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Abstract

We derive new a posteriori error estimates for the finite element solution of
an elliptic eigenvalue problem, which take into account also the effects of the
polygonal approximation of the domain. This suggests local error indicators
that can be used to drive a procedure handling the mesh refinement together
with the approximation of the domain.

1 Introduction

Adaptive finite element methods (AFEM) for the numerical approximation of
partial differential equations (PDE) are nowadays standard tools in science and
engineering. The main ingredient for adaptivity is an a posteriori error estimate,
which allows the computation of a solution with a prescribed error tolerance.
Indeed, the local contributions of the a posteriori error estimate can be used
to obtain informations on the error distribution and to eventually refine the
computational grid. In this paper, we consider the finite element approximation
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of the following model eigenvalue problem: let Ω ⊂ R
2 be a bounded domain

with piecewise smooth boundary, find the eigenpair (u, λ) such that

−∆u = λu in Ω, u = 0 on ∂Ω. (1)

When the computational domain Ωh is assumed to coincide with Ω, we refer
to [2] for an overview on the optimal error estimates both for eigenvalues and
eigenfunctions and to [15, 10, 6, 9], for the corresponding a posteriori error es-
timates. However, the coincidnce between Ω and Ωh may not be satisfied on
coarse computational grids, which are typical, for example, of the early stages
of an adaptive procedure. Altough, under some simplifying assumptions, the
a priori analysis has been extended to the case in which the original and the
computational domains do not coincide [14, 11], the corresponding extension of
the a posteriori analysis seems to be open.

In this paper, we will obtain a posteriori error estimates for the eigenvalue
and eigenfunction errors, which reduce to the usual a posteriori estimates in the
case the discrete and continuous boundaries coincide, but exhibit, in the general
case, an extra term, which locally control the Geometric Error, i.e. the mis-
match between Ω and Ωh. Roughly speaking, our a posteriori error estimates
will be derived as the sum of two terms; one measuring the PDE Error, which is
related to the accuracy of the finite element approximation of the eigenpair and
one measuring the Geometric Error.

The outline of the paper is the following. In Section 2 we present the con-
tinuous and discrete problems. In Section 3 we prove the reliability of the er-
ror estimator, by deriving some preliminary error bounds and combining them
together. In Section 4 we show that, under some geometric saturation assump-
tions, the introduced error estimator is also (locally) efficient. Finally, in the
Appendix we briefly sketch the guidelines of a goal-oriented a posteriori error
analysis, which includes the effects of the domain approximation.

2 The Problem

Let Ω ⊂ R
2 be a bounded domain with piecewise smooth boundary. Let Ωh be

a domain with polygonal boundary and Th be a conforming and shape-regular
triangulation of Ωh, such that each vertex on ∂Ωh belongs to ∂Ω. Moreover, we
assume that all points where the condition of smoothness of ∂Ω is not fulfilled are
vertices of ∂Ωh. Let hT denote the diameter of an element T of the triangulation
Th. We define by T ∂

h the set of elements T ∈ Th that have non-trivial intersection
with the discrete boundary ∂Ωh and we set T 0

h := Th \ T ∂
h . We denote by Σh

the set of edges of the triangulation Th and by Σb
h the set of edges that belong

to the polygonal boundary ∂Ωh. Clearly, the set Σi
h := Σh \ Σb

h contains the

interior edges of the triangulation. Moreover, we introduce the subset Σ̂h ⊂ Σb
h
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Figure 1: The exact domain Ω and the computational domain Ωh.

containing all the boundary edges e ∈ Σb
h (or part of boundary edges) such

that e ⊂ Ω̄. Finally, by abuse of notation, we introduce the set Σ̃h of “curved”
boundary edges ẽ, such that ẽ ⊂ ∂Ω and ẽ ⊂ T , for some (unique) T ∈ Th

(see Figure 1). For the following, we will make the assumption that Ω̄ \ Ωh is
decomposed into disjoint connected closed subset

Ω̄ \ Ωh = ∪e∈bΣh
Ωe,

◦
Ωe ∩

◦
Ωe′ = ∅ for e 6= e′; (2)

that is, for every boundary edge e ∈ Σ̂h there is a connected non-discretized
closed subset Ωe of Ω̄ with piecewise smooth boundary (see Figure 1). Further-
more, for every e ∈ Σi

h we denote by ωe the set of triangles T ′ ∈ Th sharing

the edge e, while for every e ∈ Σ̂h we set ωe := T ∪ Ωe, where T is the unique
triangle such that e ⊂ ∂T .

Given any triangle T ∈ Th and an edge e ⊂ ∂T , the symbol nT
e represents the

outward unit normal for the triangle T on the edge e. In addition, to each edge
e ∈ Σh we associate a unit normal ne, its direction fixed arbitrarily once and for
all. The only restriction is that the normals ne associated to boundary edges
point outward with respect to the domain Ωh. Finally, given any Th-piecewise
regular function ψ, we define the jump of the normal derivative across an edge
e ∈ Σi

h as

[[
∂ψ

∂ne
]] |e =

∂ψ|T
∂nT

e

+
∂ψ|T ′

∂nT ′

e

,

with T, T ′ ∈ ωe and where we recall nT ′

e = −nT
e by definition.

Given any Lipschitz domain ω ⊂ Ω ∪ Ωh, we denote by

(v, ν)ω =

∫

ω
v(x)ν(x) dx ∀v, ν ∈ L2(ω)

the L2-scalar product on ω. Moreover, for all such ω and functions v ∈ H 1
0 (ω),

we indicate with ṽ the unique function in H1(Ω∪Ωh) which is the extension by
zero of v.
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In the following, we will use the symbols ', ., & to represent equivalences
and bounds which hold up to a constant independent of the mesh size.

In this paper, we are interested in solving the following eigenvalue model prob-
lem: find eigenpairs (u, λ), where u is an eigenvector and λ is an eigenvalue, such
that

−∆u = λu in Ω, u = 0 on ∂Ω. (3)

The weak formulation of (3) reads as follows
{

Find u ∈ H1
0 (Ω) and λ ∈ R such that

a(u, v) = λ(u, v)Ω ∀v ∈ H1
0 (Ω) ,

(4)

where

a(v, ν) =

∫

Ω
∇v · ∇ν ∀v, ν ∈ H1(Ω) . (5)

In order to keep the presentation as simple as possible, we assume that the
eigenvalue λ to be computed is simple.

Given a positive natural number k, let

Vh = {v ∈ H1
0 (Ωh) : v|T ∈ Pk(T ) ∀T ∈ Th}, (6)

where Pk(T ) represents the space of polynomial functions on T of maximum
degree k. It is worth noticing that the space Vh is defined on Ωh and not on Ω.
We are now ready to define on Ωh the corresponding Galerkin problem, which
reads as follows

{
Find uh ∈ Vh and λh ∈ R such that

ah(uh, vh) = λh(uh, vh)Ωh
∀vh ∈ Vh ,

(7)

where

ah(vh, νh) =

∫

Ωh

∇vh · ∇νh ∀vh, νh ∈ H1(Ωh) . (8)

In the following, we always assume that the continuous and discrete eigensolu-
tions are scaled such that

||u||2L2(Ω) = 1 , ||uh||
2
L2(Ωh) = 1 , (9)

which also implies

||∇u||2L2(Ω) = λ , ||∇uh||
2
L2(Ωh) = λh . (10)

As the eigenvalue λ is assumed to be simple, there follows that for a sufficiently
fine triangulation, the approximate eigenvlaue λh is likewise simple.

In the rest of the paper, we will work under the following saturation type
assumption, which is typical in the a posteriori analysis of eigenvalue problems,
see for example [9, 6, 10].
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Assumption 2.1 There exists a constant K < 1 independent of h such that

||u− ũh||L2(Ω) ≤ K .

In addition, |λ− λh| is bounded from above by a constant independent of h.

3 A posteriori error estimates

In this Section we derive computable upper bounds for the eigenvalue and eigen-
function errors that take into account also the effects of the polygonal approxi-
mation of the domain Ω. This is contained in Proposition 3.4, which is proved
in four steps.

3.1 First Step: three technical lemmas

We start introducing the functional J1 : H1(Ω) → R defined by

J1(v) = (∇(u− ũh),∇v)Ω ∀v ∈ H1(Ω) , (11)

where u is the solution to (4) and ũh is the Galerkin approximation defined in
(7). In the spirit of [9], we introduce the following auxiliary problem

{
Find w ∈ H1

0 (Ω) with (w, u)Ω = 0 such that

a(w, v) − λ(w, v)Ω = J1(u)(u, v)Ω − J1(v) ∀v ∈ H1
0 (Ω) .

(12)

The orthogonality condition (w, u)Ω = 0 is needed to guarantee the uniqueness
of w, since the operator related to the left hand side has a non trivial kernel
given by span{u}. In this respect, note that the problem is well defined since
the right hand side is zero when calculated on v = u.

The stability of problem (12) and the identities (9), (10) easily give

||w||H1(Ω) . ||∇(u− ũh)||L2(Ω) . (13)

We have the following lemma.

Lemma 3.1 There holds

||∇(u− ũh)||2L2(Ω) . A1 +A2 +A3 , (14)

where the three terms

A1 = |J1(u)(u, ũh)Ω − J1(ũh)| ,

A2 =
|J1(u)|

2
||u− ũh||

2
L2(Ω) ,

A3 =
|J1(u)|

2
(1 − ||ũh||

2
L2(Ω)) .

(15)
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Proof. From (9) it follows

(u− ũh, u− ũh)Ω = 2 + (||ũh||
2
L2(Ω) − 1) − 2(u, ũh)L2(Ω) , (16)

which gives

(u, ũh)Ω = 1 +
1

2
(||ũh||

2
L2(Ω) − 1) −

1

2
||u− ũh||

2
L2(Ω) . (17)

By using (17) we get

J1(u)(u, ũh)Ω−J1(ũh) = J1(u)−J1(ũh)−
J1(u)

2
||u−ũh||

2
L2(Ω)−

J1(u)

2
(1−||ũh||

2
L2(Ω)) .

(18)
The final result follows from (18) after observing that by definition

||∇(u− ũh)||2L2(Ω) = J1(u) − J1(ũh) .

The second lemma contains an approximation result.

Lemma 3.2 Let ũh be the solution of (7). Then there exists a function ũ0
h ∈

H1
0 (Ω) such that

||ũh − ũ0
h||

2
H1(Ω) .

∑

e∈eΣh

||ũh||
2
H1/2(e)

.

Proof. We introduce the problem

{
Find ũ0

h ∈ H1
0 (Ω) such that

(∇ũ0
h,∇v)Ω = (∇ũh,∇v)Ω ∀v ∈ H1

0 (Ω) .
(19)

Observing that ũh − ũ0
h is an harmonic function, a well known result [13] gives

||ũh − ũ0
h||

2
H1(Ω) . ||ũh − ũ0

h||
2
H1/2(∂Ω)

= ||ũh||
2
H1/2(∂Ω)

.

The thesis follows by recalling that ũh is null on all parts of ∂Ω which are not
in ∪e∈eΣh

e.

Finally, we present a result of [5], which will be needed in the sequel. To this
end, we need to introduce some additional notation. Let Nh the set of nodes p
of the triangulation Th. For each node p belonging to the polygonal boundary
∂Ωh, we define by Σp the set of boundary edges e ∈ Σb

h sharing the node p.
Moreover, for every edge e ∈ Σh we denote by N (e) the set of nodes belonging
to e. Given any element T ∈ Th, we define a mesh size function

h̃T = hT + hT

∑

e∈(Σb
h∩∂T )

∑

p∈N (e)

min
e∈Σp

Ceh
−1/2
e , (20)
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where Ce = 0 if Ωe = ∅, and otherwise it is the minimum constant such that

||v||L2(∂Ωe) ≤ Ce||∇v||Ωe ∀v ∈ H1(Ωe) with v = 0 on ∂Ω ∩ ∂Ωe . (21)

Note that for internal triangles the above definition gives h̃T = hT . Furthermore,
for all e ∈ Σh we set

h̃e = max
T∈ωe

h̃T . (22)

Lemma 3.3 There exists an interpolation operator on Vh such that for all v ∈
H1

0 (Ω) the interpolated function vI satisfies

|(ψ, ṽ − vI)Ωh
| .

( ∑

T∈Th

h̃2
T ||ψ||

2
L2(T )

)1/2
||∇v||H1(Ω) ,

|
∑

e∈Σi
h

∫

e
(ṽ − vI)[[

∂vh

∂ne
]] ds| .

( ∑

T∈Th

h−1
T h̃2

T

∑

e∈∂T∩Σi
h

||[[
∂vh

∂ne
]]||2L2(e)

)1/2
||∇v||H1(Ω) ,

|
∑

e∈bΣh

∫

e
v
∂vh

∂ne
ds | .

( ∑

e∈∂ bΣh

C2
e ||
∂vh

∂ne
||2L2(e)

)1/2
||∇v||H1(Ω)

(23)
for all vh ∈ Vh and ψ ∈ L2(Ωh).

Note that the lemma here presented is slightly different from the one in [5],
since in our case we need a result in Ωh rather than in Ω.

3.2 Second Step: preliminary H
1-error bound

We now bound the terms A1, A2, A3 in Lemma 3.1. Let us start with the term
A1. By using definition (11), then adding and subtracting the function ũ0

h of
Lemma 3.2, finally employing a triangle inequality and recalling (12) we get

A1 = |(∇(u− ũh),∇u)Ω(u, ũh)Ω − (∇(u− ũh),∇ũh)Ω|

= |(∇(u− ũh),∇u)Ω(u, ũh − ũ0
h)Ω − (∇(u− ũh),∇(ũh − ũ0

h) )Ω

+ (∇(u− ũh),∇u)Ω(u, ũ0
h)Ω − (∇(u− ũh),∇ũ0

h)Ω|

. |(∇(u− ũh),∇u)Ω(u, ũh − ũ0
h)Ω| + |(∇(u− ũh),∇(ũh − ũ0

h) )Ω|

+ |a(w, ũ0
h) − λ(w, ũ0

h)Ω| .

(24)

The Cauchy-Schwarz inequality, the identities (9) and (10), and the result of
Lemma 3.2 easily yield

|(∇(u− ũh),∇u)Ω(u, ũh − ũ0
h)Ω| . λ1/2||∇(u− ũh)||L2(Ω)(

∑

e∈eΣh

||ũh||
2
H1/2(e)

)1/2

(25)
and

|(∇(u− ũh),∇(ũh − ũ0
h) )Ω| . ||∇(u− ũh)||L2(Ω)(

∑

e∈eΣh

||ũh||
2
H1/2(e)

)1/2 . (26)
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Therefore, by introducing

T1 = (
∑

e∈eΣh

||ũh||
2
H1/2(e)

)1/2 , (27)

from (24), (26) and (27) it follows

A1 . T1 ||∇(u− ũh)||L2(Ω) + |a(w, ũ0
h) − λ(w, ũ0

h)Ω| . (28)

In order to treat the second term on the righ-hand side of (28), we add and
subtract ũh, we use Cauchy-Schwarz inequality, Lemma 3.2 and inequality (13),
thus obtaining

|a(w, ũ0
h) − λ(w, ũ0

h)Ω| . |a(w, ũ0
h − ũh) − λ(w, ũ0

h − ũh)Ω|

+ |a(w, ũh) − λ(w, ũh)Ω|

. T1 ||∇(u− ũh)||L2(Ω) + |a(w, ũh) − λ(w, ũh)Ω| .

(29)

According to the notation introduced in Section 2, let now w̃ be the extension
by zero of w. Using that w̃ is null outside Ω and ũh is null outside Ωh yields

|a(w, ũh) − λ(w, ũh)Ω| = |ah(w̃, uh) − λ(w̃, uh)Ωh
|

. |(λ− λh)(w̃, uh)Ωh
| + |ah(w̃, uh) − λh(w̃, uh)Ωh

| .
(30)

We now consider the two terms on the righ-hand side of (30). As for the first
term, by using Cauchy-Schwarz inequality, the definition of w̃ and equations (13)
and (9), we immediately infer

|(λ−λh)(w̃, uh)Ωh
| . |λ−λh| ||w||L2(Ω)||uh||L2(Ωh) . |λ−λh| ||∇(u− ũh)||L2(Ω) .

(31)
As for the second term, let wI ∈ Vh be the interpolant of w introduced in Lemma
3.3. Using problem (7) and a standard element-wise integration by parts gives

|ah(w̃, uh) − λh(w̃, uh)Ωh
| = |ah(w̃ − wI , uh) − λh(w̃ − wI , uh)Ωh

|

. |
∑

T∈Th

(∆uh + λhuh, w̃ − wI)T |

+ |
∑

T∈Th

∑

e∈∂T

∫

e
(w̃ − wI)

∂uh

∂nT
e

ds| .

(32)

We note that wI is null on all edges of ∂Ωh while w̃ is null on all edges of Ωh

except those in Σ̂h. Therefore, a standard collection of the edge terms gives

|
∑

T∈Th

∑

e∈∂T

∫

e
(w̃−wI)

∂uh

∂ne
ds| ≤ |

∑

e∈Σi
h

∫

e
(w̃−wI)[[

∂uh

∂ne
]] ds|+ |

∑

e∈bΣh

∫

e
w
∂uh

∂ne
ds | .

(33)
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Applying Lemma 3.3 to (32) and (33), and recalling (13) gives

|ah(w̃, uh) − λh(w̃, uh)Ωh
| . (T2 + T3 + T4)||∇w||L2(Ω)

. (T2 + T3 + T4)||∇(u− ũh)||L2(Ω) ,
(34)

where the terms

T2 =
( ∑

T∈Th

h̃2
T ||∆uh + λhuh||

2
L2(T )

)1/2

T3 =
( ∑

T∈Th

h−1
T h̃2

T

∑

e∈∂T∩Σi
h

||[[
∂uh

∂ne
]]||2L2(e)

)1/2

T4 =
( ∑

e∈bΣh

C2
e ||
∂uh

∂ne
||2L2(e)

)1/2
.

(35)

Combining the bounds (28), (29), (30), (31) and (34) we finally get

A1 . (T1 + T2 + T3 + T4 + |λ− λh|) ||∇(u− ũh) ||L2(Ω) . (36)

In order to bound the terms A2 and A3, it is sufficient to observe that Cauchy-
Schwarz inequality together with (10) yields

|J1(u)| ≤ λ ||∇(u− ũh) ||L2(Ω) . ||∇(u− ũh) ||L2(Ω) , (37)

while identity (9) gives

1 − ||ũh||
2
L2(Ω) = ||uh||

2
L2(Ωh) − ||ũh||

2
L2(Ω) = ||uh||

2
L2(Ωh/Ω) . (38)

By setting
T5 = ||uh||

2
L2(Ωh/Ω) (39)

and combining Lemma 3.1 with (36), (37) and (38) we finally obtain

Proposition 3.1 It holds

||∇(u− ũh)||L2(Ω) . T1 + T2 + T3 + T4 + T5

+ |λ− λh| + ||u− ũh||
2
L2(Ω) .

(40)

where the terms Ti, i = 1, .., 5 are defined in (27), (35) and (39).

The first five terms in (40) will appear directly in the error estimator (see Propo-
sition 3.4). The last two terms will instead be bounded in the following two
Sections.
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3.3 Third Step: preliminary L
2-error bound

In this Section we derive an upper (suboptimal) bound for the eigenfunction
error ‖u−ũh‖L2(Ω). Similarly to the case of the H1-error, we introduce functional
J0 : H1(Ω) → R defined by

J0(v) = (u− ũh, v)Ω ∀v ∈ H1(Ω) , (41)

and consider the following auxiliary problem

{
Find z ∈ H1

0 (Ω) with (z, u)Ω = 0 such that

a(z, v) − λ(z, v)Ω = J0(u)(u, v)Ω − J0(v) ∀v ∈ H1
0 (Ω) .

(42)

It is easy to show the following stability result

‖z‖H1(Ω) . ‖u− ũh‖L2(Ω) , (43)

and the counterpart of Lemma 3.1 which is contained in the following lemma.

Lemma 3.4 There holds

‖u− ũh‖
2
L2(Ω) . B1 +B2 +B3 , (44)

where
B1 = |J0(u)(u, ũh)Ω − J0(ũh)| ,

B2 =
|J0(u)|

2
||u− ũh||

2
L2(Ω) ,

B3 =
|J0(u)|

2
(1 − ||ũh||

2
L2(Ω)) .

(45)

By mimicking the proof of Proposition 3.1, it is straightforward to obtain the
following result

Proposition 3.2 There holds

‖u− ũh‖L2(Ω) . T1 + T2 + T3 + T4 + T5

+ |λ− λh| + ||u− ũh||
2
L2(Ω) ,

(46)

where the terms Ti, i = 1, .., 5 are defined in (27), (35) and (39).

Furthermore, using Assumption 2.1, from the above Proposition we immediately
infer

Corollary 3.1 There holds

‖u− ũh‖L2(Ω) . T1 + T2 + T3 + T4 + T5 + |λ− λh| . (47)
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3.4 Fourth Step: eigenvalue error bounds

In this Section we derive (see Proposition 3.3) an upper bound for |λ− λh| that
will enter in (40). Using (9) we get

−1 ≤ (||ũh||
2
L2(Ω) − 1) ≤ 0 . (48)

By employing(17) together with (48) and Assumption 2.1, we obtain

|(λ− λh) (u, ũh)Ω| = |(λ− λh)
(
1 +

1

2
(||ũh||

2
L2(Ω) − 1) −

1

2
||u− ũh||

2
L2(Ω)

)
|

≥ α|λ− λh| ,
(49)

where the constant α = (1 −K)/2 > 0. Let us denote by ∆hũ the L2 function
given by the extension by zero of ∆u ∈ L2(Ω) to Ω∪Ωh. Recalling (4) and using
the fact that the support of u is in Ω while the support of ũh is in Ωh, we get

(λ− λh) (u, ũh)Ω = −(∆u, ũh)Ω − λh(u, ũh)Ω = −(∆hũ, uh)Ωh
− λh(ũ, uh)Ωh

.
(50)

Combining (49) and (50) with a piece-wise integration by parts easily yields

|λ− λh| . |(∇ũ,∇uh)Ωh
− λh(ũ, uh)Ωh

| + |
∑

e∈eΣh

∫

e

∂u

∂n
uh ds| . (51)

Since ∇u ∈ (L2(Ω))2 and div∇u = ∆u is also in L2(Ω), a classical trace result
[7] implies that ∂u

∂n is in H−1/2(∂Ω) and

||
∂u

∂n
||H−1/2(∂Ω) . ||∇u||L2(Ω) + ||∆u||L2(Ω) ≤ λ1/2 + λ , (52)

where in the last bound we used (10) and (4). Therefore, using an H 1/2 duality
on the boundary, for the second term in (51) we infer

∣∣ ∑

e∈eΣh

∫

e

∂u

∂n
uh ds

∣∣ =
∣∣
∫

∂Ω

∂u

∂n
ũh ds

∣∣ ≤ ||
∂u

∂n
||H−1/2(∂Ω)||ũh||H1/2(∂Ω) . (53)

Applying (52) and using that ũh is null on part of ∂Ω yields

|
∑

e∈eΣh

∫

e

∂u

∂n
uh ds| .

( ∑

e∈eΣh

||uh||
2
H1/2(e)

)1/2
= T1 . (54)

Let uI ∈ Vh be the approximation of u introduced in Lemma 3.3. Then, using
(7) we obtain

|(∇ũ,∇uh)Ωh
− λh(ũ, uh)Ωh

| = |ah(ũ− uI , uh) − λh(ũ− uI , uh)Ωh
| . (55)
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The term on the right-hand side in (55) is treated exactly as the term appearing
in (32) up to a substitution of w̃ with ũ. Therefore, we get the same result as
in the first line of (34), i.e.

|ah(ũ− uI , uh) − λh(ũ− uI , uh)Ωh
| . (T2 + T3 + T4) ||∇u||L2(Ω) , (56)

which, by using (55) and (10), gives

|(∇ũ,∇uh)Ωh
− λh(ũ, uh)Ωh

| . T2 + T3 + T4 , (57)

where the terms T1, T2 and T3 have been defined in (35). Combining (51), (54)
and (57) we finally get the following result.

Proposition 3.3 There holds

|λ− λh| . T1 + T2 + T3 + T4 , (58)

with the above terms defined in (27) and (35).

As for the construction of an optimal computable error estimate for the eigen-
value error |λ − λh|, we will need a parallel result to Proposition 3.3. Indeed,
the upper estimate directly built from (58) would result to be suboptimal [14].

We show the simple result rather briefly.

Lemma 3.5 There holds

|λ− λh| . ||u− ũh||
2
H1(Ω) + T1 + T6 , (59)

where
T6 = ||uh||

2
H1(Ωh/Ω). (60)

Proof. From bounds (51), (54) and recalling (7) it follows

|λ−λh| . |ah(ũ, uh)−λh(ũ, uh)Ωh
|+T1 = |ah(ũ−uh, uh)−λh(ũ−uh, uh)Ωh

|+T1 .
(61)

Adding and subtracting terms in (61) and using (9), we easily obtain

|λ− λh| . |ah(ũ− uh, ũ− uh)| + |ah(ũ− uh, ũ) − λ(ũ− uh, ũ)Ωh
|

+ |λ(ũ− uh, ũ− uh)Ωh
| + |(λ− λh) (ũ− uh, uh)Ωh

| + T1

. ||∇(ũ− uh)||2L2(Ωh) + |ah(ũ− uh, ũ) − λ(ũ− uh, ũ)Ωh
|

+ ||ũ− uh||
2
L2(Ωh) + |λ− λh| ||ũ− uh||L2(Ωh) + T1 ,

(62)

which, thanks to some simple algebra and to Assumption 2.1, yields

|λ− λh| . ||ũ− uh||
2
H1(Ωh) + |ah(ũ− uh, ũ) − λ(ũ− uh, ũ)Ωh

| + T1 (63)
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Bearing in mind the relation between the supports of ũ and ũh, it can be checked
that

|ah(ũ−uh, ũ)−λ(ũ−uh, ũ)Ωh
| . |a(u−ũh, u)−λ(u−ũh, u)Ω|+||u−ũh||

2
H1(Ω/Ωh) .

(64)
Applying bound (64) in (63) and rearranging the integrals in the norms, we now
get

|λ− λh| . ||ũ− uh||
2
H1(Ω) + |a(u− ũh, u) − λ(u− ũh, u)Ω| + T1 + T6 , (65)

where the term T6 is defined in (60). From (4), since both u and ũ0
h of Lemma

3.2 are in H1
0 (Ω), using also (9), (10) we obtain

|a(u− ũh, u) − λ(u− ũh, u)Ω| = |a(ũ0
h − ũh, u) − λ(ũ0

h − ũh, u)Ω|

.
(
||∇u||L2(Ω) + λ||u||L2(Ω)||

)
||ũ0

h − ũh||H1(Ω)

. ||ũ0
h − ũh||H1(Ω).

(66)
The thesis follows by first applying Lemma 3.2 to (66) and by then combining
the result with (65).

3.5 Main result

Combining Proposition 3.1, Corollary 3.1 and Proposition 3.3 with Lemma 3.5
and Assumption 2.1 yields the following a posteriori error estimates

Proposition 3.4 There holds

‖∇(u− ũh)‖2
L2(Ω) .

∑

T∈Th

{
h̃2

T ||∆uh + λhuh||
2
L2(T ) + h−1

T h̃2
T

∑

e∈∂T∩Σi
h

||[[
∂uh

∂ne
]]||2L2(e)

}

+
∑

e∈eΣh

||ũh||
2
H1/2(e)

+
∑

e∈bΣh

C2
e ||
∂uh

∂ne
||2L2(e) + ||uh||

4
L2(Ωh/Ω) (67)

|λ− λh| .
∑

T∈Th

{
h̃2

T ||∆uh + λhuh||
2
L2(T ) + h−1

T h̃2
T

∑

e∈∂T∩Σi
h

||[[
∂uh

∂ne
]]||2L2(e)

}

+
∑

e∈bΣh

C2
e ||
∂uh

∂ne
||2L2(e) + (

∑

e∈eΣh

||ũh||
2
H1/2(e)

)1/2

+||uh||
2
H1(Ωh/Ω) + ||uh||

4
L2(Ωh/Ω) (68)

Remark 3.1 Noting that uh ∈ Vh yields the computability of the term T1 :=
||uh||H1/2(e), by using the definition of the norm ||·||H1/2(e) and a suitable quadra-
ture formula.
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Remark 3.2 From Proposition 3.1 and Corollary 3.1, it is evident that the
arguments in the previous section can also be employed to build an a posteriori
error estimate for the L2 error ‖u − ũh‖

2
L2(Ω). However, this estimate will be

suboptimal, unless, for example, the eigenfunction u is assumed to be H 2-regular
(see e.g. [14, 9]).

We now state a result of consistency-type for the error estimates appearing
in Proposition 3.4; that is when Ω = Ωh, the a posteriori error bounds (67)-(68)
reduce to the standard ones [6, 10, 9].

Corollary 3.2 Let Ω = Ωh. Then there holds

‖∇(u− uh)‖2
L2(Ω) .

∑

T∈Th

{
h2

T ||∆uh + λhuh||
2
L2(T )

+hT

∑

e∈∂T∩Σi
h

||[[
∂uh

∂ne
]]||2L2(e)

}
(69)

|λ− λh| .
∑

T∈Th

{
h2

T ||∆uh + λhuh||
2
L2(T )

+hT

∑

e∈∂T∩Σi
h

||[[
∂uh

∂ne
]]||2L2(e)

}
. (70)

From Proposition 3.4 and Corollary 3.2, it is evident the role of the different
terms appearing on the right-hand sides of (67) and (68), which deal with two
different sources of error: the approximation of the PDE (PDE-Error) and the
approximation of the domain (Geometric-Error). In particular, the term

∑

T∈Th

{
h̃2

T ||∆uh + λhuh||
2
L2(T ) + h−1

T h̃2
T

∑

e∈∂T∩Σi
h

||[[
∂uh

∂ne
]]||2L2(e)

}
(71)

deals with the PDE-error and it is related with the accuracy of the Galerkin
approximation (uh, λh) in the polygonal domain Ωh. The term

∑

e∈bΣh

C2
e ||
∂uh

∂ne
||2L2(e) + (

∑

e∈eΣh

||ũh||
2
H1/2(e)

)1/2 + ||uh||
2
H1(Ωh/Ω) + ||uh||

4
L2(Ωh/Ω) (72)

deals with the Geometric Error and it measures the influence on the accuracy
of the discrete eigenpair of the mismatch between Ωh and Ω.

Remark 3.3 Roughly speaking, having in mind the upper estimate (54), the
term ∑

e∈bΣh

C2
e ||
∂uh

∂ne
||2L2(e) + (

∑

e∈eΣh

||ũh||
2
H1/2(e)

)1/2
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can be seen as an approximation to the quantity
∫
∂Ω |∂u

∂n |
2V · n, which is the

expression of the shape derivative of the eigenvalue λ; i.e. the variation of λ
with respect to the domain deformation of Ω into Ωh, induced by a suitable vector
field V (see [8]). For further comments on possible connections between shape
calculus tools and a posteriori error estimators including the effects of domain
approximation, see Remark 5.1.

4 Efficiency of a posteriori error estimators

In this Section we will discuss the efficiency of the error estimators appearing
in Proposition 3.4 in the “geometric saturated” state, i.e. by working under the
following assumption. The first three points where firstly introduced in [5].

Assumption 4.1 Every triangle T ∈ T ∂
h has at most one edge e ∈ Σb

h. More-
over the approximation Ωh to Ω has reached the saturated state; i.e. there holds

1. for every T ∈ T ∂
h with T 6⊂ Ω there is a triangle T ′ ⊂ T , constructed from

T by a parallel displacement of the edge e ∈ Σb
h such that T ′ ⊂ Ω and

hT ′ ≥ 1
2hT ,

2. there is a triangle T ′′, with T ⊂ T ′′, constructed from T by a parallel
displacement of the edge e ∈ Σb

h, such that Ωe ⊂ T ′′ and hT ′′ ≤ 2hT ,

3. h̃T ≤ 2hT for all T ∈ Th,

4. for all Ωe, e ∈ Σ̂h, the curvature C(x) of ∂Ω ∩ ∂Ωe is essentially constant.
Namely, it exist two global positive constants c1, c2 such that c1 C(y) ≤
C(x) ≤ c2 C(y) for all x, y ∈ ∂Ω ∩ ∂Ωe, ∀e ∈ Σ̂h.

Note that the last condition is quite demanding, but it is used only to bound
term T4 in a sufficiently simple way. According to [16, 1], we introduce two
types of bubble functions; namely the interior-bubble function and the edge-
bubble function. In particular for every triangle T ∈ Th we denote by bT the
interior-bubble function supported on T and for every edge e ∈ Σi

h ∪ Σ̂h we
denote by be the edge-bubble function supported on ωe.
We recall [16, 1] two useful results on the bubble and edge functions.

Lemma 4.1 Let T ∈ Th be an element of the triangulation and P(T ) ⊂ H1(T )
be a finite dimensional space defined on T . Let bT be the interior bubble function
over T . Then there exists a constant C independent of v and T such that for
every v ∈ P(T ) the following inequalities hold:

C−1‖v‖2
L2(T ) ≤

∫

T
bT v

2 ≤ C‖v‖2
L2(T ), (73)

C−1‖v‖L2(T ) ≤ ‖bT v‖L2(T ) + hT |bT v|H1(T ) ≤ C‖v‖L2(T ) (74)

15



Lemma 4.2 Let e ∈ Σi
h and be be the corresponding edge bubble function defined

over ωe. Let P(e) ⊂ H1(e) be a finite dimensional space defined on e. Then
there exists a constant c independent of v and e such that for every v ∈ P(e) the
following inequalities hold:

c−1‖v‖2
L2(e) ≤

∫

e
bev

2 ≤ c‖v‖2
L2(e), (75)

h
−1/2
T ‖bev‖L2(T ) + h

1/2
T |bev|H1(T ) ≤ c‖v‖L2(e), (76)

with T ∈ ωe.
Let e ∈ Σ̂h and be be the corresponding edge bubble function defined over ωe :=
T ∪Ωe. Let Re be a rectangle containing Ωe with edges parallel and orthogonal to
e. We assume without loss of generality that Re := [0, he]× [0,He], with He > 0.
Then there exists another constant c independent of v and e such that for every
v ∈ P(e) the following inequalities hold:

c−1‖v‖2
L2(e) ≤

∫

e
bev

2 ≤ c‖v‖2
L2(e), (77)

h−1/2
e ‖bev‖L2(T ) + h1/2

e |bev|H1(T ) ≤ c‖v‖L2(e), (78)

H−1/2
e ‖bev‖L2(Ωe) +

(min(h2
e ,H

2
e )

He

)1/2
|bev|H1(Ωe) ≤ c‖v‖L2(e). (79)

Moreover, under the Assumption 4.1, there holds He ≤ he. Hence, combin-
ing (78) and (79) it follows

h−1/2
e ‖bev‖L2(ωe) +H1/2

e |bev|H1(ωe) ≤ c‖v‖L2(e). (80)

Note that bound (79) above (and therefore (80)) is the only non standard one.
Nevertheless, it follows easily using the fourth point in Assumption 4.1, a simple
minded bubble and a scaling argument. For every triangle T ∈ Th, we set
RT := ∆uh + λhuh and z := bTRT . We distinguish two cases: (i) T ⊂ Ω and
(ii) T 6⊂ Ω. Let us first consider the case T ⊂ Ω. Using Lemma 4.1 yields

‖RT ‖
2
L2(T ) . ‖b

1/2
T RT ‖

2
L2(T ) = (RT , z)T

= (∆uh + λu, z)T + ((λh − λ)uh, z)T + (λ(uh − u), z)T

= (∇(u− uh),∇z)T + (λh − λ)(uh, z)T + λ(uh − u, z)

. h−1
T ‖∇(u− uh)‖L2(T )‖z‖L2(T ) + |λ− λh|‖uh‖L2(T )‖z‖L2(T )

+|λ|‖u− uh‖L2(T )‖z‖L2(T )

.
(
h−1

T ‖∇(u− uh)‖L2(T ) + |λ− λh|‖uh‖L2(T )

+|λ|‖u− uh‖L2(T )

)
‖RT ‖L2(T ).

Hence it follows

hT ‖∆uh + λhuh‖L2(T ) ≤ ‖u− uh‖H1(T ) + hT |λ− λh|‖uh‖L2(T )

+|λ|hT ‖u− uh‖L2(T ). (81)
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In the case T 6⊂ Ω we can use the same arguments as before on T ′ instead of T
to get

hT ′‖∆uh + λhuh‖L2(T ′) . ‖u− uh‖H1(T ′) + hT ′ |λ− λh|‖uh‖L2(T ′)

+|λ|hT ′‖u− uh‖L2(T ′). (82)

By Assumption 4.1 and since ∆uh + λhuh is a polynomial function, we can
estimate the above term on T ′ from below by the corresponding term on T , thus
obtaining

hT ‖∆uh + λhuh‖L2(T ) . ‖u− uh‖H1(T∩Ω) + hT |λ− λh|‖uh‖L2(T∩Ω)

+|λ|hT ‖u− uh‖L2(T∩Ω). (83)

For every edge e ∈ Σh we set

Re =

{
[[∇uh · ne]]|e e ∈ Σi

h

(∇uh · ne)|e e ∈ Σ̂h,
(84)

and w = beRe. We first consider the case e ∈ Σi
h such that ωe ⊂ Ω. Using

Lemma 4.2 yields

‖Re‖
2
L2(e) . ‖b1/2

e Re‖
2
L2(e) = (Re, w)e = (∆uh, w)ωe + (∇uh,∇w)ωe

= (∆uh + λhuh, w)ωe + (∇(uh − u),∇w)ωe + λ(u,w)ωe − λh(uh, w)ωe

.
∑

T∈ωe

‖∆uh + λhuh‖L2(T )‖w‖L2(T ) + h−1
e ‖∇(u− uh)‖L2(ωe)‖w‖L2(ωe)

+|λ− λh|‖uh‖L2(ωe)‖w‖L2(ωe) + |λ|‖u − uh‖L2(ωe)‖w‖L2(ωe)

.
∑

T∈ωe

h1/2
e ‖∆uh + λhuh‖L2(T )‖Re‖L2(e) + h−1/2

e ‖∇(u− uh)‖L2(ωe)‖Re‖L2(e)

+h1/2
e |λ− λh|‖uh‖L2(ωe)‖Re‖L2(e) + h1/2

e |λ|‖u− uh‖L2(ωe)‖Re‖L2(e).

Hence it follows

h1/2
e ‖[[∇uh · ne]]‖L2(e) .

∑

T∈ωe

he‖∆uh + λhuh‖L2(T ) + ‖∇(u− uh)‖L2(ωe)

+he|λ|‖u− uh‖L2(ωe)

+he|λ− λh|‖uh‖L2(ωe) (85)

In the case e ∈ Σi
h with ωe 6⊂ Ω, we consider e′ ⊂ e with ωe′ ⊂ ωe such that

ωe′ ⊂ Ω and we use the same arguments as before on e′ instead of e to get

h
1/2
e′ ‖Re′‖L2(e′) .

∑

T ′∈ωe′

he′‖∆uh + λhuh‖L2(T ′) + ‖∇(u− uh)‖L2(ωe′ )

+he′ |λ|‖u− uh‖L2(ωe′ )

+he′ |λ− λh|‖uh‖L2(ωe′ )
(86)
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By Assumption 4.1 and since ∇uh · n is a polynomial function on each edge, we
can estimate the above term on e′ from below by the corresponding term on e,
thus obtaining

h1/2
e ‖[[∇uh · ne]]‖L2(e) .

∑

T∈ωe

he‖∆uh + λhuh‖L2(T∩Ω) + ‖∇(u− uh)‖L2(ωe∩Ω)

+he|λ|‖u− uh‖L2(ωe∩Ω)

+he|λ− λh|‖uh‖L2(ωe∩Ω) (87)

Finally, for every edge e ∈ Σ̂h, with e ⊂ ∂T , for a certain T ∈ Th, we set
ωe := Ωe ∪ T . Using bound (80) in Lemma 4.2 under the Assumption 4.1 (i.e.
He ≤ he) and repeating the same argument as before yield

H1/2
e ‖∇uh · ne‖L2(e) . he‖∆uh + λhuh‖L2(ωe) + ‖∇(u− uh)‖L2(ωe)

+ he|λ| ‖u− uh‖L2(ωe)

+ he|λ− λh| ‖uh‖L2(ωe). (88)

Finally, as it is easy to check that the constant Ce in (21) satisfies Ce ≤ H
1/2
e ,

we have

Ce‖∇uh · ne‖L2(e) . he‖∆uh + λhuh‖L2(T∩Ω) + he‖∆uh + λhuh‖L2(Ωe∩Ω)

+ ‖∇(u− uh)‖L2(ωe∩Ω) + he|λ|‖u− uh‖L2(ωe∩Ω)

+ he|λ− λh|‖uh‖L2(ωe∩Ω). (89)

Combining the above bounds yields the following result

Proposition 4.1 Let the Assumption 4.1 be valid. For every T ∈ Th, there
holds

h2
T ||∆uh + λhuh||

2
L2(T ) +

∑

e⊂∂T∩Σi
h

he||[[
∂uh

∂ne
]]||2L2(e) . ||u− uh||

2
H1(T ∗∩Ω)

+ h2
T ||u− uh||

2
L2(T ∗∩Ω) + h2

T |λ− λh|
2, (90)

where T ∗ is the union of the triangle T and all the neighboring triangles T ′ shar-
ing a face with T .

Moreover, for every edge e ∈ Σ̂h, there holds

C2
e ||
∂uh

∂ne
||2L2(e) . ||u− uh||

2
H1(ωe∩Ω) + h2

T ||u− uh||
2
L2(ωe∩Ω) + h2

T |λ− λh|
2, (91)

where ωe = Ωe ∩ T .
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Remark 4.1 To complete the discussion on the efficiency of the error estima-
tors appearing in Proposition 3.4, we need to comment on the terms T1 and T5.
It is straightforward to note that for every e ∈ Σ̃h there holds

T1 := ||uh||H1/2(e) = ||u− uh||H1/2(e) ≤ C||u− uh||H1(T ) (92)

with e ∈ ∂T . Therefore also the term T1 is bounded by the error.
Moreover, again for e ∈ Σ̃h, the following equality is true on Ωh \ Ω

T5 := ||uh||L2(Ωh\Ω) = ||ũ− uh||L2(Ωh\Ω). (93)

and the same holds for the term ||uh||H1(Ωh\Ω) appearing in (68). Therefore such
pieces are also bounded by the error, although outside Ω.

The local error indicators in (67) and (68) can be used to drive an adaptive finite
element method (AFEM) of the form

. . .→ (Ω
(k)
h , V

(k)
h ) → SOLVE→ ESTIMATE→ MARK → REFINE→ (Ω

(k+1)
h , V

(k+1)
h ) → . . .

where Ω
(k)
h and V

(k)
h are the k-th computational domain and the corresponding

finite element space built by the adaptive procedure, respectively. We remark
that the module REFINE builds the new computational grid (possibly on a new
computational domain) depending on the elements that have been marked for
refinement in the module MARK. We refer to [5] for a detailed description of the
practical implementation of such modules.

5 Appendix: goal-oriented analysis including the ef-

fects of boundary approximation

In this Appendix, by applying the basic philosophy employed in the context
of the eigenvalue problem, we derive a posteriori error estimators, incorporat-
ing also the effects of the boundary appproximation, for the approximation of
quantities of interest related to the solution of partial differential equations. In
order to make the presentation as simple as possible, suppose we are given the
prototype elliptic boundary value problem

−∆u = f in Ω, u = 0 on Γ = ∂Ω, (94)

and a linear ouput functionalG such that G(u) is a quantity of physical, engineer-
ing or scientific interest. In order to compute G(u), one may want to compute
G(uh), where uh is the finite element approximation to u over a conforming
triangulation Th of the polygonal approximation Ωh of Ω. We are interested
in building an a posteriori estimator for the approximation error |G(u − ũh)|,
being ũh the extension by zero of uh in Ω ∪ Ωh, which takes into account also
the effects of the domain approximation. The following result contains a non-
standard Dual Weighted Residual (DWR) a posteriori error estimator (see [4]
for an introduction on classical DWR method and [3] for a similar result).
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Proposition 5.1 Let Ω ⊂ R
2 a bounded domain with piecewise smooth bound-

ary. Let f ∈ L2(Ω) and u ∈ H1
0 (Ω) be the solution to (94). Let Vh be the

finite element space defined in (6) over a conforming triangulation Th of Ωh and
uh ∈ Vh be the Galerkin approximation to u satisying

∫

Ωh

∇uh · ∇vh =

∫

Ωh

fhvh ∀vh ∈ Vh, (95)

with fh ∈ L2(Ωh). Let G(u) =
∫
Ω gu, with g ∈ L2(Ω). Let z ∈ H1

0 (Ω) be the
solution to the adjoint problem

−∆z = g in Ω, z = 0 on Γ = ∂Ω. (96)

Let zh ∈ Vh be the finite element approximation to z satisfying
∫

Ωh

∇zh · ∇vh =

∫

Ωh

ghvh ∀vh ∈ Vh, (97)

with gh ∈ L2(Ωh). Then the following DWR-type a posteriori error estimator
holds

∣∣G(u− ũh)
∣∣ ≤

∣∣ ∑

T∈Th

(R, z − zh)T − (J, z − zh)∂T

∣∣ +
∣∣ ∑

Ωe⊂Ω\Ωh

(f, z)Ωe

∣∣

+
∣∣
∫

Ω∩Ωh

(f − fh)z
∣∣ +

∣∣ ∑

ẽ∈eΣh

(
∂z

∂n
, uh)e

∣∣, (98)

where Ωe and Σ̃h have been defined in Section 2 and

R := f + ∆uh ∀ T ∈ Th,

J :=





1

2
[[∇uh · n]] ∀ e ⊂ ∂T \ ∂Ωh

∇uh · n ∀ e ⊂ ∂T ∩ ∂Ωh,

Proof. By using the definition of the adjoint solution z we obtain

G(u− ũh) =

∫

Ω
g(u− ũh) =

∫

Ω
−∆z(u− ũh)

=

∫

Ω
∇z · ∇(u− ũh) −

∫

∂Ω

∂z

∂n
(u− ũh)

=

∫

Ω
∇u · ∇z −

∫

Ω
∇ũh · ∇z −

∫

∂Ω

∂z

∂n
(u− ũh)

=

∫

Ω
fz −

∫

Ωh

∇ũh · ∇z −

∫

∂Ω

∂z

∂n
(u− ũh)

=

∫

Ω
fz −

∫

Ωh

∇uh · ∇(z − zh) −

∫

Ωh

fhzh −

∫

∂Ω

∂z

∂n
(u− ũh)

=

∫

Ωh

fh(z − zh) −

∫

Ωh

∇uh · ∇(z − zh) +

∫

Ω\Ωh

fz

+

∫

Ω∩Ωh

(f − fh)z −

∫

∂Ω

∂z

∂n
(u− ũh). (99)
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Finally, integrating by parts over the elements of the triangulation Th and re-
calling that u = 0 on ∂Ω yields the thesis.

Remark 5.1 Strictly speaking, (98), as it stands is not really a classical a pos-
teriori error bound, because it involves the unknown adjoint solution z and the
value of uh on (a subset of) the boundary ∂Ω. Ad hoc numerical strategies for
the approximation of z (see e.g. [4]) and of uh on ∂Ω are needed in order to ob-
tain computable bounds. However, it is worth noticing that the four terms on the
right-hand side of (98) have a precise interpretation: the first term is the stan-
dard DWR-type estimator that we would get in the case Ω = Ωh, the second term
is the corresponding DWR estimator in Ω\Ωh, the third term quantifies the mis-
match between f and fh, while the fourth term measures the geometric distance
between the domain Ω and Ωh in terms of the functional G. Roughly speaking,
since uh|∂Ωh

= 0 the fourth term in (98) can be seen as an approximation of the
quantity

∫
∂Ω

∂z
∂n

∂u
∂nV · n, which is, if we assume for example f, g ∈ L2(R2), the

expression of the shape derivative of G(u), i.e. the variation of the functional
G(u) with respect to the domain deformation, induced by a suitable vector field
V , of Ω into Ωh (see [12] for more details). This may shed new light on the
use of shape calculus tools to construct effective estimators for controlling the
approximation of the domain, both in the context of the numerical solution of
PDEs and Shape Optimization problems.

Remark 5.2 If G is a functional in H−1, then one can recover a result similar
to (98) using Lemma 3.2 and following the approach shown in Section 3.2.
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