ϕt+∆t, so that

Kt = ∇ · ∇(ϕt −∆tvtn∥∇ϕt∥)
∥∇(ϕt −∆tvtn∥∇ϕt∥)∥

. (22)

Hence, at each time t, assuming that ϕ = ϕt is known, we need to solve the following
mixed system in terms of curvature Kt and surface velocity vtn Kt +∇ ·

(
∆t

B
∥∇ϕt∥∇vtn

)
= ∇ ·

(
1

B
∇ϕt

)
in Ω

vtn − Cs∇ ·
(
Pϕt∇Kt

)
= Cel∇ ·

(
Pϕt∇(Et

n)
2
)
+ F (Et

n) in Ω,

(23)

with B = ∥∇(ϕt−∆tvt−∆t
n ∥∇ϕt∥) ∥. With regard to (22), quantity B should be defined

by B = ∥∇(ϕt−∆tvtn ∥∇ϕt∥) ∥. The choice in (23) avoids addressing the nonlinearity, in
accordance with [7]. Moreover, the differential problems in (23) are supplemented with
fully homogeneous Neumann boundary conditions, analogous to the level-set function.
Solution to system (23) replaces the update of Kt and of vt

n at item iii) and iv) of the
time-stepping procedure above. In particular, the second term on the left-hand side of
the first equation, which couples Kt with vtn, acts as a regularization contribution of
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the form ∆vtn, with regularization parameter ∆t∥∇ϕt∥/B, thereby damping potential
numerical instabilities.
Finally, by examining (18) and (16), it becomes evident that the surface velocity de-
pends on the fourth-order spatial derivative of the level-set function. This issue will
be addressed by adopting the weak form of system (23), in view of a finite element
discretization of the spatial dependence.

4.2.1 Weak formulation

Equation (21) can be explicitly employed to track the time advancement of the conductor
surface. On the contrary, the spatial dependence of the two problems in (23) as well as
of the generalized Poisson equation in (20) still requires approximation. In the following,
we focus on the discretization of (23), while referring to [27] for the numerical treatment
of (20).
We introduce the space V = H1(Ω). Then, the weak form of the two PDEs in (23)
becomes: for each t, find (Kt, vtn) ∈ V × V such that, for any (ψ,ψ) ∈ V × V , it holds
∫
Ω
Ktψ dΩ− ∆t

B
∥∇ϕt∥

∫
Ω
∇vtn · ∇ψ dΩ = − 1

B

∫
Ω
∇ϕt · ∇ψ dΩ∫

Ω
vtn ψ dΩ+ Cs

∫
Ω
Pϕt∇Kt · ∇ψ dΩ = −Cel

∫
Ω
Pϕt∇

(
Et

n

)2 · ∇ψ dΩ+

∫
Ω
F (Et

n)ψ dΩ,

(24)
where we have exploited the boundary conditions assigned to Kt and vtn, along with the
fact that both the level-set function and the normal electric field have a null gradient on
the domain boundary.
With regard to the last term in the second equation, the particular choice made in (10)
ensures it is well-defined.
In view of the Galerkin formulation, it is practical to rewrite (24) in the following way:
for each t, find ut = (Kt, vtn) ∈ V × V such that, for any (ψ,ψ) ∈ V × V , we have{

aK(ut, ψ) = fK(ψ)

avn(u
t, ψ) = fvn(ψ),

(25)

with

aK(ut, ψ) =
∫
ΩK

tψ dΩ− ∆t

B
∥∇ϕt∥

∫
Ω
∇vtn · ∇ψ dΩ,

avn(u
t, ψ) =

∫
Ω
vtn ψ dΩ+ Cs

∫
Ω
Pϕt∇Kt · ∇ψ dΩ

the bilinear forms associated with equation (24)1 and (24)2, respectively,

fK(ψ) = − 1

B

∫
Ω
∇ϕt · ∇ψ dΩ

fvn(ψ) = −Cel

∫
Ω Pϕt∇(Et

n)
2 · ∇ψ dΩ+

∫
Ω
F (Et

n)ψ dΩ.

the corresponding linear forms.
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4.2.2 The Galerkin finite element approximation

The discrete counterpart of equations (25) is obtained by employing a Galerkin formu-
lation. To this aim, we introduce a conformal triangular tessellation, Th =

{
K
}
, of the

computational domain Ω, along with an associated finite-dimensional space Vh ⊂ V ,
with Nh = dim(Vh) [19].
The selection of the computational mesh in modeling the CF evolution is a crucial step.
Indeed, since the dielectric and metal subdomains evolve over time, a fixed grid might
not be suited to discretize any configuration Ωmetal and Ωdielectric assume. Furthermore,
the width of the CF is generally much smaller than the dimension of Ω. Therefore,
employing a uniform mesh with a discretization step small enough to accurately capture
the CF evolution might result in an unfeasible computational burden. These challenges
justify the utilization of an adaptive computational mesh, which evolves over time, as
explained in the following section.

The Galerkin approximation to (25) is obtained as follows: for each t, find ut
h =

(Kt
h, v

t
n,h) ∈ Vh × Vh such that, for any (ψh, ψh) ∈ Vh × Vh, we solve{

aK(ut
h, ψh) = fK(ψh)

avn(u
t
h, ψh) = fvn(ψh).

(26)

In particular, the numerical validation in Sec. 5 is performed by employing a Galerkin
finite element discretiazion, which is equivalent to choosing

Vh = X1
h(Ω) ≡ {wh ∈ C0(Ω) : wh|K ∈ P1(K) ∀K ∈ Th}, (27)

namely, the space of piecewise linear polynomials associated with the partition Th of
Ω [19].
To switch to the algebraic form of system (26), we introduce a Lagrangian basis, {ψj}Nh

j=1,
for the space Vh. Consequently, the discrete curvature and normal velocity can be ex-
pressed as linear combinations of this basis, as Kt

h =
∑Nh

j=1 k
t
jψj and v

t
n,h =

∑Nh
j=1 v

t
n,jψj .

Using these expansions in (26) and choosing ψh = ψh = ψi, we are thus led to solve the
system [

A C

C Ã

][
vt
n,h

Kt
h

]
=

[
Fvn

Fk

]
, (28)

where vectors vt
n,h and Kt

h gather the unknown coefficients {vtn,j}
Nh
j=1 and {ktj}

Nh
j=1, re-

spectively, while the components of the block matrix and of the right-hand side are
defined by

Aij = −∆t

Bh
∥∇ϕth∥

∫
Ω
∇ψj · ∇ψi dΩ, Ãij = Cs

∫
Ω
Pϕt

h
∇ψj · ∇ψi dΩ, Cij =

∫
Ω
ψjψi dΩ,

(29a)

Fvn,i = − 1

Bh

∫
Ω
∇ϕth · ∇ψi dΩ, Fk,i = −Cel

∫
Ω
Pϕt

h
∇(Et

n,h)
2 · ∇ψi dΩ+

∫
Ω
F (Et

n,h)ψi dΩ,

(29b)
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for i, j = 1, . . . , Nh. Here, ϕth denotes the projection of the level-set function onto
Vh at time t, the norm Bh and the projection matrix Pϕt

h
being defined accordingly;

Et
n,h = −∇φt

h ·n represents the approximation of the electric field normal to the surface

Sg computed through the discrete solution φt
h to the generalized Poisson equation (20)

(see [27]).

5 Mesh adaptation algorithms

The use of a computational mesh tailored to the specific problem is widely acknowledged
to either significantly reduce the computational cost while maintaining a certain level of
accuracy in the computed solution or, alternatively, substantially increase the solution
accuracy without exceeding a fixed computational cost [42, 48]. The use of an adaptive
mesh procedure is particularly effective when dealing with moving boundaries. This is
exactly the case of the CF modeling described in Sec. 2

In this study, we utilize both isotropic grids (equilateral triangles with varying sizes)
and anisotropic grids (triangles characterized by varying shapes, sizes, and orientations)
in the mesh adaptation process. In both cases, the mesh adaptation is guided by a
recovery-based error estimator, as described in [63, 64] and [36], respectively. The se-
lection of this particular error estimator is driven by its proven effectiveness and ease of
implementation, as demonstrated in the existing literature [60, 20, 43, 38, 34].

5.1 The adaptation scheme

We employ a mesh adaptation procedure that has been successfully validated in various
application scenarios, both in isotropic and anisotropic contexts. The idea we implement
is to construct an optimized (adapted) mesh that allows us to ensure a desired accuracy
on the approximation provided by the chosen discretization scheme, when used as a
surrogate for the exact solution. Simultaneously, we aim to minimize the number of the
grid triangles and to equidistribute the error throughout the mesh elements.
The mesh optimization is carried out through the concept of metric, i.e., of mesh spac-
ing [22]. Starting from the approximate solution, the associated discretization error is
estimated, allowing the prediction of the new element distribution. In particular, more
triangles will be allocated in the areas where the estimator of the error is higher and vice
versa. To this end, we employ an iterative procedure that, starting from an initial uni-

form grid, T (0)
h , constructs the adapted grid. In particular, at the generic i-th iteration,

we carry out the following operations:

i) we compute the discrete solution associated with the current mesh, T (i)
h ;

ii) we evaluate the corresponding error estimator, S(i);

iii) from the estimator, we derive the new metric, M(i+1) which guarantees the desired
accuracy, TOL, the minimization of the mesh elements and the error equidistribu-
tion;

13



iv) we employ the metric M(i+1) to generate the new adapted mesh T (i+1)
h .

The adaptive loop is terminated when the number of elements that change between two
successive iterations falls below a user-defined percentage.
In the following we discuss in details steps ii) and iii), which constitute the most technical
part of the adaptive procedure. Step iv) turns out to be straightforward when dealing
with a mesh generator that supports the concept of a metric.

5.1.1 The isotropic error estimator

We employ a recovery-based error estimator among the several options available in the
literature [1]. This choice is motivated by the many positive properties characterizing
such estimators, primarily the exceptional performance despite an extremely simple im-
plementation. To this aim, we first select a reference physical quantity, q, to optimize the
mesh with respect to. Then, following the original idea proposed by O.C. Zienkiewicz,
J.Z. Zhu [64, 63], we construct an estimate for the H1(Ω)-seminorm of the discretization
error,

|q − qh|2H1(Ω) = ∥∇q −∇qh∥2L2(Ω), (30)

simply replacing the (generally unknown) gradient of the exact solution with the so-called
recovered gradient, ∇∗qh, so that the reference error estimator, η, reads as

η2 = ∥∇∗qh −∇qh∥2L2(Ω). (31)

Unlike the exact gradient, quantity ∇∗qh is computable, generally coinciding with a
suitable average or projection of the discrete gradient, ∇qh, onto a subset of grid ele-
ments. This feature makes η an a posteriori error estimator. Moreover, we observe that,
for mesh adaptation purposes, it is useful to rewrite the estimator η by separating the
information associated with individual triangles, namely as

η2 =
∑
K∈Th

η2K with η2K = ∥∇∗qh −∇qh∥2L2(K). (32)

For modeling the evolution of the CF, we adopt the level-set function as the quantity
driving the mesh adaptation, thus setting q = ϕt, qh = ϕth in (30)-(32). This choice will
enable an accurate tracking of any change in the topology of the curve Sg, thus precisely
locating, at each time, the portions of metal and dielectric where the generalized Poisson
equation needs to be solved. In particular, we use a smoothed variant, ϕt,s, of the level-set
function in order to minimize possible numerical instabilities [14]. Among the possible
choices in the literature, we select ϕt,s as the solution to the Helmholtz equation{

−λ2∇2ϕt,s + ϕt,s = ϕt in Ω

λ2∇ϕt,s · n = 0 on ∂Ω,
(33)

where λ is an empirical parameter tuning the thickness of the smoothing.
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Concerning the recovered gradient, we identify ∇∗ϕt,sh with the area-weighted average
of the discrete gradient over a suitable patch of elements of the mesh [36]. In particu-
lar, ∇∗ϕt,sh coincides with a function which is piecewise constant on Th, such that the
recovered value on the element K ∈ Th is given by

∇∗ϕt,sh (x) =
1

|∆K |
∑

T∈∆K

|T | ∇ϕt,sh
∣∣
T

(34)

with x ∈ K, ∆K the patch of elements associated with K and where |ω| denotes the
measure of the generic subset ω ⊂ R2. Notation

η2ϕt,s =
∑
K∈Th

η2K,ϕt,s with η2K,ϕt,s = ∥∇∗ϕt,sh −∇ϕt,sh ∥2L2(K), (35)

∇∗ϕt,sh defined as in (34), will be adopted throughout the paper to refer to the recovery-

based error estimator used to control the seminorm |ϕt,s − ϕt,sh |H1(Ω).

5.1.2 The anisotropic error estimator

The anisotropic counterpart of estimator η2ϕt,s is formalized in the anisotropic setting
proposed in [21]. Here, the authors characterize the size, the shape and the orienta-
tion of each mesh element K ∈ Th through the spectral properties of the affine map
TK : K̂ → K which changes the reference triangle K̂ and the circumscribed circle into
the generic element K and the circumscribed ellipse (see Fig. 4). In particular, the direc-
tions, ri,K , and the lengths, λi,K , of the semi-axes of this ellipse identify the geometric
features of K, constituting the so-called elemental metric MK = {ri,K , λi,K}2i=1.
When K is given, it is customary to retrieve the metric information by first calculating
the polar decomposition, MK = BKZK , of the Jacobian matrix, MK ∈ R2×2, of the
map TK , where BK ∈ R2×2 is symmetric positive definite and ZK ∈ R2×2 is orthog-
onal. Subsequently, the spectral decomposition BK = RT

KΛRK of the matrix BK is
performed, where RT

K = [r1,K , r2,K ] and ΛK = diag(λ1,K , λ2,K) denote the eigenvector
and eigenvalue matrix, respectively.

According to [36], the anisotropic error estimator for the seminorm |ϕt,s−ϕt,sh |H1(Ω),
which generalizes η2ϕt,s , is given by

Ξ2
ϕt,s =

∑
K∈Th

Ξ2
K,ϕt,s with Ξ2

K,ϕt,s =
1

λ1,Kλ2,K

2∑
i=1

λ2i,K

[
rTi,KG∆K

(∇∗ϕt,sh −∇ϕt,sh )ri,K

]
,

(36)
where G∆K

(·) ∈ R2×2 is the symmetric semi-definite positive matrix with entries

[G∆K
(w)]i,j =

∑
T∈∆K

∫
T
wiwj dT, (37)

with i, j = 1, 2, and for any vector-valued function w = [w1, w2]
T ∈

[
L2(Ω)

]2
. Matrix

G∆K
separates the components of the isotropic error estimator in (35) and project them
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Figure 4: Sketch of the affine map TK .

along the anisotropic directions. This is a classical approach according to the theory
in [21] to recover anisotropic information starting from an isotropic quantity. Finally,

the scaling factor
[
λ1,Kλ2,K

]−1
guarantees the consistency of the anisotropic estimator

with the isotropic one.

5.1.3 The metric

In the following, we focus on the anisotropic context, as the isotropic case represents a
subset of it (see Remark 5.1). The derivation of a metric M from the error estimator in
(36) is constrained by three specific criteria that the new adapted mesh has to take into
account: an accuracy requirement on the estimator Ξ2

ϕt,s , the minimization of the mesh
cardinality and the equidistribution of the error across the adapted grid.
Such requirements translate into solving a constrained optimization problem. In partic-
ular, to minimize the mesh cardinality, #Th, we rescale the local estimator Ξ2

K,ϕt,s with
respect to the area of the patch, so that

Ξ2
K,ϕt,s = |∆̂K |λ1,Kλ2,K

[
sK

(
rT1,K G̃∆K

(∇∗ϕt,sh −∇ϕt,sh )r1,K

)
+

1

sK

(
rT2,K G̃∆K

(∇∗ϕt,sh −∇ϕt,sh )r2,K

)]
,

where ∆̂K = T−1
K (∆K) is the pullback patch via map TK , sK = λ1,K/λ2,K ≥ 1 denotes

the aspect ratio of the element K, measuring the deformation of the triangle, G̃∆K
(·) =

G∆K
(·)/|∆K | is the scaled counterpart of the matrix defined in (37). The connection

between minimizing the mesh cardinality and maximizing the element area, along with
the equidistribution of the error (i.e., Ξ2

K,ϕt,s = TOL2/#Th, where TOL represents the
accuracy specified by the user for the global estimator, results in addressing the following
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constrained minimization problem for each element K of Th:

min
sK ,ri,K

SK

(
sK , {ri,K}2i=1

)
s.t.

{
ri,K · rj,K = δij

sK ≥ 1,
(38)

with δij the Kronecker symbol, and where

SK

(
sK , {ri,K}2i=1

)
= sK

(
rT1,K G̃∆K

(∇∗ϕt,sh −∇ϕt,sh )r1,K

)
+

1

sK

(
rT2,K G̃∆K

(∇∗ϕt,sh −∇ϕt,sh )r2,K

)
.

It can be proved that problem (38) admits the explicit solution

sOp
K =

√
g1,K
g2,K

, rOp
1,K = g2,K , rOp

2,K = g1,K ,

with {gi,K ,gi,K}2i=1 the eigenpairs associated with matrix G̃∆K
(∇∗ϕt,sh − ∇ϕt,sh ) [35,

34]. The error equidistribution is finally exploited to derive the two optimal anisotropic
lengths, λOp

1,K and λOp
2,K , from the aspect ratio sOp

K , thus obtaining

λOp
1,K = g

−1/2
2

(
TOL2

2#Th |∆̂K |

)1/2

, λOp
2,K = g

−1/2
1

(
TOL2

2#Th |∆̂K |

)1/2

. (39)

The optimal quantities λOp
i,K and rOp

i,K , i = 1, 2, form the optimal metric MK predicted by
the error estimator for the element K. Hence, the overall metric M = {MK} contains
the information to be utilized as input for a metric-based mesh generator to construct
the new adapted mesh.

Remark 5.1 (The isotropic metric) According to [34], it can be proved that the iso-
tropic counterpart of the optimal metric MK is obtained by solving problem (38) with
the constraint sK = 1. This leads to the optimal lengths

λOp
1,K = λOp

2,K =
(g1 + g2

2

)−1/2
(

TOL2

2#Th |∆̂K |

)1/2

.

6 The numerical scheme

We now have all the tools needed to assemble the whole computational procedure for
modeling the evolution of the CF. Figure 5 shows how we combine these tools, distin-
guishing between the case where computational mesh adaptation is activated and when
it is not.
We start by considering the tessellation Th = T (0)

h of the domain Ω and we inizialize
the discrete level-set function, ϕ0h, by projecting function ϕ0 in (13)-(14) onto Vh. Sub-
sequently, the workflow either engages in mesh adaptation or proceeds without it. In
both scenarios, while assuming the knowledge of the level-set function ϕth at time t, the
subsequent operations are iteratively performed:
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1) we discretize the generalized Poisson equation (20) on the domains Ωt
dielectric,

Ωt
metal to compute the normal electric field Et

n,h;

2) we update the mean curvature Kt
h and the normal velocity vtn,h of the surface

through relation (16) and (18), respectively;

3) we evolve the level-set discrete function from t to t+∆t through relation (21).

The enhancement of this procedure with mesh adaptation implies, before executing
steps 1)-3), an update of the mesh driven by the metric {λOp

i,K , r
Op
i,K} followed by a projec-

tion of the level-set function, along with all the physical quantities defined on the current
mesh, onto the adapted mesh. Notice that at the initial time the mesh adaptation is
carried out starting from a uniform mesh of Ω.

Figure 5: Flow chart of the computational scheme.

7 Numerical results

The workflow in Fig. 5 has been implemented on the FEMOS-MP (Finite Element
Modeling-Oriented Simulator for Multi-Physics simulation) platform [29, 45, 27].
FEMOS-MP is a C++ modular code operating in both 2D and 3D frameworks. In
particular, we have incorporated the Mmg library ([17]) for mesh adaptation purposes.
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7.1 Test 1: Surface diffusion due to curvature gradient

This section presents the evolution of two different shapes under the influence of the
surface diffusion, without including the effect of the electric field (Et

n = 0 in (23), for
any t) and without resorting to mesh adaptation. In both cases we choose the square
computational domain Ω = (0, 1)2 that we discretize with a triangular structured mesh
consisting of 66048 elements, with a maximum element diameter h = 0.006.

The first shape is an ellipse with horizontal and vertical semi-axes of length 0.3 and
0.2, respectively. Moreover, we set Cs = 10−3 in (23). The evolution of the shape is
shown in Fig. 6, for a time step ∆t = 10−3s. As expected, the ellipse evolves into a
circle, which represents the stable configuration for the surface diffusion, minimizing the
surface energy [10, 4].

Figure 6: Evolution of an ellipse into a circle under the effect of the surface diffusion
due to curvature gradient: t = 0s, 0.1s, 0.2s, 0.3s, 1s (from left to right).

The second shape is a star consisting of two ellipses with semi-axes of lengths 0.4 and
0.075, rotated relative to each other by an angle of 45o. The time evolution under the
Laplacian of the curvature is displayed in Fig. 7, for Cs = 10−4 and ∆t = 10−3s. Also in
this case, the surface changes from the initial shape to the stable circular configuration.

Figure 7: Evolution of a star into a circle under the effect of the surface diffusion due to
curvature gradient: t = 0s, 0.1s, 0.3s, 0.4s, 1s (from left to right).

7.2 Test 2: Effects of an applied electric field

The inclusion of the electric field effect in (23) considerably increases the model com-
plexity, often resulting in a prohibitive computational cost, even for simple geometries.
For this reason, the use of mesh adaptation becomes necessary. Both isotropic and
anisotropic mesh adaptation strategies are employed in the following.
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In a first case, we explore the effect of the electric field on the transformation of a
stable shape (circle) into an unstable shape (ellipse), where stability and instability are
defined with respect to the effect of the curvature gradient. In other words, the dynamics
are now governed by the electro-mechanical stress rather than by the curvature gradient.
The electric field strength is generated by applying a voltage difference of 1V between
the Γtop (positively biased) and Γbottom (grounded) edges. The initial shape is a circle
with a radius approximately equal to 0.245 composed of a metallic material, while the
remaining simulation domain consists of a dielectric, with εr = 10. Referring to (9)-(10),
we set Cs = 10−3, Cel = 12 · 10−4, F (En) = 0 and we choose ∆t = 10−3 as time step to
discretize the time window.
Fig. 8 illustrates the transformation of the circle into an ellipse, with a major semi-axes
aligned with the direction of the electric field. This behavior is consistent with the theo-
retical predictions [37] and has also been observed in the case of conductive liquid drops
immersed in an electric field [53, 25]. In the panels of the first row, we present the simula-
tion results for the isotropic mesh adaptation case, while in the second row, we show the
anisotropic case. Both approaches exhibit similar behavior, although anisotropic mesh
adaptation demonstrates superior computational time efficiency (32 minutes compared
to 45 minutes). This improvement is attributed to the reduced number of elements, with
3586 in the anisotropic case versus 5532 in the isotropic case.
Fig. 9 illustrates the dynamic evolution of the electric field under anisotropic mesh

Figure 8: Evolution of a circle into an ellipse under the effect of the electromechanical
stress, with F (En) = 0: isotropic (top) and anisotropic (bottom) adapted meshes, at
t = 0s, 0.1s, 0.2s, 0.3s, 0.8s (from left to right).

adaptation. As expected from physical considerations - specifically, the alignment be-
tween the ellipse major axis and the electric field direction - the electric field strength
increases in the region enclosed between the evolving ellipse (resulting from the circle
evolution) and the Γtop and Γbottom.

In a second case, we investigate the effect of the electric field on the shape evolution
of a circular metallic drop. The electric field strength is achieved by applying a voltage
of 1V between Γtop (positively biased) and Γbottom (grounded). The metallic drop has
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Figure 9: Evolution of a circle into an ellipse under the effect of the electromechanical
stress, with F (En) = 0: electric field distribution with anisotropic mesh adaptation, at
t = 0s, 0.1s, 0.2s, 0.3s, 0.8s (from left to right).

an initial radius r equal to 0.245, while the dielectric part is characterized by εr = 10.
With relation to (9), we set Cs = 10−3, Cel = 0, while we choose F (En) = Cer En with
Cer = 8 · 10−2, and a time step ∆t = 10−3.
In this configuration, the electromechanical stress is inhibited in order to highlight the
effect of the term F (En) on the shape evolution. The primary consequence of mass
injection from Γtop towards the upper part of the circle, coupled with mass ejection from
the bottom part toward Γbottom, results in an noticeable shift of the circle toward the
top contact (see Fig. 10). As expected, with the movement of the metallic circle towards
Γtop, the strength of the electric field increases in the region delimited by the circle and
Γtop, while it decreases in the region between the circle and Γbottom (see Fig. 11). More-
over, the shape modulation induced by the effect of the surface diffusion occurs at a
much slower rate compared to the drift. Therefore, it constitutes a negligible factor in
the evolution of the circle’s shape.

Figure 10: Evolution of a circular metallic drop under the effect of F (En) = Cer En:
isotropic (top) and anisotropic (bottom) adapted meshes, at t = 0s, 0.2s, 0.4s, 0.6s, 0.8s
(from left to right).

Finally, Fig. 10 confirms the advantages brought about by anisotropic meshes, illustrat-
ing the evolution of the drop when using both an isotropic (first row) and an anisotropic
(second row) adapted mesh. As in the earlier scenario, both approaches demonstrate
comparable behavior. However, the use of anisotropic adaptation showcases superior
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computational efficiency, completing the task in 23 minutes as opposed to 37 minutes,
attributed to the decreased number of elements (3665 versus 7031).

Figure 11: Evolution of a circular metallic drop under the effect of F (En) = Cer En:
electric field distribution with anisotropic mesh adaptation, at t = 0s, 0.2s, 0.4s, 0.6s, 0.8s
(from left to right).

8 Simulation of the filament growth and dissolution in
cation-based RRAM devices

This section focuses on the simulation of CF growth and dissolution in cation-based
RRAM devices. The primary goal is to illustrate that the model and numerical methods
outlined in Sec. 2 and Sec. 4 are capable of addressing both aspects within a physics-
based context.
We begin by detailing the CF morphological changes, followed by an analysis of the
corresponding variation in device resistance. To simulate these scenarios realistically, we
scaled the computational domain to dimensions representative of actual cells, specifically
setting to 10 nm the distance between the top and bottom contacts, and to 60 nm
the domain width. Concerning the boundary conditions for the generalized Poisson
equation (8), we assign φ = 0.9V on Γtop and φ = 0V on Γbottom for the growth step. In
the dissolution phase, we assign homogeneous data to both contacts, with the appropriate
work function.
Table 1 provides the model coefficients and the numerical parameters utilized in the
simulations for both CF growth and dissolution. We choose a value for Cs within the
range employed in [56, 55] for similar materials, and we opt for a Cr value that lies
moderately between those reported in [32, 11]. Material-dependent parameter values
are selected to align with literature values for the RRAM structure Ag/SiOx/Pt.
Finally, in all these simulations, we employ the anisotropic mesh adaptation strategy
outlined in Sec. 5.

Table 1: Table of model coefficients and numerical parameters.

Cs 10−31 [m4/s] Cr 3 · 10−7 [m/s] Cel 0 [F ·m3]

T 300 [K] ∆t 0.1 [µs] (growth), 10 [µs] (dissolution) ε 6ε0

γ 4.16 · 10−23 [Cµm] k 1.38 · 10−23 [J/K] ε0 8.854 · 10−12 [F/m]

22



(a) (b)

(c) (d)

Figure 12: CF growth in a cation-based RRAM device: evolution of the anisotropic
adapted mesh at t = 0µs, 10µs (top) t = 20µs, 40µs (bottom).

8.1 The filament growth

We refer to Sec. 2.2 for details on the constitutive laws used in simulating the CF growth.
Fig. 12 shows the CF growth, starting from an initial triangular shape connected to the
bottom electrode (panel (a)). The growth initiates from the bottom (inert) electrode,
Γbottom, following an oxidation/reduction-limited regime as discussed in [61]. The CF
gradually extends towards the top electrode, as shown in panels (b) and (c), ultimately
producing a galvanic contact and creating a short circuit between the top and bottom
electrodes (panel (d)). Specifically, in Fig. 12, the mesh evolution during the forming
process is depicted: the white-meshed region corresponds to positive values of the level-
set function, while the yellow-colored triangles represent the mesh elements with ϕth < 0.
In a parallel manner, the white-meshed region physically represents the evolution of
metallic regions, whereas the yellow-meshed region represents the dielectric material.
It is important to note that the metal contacts, whether made of Ag or Pt, are also
represented in the white mesh.

Through our modeling, we can not only observe the shape evolution of the CF
(Fig.12) but also analyze key physical quantities during CF growth, including the elec-
trostatic potential (Fig.13, left column) and the electric field (Fig.13, right column).
During the entire CF growth process, the voltage applied between the two electrodes
remains constant. Consequently, far from the region of CF protrusion, the electrostatic
potential across the dielectric is linear and remains constant over time, as illustrated in
Fig.13 (left column). However, in the region where the CF connects to the top electrode,
the electric potential undergoes significant modifications throughout the entire growth
process (Fig.13, left column). This phenomenon is further highlighted by observing the
electric field (Fig. 13, right column), which intensifies as the gap between the CF and
the top electrode diminishes. Notably, the high electric field region extends beyond the
lateral dimension of the CF, contributing to the rounded shape at the top of the CF.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: CF growth in a cation-based RRAM device: evolution of the electric potential
(left) and of the electric field (right) at t = 0µs (top), t = 10µs (middle), t = 20µs
(bottom).

Additionally, consistent with physical expectations, the electric field diminishes to zero
within the CF.

8.2 The filament dissolution

As mentioned in Sec.1, our modeling approach can also simulate filament dissolution.
This has been explored by other authors, such as in [56], where the emphasis is primarily
on the surface of the CF, neglecting the internal part, in contrast to our approach.
We emphasize that filament dissolution is entirely governed by the surface diffusion
process, as no voltage is applied to the top or bottom electrode. This condition is
achieved by setting En = 0 in (9), consistently with the approach in [56]. As an initial
condition, we consider two superimposed triangles (one facing up and one facing down)
penetrating to a specified depth, thereby controlling the CF dimension d. The impact
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(a) (b)

(c) (d)

Figure 14: Dissolution of the conductive filament in a cation-based RRAM device: evolu-
tion of the anisotropic adapted mesh at t = 0µs, 30µs (top) t = 50µs, 100µs (bottom).

of CF dimension is analyzed in Sec. 8.3.
Fig. 14 illustrates the variations in CF shape during dissolution. The dissolution process
works by smoothing out the sharp corners of the initial geometry, such as the constriction
of the CF and the top and bottom bases of the CF. The disconnection of the CF begins
from its center, namely, its thinnest part, and proceeds by causing the retraction of the
CF ends towards the electrodes. The significant assistance provided by anisotropic mesh
adaptation is evident. Adapted meshes allow us to model extremely thin topologies of
the CF that would be impossible to identify when using a uniform mesh.

8.3 Device resistance behavior during CF growth and dissolution

In this section, we numerically investigate the correlation between RRAM cell resis-
tance, CF shape evolution, and the applied voltage. This analysis directly considers the
conductive path within the cell (for the computation of the cell resistance, we refer the
reader to Appendix A).
We begin by examining the impact of the applied voltage on the formation time. The
initial condition represents a scenario with a remaining CF, as shown in Fig.12 for
t = 0µs. In left panel of Fig. 15, we provide the evolution of the device resistance dur-
ing the CF growth, for three different voltage values, namely 0.75 V, 0.8 V, 0.9 V. The
simulations accurately capture the expected abrupt transitions between high and low re-
sistance states, occurring at different times depending on the applied voltage. Moreover,
the model captures the well-known reduction of the switching time with the applied
voltage [32, 11, 12].

As a second feature, we investigate the influence of the CF size on the relaxation
time. Fig. 15, panel (b), shows the resistance evolution during dissolution for the three
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Figure 15: Evolution of the resistance during CF growth (a) and dissolution (b) in a
cation-based RRAM device.

initial configurations of the CF in Fig. 16. The three layouts vary in the slope of the
oblique sides of the two superimposed triangles that form the CF shape, with a more
vertical orientation moving from right to left. In each configuration, the minimum CF
dimension d is assessed. The resistance evolution exhibits a sudden variation at different
times for various initial configurations in qualitative agreement with [56].

Figure 16: Dissolution of the conductive filament in a cation-based RRAM device: dif-
ferent initial configurations of the CF. Each configuration is associated with a different
marker.

9 Conclusions and future works

We present a novel physics-based model designed to simulate morphological changes in
metallic inclusions within a dielectric exposed to an electric field. This represents a
general case of nanometric conductive filaments responsible for the switching in cation-
based resistive memory devices. The model takes into account both the electric-field-
induced mechanisms and surface diffusion due to curvature gradient, contributing to the
morphological evolution of the conductive filament simultaneously. The employment of a
level-set method enhanced by an anisotropic mesh adaptation strategy and a mixed finite
element formulation, enabling the simultaneous discretization of surface curvature and
velocity, ensures accurate tracking of the filament shape’s evolution in a computationally
efficient manner, during both CF growth and dissolution of the conductive filament.
The model is numerically evaluated in a 2D framework, successfully replicating the
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growth and dissolution processes of the conductive filament that govern the operation
of RRAM devices.
The model also provides the capability to explore key physical quantities within the
RRAM device, such as the evolution of the electric field. Furthermore, our approach can
replicate the typical resistance variation over time during both growth and dissolution,
emphasizing the impact of the filament’s shape in these processes.

As future developments, we are planning to extensively apply the new model to
simulate real electronic devices, comparing the obtained results with a diverse set of
experimental data. From a modeling perspective, we will incorporate the effects induced
by mechanical stress and thermal gradients.
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A Computation of the device resistance

In Fig. 15 we illustrate the device resistance behavior during the formation and dissolu-
tion of the CF. In this regard, following [56], we have generalized the methodology for
calculating device resistance based on the conductivity values of the metallic material
(Ag) and the dielectric oxide (SiOx).
Let us assume that the CF is composed of a series of Nfil trapezoidal metallic sections,
as depicted in Fig. 17. The zoom pertains to a small segment of the CF, representing a
single element of the series, which is formed by two bases (b1,i and b2,i) and two sides:
the first one, ∆yi, is perpendicular to b1,i and b2,i, while the second one is oblique, with
endpoints x1,i and x2,i. More precisely, ∆yi represents an edge taken along the CF
axis; b1,i and b2,i denote the distances from the endpoints of ∆yi to the barycenters,
x1,i and x2,i, of the triangles at end of the CF itself (see the elements highlighted in
red in Figure 17); the oblique side (x1,i, x2,i) is the Euclidean distance between the two
barycenters.

The resistance due to the metallic area can be easily computed as follows:

Rfil =

Nfil∑
i=1

ρf |∆yi|
π |bi,1| |bi,2|

, (40)

with
∑Nfil

i=1 |∆yi| = LCF representing the CF length, and where

ρf = ρf,0
1− p

1 + p

lf
d
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Figure 17: Numerical evaluation of the device resistance: the left panel highlights the
elements identified along the metallic boundary of the CF (red elements) and the dielec-
tric gap (blue elements); the right panel zooms in on the two elements located at the
filament border.

denotes the resistivity of the metallic material [55, 54], depending on the point-by-point
CF diameter, d, relative to the electron mean free path, lf = 53nm. Here, p = 0.5 is
the fraction of the electrons scattered at the CF surface, and ρf,0 = 1.59 · 10−6Ωcm,
according to the nominal Ag resistivity value.

The contribution to the cell resistance from the dielectric part is computed by gen-
eralizing the approach used in [50], considering a series of Nox dielectric element contri-
butions. Let A represent the section of the conductive path in the insulator, and ∆yi,ox
denote the individual portion of the insulator path, such that

∑Nox
i=1 |∆yi,ox| = Lox. The

resistance due to the dielectric part can then be straightforwardly calculated as

Rox =

Nox∑
i=1

ρox|∆yi,ox|
|A|

, (41)

with ρox = 1 · 109Ωcm the resistivity of the dielectric material. Thus, we can evaluate
the total device resistance by Rcell = Rfil +Rox.
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Andreea Grigoriu, and Yvon Maday. Simulation of CBRAM devices with the level
set method. In 2013 International Conference on Simulation of Semiconductor
Processes and Devices (SISPAD), pages 340–343. IEEE, 2013.

[19] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite Elements,
volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York, 2004.

[20] PE Farrell, Stefano Micheletti, and Simona Perotto. An anisotropic Zienkiewicz–
Zhu-type error estimator for 3D applications. Internat. J. Numer. Methods Engrg.,
85(6):671–692, 2011.

[21] Luca Formaggia and Simona Perotto. New anisotropic a priori error estimates.
Numerische Mathematik, 89(4):641–667, 2001.

[22] P. Frey and P.-L. George. Mesh Generation. Application to Finite Elements. Wiley,
London, second edition, 2008.
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