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Universitat Politècnica de Catalunya,

Jordi Girona 1-3, Edifici C1,
08034 Barcelona, Spain.

sbadia@cimne.upc.edu

⋆Chair of Modelling and Scientific Computing (CMCS),
Institute of Analysis and Scientific Computing (IACS),
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Abstract

The interaction between a fluid and a poroelastic structure is a complex
problem that couples the Navier-Stokes equations with the Biot system.
The finite element approximation of this problem is involved due to the
fact that both subproblems are indefinite. In this work, we first design
residual-based stabilization techniques for the Biot system, motivated by
the variational multiscale approach. Then, we state the monolithic Navier-
Stokes/Biot system with the appropriate transmission conditions at the
interface. For the solution of the coupled system, we adopt both mono-
lithic solvers and heterogeneous domain decomposition strategies. Differ-
ent domain decomposition methods are considered and their convergence
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is analyzed for a simplified problem. We compare the efficiency of all the
methods on a test problem that exhibits a large added-mass effect, as it
happens in hemodynamics applications.

1 Introduction

The interaction between a free fluid and a deformable porous medium is found
in a wide range of applications: ground-surface water flow, geomechanics, reser-
voir engineering, filters design, seabed-wave or blood-vessel interactions. Let us
focus on the latest application. From the arterial lumen (where blood flows), the
blood enters the artery walls. Hence, in simulating the blood-artery interaction
neglecting the porosity of the artery wall means to disregard an important fea-
ture. Modeling the fluid-poroelastic interaction in an accurate and efficient way
represents a step forward towards the numerical simulations of complex clini-
cal problems. For instance, it permits to simulate how low density lipoproteins
(LDL) or drugs are filtrated into the tissue.

The classical fluid-structure interaction problem that appears in hemody-
namics (Navier-Stokes coupled to the elasticity for thin structures) has been
broadly studied (see, e.g., [59, 20] and references therein). Many works have
been devoted also to the Navier-Stokes/Darcy coupling (see, e.g., [56, 57, 3] and
references therein) to simulate mass transport from the arterial lumen to the
arterial walls and inside the walls, when the latter are supposed to be unde-
formable. The fluid-poroelastic structure interaction (FPSI) problem couples
the Navier-Stokes equations for an incompressible fluid to the Biot problem,
the latter governing the motion of a saturated poroelastic medium. FPSI has
received much less attention. For hemodynamics applications, the most salient
work is [47], where the Biot system is stated in terms of the structural velocity
us (or displacement), filtration flux q, and pressure pp. The coupled system
is linearized by Newton’s method and solved by a monolithic solver. A simpli-
fied FPSI system appearing in hemodynamics has also been considered in [19].
Therein, the Biot system is written in terms of (us, pp) only, after neglecting the
inertia terms in Darcy’s law. The fact that q does not appear in the formulation
requires to introduce artificial boundary conditions on the interface between the
lumen and the poroelastic vessel medium.

Even though it is common practice to write the Darcy problem as a pressure
Poisson equation, we will not adopt this approach here for several reasons. The
original Darcy’s law is a transient problem (see [29]), and inertia terms must be
neglected in order to obtain the pressure Poisson problem. Much more critical is
the fact that the Poisson problem fails to approximate non-smooth pressures in
areas with jumps of physical parameters (e.g. hydraulic conductivity or poros-
ity). The local pressure instabilities appearing in these areas are well-known in
soil consolidation computations and motivated mixed formulations in [68]. How-
ever, the main reason why the Darcy’s system has to be stated in mixed form is
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that we want to couple this problem with the Navier-Stokes equations via proper
transmission conditions. The fact that q appears explicitly in the formulation is
of great importance, because it allows to enforce the proper boundary conditions
at the fluid-porous structure interface (see Section 4.1).

The numerical approximation of FPSI problems is challenging due to the
three inf-sup conditions that need to be fulfilled in order for the coupled prob-
lem to be well-posed: the inf-sup condition for the fluid sub-problem and the
inf-sup conditions for both incompressible elasticity and Darcy’s problem for the
poroelastic subproblem. While there exists a great variety of stabilization tech-
niques for the incompressible Navier-Stokes equations (e.g., [17, 62]), very few
works deal with the stabilization of the Biot system in mixed form (no pressure
Poisson equation is used). For instance, the Biot system in terms of (us,q, pp)
has been approximated using a characteristic-based splitting algorithm in [68]
and using penalty terms in [21]. In this work, we introduce a residual-based
stabilization technique motivated by the variational multiscale method (VMS).
This technique, introduced in [41], allows to use finite element spaces that do
not satisfy the inf-sup conditions at the discrete level. In fact, the associated
algebraic system is quite involved, and the use of the same finite element spaces
for all the velocities and pressures greatly simplifies the discretization and the
enforcement of transmission conditions. We will consider linear Lagrangian ele-
ments for all the unknowns in the numerical experiments.

We extend to FPSI problems some of the strategies adopted for fluid-elastic
structure interactions. Unlike [47, 19], we choose a fixed point method for the
linearization of the Navier-Stokes/Biot coupled system. In this way, it is easy
to consider the semi-implicit versions of all the algorithms, i.e. only one fixed
point iteration is performed per time step. Semi-implicit methods enable us
to better understand the Navier-Stokes/Biot coupling since nonlinearities are
explicitly treated. To solve the linear FPSI system, we propose to extend both
the monolithic approach introduced in [7] and partitioned procedures based on
domain decomposition preconditioners. At the best of our knowledge, it is the
first time that a modular approach is adopted for FPSI problems. Among all
the partitioned procedures, we focus our attention on the Dirichlet-Neumann,
Robin-Neumann, and Robin-Robin algorithms (see, e.g., [63]).

The main objectives of this work are, from one side, the development of a
residual-based stabilized finite element method for the Biot system, and, from
another side, the statement of a monolithic Navier-Stokes/Biot system, the ex-
tension of domain decomposition techniques to this problem, and its comparison
with monolithic solvers.

In Section 2 we state the Navier-Stokes/Biot coupled problem in its differ-
ential form, specifying the coupling conditions which lead to a mathematically
well-posed problem. The variational formulation of the coupled problem is tack-
led in Section 3. In Section 4 we develop a (us,q, pp) residual-based stabilized
formulation of the Biot system. The matrix form of the Navier-Stokes/Biot
system associated to the fully discretized and linearized problem is described
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in Section 5. Sections 6 and 7 present our monolithic approach and the parti-
tioned procedures we apply to solve the linear system. Finally, in Section 8, we
carry out some numerical experiments on simplified 2d problems representing
blood-vessel systems.

2 Problem setting

Suppose that a bounded, polyhedral, and deformable domain Ωt ⊂ R
d (d=2, 3,

being the space dimension, and t ∈ [0, T ] the time) is made up of two regions,

Ωf
t and Ωp

t , separated by a common interface Σt = ∂Ωf
t ∩ ∂Ωp

t . The first region

Ωf
t is occupied by an incompressible and Newtonian fluid, and the second one

Ωp
t is occupied by a fully-saturated poroelastic matrix. Both domains depend

on time. Here, we denote by n the unit normal vector on the boundary ∂Ωf
t ,

directed outwards into Ωp
t , and by t the unit tangential vector orthogonal to n.

We assume the boundary ∂Ωt (and so n and t) to be regular enough.
The fluid problem is governed by the incompressible Navier-Stokes equations,

whose Eulerian form reads:

∂tuf + uf · ∇uf − 1

ρf
∇ · σf = ff in Ωf

t × (0, T ), (1a)

∇ · uf = 0 in Ωf
t × (0, T ), (1b)

where uf is the fluid velocity, σf the Cauchy stress tensor and f f the body
force. The symbol ∇ denotes the spatial gradient operator and ∂t denotes the
time derivative. For Newtonian fluids, σf has the following expression

σf (uf , pf ) = −pfI + 2µǫ(uf ),

where pf is the fluid pressure, µ is the fluid viscosity, and

ǫ(uf ) =
1

2
(∇uf + (∇uf )T )

is the strain rate tensor.
In an elementary volume of the saturated porous structure we distinguish

between the skeleton, composed by solid grains and void porous spaces, and
the fluid phase, that consists of the fluid filling the pores. The porous medium
is defined as the superposition of two continuous media, the skeleton and the
fluid phase. Both fluid and solid are assumed to be incompressible, since the
artery tissue is an incompressible material. The dynamics of such a medium are
described by the Biot system [10, 11, 12], whose Eulerian formulation consists
of:

ρpDtus + ρdDtq −∇ · σdev
s (η) + ∇pp = f s in Ωp

t × (0, T ), (2a)

ρdDtus + ρdDt
q

φ
+ κ−1q + ∇pp = fd in Ωp

t × (0, T ), (2b)

∇ · (us + q) = 0 in Ωp
t × (0, T ). (2c)
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System (2) comprises the momentum equation for the balance of the total forces
(2a), the momentum conservation equation for the fluid phase only (2b), and
the incompressibility constraint (2c). In system (2), Dt denotes the classical
concept of material derivative. Moreover, ρd is the density of the fluid in the
pores, ρp = ρs(1−φ)+ρdφ is the density of the saturated porous medium, where
ρs is the density of the skeleton and φ the porosity, that is the ratio of the pore
volume over the total volume (pore + skeleton). We denote by us the velocity of
the skeleton and by q the filtration velocity, i.e. the relative velocity of the fluid
phase with respect to the solid one, q = φ(ud − us). Here, ud is the velocity of
the fluid in the porous medium. The hydraulic conductivity tensor is indicated
with κ. σdev

s is the deviatoric stress in the porous medium, supported by the
solid phase only, and it is related to the displacement of the porous structure η

(usually, in the reference configuration) by a suitable constitutive law. E.g., for
an incompressible elastic solid, it reads

σdev
s (η) = 2µℓdev [ǫ(η)] ,

where µℓ is the Lamé constant of the porous matrix. The volumetric stress in
the porous medium is −ppI, where pp is the pressure in the porous medium.
Thus, the total Cauchy stress for the porous medium is σp = −ppI + σdev

s . We
refer to [29] for a detailed discussion about the macroscopic split of stresses into
solid and fluid phase contributions. Finally, the right-hand side vectors f s and
fd account for external body forces. In the subsequent discussion, the values
of densities, porosity, and hydraulic conductivity are assumed to be constant in
space and time. The unknowns of the problem are us, q, and pp.

The Biot system (2) is widely employed to model geotechnical problems. In
this kind of applications Dtq is usually neglected in order to end up with a
pressure Poisson equation. As commented above, this approach is not accept-
able when coupling Biot and Navier-Stokes systems. Thus, we will consider the
mixed, three-field formulation (2) without further approximations.

In the following, the boundary conditions on ∂Ωt\Σt are chosen in a simple
form, since they play no essential role in the interaction. More precisely, on
the exterior boundary of the porous medium we shall impose drained conditions
(pp = 0) on the pressure and clamped conditions (us = 0) on the structure
velocity at both inlet and outlet. In Fig. 1, we specify the boundary conditions
imposed on ∂Ωt for the 2d simulation of the Navier-Stokes/Biot system in Section
8.

The objective of the next subsection is to identify a physically consistent
set of interface conditions which couple the Biot system to the incompressible
Navier-Stokes equations. The variational statement of the resulting problem
must lead to a mathematically well-posed initial-boundary-value problem.
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Ωp
t

σf · n = −Pin(t) Ωf
t

pp = 0, us = 0

σf · n = 0

pp = 0, us = 0

pp = 0, σs · n = 0

Figure 1: Boundary conditions imposed on the physical boundary of the 2d
problem in Section 8.

2.1 The coupling conditions and the Biot/Navier-Stokes system

The natural transmission conditions at the interface of a fluid and an imper-
vious elastic solid consist of continuity of velocities and stresses. In order to
understand the coupling between a fluid and a deformable and porous medium,
we first review the transmission relations for a fluid in contact with a rigid but
porous solid matrix in a steady-state case. We have two distinct scales of hy-
drodynamics: the first one is represented by the Navier-Stokes system and the
second one by the Darcy equations

κ−1q + ∇pp = fd in Ωp, (3a)

∇ · q = 0 in Ωp. (3b)

Fluid mass conservation is a natural requirement at the interface, and continuity
of pressure or vanishing tangential velocity of the viscous fluid are other classi-
cally assumed conditions [35, 49]. However, these issues have been controversial,
see [69]. In fact, the location of the interface itself is uncertain, since the porous
medium is a mixture of fluid and solid. Furthermore, Beavers and Joseph [9]
pointed out that a fluid in contact with a porous medium flows faster along the
interface than if ti were in contact with a solid surface. This means that there is
a slip of the fluid at the interface with a porous medium. To represent it, they
proposed that the normal derivative of the tangential component of the fluid
velocity uf · t would satisfy

∂(uf · t)
∂n

=
γ√
κ

(uf · t − q · t),

where γ is the slip rate coefficient. This condition was developed further in
[66, 46]. A rigorous analysis of such interface conditions can be found in [44, 45].
See [58, 53] for insights on those interface conditions and [67, 40, 48, 32, 33, 3]
for numerical works.

Any model of fluid in contact with a deformable and porous medium contains
the filtration velocity, in addition to the displacement (or velocity) and stress
variations of the porous matrix.

For a discussion on the coupling between a Stokes flow and a poroelastic
medium, see [56, 57, 70]. Following [70], for mass conservation we require that
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the normal fluid flux must be continuous across the interface, yielding the ad-
missibility constraint

uf · n = (us + q) · n. (4a)

For the balance of the normal components of the stress in the fluid phase across
Σt, we have

n · (σf · n) = −pp. (4b)

The conservation of momentum requires that the stress of the porous medium
is balanced by the stress of the fluid:

σp · n = σf · n. (4c)

Finally, the tangential component of the fluid stress (which is equal to the one
of the solid phase) is assumed to be proportional to the slip rate according to
the Beavers-Joseph-Saffman condition

t · (σf · n) = − γ√
κ

(uf − us) · t. (4d)

We shall show next that interface conditions (4) suffice to precisely couple

the Biot system (2) in Ωp
t to the Navier-Stokes one (1) in Ωf

t .

3 Weak formulation

The purpose of this section is to construct an appropriate variational formulation
of the Navier-Stokes/Biot system (1)-(2) coupled by interface conditions (4). Let
us introduce some standard notation. The space of functions whose p power
(1 ≤ p < ∞) is integrable in a domain Ω is denoted by Lp(Ω), L∞(Ω) being the
space of bounded functions in Ω (in the Lebesgue sense). The space of functions
whose distributional derivatives of order up to m ≥ 0 (integer) belong to L2(Ω)
is denoted by Hm(Ω). The space H1

0 (Ω) consists of functions in H1(Ω) vanishing
on ∂Ω. The dual of H1

0 (Ω) is denoted by H−1(Ω). The space of vector-valued
functions with components in L2(Ω) is denoted with L2(Ω)d, and analogously
for the rest of scalar spaces. H(div,Ω) is the space of functions in L2(Ω)d with
their divergence in L2(Ω). H0(div,Ω) is the space of vector fields in H(div,Ω)
with zero normal trace on ∂Ω. We also recall that the space of traces of H1(Ω)
on a (d−1)-manifold (a line in 2d, a surface in 3d) β ⊂ Ω is denoted by H1/2(β).
The topological dual of H1/2(β) is the space of fluxes denoted by H−1/2(β).

We define two families of mappings that will track the domain in time:

L : Ωp
0 × [0, T ] −→ Ωp

t , (x0, t) −→ x = L(x0, t),

A : Ωf
0 × [0, T ] −→ Ωf

t , (x0, t) −→ x = A(x0, t).

Here, Ωp
0 and Ωf

0 represent the regions occupied at the initial time t = 0 by the
poroelastic structure and the fluid, respectively. The map Lt = L(·, t) tracks the
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solid domain in time, At = A(·, t) the fluid domain and they must agree on Σt

in order to define an homeomorphism over Ωt. For the structure, we can adopt
the material (Lagrangian) mapping

Lt(x0) = x0 + η(x0, t), x0 ∈ Ωp
0. (5)

Apart from the matching condition on the interface, the fluid domain mapping At

is arbitrary. This mapping can be defined as an appropriate extension operator
Ext(·) applied to its value on the interface:

At(x0) = x0 + Ext(η(x0, t)|Σ0
), x0 ∈ Ωf

0 .

A classical choice is to consider a harmonic extension in the reference domain.
At is called the Arbitrary Lagrangian-Eulerian (ALE) mapping, since in general
it does not track the fluid particles (in that case the formulation would be purely
Lagrangian).

Let us start with the weak form of the Navier-Stokes problem. We define the
functional spaces

V f (t) =
{

v : Ωf
t → R

d, v = v̂ ◦ (At)
−1, v̂ ∈ H1(Ωf

0)d
}

,

Qf (t) =
{

q : Ωf
t → R, q = q̂ ◦ (At)

−1, q̂ ∈ L2(Ωf
0 )
}

. (6)

At is assumed to be regular enough to satisfy V f (t) ⊂ H1(Ωf
t )d: a. e. in

t, the weak form of the Navier-Stokes problem consists of finding (uf , pf ) ∈
V f (t) × Qf (t) such that

ρf (∂tuf ,vf )
Ωf

t
+ 2µf

(
ǫ (uf ), ǫ

(
vf
))

Ωf
t

+ ρf 〈uf · ∇uf ,vf 〉
Ωf

t

−
(
pf ,∇ · vf

)
Ωf

t

+ (∇ · uf , qf )
Ωf

t
= 〈f f ,vf 〉

Ωf
t

+ 〈σf · n,vf 〉Σt

(7)

for any (vf , qf ) ∈ V f (t)×Qf (t) The last term in equation (7) involves the fluid
stresses over the interface.

In order to write the Biot system in its weak form, we introduce the functional
spaces

V s(t) =
{
v : Ωp

t → R
d, v = v̂ ◦ (Lt)

−1, v̂ ∈ H1(Ωp
0)

d
}

,

R(t) =
{
v : Ωp

t → R
d, v = v̂ ◦ (Lt)

−1, v̂ ∈ H(div,Ωp
0)

d
}

,

Qp(t) =
{
q : Ωp

t → R, q = q̂ ◦ (Lt)
−1, q̂ ∈ L2(Ωp

0)
}

. (8)

where Lt is assumed to be regular enough to satisfy V s(t) ⊂ H1(Ωp
t )

d. The
weak form of the Biot system for a time value t consists of finding (us,q, pp) ∈
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V s(t) × R(t) × Qp(t) such that

ρp(Dtus,v
s)Ωp

t
+ ρd(Dtq,vs)Ωp

t
+ (σdev

s (η),∇vs)Ωp
t
− (pp,∇ · vs)Ωp

t

+ ρd(Dtus, r)Ωp
t
+

ρd

φ
(Dtq, r)Ωp

t
+ κ−1(q, r)Ωp

t
− (pp,∇ · r)Ωp

t

+ (∇ · (us + q), qp)Ωp
t

= 〈f s,v
s〉Ωp

t
+ 〈fd, r〉Ωp

t
− 〈σp · n,vs〉Σt + (pp, r · n)Σt

(9)

for any (vs, r, qp) ∈ V s(t) × R(t) × Qp(t). The last two terms in (9) involve the
stress of the porous medium on the interface. None of the coupling conditions
(4) has been imposed yet.

At this point, we can couple (1) and (9) by invoking the transmission con-
ditions. Let us start with interface condition (4c). For any interface function
ξ ∈ H1/2(Σt), we have

〈σf · n − σp · n, ξ〉Σt = 0.

Let us denote by Ef
t (ξ) and Ep

t (ξ) arbitrary extensions of ξ over Ωf
t and Ωp

t re-
spectively. We can write the continuity of stresses (4c) in terms of the problem

unknowns by testing expressions (7) and (9) against Ef
t (ξ) and Ep

t (ξ), respec-
tively. This approach leads to the weak continuity of stresses in the form of (10c)
below (see, e. g., [8]).

We can express the boundary conditions (4b) and (4d) in the following way:

〈σf · n + ppn +
γ√
κ

((uf − us) · t)t, ξ〉Σt = 0,

for any interface function ξ ∈ H1/2(Σt). Again, this expression can be written in

terms of the problem unknowns by testing expressions (7) and (9) against Ef
t (ξ)

and Ep
t (ξ), respectively, leading to (10d) below.

In order to write the weak form of the coupled problem, let us denote by V f
0 (t)

and V s
0 (t) the subspace of functions belonging to V f (t) and V s(t) respectively

with null trace on Σt. Moreover, space R0(t) is spanned by all the functions in
R(t) with zero normal trace. The variational formulation reads:

Given t ∈ (0, T ) (a. e.), find (uf ,us,q, pf , pp) belonging to the corresponding
functional spaces introduced above, satisfying the following system of equations

1. Fluid subproblem (1):

ρf (∂tuf ,vf )
Ωf

t
+ 2µf

(
ǫ (uf ), ǫ

(
vf
))

Ωf
t

+ ρf 〈uf · ∇uf ,vf 〉
Ωf

t

−
(
pf ,∇ · vf

)
Ωf

t

+ (∇ · uf , qf )
Ωf

t
= 〈f f ,vf 〉

Ωf
t
, (10a)

for any (vf , qf ) ∈ V f
0 (t) × Qf (t).
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2. Biot subproblem (2):

ρp(Dtus,v
s)Ωp

t
+ ρd(Dtq,vs)Ωp

t
+ (σdev

s (η),∇vs)Ωp
t
− (pp,∇ · vs)Ωp

t

+ ρd(Dtus, r)Ωp
t
+

ρd

φ
(Dtq, r)Ωp

t
+ κ−1(q, r)Ωp

t
− (pp,∇ · r)Ωp

t

+ (∇ · (us + q), qp)Ωp
t

= 〈f s,v
s〉Ωp

t
+ 〈fd, r〉Ωp

t
, (10b)

for any (vs, r, qp) ∈ V s
0 (t) × R0(t) × Qp(t).

3. Continuity of the stresses (4c):

ρf (∂tuf , Ef
t (ξ))

Ωf
t

+ 2µf

(
ǫ (uf ), ǫ

(
Ef

t (ξ)
))

Ωf
t

+ ρf

〈
uf · ∇uf , Ef

t (ξ)
〉

Ωf
t

−
(
pf ,∇ · Ef

t (ξ)
)

Ωf
t

+ ρp(Dtus, Ep
t (ξ))Ωp

t
+ ρd(Dtq, Ep

t (ξ))Ωp
t

+ (σdev
s (η),∇Ep

t (ξ))Ωp
t
− (pp,∇ · Ep

t (ξ))Ωp
t

= 〈f f , Ef
t (ξ)〉

Ωf
t

+ 〈f s, Ep
t (ξ)〉Ωp

t

(10c)

for any ξ ∈ H1/2(Σt).

4. Continuity of the normal components of the stress (4b) and Beaver-Joshep-
Saffman (4d) condition:

ρf (∂tuf , Ef
t (ζ))

Ωf
t

+ 2µf

(
ǫ (uf ), ǫ

(
Ef

t (ζ)
))

Ωf
t

+ ρf

〈
uf · ∇uf , Ef

t (ζ)
〉

Ωf
t

−
(
pf ,∇ · Ef

t (ζ)
)

Ωf
t

+ ρd(Dtus, Ep
t (ζ))Ωp

t
+

ρd

φ
(Dtq, Ep

t (ζ))Ωp
t

+ κ−1(q, Ep
t (ζ))Ωp

t
− (pp,∇ · Ep

t (ζ))Ωp
t

+
γ√
κ

(((uf − us) · t)t, ζ)Σt

= 〈f f , Ef
t (ζ)〉

Ωf
t

+ 〈fd, Ep
t (ζ)〉Ωp

t
. (10d)

for any ζ ∈ H1/2(Σt).

5. Continuity of fluxes (4a), treated as an essential condition.

In this coupled problem, the continuity of stresses (4b)-(4d) have been weakly
enforced. We refer to [71] for the use of variational transmission of interface loads
for the FSI problem. It has been proved in [18, 50] that a weak transmission
of stresses yields more accurate results than strong (pointwise) transmission.
Moreover, it is basic for stability reasons (see [71]).

4 Space and time discretization

In this section, we focus on the space and time discretization of the poroelas-
tic subproblem (2). Let us start with the time discretization. We consider a
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backward-differencing scheme of order 1 (BDF1) (also called Backward Euler)
for simplicity. For a given time step tn+1 we define the BDF1 operator δt applied
to a function g(x, t) as δtg

n+1(x) = δt−1(g(tn+1,x) − g(tn,x)) where δt is the
time step. However, what follows can be extended to other time integrators.

The Eulerian time derivative in the fluid subproblem (10a) is not suitable
for the time discretization of problems in moving domains for several reasons.
One is intuitive: at time step tn+1 we can find points belonging to Ωtn+1 that
did not belong to Ωtn . At these points, the discrete Eulerian time derivative of
a function g(x, t) defined over Ωt, e.g. δtg

n+1(x), is meaningless, since x 6∈ Ωtn

and g(tn,x) is not defined. In order to solve this problem, we introduce the ALE
derivative

∂tu|x0
= ∂tu + w · ∇u, (11)

which is the acceleration observed by a particle that moves with the fluid map-
ping At. The domain velocity w is calculated using the following expression:

w(x, t) = ∂tx|x0
= (∂tAt) ◦ A−1

t (x).

Then, the ALE form of the Navier-Stokes subproblem is obtained by invoking
(11) in (10a). The discrete ALE derivative is denoted by δtg

n+1|x0
. We denote

by dtg
n+1 the discrete material derivative that is simply the time derivative

of the structural nodal values, for a mesh that is moving with the Lagrangian
mapping (5). Let us remark that the material time derivative is suitable for time
discretization.

For the spatial discretization, let us denote by Th = {K} a generic, regular
finite element (FE) triangulation composed by a set of finite elements, indicated
by K. We will use the broken inner product (·, ·)K =

∑
K(·, ·), where

∑
K

denotes the summation over all the finite elements. Let V f
h (0), Qf

h(0), V s
h (0),

Rh(0), and Qp
h(0) be conforming FE spaces approximations of V f (0), Qf (0),

V s(0), R(0), and Qp(0), respectively. We extend those spaces in time as it has
been done at the continuous level in (6)-(8), using mappings At and Lt. From
now on, we omit the time label from the FE spaces names.

A naive Galerkin approximation of the poroelastic problem (2) may fail be-
cause pressure stability can only be obtained for suitable FE pairs that satisfy
appropriate inf-sup conditions (see [17]). In fact, the Darcy and the incom-
pressible elasticity problems involve different inf-sup conditions. Inf-sup stable
elements have been developed for the Darcy problem and for incompressible
elasticity but, as far as we know, there are not inf-sup stable elements that are
stable in both cases. An alternative to inf-sup stable elements is to resort to sta-
bilized methods. The idea is to strengthen the classical variational formulation
so that FE approximations, which would otherwise be unstable, become stable
and convergent. We want to obtain a stabilized version of the Biot system that
remains stable for both asymptotic limits of the problem: the Darcy problem
(as the rigidity of the structure becomes infinity) and the impervious structural
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problem (as the conductivity vanishes). When the solid phase in the poroelastic
medium is compressible, no stabilization is needed in the limit of an impervi-
ous structure. However, when dealing with incompressible materials, as human
tissues, stabilization is needed in this limit too.

Stabilization techniques for the Navier-Stokes problem can be found in many
papers (see, e.g., [27, 23]) and overviews are provided in several monographs
(see, e.g., [17, 62, 37]). There is much less work for the stabilization of the
Biot problem in mixed form. The work of Salomoni and Schrefler [68] is one
effort in this direction: the authors have used the non-consistent characteristic-
based splitting (CBS) algorithm to analyze creep phenomena in consolidation
processes.

In view of that, we consider first the (transient) Darcy problem. In subsection
4.1, we propose a stabilization that is an extension (in time) of the method
proposed in [51]. Then, we consider a stabilized technique for the incompressible
elasticity problem in subsection 4.2. Finally, an original stabilization of the Biot
system is suggested in subsection 4.3.

4.1 Stabilization of the Darcy problem

The time-dependent Darcy problem can be regarded as a limit of the Biot system
when the rigidity of the solid phase becomes infinity, i.e. the poroelastic structure
is in fact a rigid body. As noticed above, two different approaches may be
pursued to solve equations (3): one involves a primal, single-field formulation
for the pressure, while the other employs a mixed two-field formulation in which
the variables are both velocity and pressure. However, when this problem is
coupled to the Navier-Stokes system, the continuity of normal stress on the
interface (4b) becomes a Dirichlet boundary condition for the Darcy pressure
with data in H−1/2(Σt). In principle, this problem is ill-posed, whence a mixed
formulation represents a viable alternative.

The classical mixed variational formulation for flow in porous media is well-
posed in the functional spaces L2(Ωp) and (H(div,Ωp))d for the pressure and
velocity, respectively (see [17]). Finite element approximations of those spaces,
which satisfy the inf-sup condition, can be found in [64, 72, 16, 15, 14, 62]. As an
alternative to inf-sup elements, we develop a stabilized variational formulation
stemming from [51].

Let us consider the Darcy problem over a fixed (i.e. time-independent) do-
main Ωp supplemented with homogeneous boundary conditions for the sake of
clarity. The variational formulation of this problem a. e. in time consists of
finding q ∈ H0(div,Ωp) and pp ∈ L2(Ωp) such that:

(
ρd

φ
Dtq + κ−1q, r

)

Ωp

− (pp,∇ · r)Ωp = (fd, r)Ωp , (12a)

(∇ · q, qp)Ωp = (g, qp)Ωp , (12b)

12



for all (r, qp) ∈ H0(div,Ωp) × L2(Ω), where g is a volumetric flow rate source
or sink. The incompressible case is recovered simply by setting g = 0. The
following results can easily be extended to either Neumann (pp = pN , with
pN a given function) or non-homogeneous Dirichlet (q · n = qD, qD known)
boundary conditions on ∂Ωp as well as to moving domains. At the continuous
level, the well-posedness of this problem can be proven owing to the surjectivity
of the divergence operator from H(div,Ωp) onto L2(Ω) and the inf-sup condition:
∃β > 0 such that

inf
q∈L2(Ωp)

sup
v∈H(div,Ωp)

(q,∇ · v)Ωp

||v||H(div,Ωp)||q||L2(Ωp)
≥ β. (13)

We denote with Rh, Rh,0 and Qp
h some suitable conforming FE approximations

of the spaces H(div,Ωp), H0(div,Ωp) and L2(Ωp), respectively. Using BDF1
for the time integration, the Galerkin approximation of problem (12) yields, at
the time step, the following algebraic problem: given qn

h, find qn+1
h ∈ Rh,0 and

pn+1
p,h ∈ Qp

h such that

(
ρd

φ
dtq

n+1
h + κ−1qn+1

h + ∇pn+1
p,h , rh

)

Ωp

= (fn+1
d , rh)Ωp , (14a)

(∇ · qn+1
h , qp,h)Ωp = (gn+1, qp,h)Ωp , (14b)

for all (rh, qp,h) ∈ Rh,0 × Qp
h.

Only suitable choices of velocity and pressure subspaces make (14) a stable
problem. Precisely, the solution of (14) is unique provided the discrete counter-
part of (13) is satisfied, i.e. there exists βd > 0, independent of h, such that

inf
qh∈Qp

h

sup
vh∈Rh

(qh,∇ · vh)Ωp

||vh||H(div,Ωp)||qh||L2(Ωp)
≥ βd. (15)

To circumvent this restriction, we adopt a residual-based stabilization technique,
which consists of introducing new terms in the Galerkin formulation. The stabi-
lized problem is still fully consistent, since the stabilization terms are expressed
through the broken scalar product (·, ·)K between the adjoint of the differential
operator that defines the problem applied to the test function, and the residual
of the FE solution. This kind of methods can be heuristically motivated within
the variational multiscale (VMS) frame, introduced in [41]. The key idea of
the formulation is a multiscale splitting of the variable of interest into resolved
(grid) scale and unresolved (subgrid) scales. This decomposition acknowledges
that the smallest frequencies of the solution cannot be captured by the FE mesh.
This approach has been successfully applied to a variety of problems (see, e.g.,
[42, 24, 60, 43, 26, 4, 2]).

At every time level, let us use only the multiscale splitting of the filtration
velocity q = qh + q̃ in (12), where q is the exact solution of (12), qh ∈ R0,h

is its finite element approximation, and q̃ ∈ R̃0 is the subgrid scale. We refer
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to [4] for the stabilization of the Darcy problem with a multiscale splitting of
the pressure also. Using the same splitting for the momentum conservation test
function r = rh + r̃ in (12), the subscale problem (the one tested against r̃)
reads:
(

ρd

φ
dtq̃

n+1 + κ−1q̃n+1, r̃

)

Ωp

=

(
fn+1

d − ρd

φ
dtq

n+1
h − κ−1qn+1

h −∇pn+1
p,h , r̃

)

Ωp

.

(16)
The FE equations (the ones tested against (rh, qp,h)) of the multiscale problem
reads:
(

ρd

φ
dtq

n+1
h + κ−1qn+1

h + ∇pph
, rh

)

Ωp

+

(
ρd

φ
dtq̃

n+1 + κ−1q̃n+1, rh

)

Ωp

= (fn+1
d , rh)Ωp , (17a)

(∇ · qn+1
h , qp,h)Ωp − (q̃n+1,∇qp,h)Ωp = (gn+1, qp,h)Ωp . (17b)

The effect of the subscales in the FE problem is introduced by the subscale terms
in the previous equations. The multiscale system (16)-(17) is as expensive as the
continuous problem and is not numerically feasible. Thus, approximations have
to be made. The subscale problem (16) must be replaced by a simplified model
(the so-called modelling of the subscales) and plugged into the FE problem (17).
A detailed description of this process can be found elsewhere, e.g. in [41, 27, 2].
The idea is to replace (16) by a simplified element-wise expression. To this end,
let us introduce some ingredients: given a function g such that g|K ∈ L2(K)
for any K ∈ Th in Ωp, the broken identity Ī is defined as Ī(g) =

∑
K g|K . The

broken L2-projection over a Hilbert space X, denoted by Π̄X(g), is defined as
the solution of: (

Π̄X(g), v
)

=
∑

K

(g, v)K , ∀v ∈ X.

Naturally, we define Π̄⊥
X(g) = Ī(g)−Π̄X(g) ∈ L2(Ω). The model for the subscales

has the following form:

ρd

φ
dtq̃

n+1 + κ−1q̃n+1 = Ph

(
fn+1

d − ρd

φ
dtq

n+1
h − κ−1qn+1

h −∇pn+1
p,h

)
, (18)

where Ph can be either Ī (times a constant), leading to the algebraic subgrid
scales (ASGS) method introduced in [41], or the orthogonal projection Π̄⊥

Rh
,

recovering in this case the orthogonal subgrid scales (OSS) approach in [25,
27]. Another typical assumption is that the subgrid time derivative in (16) is
neglected. The corresponding approach is called quasi-static subscales in [27].
As pointed out in [13] for the Stokes problem, this approximation can lead to
instabilities when the small time step goes to zero whereas the dynamic approach
(i.e., the one in which the subgrid time derivative is not neglected) is stable for
any value of the time step size [2, 28]. For the subsequent developments, we
consider both the ASGS and the dynamic OSS approaches.
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For the ASGS method, we have Ph = τdĪ , where 0 < τd < 1 is a positive
constant. For instance, in [52] it is chosen τd = 1/2. Invoking (18) in equation
(17a), we get the stabilized momentum conservation equation

(1 − τd)

(
ρd

φ
dtq

n+1
h + κ−1qn+1

h + ∇pn+1
p,h , rh

)

Ωp

= (1 − τd)(f
n+1
d , rh)Ωp . (19)

Apart from the singular choice τd = 1, which is not allowed since it disregards
the momentum conservation equation, equation (19) is simply equation (17a)
times a constant. It implies that:

ρd

φ
dtq

n+1
h + κ−1qn+1

h = Π̄Rh
(fn+1

d −∇pn+1
p,h ), (20)

and

ρd

φ
dtq̃

n+1 + κ−1q̃n+1 = τdΠ̄
⊥
Rh

(fn+1
d −∇pn+1

p,h ). (21)

By taking the discrete time derivative of (14b) and combining it linearly with
equation (14b) itself in order to exploit (20)-(21), we arrive at
(
∇ ·
(

ρd

φ
dtq

n+1
h + κ−1qn+1

h

)
, qp,h

)

Ωp

−
(

ρd

φ
dtq̃

n+1 + κ−1q̃n+1,∇qp,h

)

Ωp

=

(
ρd

φ
dtg

n+1 + κ−1gn+1, qp,h

)

Ωp

,

which eventually leads to the stabilized mass conservation equation

(1 − τd)(Π̄Rh
(∇pn+1

p,h ),∇qp,h)Ωp + τd(∇pn+1
p,h ,∇qp,h)Ωp

=

(
ρd

φ
dtg

n+1 + κ−1gn+1, qp,h

)

Ωp

+ (Π̄Rh
(fn+1

d ),∇qp,h)Ωp

+ τd(Π̄
⊥
Rh

(fn+1
d ),∇qp,h)Ωp . (22)

By summing (19) and (22) tested against (qn+1
h , pn+1

p,h ), and adding up for all
time steps n = 0, ...,m, we obtain the stability estimate

(
ρd

φδt

)
||qm+1

h ||2L2(Ωp) + κ−1
m∑

n=0

||qn+1
h ||2L2(Ωp) + τd

m∑

n=0

||∇pn+1
p,h ||2Ωp ≤ C(f , g,q0)

(23)

where C(f , g,q0) is a positive constant that does depend on the data. This
inequality implies the uniqueness of the solution to the stabilized problem (19)
and (22).

Remark 4.1 The OSS method is obtained by using Ph = τdΠ̄
⊥
Rh

. It is easy to
infer that ASGS and OSS are equivalent for the Darcy problem when τd 6= 1.
Unlike ASGS, OSS can use τd = 1.
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Remark 4.2 In case of using a quasi-static approach, that is to say, elimi-
nating the subgrid time derivatives, the OSS stabilized problem is much sim-
pler. It consists of Galerkin system (14), adding the pressure stabilization term
τd(Π̄Rh

(∇pn+1
p,h ),∇qp,h) to the left hand side of (14b).

Now, let us deal with the algebraic form of the stabilized problem. For
simplicity, let us consider the steady problem, which is obtained by switching off
all the time derivatives in (19)-(22). We remind that the primal formulation of
the steady Darcy problem is attained upon formal elimination of q and requires
the solution of a Poisson problem for the pressure. We denote with M , G, D, and
L the mass, gradient, divergence, and Laplacian matrices, respectively. Then,
the Galerkin approximation of the primal formulation reads

LP = κ−1G− DFd, (24)

where P, G, and Fd are the arrays of nodal values for pressure, g, and fd,
respectively. On the other side, the Galerkin mixed formulation (12) leads to

(−DM−1G)P = κ−1G− DM−1Fd. (25)

System matrix (−DM−1G) is a non-standard discrete Laplacian, that is non-
singular only for FE spaces satisfying the inf-sup condition (15). The algebraic
formulation of the steady stabilized problem is

((1 − τd)(−DM−1G) + τdL)P = κ−1G − τdDFd − (1 − τd)DM−1Fd,

which is in fact a linear combination of (24) and (25). For the transient problem,
the algebraic form of equation (22) would be

((1 − τd)(−DM−1G) + τdL)Pn+1 =
ρd

φ
dtG

n+1 + κ−1Gn+1

−τdDFd − (1 − τd)DM−1Fd.

Note that the system matrix is unchanged with respect to the steady case.

4.2 Stabilization of the incompressible elasticity system

The Biot system in which we would only stabilize the Darcy subproblem (i.e. we
would simply add the stabilization terms due to the multiscale decomposition of
qh) would not give a stable approximation when the conductivity goes to zero
and the porous matrix becomes incompressible. This case is not very different
from what we encounter in the blood flow context. As a matter of fact, the
hydraulic conductivity κ (the ratio between the permeability and the viscosity)
of a human artery has been evaluated experimentally in [73] and used for appli-
cations in [74, 61]. Realistic values are κ ∼ 10−12 (cm3 s)/g. For those values
of hydraulic conductivity, the orders of magnitude of the two velocities us and
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q are very different. We could say that the Biot problem for hemodynamics is
closer to the limit problem of an impervious structure.

In order for the Biot system to remain stable in both limits, we have to
design a stabilized method for incompressible elasticity. We focus on the OSS
approach, since OSS and ASGS are different in this case. Let us consider an
incompressible structure that occupies Ωp in the reference configuration and
homogeneous boundary conditions. Vh, Vh,0 and Qp

h are suitable conforming FE
approximations of H1(Ωp)d, H1

0 (Ωp)d and L2(Ωp), respectively. We choose the
BDF1 scheme for the time discretization. Let us omit the time subscript in the
moving domain for conciseness. The Galerkin approximation of the simplified
problem written in terms of structure displacement ηh reads: given ηn

h and ηn−1
h ,

for n ≥ 0 find ηn+1
h ∈ V s

0,h and pn+1
p,h ∈ Qp

h such that

ρp

(
dttη

n+1
h ,vs

h

)
Ωp +

(
σdev

s (ηn+1
h ),∇vs

h

)

Ωp
− (pn+1

p,h ,∇ · vs
h)Ωp = (fn+1

s ,vs
h)Ωp ,

(26a)

(∇ · ηn+1
h , qp,h)Ωp = (gn+1, qp,h)Ωp ,

(26b)

for all (vs
h, qp,h) ∈ V s

0,h × Qp
h. The symbol dtt denotes the discretization of the

second order material derivative. We assume that η0
h ∈ V s

0,h and (∇·η0
h, qp,h)Ωp =

(g0, qp,h)Ωp .
Let us take σdev

s (ηn+1
h ) = µℓdev [∇η]. At the continuous level, in order for

the incompressible elasticity problem (26) to be well-posed, an inf-sup condition
must be satisfied. To circumvent the necessity of conforming finite elements,
we employ the quasi-static subscales for η. Invoking the decomposition into
FE approximation and subgrid scale for both ηn+1 and vs, we get the subscale
problem:

(
ρddttη̃

n+1 −∇ · σdev
s (η̃n+1), ṽs

)
Ωp

=
(
fn+1

s − ρpdttη
n+1
h + ∇ · σdev

s (ηn+1
h ) −∇ph, ṽs

)
Ωp

. (27)

Two approximations are required in (26a) in order to find an expression for the
subscale η̃n+1 in terms of (ηn+1

h , pn+1
p,h ). The differential operator applied to η̃n+1

can be simplified on every finite element K as

−∇ · σdev
s (η̃n+1) ≈ τ−1

s η̃n+1, (28)

using Fourier analysis (see [26, 22, 2]). Here τs is the stabilization parameter
defined within each element as

τs = c

(
2µℓ

h2

)−1

,

17



where c is an algorithmic constant and h is a characteristic length of the element.
As for the Darcy problem, we can use approximation (28) and derive the model
for the subscale

ρddttη̃
n+1 + τ−1

s η̃n+1 = Ph

(
fn+1

s − ρpdttη
n+1
h + ∇ · σdev

s (ηn+1
h ) −∇ph

)
. (29)

The FE subproblem of the multiscale system reads as:

ρp

(
dttη

n+1
h ,vs

h

)
Ωp +

(
σdev

s (ηn+1
h ),∇vs

h

)
Ωp

−
∑

K

(
η̃n+1,σdev∗

s,h (∇vs
h)
)

K

− (pn+1
p,h ,∇ · vs

h)Ωp = (fn+1
s ,vs

h)Ωp , (30a)

(∇ · ηn+1
h , qp,h)Ωp −

∑

K

(η̃n+1,∇qp,h)K = (gn+1, qp,h)Ωp , (30b)

where the stabilization terms (those that depend on the subgrid solution) are re-
placed by broken integrals over finite elements, neglecting inter-element jumps.
The terms ∇ · σdev

s (ηn+1
h ) and σdev∗

s,h (∇vs
h) involve second derivatives of FE

functions which will vanish in case of linear elements. The stabilized problem is
obtained by invoking (29) in (30a). In case of using the quasi-static approxima-
tion, the situation is slightly simpler, since dttη̃

n+1 is neglected in (29) and (30).
Thus, (29) can be plugged in (30), obtaining the stabilized problem in terms
of the FE components only. Thus, for quasi-static subscales, the subscales do
not need to be stored and tracked in time. This approach clearly simplifies the
stabilized algorithm and reduces the memory requirements. The price to pay is
the loss of stability for anisotropic space-time approximations (see [28, 2] for a
detailed discussion of this topic). As far as we know, this is the first time that a
dynamic stabilization has been presented for transient incompressible elasticity.

4.3 The stabilized Biot system

We have shown how to stabilize the Darcy problem and the incompressible elas-
ticity separately. Now, our goal is to stabilize the Biot system in such a way
that the stabilized algorithm will remain stable in both limits of this problem.
Thus, we have to combine the algorithms in subsections 4.1-4.2. We consider
again the VMS approach, with multiscale decomposition for both us and q (and
the respective test functions). We omit the details, since the process is identical
as above, but with many more terms. Using the modelling assumptions on the
subscale equations for ũn+1

s and q̃n+1, we get the following stabilized problem:
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given un
s,h and qn

h, compute un+1
s,h , qn+1

h , pn+1
p,h such that

ρp(dtu
n+1
s,h ,vs

h)Ωp + ρd(dtq
n+1
h ,vs

h)Ωp + (σdev
s (ηn+1

h ),∇vs
h)Ωp −

(
pn+1

p,h ,∇ · vs
h

)
Ωp

+ ρd(dtu
n+1
s,h , rh)Ωp

t
+

ρd

φ
(dtq

n+1
h , rh)Ωp + κ−1(qn+1

h , rh)Ωp − (pn+1
p,h ,∇ · rh)Ωp

+ (∇ · (un+1
s,h + qn+1

h ), qn+1
p,h )Ωp

+
∑

K

(
ρpdtũ

n+1
s + ρddtq̃

n+1,vs
h

)
K

+
∑

K

(
η̃n+1

s ,σdev∗
s (∇vs

h)
)

K

+
∑

K

(
ρddtũ

n+1
s +

ρd

φ
dtq̃

n+1 + κ−1q̃n+1, rh

)

K

−
∑

K

(
ũn+1

s + q̃n+1,∇qp,h

)
K

= 〈f s,v
s
h〉Ωp + 〈fd, rh〉Ωp (31)

for any (vh, rh, qp,h)Vh,0 ∈ Rh,0 × Qp
h. The stabilization terms are those in the

fourth and fifth line of (31). Analogously, the models for the subscales are:

ρpdtũ
n+1
s + ρddtq̃

n+1 + τ−1
s η̃n+1

= PVh

(
fn+1

s − ρpdtu
n+1
s,h − ρddtq

n+1
h −∇ · σdev

s (ηn+1
h ) −∇pn+1

p,h

)
,

ρddtũ
n+1
s + ρdφ

−1dtq̃
n+1 + κ−1q̃n+1

= PRh

(
fn+1

d − ρddtu
n+1
s,h − ρdφ

−1dtq
n+1
h − κ−1qn+1

h −∇pn+1
p,h

)
. (32)

This stabilized algorithm is complicated and the subscale unknowns ũn+1
s and

q̃n+1 in (32) are coupled. In order to simplify the method, let us consider the
quasi-static approach, OSS, equal interpolation for uh,s and qh,s with linear

Lagrangian elements and Π̄⊥
Vh

(f s) = Π̄⊥
Vh

(fd) = 0. In this case, the subscale
equations (32) reduce to:

τ−1
s η̃n+1 = −Π̄⊥

Vh

(
∇pn+1

p,h

)
,

τ−1
d κ−1q̃n+1 = −Π̄⊥

Vh

(
∇pn+1

p,h

)
, (33)

and the stabilized Biot system becomes

ρp(dtu
n+1
s,h ,vs

h)Ωp + ρd(dtq
n+1
h ,vs

h)Ωp + (σdev
s (ηn+1

h ),∇vs
h)Ωp −

(
pn+1

p,h ,∇ · vs
h

)
Ωp

+ ρd(dtu
n+1
s,h , rh)Ωp

t
+

ρd

φ
(dtq

n+1
h , rh)Ωp + κ−1(qn+1

h , rh)Ωp − (pn+1
p,h ,∇ · rh)Ωp

+ (∇ · (un+1
s,h + qn+1

h ), qn+1
p,h )Ωp +

∑

K

(τs + τdκ)
(
Π̄⊥

Vh

(
∇pn+1

p,h

)
,∇qp,h

)
K

= 〈f s,v
s
h〉Ωp + 〈fd, rh〉Ωp (34)

The stabilization has been drastically reduced to the second term in the third
row. This OSS technique is not fully consistent, however accuracy is not spoilt
(see, e.g., [1]).
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5 The linear fluid-structure system

Let us start with the linearization of the coupled problem. The Navier-Stokes
equations can be linearized using, e.g., fixed point iterations or Newton itera-
tions. The fixed point (Piccard) method simply replaces the convective velocity
with the one from the previous iteration. In FSI, the coupled problem is defined
over a moving domain. Thus, we must linearize with respect to the domain too.
We have used a fixed point linearization for both nonlinearities and considered
semi-implicit algorithms (where nonlinearities are explicitly treated). We omit
here the details and refer to [38, 8] for a thorough presentation. We also refer
to [39] for a full Newton linearization in the frame of FSI problems.

Once problem (10) is discretized in space and time and linearized by a fixed
point method, we are able to write the linear system that has to be solved at
every iteration. The purpose of this section is to write down this system.

In order to simplify our exposition, let us suppose that V f
h (tn+1), V s

h (tn+1),
and Rh(tn+1) are all made with the same kind of Lagrangian finite elements. In
particular, we consider Lagrange finite elements. At a node a, we can define the
scalar nodal characteristic function φa. Since we are dealing with vector fields,
we have to extend the scalar test functions to the vector case. For that, let
us denote by φi

a the vector test function associated to node a and component
i of the solution, that is (φi

a)m = φaδim, where δim denotes the Kronecker δ.

The pressure spaces Qf
h(tn+1), and Qp

h(tn+1) are spanned by test functions πb,
where b can be a node label for Lagrangian test functions or an element label for
piecewise constant pressures. In fact, our stabilized formulation allows the use
of the same Lagrangian basis for the pressure too, and this will be our choice in
the numerical experiments.

The sets of fluid and structure inner nodes are denoted by Nf and Ns, re-

spectively. The set of nodes on the interface are denoted by Nσ. Thus, V f
h (tn+1)

is spanned by {φi
a}a∈Nf

⊕
{

φi
b|Ωf

tn+1

}

b∈Nσ

, where φi
b|Ωf

tn+1

denotes the restric-

tion of the function φi
b over Ωf

tn+1; analogously for V s
h and Rh over Ωp

t . Pressure
nodes in the fluid and structure subdomain are indicated by Npf and Npp. We
focus on the case of geometrical conforming grids, so the nodes Nσ belong to the
grids of both subdomains. For every interface node we can define the tangential
and normal vectors with respect to Σtn+1 .

Let us omit the time superscript in the arrays of unknowns for clarity. The
terms involving values from previous time steps will be included in the right-hand
side. We denote the arrays of nodal values of un+1

f,h , un+1
s,h , and qn+1

h with U
f
f , Us

s,

and Qs, respectively. The arrays U
f
σ, Us

σ, and Qσ are related to the interface
nodes. For interface nodes, it is convenient to rotate the interface arrays from the
global coordinate system to the tangent-normal system (defined at every node).
We denote by T the rotation matrix from the local tangent-normal systems to
the global system; T T is the inverse rotation, where T indicates the transpose.
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The rotated interface arrays are denoted by Ũ
f
σ, Ũs

σ, and Q̃σ. These arrays are
composed by tangent and normal components of the velocities at all the nodes
in Nσ. We refer to [36] for a detailed discussion about implementation aspects
related to rotation matrices for imposition of boundary conditions. Finally, Pf

and Pp are the arrays of nodal values for the pressure in Ωf
t and Ωp

t , respectively.
In order to write the fully discretized coupled problem for a given time value

tn+1, we need to define a set of matrices. The mass matrix is denoted by M δ
αβ

where the subindexes α and β indicate the position of fluid nodes: the “value”
σ is used for nodes on Σt, f or s otherwise. Since there are mass matrices in
both subdomains, we need the subscript δ to specify the subdomain (δ = f or
δ = s). Using the same notation, we denote by Kαβ the matrix that includes the
viscous and convective terms, as well as the corresponding stabilization terms.
Thus, the whole fluid matrix is denoted by Cαβ =

ρf

δt Mf
αβ +Kαβ. The stabilized

gradient matrix is denoted by Gδ
β , δ corresponding to the subdomain and β to

the set of nodes. The stabilized divergence matrix is Dδ
β. Using this notation,

we indicate with Lδ
τ the Laplacian matrix associated to the pressure stabiliza-

tion (τ denotes the fact that this matrix is a Laplacian times the stabilization
parameter). For the Biot system, let us denote with Nαβ the matrix related to
the structural velocity (or displacement) in (34) as well as the corresponding
stabilization terms.

With these rotations, we can write the algebraic fluid subproblem for in-
ner velocity test functions {φi

a}a∈Nf
and pressure test functions {πa}a∈Npf

as
follows:

CffU
f
f + CfσT Ũf

σ + Gf
fPf = b

f
f ,

Df
fU

f
f + Df

σT Ũf
σ + Lf

τPf = bf
p . (35)

The right-hand-side terms account for body forces, quantities at the previous
time level, stabilization terms and, finally, the structure terms related to the
fact that the structure equation is stated in terms of velocities. Matrices Cfσ

and Df
σ are multiplied by the rotation matrix T .

Testing (34) against inner structure test functions {φa}a∈Ns (this is possible
because V s

h and Rh are built with the same FE type) and pressure test functions
{πa}a∈Npp we get the discrete equations:

NssU
s
s + NsσT Ũs

σ + bM s
ssQs + bM s

sσT Q̃σ + Gs
sPs = bs

s,

cM s
ssQs + cM s

sσT Q̃σ + dM s
ssU

s
s + dM s

sσT Ũs
σ + Gs

sPs = bs
d,

Ds
sU

s
s + Ds

σT Ũs
σ + Ds

sQs + Ds
σT Q̃σ + Ls

τPs = bs
p, (36)

where we have used c = (ρd(δtφ)−1 + κ−1) and d = ρdδt
−1. Rh,0 includes

functions with null normal trace, those with non-zero tangential trace that have
not been used yet. Now, we test (34) against these interface test functions.
This can be done by using the rotation matrix T T . Since we are only interested
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in functions with zero normal trace, we use the matrix T T
t

that takes arrays
in the global system and returns the tangential component only in the local
tangent-normal system. We get:

T T
t

(
cM s

σsQs + cM s
σσT Q̃σ + dM s

σsU
s
s + M s

σσT Ũs
σ + Gs

σPs

)
= T T

t
bσ

d . (37)

Equations (36)-(37) are the algebraic version of (10b). Now, we have to write the
algebraic system corresponding to the transmission conditions (10c)-(10d). For

matching grids, the space of traces for FE functions in V f
h and V s

h are identical.

This space is simply {φi
a|Σt}a∈Nσ . Using the extensions Ef

t (φi
a|Σt) = φi

a|Ωf
t

and

Ep
t (φi

a|Σt) = φi
a|Ωp

t
, the continuity of total stresses (10c) becomes

CσfU
f
f + CσσT Ũf

σ + Gf
σPf

+ NσsU
s
s + NσσT Ũs

σ + dM s
σsQs + dM s

σσT Q̃σ + Gs
σPs = bf

σ + bs
σ. (38)

Let us define the interface matrix (MΣ)ijab = (φi
a,φ

j
b)Σt for a, b ∈ Nσ. We

also denote by T ∗
t

the matrix that takes an array of interface values in the
tangent-normal system and returns the rotated values in the global system for
the tangent component only (and zero elsewhere). This matrix is needed for the
imposition of the Beavers-Joseph-Saffman condition (4d). The algebraic version
of the continuity of stresses in (10d) is:

CσfU
f
f + CσσTUf

σ + Gf
σPf + cMσsQs + cMσσT Q̃σ

+ dMσsU
s
s + dMσσTUs

σ + Gs
σPs + eMΣT ∗

t
Ũf

σ − eMΣT ∗
t
Ũs

σ = bf
σ + bd

σ. (39)

where e = γ/
√

κ. Finally, with the interface velocities in the normal-tangential
system, it is easy to impose the continuity of normal velocities:

MΣTn

(
Ũf

σ − Ũs
σ − Q̃σ

)
= 0. (40)

The algebraic form of the coupled Navier-Stokes/Biot problem is given by (36)-
(40); in compact form this yields the linear system

AXn+1 = bn+1, (41)

where Xn+1 includes all the arrays of unknowns defined above.

Remark 5.1 In case we use inf-sup stable finite elements for the fluid subprob-
lem, submatrix Lf

τ is 0.

Remark 5.2 We have considered a 2d problem for the sake of simplicity. In
a 3d case, we would transform variables and matrices from the Cartesian coor-
dinate system x-y-z to the tangent-normal-binormal system. Details about this
rotation can be found in [36].
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6 The monolithic approach

In hemodynamics problems, fluid and structural densities are of the same or-
der, making the added-mass effect [20] critical and the solution of the coupled
fluid/vessel problem extremely challenging. Typical domain decompositions ap-
proaches fail to converge (see Section 7). For these reasons, in [7] we have
considered a monolithic approximation of FSI problems with large added-mass
effect; even though they are non-modular, in the sense that independent fluid
and structural codes cannot be used as black boxes, their efficiency justifies their
use for hemodynamics applications.

The first approach we take into consideration for the solution of system
(41) is therefore the monolithic one. Let us summarize the main features of
our formulation. We make use of conforming grids and the same finite element
space for fluid and structure velocities. Moreover, since we adopt a stabilized
formulation for the poroelastic structure, the same finite element interpolation
space can be used for pressure pp. In case of using stabilized finite elements for
the fluid, we can use the same space for pressure pf , too.

Thanks to these choices, as already noticed in Section 5, the continuity of
stresses (in weak form) is easily fulfilled owing to the fact that the shape func-
tions on the interface nodes have a support on both fluid and structure sub-
domains. The remaining coupling conditions, i.e. the admissibility condition
and the Beavers-Joseph-Saffman condition, are also easily enforced, once the
interface mass matrix MΣ is computed (see (39)).

In [7] we have implemented the following monolithic FSI solver. First we
apply a scaling over (41), in order to adimensionalize the residual. The scaled
problem reads:

ÂXn+1 = b̂n+1

where we denote by D−1 the scaling matrix, Â = D−1A and b̂n+1 = D−1bn+1.
For stabilized fluid and Biot systems, this matrix is simply the diagonal of A.
When the fluid problem is solved by using inf-sup stable elements, we can use
an adimensionalization motivated by the pressure Schur complement; e.g. the
scaling would be (µfh2)−1 for the Stokes problem.

On the scaled problem, we have used an ILUT preconditioner and the pre-
conditioned system has been solved by a matrix-free Krylov method (see [65]).
This ILUT-solver approach has been used for FSI problems in [7] with good
results.

At time step tn+1, the stopping criterion at the iteration k+1 for the iterative
procedure is based on the relative residual:

||rk+1||
||bn+1|| =

||bn+1 − AXn+1,k+1||
||bn+1|| < ǫ. (42)

Remark 6.1 The monolithic approach with ILUT preconditioners is still inter-
esting when parallel solvers are used. In fact, we can split the FSI domain into
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subdomains and use domain decomposition (DD) methods for the coupling of
these subdomains. If subdomain interfaces do not coincide with fluid-structure
interfaces, every subproblem can be solved in turn using a monolithic approach.

7 The domain decomposition approach

Alternatives to the monolithic approach are the so-called partitioned procedures.
Fluid and structure subproblems are solved separately and coupled via trans-
mission conditions in an iterative fashion. For aeroelastic applications (with
negligible added-mass effect), these methods are an effective choice, since the
coupling can be treated explicitly without compromising stability. However, in
case of large added-mass effects explicit methods are unstable. The remedy is to
use implicit coupling methods, whose performance however deteriorates as the
added-mass effect gets large (see [59]).

Partitioned procedures are heterogeneous DD methods. The classical Dirichlet-
Neumann (DN) method is just one of these procedures, but there are many oth-
ers. The Neumann-Dirichlet (ND) and the Neumann-Neumann (NN) algorithms
have already been proposed for hemodynamics problems [31]. None of them
clearly outperforms the DN method. Partitioned procedures based on Robin
transmission conditions have been successfully applied to large-added mass ef-
fect problems in [5, 6]. We remind that all the domain decomposition algorithms
can be interpreted as preconditioners over the interface problem (in terms of in-
terface unknowns only); depending on the iterative solver applied over the pre-
conditioned system, we get different methods (e.g., [63]). Typically, Richardson
iterations are performed coupled with relaxation techniques (see [55]). More
efficient Krylov solvers, like GMRES, perform orthonormal iterations that im-
prove the convergence (see [39, 54, 6]). For simplicity, at the moment we do not
consider the possibility of replacing Richardson iterations with GMRES ones.
We focus on the different DD preconditioners, since, up to our knowledge, this
is the first attempt to apply these techniques to the FPSI problems coupling.

We will introduce the Robin-Robin method because the other algorithms are
just particular cases. The transmission conditions for the Navier-Stokes/Biot
problem are (4a)-(4d): (4a) is a Dirichlet boundary condition, (4b)-(4c) are
Neumann boundary conditions, (4d) is a Robin boundary condition. The idea is
to use linear combinations of these transmission conditions, in order to get a set
of Robin boundary conditions, as it has been done for FSI in [5, 6]. Let us start
with the Robin boundary conditions that we will use for the fluid subproblem.
For the normal component, we add the Dirichlet boundary condition (4a) times
αf and the normal component of the Neumann boundary condition (4c), where
αf is the combination parameter. For the tangential component, there is no
Dirichlet boundary condition for the fluid subproblem. Instead, we have the
Robin condition (4d). Thus, we add (4d) times αf and the tangential component
of (4c). We supplement the fluid subproblem with the following transmission
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condition:

αfun+1
f · n + n · (σn+1

f · n) = αf (un+1
s + qn+1) · n + n · (σn+1

s · n),

(43a)

αfun+1
f · t +

(
1 + αf

√
κ

γ

)
t · (σn+1

f · n) = αfun+1
s · t + t · (σn+1

s · n), (43b)

Similarly, for the structure problem, we combine (4a)-(4d). First, we consider
(4a) by αs minus (4b) and the normal component of (4c), respectively. The
second transmission condition is obtained by combining linearly (44b) and (4d)
to the tangential component of (4c). We supplement the poroelastic structure
with the transmission conditions:

αs(u
n+1
s + qn+1) · n − n · (σn+1

s · n) = αsu
n+1
f · n − n · (σn+1

f · n), (44a)

αsu
n+1
s · t − t · (σn+1

s · n) = αsu
n+1
f · t +

(
αs

√
κ

γ
− 1

)
t · (σn+1

f · n),

(44b)

αs(q
n+1 + un+1

s ) · n + pn+1
p = αsu

n+1
f · n − n · (σn+1

f · n). (44c)

The combination parameters must satisfy αf 6= −αs. Furthermore, we assume
αf , αs > 0 in order for the problem to be well posed. Robin interface conditions
motivate new partitioned procedures, some of which feature better convergence
than the DN method. Notice that the classical DN and ND algorithms can be
recovered with suitable choices of the combination parameters (αf = ∞, αs = 0
for the former, and αf = 0, αs = ∞ for the latter). Other particular cases,
studied in [5], are the Neumann-Robin (αf = 0), Robin-Neumann (αs = 0),
Dirichlet-Robin (αf = ∞), and Robin-Dirichlet (αs = ∞) schemes.

Let us state the Robin-Robin algorithm with Richardson iterations, linearized
with a fixed point method. We consider the time step value tn+1 and the dis-
crete problem in time. In space, we write our problem in strong form, as space
discretization does not introduce any additional concern in our analysis. We also
omit the time index n + 1 for the sake of simplicity. The iteration k + 1 of this
algorithm consists of:

Robin-Robin algorithm

Given ηn, ηn−1, un and the value at the previous iteration ηk, find uk+1
s , uk+1

f

pk+1
f and pk+1

p such that,

1. Fluid problem

ρfδtu
k+1
f + ρf (u∗

f − w∗) · ∇uk+1
f −∇ · σk+1

f = f f in Ωf
∗ , (45a)

∇ · uk+1
f = 0 in Ωf

∗ , (45b)
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supplemented with Robin boundary conditions

αfuk+1
f · n + n · (σk+1

f · n) = αf (uk
s + qk) · n + n · (σk

s · n),

(45c)

αfuk+1
f · t +

(
1 + αf

√
κ

γ

)
t · (σk+1

f · n) = αfuk
s · t + t · (σk

s · n), (45d)

2. Structure problem

ρpdtu
k+1
s + ρddtq

k+1 −∇ · σdev
s (ηk+1) + ∇pk+1

p = fs in Ωp
∗, (46a)

ρddtu
k+1
s + ρddt

qk+1

φ
+ κ−1qk+1 + ∇pk+1

p = fd in in Ωp
∗, (46b)

∇ · (uk+1
s + qk+1) = 0 in in Ωp

∗. (46c)

supplemented with Robin boundary conditions

αs(u
k+1
s + qk+1) · n − n · (σk+1

s · n) = αsu
k+1
f · n − n · (σn+1

f · n), (47)

αsu
k+1
s · t − t · (σk+1

s · n) = αsu
k+1
f · t +

(
αs

√
κ

γ
− 1

)
t · (σk+1

f · n),

(48)

αs(q
k+1 + uk+1

s ) · n + pk+1
p = αsu

k+1
f · n − n · (σk+1

f · n). (49)

The convective velocity is linearized around u∗, while the fluid domain, solid
domain and mesh velocity around Ωf

∗ and Ωs
∗.

Remark 7.1 If we choose αf = ∞, αs = 0 in (43) and (44), we do not recover
a Dirichlet-Neumann algorithm, strictly speaking. In fact, while a Dirichlet con-
dition is imposed on the normal component of the velocity, a Robin condition is
imposed on the tangential one. However, the structure problem is endowed with
a Neumann interface condition. In the same way, if we set αf = 0, αs = ∞,
the resulting method is not properly a Neumann-Dirichlet one. Nevertheless, we
will address to those schemes as DN and ND ones.

The main issue in using Robin transmission conditions is the evaluation of
appropriate combination parameters αf and/or αs capable of improving the
convergence properties of the classical DN method. Robin-Robin methods have
been adopted for other applications (see, e.g., [34] for the Stokes-Darcy coupling)
and they proved to be successful only for the right choices of the combination
parameters. In [5], effective values are provided by simplified models for the fluid
and the structure. For the fluid-poroelastic structure interaction, we employ the
same simplified fluid model to derive αs. On the other hand, a new simplified
structure model needs to be studied to get a suitable value for αf .

In the following, we restrict our attention to the Dirichlet-Neumann, Robin-
Neumann (RN), and Robin-Robin (RR) algorithms. The RN algorithm was
proven to be the optimal choice in [5, 6] for the fluid/elastic structure coupling.
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7.1 A simplified fluid-structure model

In order to analyze the convergence properties of the DN, RR, and RN algorithms
for the FPSI problem, we introduce a simplified fluid-structure model. We aim
at generalizing to the poroelastic case the model problem introduced in [20].

We take a rectangular fluid domain Ωf ⊂ R
2 of height R and length L. The

structure domain Ωp ⊂ R
2 is a rectangle of length L and height hs, placed on

the upper side of Ωf .The deformation of the structure is assumed to be very
small so that the fluid domain can be considered fixed.

In Ωf we consider a potential fluid flow:

ρf∂tuf + ∇pf = 0 in Ωf × (0, T ), (50a)

∇ · uf = 0 in Ωf × (0, T ), (50b)

uf = ∂tη + q on Σ × (0, T ), pf = pf on Γf
in ∪ Γf

out, uf = 0on Γf
down, (50c)

and suitable initial conditions. The non-bold variable refers to the normal com-
ponent of the associated vector, e.g. q = q · n. Thanks to the definition of the
added-mass operator M (see, e.g., [20]), we have

pf = p̂f − ρfM(∂ttη + Dtq), (51)

where p̂f accounts for possible non-homogeneous boundary conditions on ∂Ωf\Σ.
For the structure subproblem, we deal with the limit case described in Section

4.2. Small displacements are assumed and ∂t and Dt coincide. Moreover, we
neglect the term ∇ · σdev

s (η) in the structure momentum balance equation, i.e.
we assume negligible shear deformations. Hence, the structure model written in
terms of displacement η (instead of velocity us) is governed by equations

ρp∂ttη + aη + ∇pp = 0 in Ωp × (0, T ), (52a)

ρd∂ttη + κ−1q + ∇pp = 0 in Ωp × (0, T ), (52b)

∇ · η = 0 in Ωp × (0, T ), (52c)

pp = pf on Σ × (0, T ), pp = 0 on Γp
in ∪ Γp

out ∪ Γp
up, (52d)

where a = E/(1 − ν2)R2, E being the Young modulus and ν the Poisson ratio
of the matrix. The reaction term in (52a) represents the transversal membrane
effects appearing when the structure equations are written in axisymmetric form.
Problem (52) must be supplemented with initial conditions.

Equation (52a) for the normal component η can be written as

ρp∂ttη + aη +
∂pp

∂n

∣∣∣
Σ

= 0. (53)

By taking the divergence of (52a) and exploiting (52c), system (52) may be
reformulated as follows

−△pp = 0 in Ωp, (54a)

pp = pf on Σ, pp = 0 on Γp
in ∪ Γp

out ∪ Γp
up. (54b)
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For any pf ∈ H1/2(Σ), equations (54) yields a pressure pp ∈ H1(Ωp). Then, η

and q are recovered by (52a) and (52b), respectively. Let us define the operator
M−1

p : H1/2(Σ) → H−1/2(Σ) by

M−1
p pf = −∂pp

∂n

∣∣∣
Σ
. (55)

The Dirichlet-to-Neumann map M−1
p can be seen as a sort of inverse added-mass

operator for the structure. By plugging (51) into (55), we obtain

∂pp

∂n

∣∣∣
Σ

= ρfD∂ttη + ρfD∂tq −M−1
p p̂f ,

where D : H−1/2(Σ) → H−1/2(Σ) is the operator deriving from the composition
of M with M−1

p , i.e. D(·) = M−1
p (M(·)). Using this result in (53), we find that

the FPSI model problem (50)-(52) is equivalent to: find η and q such that

(ρpI + ρfD)∂ttη + aη + ρfD∂tq = M−1
p p̂f , (56a)

(ρdI + ρfD)∂ttη + κ−1q + ρfD∂tq = M−1
p p̂f . (56b)

Remark 7.2 Equation (56a) looks like structure equation (53) with an extra
operator in front of the second order time derivative and a term in ∂tq. As a
matter of fact, when a fluid interacts with a poroelastic structure, it acts like
an “added-mass” on the structure, as in the interaction with a purely elastic
structure. Moreover, an additional inertial term related to the filtration velocity
appears in the structure equation.

For the subsequent mathematical analysis, let us estimate the maximum
eigenvalue µD

max of operator D. Like the maximum eigenvalue µM
max of M (see

[20]), µD
max is a purely geometric quantity, which can be explicitly calculated in

the case of the simple geometry under consideration.
We consider the following reformulation of fluid problem (50)

−△pf = 0 in Ωf ,

∂ypf = g on Σ, pf = 0 on Γf
in ∪ Γf

out, ∂ypf = 0 on Γf
down.

coupled to the model structure problem (54). By expressing function g as

g(x) =
∑

k≥1

gk sin
(
kπ

x

L

)
,

we compute the fluid pressure pf (x, y) (see [20]) and extract its value at the
interface y = R

pf (x)|Σ = Mg =
∑

k≥1

gk
L

kπ

cosh
(
kπ R

L

)

sinh
(
kπ R

L

) sin
(
kπ

x

L

)
=
∑

k≥1

pf,k.
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Plugging this function in (54) allows us to compute the pressure pp(x, y) in the
poroelastic medium

pp(x, y) =
∑

k≥1

gk
L

kπ

cosh
(
kπ R

L

)

sinh
(
kπ R

L

) 1

sinh
(
kπ hs

L

) sin
(
kπ

x

L

)
sinh

(
kπ

R + hs − y

L

)
.

Then, since n indicates the y direction, we can write

Dg = −∂pp

∂n

∣∣∣
Σ

=
∑

k≥1

gk
cosh

(
kπ R

L

)

sinh
(
kπ R

L

) cosh
(
kπ hs

L

)

sinh
(
kπ hs

L

) sin
(
kπ

x

L

)

=
∑

k≥1

pf,k
kπ

L

1

tanh
(
kπ hs

L

) . (57)

Finding the eigenvalues µD
k , k = 1, 2, ..., of D associated to the eigenvector

g = gk sin(kπ x
L) means to solve the eigenvalue problem

Dg = µD
k g,

which implies

µD
k =

1

tanh
(
kπ R

L

)
tanh

(
kπ hs

L

) , whence µD
k = µD

1 =
1

tanh
(
kπ R

L

)
tanh

(
kπ hs

L

) .

Figures 2(a) and 2(b) show the value of µD
max varying the fluid and the structure

geometry, i.e. L and R, and L and hs, respectively.
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Figure 2: Largest eigenvalue of operator D as a function of (a) fluid domain
length L and height H and (b) structure domain length L and thickness hs.
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7.2 The Dirichlet-Neumann algorithm

In this subsection, we aim at analyzing the convergence properties of the DN
method applied to the simplified FPSI problem (50)-(52).

We discretize in time problem (50)-(52) with the BDF1 scheme for both fluid
and structure equations. The Dirichlet-Neumann algorithm supplemented with
a relaxation technique reads: at time step tn+1 and iteration k+1, with n, k > 0,
given un

f , ηn, and ηn−1, solve

(i) Fluid problem (Dirichlet boundary condition): Find uk+1
f , pk+1

f such that

ρf δtu
k+1
f + ∇pk+1

f = 0 in Ωf , (58a)

∇ · uk+1
f = 0 in Ωf , (58b)

uk+1
f = δtη

k + qk on Σ, pk+1
f = pf on Γf

in ∪ Γf
out, uk+1

f = 0 on Γf
down.

(58c)

(ii) Structure problem (Neumann boundary condition): Find η̃k+1, q̃k+1, pk+1
p

such that

ρpδttη̃
k+1 + aη̃k+1 + ∇pk+1

p = 0 in Ωp, (59a)

ρdδttη̃
k+1 + κ−1q̃k+1 + ∇pk+1

p = 0 in Ωp, (59b)

∇ · η̃k+1 = 0 in Ωp, (59c)

pk+1
p = pk+1

f on Σ, pk+1
p = 0 on Γp

in ∪ Γp
out ∪ Γp

up. (59d)

(iii) Relaxation step

ηk+1 = ωη̃k+1 + (1 − ω)ηk, qk+1 = ωq̃k+1 + (1 − ω)qk. (60)

(iv) Convergence test: if the stopping criterion is satisfied, then set un+1
f =

uk+1
f , pn+1

f = pk+1
f , ηn+1 = ηk+1, qn+1 = qk+1, and pn+1

p = pk+1
p .

The relaxation parameter might be necessary to guarantee the convergence
of the method.

Theorem 7.1 The Dirichlet-Neumann iterative method applied to the solution
of the FPSI test problem (50)-(52) converges to the “monolithic” solution pro-
vided the following condition on the relaxation parameter is satisfied

0 < ω ≤ 2(ρp + aδt2)

(ρp + aδt2 + 2ρfµD
max)

. (61)
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Proof. Let us introduce the normal component of the structure velocity ũk+1
s =

(η̃k+1 − ηn)/δt. The DN algorithm (58)-(59) is equivalent to: find ũk+1
s and q̃k+1

ρp

δt

(
ũk+1

s − un
s

)
+ aδtũk+1

s +
ρf

δt
D
(
qk − qn + uk

s − un
s

)
= M−1

p p̂n+1

f − aηn,

ρd

δt

(
ũk+1

s − un
s

)
+ κ−1q̃k+1 +

ρf

δt
D
(
qk − qn + uk

s − un
s

)
= M−1

p p̂n+1

f . (62)

From relaxation step (60), it follows that

ũk+1
s =

1

ω
uk+1

s − 1 − ω

ω
uk

s , and q̃k+1 =
1

ω
qk+1 − 1 − ω

ω
qk.

Then, the previous system is equivalent to

1

ω

[(ρp

δt
+ aδt

)
I
]
uk+1

s −
[
1 − ω

ω

(ρp

δt
+ aδt

)
I − ρf

δt
D
]

uk
s +

ρf

δt
Dqk

= f(un
s , qn, p̂n+1

f ),

1

ω

ρd

δt
uk+1

s +
κ−1

ω
qk+1 −

[
1 − ω

ω

ρd

δt
I − ρf

δt
D
]

uk
s −

[
1 − ω

ω
κ−1I − ρf

δt
D
]

qk

= g(un
s , qn, p̂n+1

f ),

for suitable functions f and g. In turn, this corresponds to iterative method

uk+1
s =

[
(1 − ω)I − ω

ρf

ρp + aδt2
D
]

uk
s − ω

ρf

ρp + aδt2
Dqk + f̃(un

s , qn, p̂n+1

f ), (63a)

qk+1 =ωκ

(
ρd

ρp + aδt2
− 1

)
ρf

δt
Duk

s +

[
(1 − ω)I + ωκ

(
ρd

ρp + aδt2
− 1

)
ρf

δt
D
]

qk

+ g̃(un
s , qn, p̂n+1

f ), (63b)

for suitable functions f̃ and g̃.
The solution of the DN method coincides with the fixed point of the iterative method

(63). Sufficient conditions for the convergence of fixed point iterations are

∣∣∣(1 − ω) − ω
ρfµD

i

ρp + aδt2

∣∣∣+
∣∣∣ω

ρfµD
i

ρp + aδt2

∣∣∣ < 1,

∣∣∣ωκ

(
ρd

ρp + aδt2
− 1

)
ρf

δt
µD

i

∣∣∣+
∣∣∣(1 − ω) + ωκ

(
ρd

ρp + aδt2
− 1

)
ρf

δt
µD

i

∣∣∣ < 1,

which lead to

0 <ω ≤ 2(ρp + aδt2)

(ρp + aδt2 + 2ρfµD
max)

, (64a)

0 <ω ≤ 2

1 + 2κ
ρf

δt

(
1 − ρd

ρp+aδt2

)
µD

max

. (64b)

For the values of κ which allow us to derive model problem (52), condition (64b) is

far less restrictive than condition (64a). Thus, the convergence of the DN algorithm

(58)-(59)-(60) depends only on the latter. Numerical experiments reported in Section

8.3 confirm this result. �
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7.3 The Robin-Robin and the Robin-Neumann algorithms

The Robin-Robin algorithm for the time discrete version of problem (50)-(52)
reads:
at time step tn+1 and iteration k + 1, with n, k > 0, given un

f , ηn, and ηn−1,
solve

(i) Fluid problem (Robin boundary condition): Find uk+1
f , pk+1

f as in (58)
but replacing interface condition (58c) with

αfuk+1
f − pk+1

f = αf (δtη
k + qk) − pk

p on Σ. (65)

(ii) Structure problem (Robin boundary condition): Find η̃k+1, q̃k+1, pk+1
p as

in (59) but replacing interface condition (59d) with

αs(u
k+1
s + qk+1) + pk+1

p = αsu
k+1
f + pk+1

f on Σ.

Steps (iii) and (iv) are common to the DN algorithm.
As already highlighted, a central role in the convergence of the Robin-Robin

algorithm is played by the combination parameters αf and αs. We adopt the αs

computed in [5], i.e.

αs =
ρf

δt
µM

max, (66)

where µM
max is the largest eigenvalue of the added-mass operator (see [20]). To

derive a possible value for αf , we consider simplified model (53). We consider
the normal component of equations (52a)-(52b), discretize them in time with
the BDF1 scheme and plug (57) into them to get

ρpδtu
n+1
s + aδtun+1

s −
∑

k≥1

pn+1
f,k

kπ

L

1

tanh
(
kπ hs

L

) = −aηn, (67a)

ρdδtu
n+1
s + κ−1qn+1 −

∑

k≥1

pn+1
f,k

kπ

L

1

tanh
(
kπ hs

L

) = 0. (67b)

If we truncate the sum at the first element, (67) becomes

(ρp

δt
+ aδt

)
un+1

s =

(
π

L

1

tanh
(
π hs

L

)
)

pn+1
f,1 +

ρp

δt
un

s − aηn,

ρd

δt
un+1

s + κ−1qn+1 =

(
π

L

1

tanh
(
π hs

L

)
)

pn+1
f,1 +

ρd

δt
un

s ,
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which is equivalent to

un+1
s =

1
ρp

δt + aδt

(
π

L

1

tanh
(
π hs

L

)
)

pn+1
f,1 +

ρp

ρp + aδt2
un

s − aδt

ρp + aδt2
ηn, (68a)

qn+1 = κ

(
1 − ρd

ρp + aδt2

)(
π

L

1

tanh
(
π hs

L

)
)

pn+1
f,1 + κ

aδt

ρp + aδt2
(δtun

s + ηn).

(68b)

By summing (68a) to (68b) and using the admissibility condition (4a), we find

un+1
f =

π

L

1

tanh
(
π hs

L

) 1

ρp + aδt2
[
δt + κ(ρp − ρd + aδt2)

]
pn+1

f,1

+
ρp + κaδt2

ρp + aδt2
un

s − aδt

ρp + aδt2
(1 − κ)ηn. (69)

If pn+1
f,1 is a good approximation for pn+1

f , this equation suggests the use of the
following combination parameter

αf =
(
ρp + aδt2

) L

π
tanh

(
π

hs

L

)
1

δt + κ(ρp − ρd + aδt2)
(70)

in Robin transmission condition (65). For the values of κ which allow us to
derive model problem (52), αf could be simplified in the following way

αf ∼
(ρp

δt
+ aδt

)
tanh

(
π

hs

L

)
L

π
. (71)

Even though (69) prescribes an interface condition only on the normal com-
ponent of the velocity, we impose the Robin condition with the same αf also for
the tangential component. Moreover, the same value of αf can be used even for
more general structure models, whose behavior is similar to the one predicted
by (53).

The Robin-Neumann algorithm is recovered from the Robin-Robin method
by choosing αf as in (70) and αs = 0. In the classical FSI problems, the RN
algorithm proves to be the best in terms of convergence properties, see [5, 6].
For this reason, we check its performance when applied to FPSI problems.

The following theorem states the convergence properties of the RN algorithm.

Theorem 7.2 The Robin-Neumann iterative method applied to the solution of
the FPSI test problem (50)-(52) converges to the “monolithic” solution provided
the following condition on the relaxation parameter is satisfied

0 < ω ≤ 2. (72)
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Proof. By discretizing in time (51) with the BDF1 scheme and using the admissibility
constraint, we know that

uk+1

f = − δt

ρf

M−1pk+1

f + un
f +

δt

ρf

M−1p̂f .

If we approximate pk+1

f in this equation with pk+1

f,1 and invoke it in (69), we get

(
αf

δt

ρf

M−1 + 1

)
pk+1

f,1 = f(un
s , un

f , ηn), (73)

where αf is defined by (70) and f is a suitable function. Combining (73) to the fixed
point iterations associated to (68)

ũk+1
s =

1
ρp

δt
+ aδt

(
π

L

1

tanh
(
π hs

L

)
)

pk+1

f,1 +
ρp

ρp + aδt2
un

s − aδt

ρp + aδt2
ηn,

q̃k+1 = κ

(
1 − ρd

ρp + aδt2

)(
π

L

1

tanh
(
π hs

L

)
)

pk+1

f,1 + κ
aδt

ρp + aδt2
(δtun

s + ηn),

we obtain

ũk+1
s = g(un

s , un
f , ηn), q̃k+1 = h(un

s , un
f , ηn),

for suitable functions g and h. A sufficient condition for the convergence of such a fixed
point method is |1 − ω| < 1, from which (72) follows.

�

Remark 7.3 The value of αf has been calculated for the simple geometrical
domain under consideration. When the geometry is more complicated (e.g. a
stenotic artery) and it is impossible to find a close expression for µD

max, the RN
algorithm becomes less effective. A possible solution is to replace the Richardson
iterations of the RN scheme by GMRES ones which are less sensitive to the value
of αs (see [6]).

8 Numerical experiments

8.1 Convergence rates for Darcy and Biot problems

Let us start by the transient Darcy problem (12). In order to check the con-
vergence rates of our algorithms, we propose a test problem inspired by the one
used for the Darcy equations in [51]. In a square of side length one, we consider
the following exact velocity solution:

q =

[
−2π cos(2πx) sin(2πy)t
−2π sin(2πx) cos(2πy)t

]
.

The pressure field is computed from equation (12a) by setting fd = 0, while g
is calculated from (12b). Dirichlet boundary conditions are imposed on the four
sides.
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We consider linear triangular elements. The elliptic meshes employed consist
of 200, 800, 3200 and 128000 elements. The element mesh parameter h is taken
to be the short-edge length. The time interval under consideration is [0, 1] s.

The results in Fig. 3 have been obtained by the OSS stabilized formula-
tion introduced in Section 4.1 for different choices of the parameter τd: τd =
1, 0.95, 0.5. The time step value is δt = 0.1 s. Fig. 3 shows the L2-norm of the
velocity and pressure errors for φκ−1 = 1 and ρd = 1, at time t = 1 s. If τd = 1
or the value of τd is close to one, the L2-rate of convergence for the velocity is
less than 2.
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Figure 3: Transient Darcy problem: convergence rate for the (a) velocity and
(b) pressure, for φκ−1 = 1, ρd = 1.

To check the order of convergence in time, we deal with the exact velocity:

q =

[
− sin(t)
− sin(t)

]
.

Thus, the exact pressure solution is pp =
(ρd

φ
cos(t) + κ−1 sin(t)

)
(x + y), and

g = 0. Dirichlet boundary conditions are imposed on the four sides.
The square of size length one is discretized with an elliptic mesh of 800

triangles. Four time step values are considered (δt = 0.1, 0.05, 0.025, 0.0125 s)
and all the errors are calculated at time t = 1 s. Fig. 4 shows that first order
convergence in time is attained, as expected.

Finally, we perform a convergence test for the Biot system (2). The domain
under consideration is again the biunit square and we impose forcing terms f s

and fd such that the exact solution is

us =

[
−2π sin(2πx) cos(2πy)
−2π cos(2πx) sin(2πy)

]
,

q = φ

[
−2π cos(2πx) sin(2πy)t + 2π sin(2πx) cos(2πy)
−2π sin(2πx) cos(2πy)t + 2π cos(2πx) sin(2πy)

]
,
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Figure 4: Transient Darcy problem: order of convergence in time for φκ−1 = 1,
ρd = 1.

and

p = (ρd + κ−1φt) sin(2πx) sin(2πy) + κ−1φ cos(2πx) cos(2πy) − κ−1φ.

We impose Dirichlet conditions on the four sides both for us and q · n. The
Dirichlet data for us and q are easily computed from the exact solution.

Meshes, time interval, and time step are the same as those used for the
convergence test of the transient Darcy problem. Fig. 5 shows the L2-norm of
the pressure, structure and filtration velocity errors at time t = 1 s for κ = 1,
ρd = 1, ρs = 1.2, and φ = 0.2. For these results, we adopted the stabilized
formulation reported in Section 4.3 and chose τd = 1, 0.5. The same convergence
rate of the Darcy and transient Darcy problem is recovered.

When the Biot system is coupled to the Navier-Stokes equations, the stabi-
lization method introduced in Section 4.3 works well for values of κ typical of
pervious or semi-pervious media, whereas for very small values an alternative
is needed. For the numerical experiments in Section 8, we used the alternative
stabilization proposed in Section 4.2. It guarantees pressure stability for the
wide range of parameters we tested.

8.2 The coupled problem

We now analyze the extent to which the performance of the methods described in
Sections 6 and 7 are affected by the variation of the different parameters involved
in FPSI problems. Our goal is again to simulate the propagation of a pressure
pulse in a straight pipe with deformable porous boundaries. We consider only
the 2d (bi-dimensional fluid and structure) approximation of this problem. We
use the fluid and structure physical parameters listed in Table 1, unless otherwise
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Figure 5: Biot problem: convergence rate for the pressure, structure, and filtra-
tion velocity.

Fluid density: ρf = 1.0 g/cm3 Fluid viscosity: µ = 0.035 poise

Structure density: ρs = 1.1 g/cm3 Wall thickness: hs = 0.1 cm

Young modulus: E = 7 · 105 dyne/cm2 Poisson coefficient: ν = 0.4

Shear modulus: G = 2.5 · 105 dyne/cm2

Table 1: Fluid and structure physical properties for the numerical tests

specified. The other parameters of the poroelastic structure will be indicated
each time, except for the slip rate coefficient γ which is always taken equal to 1.

We impose the following Neumann condition

σf,in = −Pin

2

[
1 − cos

( πt

2.5 · 10−3

)]
n,

with Pin = 2 · 104 dyne/cm2, at the inlet, while a homogeneous Neumann con-
dition is imposed at the outlet.

We choose a conforming space discretization between fluid and structure:
(P1isoP2) - P1 finite elements for the fluid and stabilized P1 −P1 finite elements
for the structure.

8.3 Comparison between the ILUT-GMRES and the DN meth-
ods

The purpose of this subsection is to compare the non-modular approach de-
scribed in Section 6 and the modular DN algorithm.

We solve the FPSI problem on a structured grid of 31×11 P1 fluid nodes and
61 × 4 structure nodes. The structure mesh nodes at the interface correspond
to the P1isoP2 degrees of freedom for the fluid velocity. We set the structure
density ρs = 100 g/cm3 and the pores fluid density ρd = 1 g/cm3. Notice that
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the effective density of the poroelastic structure is ρp = ρs(1− φ) + ρdφ and the
added-mass effect increases with the ratio ρf/ρp. Hence, varying the porosity
makes the added-mass effect more or less critical.

We choose to adopt the explicit treatment of the nonlinearities in order to
focus on the fluid-structure coupling iterations.

Let us consider first the non-modular ILUT-GMRES approach. The precon-
ditioners adopted are the incomplete LU factors of the (either scaled or unscaled)
monolithic system with threshold 10−5. The choice of such a small value is due
to the fact that it was the largest one to allow convergence in all the cases we
considered, even when the diagonal scaling is not performed. Thanks to the
small size of the problem, we can apply the GMRES method without restart.
The tolerance used in (42) to stop the GMRES iteration is 10−4.

In addition to the relative residual in (42), here denoted simply by r, we
define the relative residuals rf , rσ, and rp as the residuals of the equations for
the inner fluid, interface, and inner structure nodes, respectively. We aim at
checking how all those residuals decrease with the iteration number, either with
or without applying the diagonal scaling to the system matrix in (41). Figures
6 report this study for two different values of φ (φ = 0.15 and φ = 0.95) and
time step (δt = 2.5 · 10−4 s and δt = 10−4 s). The diagonal scaling allows to
reduce the number of ILUT-GMRES iterations in all the cases. However, this
reduction reveals less important as φ decreases (i.e. as the added-mass effect gets
less critical) and as the time step becomes small. We notice that rσ is always
slightly bigger than rf and rp. The porosity being fixed, the number of iterations
increases as the time step value decreases. Moreover, GMRES converges faster
for small ρp. This confirms what found in [7]: the ILUT-GMRES algorithm
shows better convergence properties for problems with large added-mass effect.

To highlight this aspect, we plot in Figure 7(a) the average number of GM-
RES iterations to solve monolithic system (41) for different porosities (φ =
0.15, 0.35, 0.55, 0.75, 0.95), hydraulic conductivities (κ ∼ 10−6, 10−8, 10−10, 10−12

(cm3 s)/g), and time step values (δt = 5 · 10−4, 2.5 · 10−4 s). The larger the
added-mass effect is, the fewer iterations the GMRES method requires to con-
verge. This tendency (unaffected by the value of κ) is opposite to what happens
with the DN algorithm, as Fig. 7(b) confirms. The DN method whose results
are reported in Fig. 7(b) uses an Aitken relaxation procedure (see [55, 30]).

Variations in the order of magnitude of κ cause only small differences in the
number of average iterations for both methods.

8.4 Comparison between the DN and the RN algorithms

In this subsection, we compare two modular procedures: the DN method whose
advantages and drawbacks have already been discussed in the literature; the
RN algorithm which exhibits a good behavior for classical FSI problems appear-
ing in hemodynamics. Nonlinearities are explicitly treated in order to focus on
coupling iterations. We compare the two schemes by studying their sensitivity
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(c) φ = 0.15, δt = 10−4 s
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(d) φ = 0.95, δt = 10−4 s

Figure 6: Residuals r, rf , rσ, and rp associated to the monolithic system, with
and without scaling, for different different values of φ and δt. The legend in (b)
is common to the four graphs.

to some physical and discretization parameters. Out of the numerous param-
eters involved in FPSI problems, only a few have a meaningful impact on the
performances of the partitioned procedures. For instance, in the previous sub-
section we remarked that variations of the hydraulic conductivity produce minor
changes in the number of iterations, unlike variations of the porosity.

In our simulations we took ρd = 1 g/cm3 and κ ∼ 10−12 (cm3 s)/g, and
we used the same mesh of Section 8.3. Figures 8(a), 8(b), and 8(c) show the
sensitivity to the time step, porosity, and Young’s modulus, respectively. For the
results in Fig. 8(a) and Fig. 8(c), we choose the physiological values ρs = 1.1
g/cm3, φ = 0.15, while for those in Fig. 8(b) ρs = 100 g/cm3. The reason of this
non-physiological value is that, if ρd and ρs are of the same order of magnitude,
varying φ does not change the criticality of the added-mass effect. In fact,
the effect of porosity on the convergence properties of partitioned procedures
is simply related to the reduction of the effective structure density. In Fig. 8,
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κ ~ 10−12, δ t = 5*10−4

κ ~ 10−10, δ t = 5*10−4

κ ~ 10−8, δ t = 5*10−4

κ ~ 10−6, δ t = 5*10−4

κ ~ 10−12, δ t = 2.5*10−4

κ ~ 10−10, δ t = 2.5*10−4

κ ~ 10−8, δ t = 2.5*10−4

κ ~ 10−6, δ t = 2.5*10−4

(b) DN algorithm

Figure 7: (a) Average number of GMRES iterations to solve the monolithic
system and (b) average number of iterations for the DN algorithm for different
values of φ, κ, and δt. The legend in (b) is common to the two figures.

we report the results of the RN scheme (with αf prescribed by (70)), with and
without an Aitken relaxation procedure, and those of the DN algorithm with
Aitken acceleration parameters.

The time step takes four different values, δt = 10−3, 5 · 10−4, 2.5 · 10−4,
1.25 · 10−4 s and report the results in Fig. 8(a), whereas for those in Fig. 8(b)
and 8(c) we set δt = 5 · 10−4. The porosity in Fig. 8(b) takes all the values
used for Fig. 7. Finally, the results reported in Fig. 8(c) refer to the Young’s
modulus in Table 1 times a factor β, with β = 1/5, 1/2.5, 1, 2.5, 5.

Figures 8 confirm that the RN scheme converges always without relaxation
and it is quite insensitive to parameters variations. The insensitivity is even
more evident when an Aitken acceleration technique is employed. On the other
side, the convergence of the DN algorithm deteriorates as the time step decreases
and the porosity increases.

In conclusion, the RN algorithm is faster and more robust than the DN
scheme.

Figures 8 display the results of the DN algorithm with an Aitken relaxation
method; the algorithm with a constant acceleration parameter becomes dramat-
ically slow for small time step values and large added-mass effects.

8.5 The RR algorithm

We aim at checking the convergence properties of the RR algorithm with an
explicit treatment of the nonlinearities.

In [5], it is pointed out that the estimate of αs given by (66) does not allow
a better performance with respect to the DN method. The reason is that the
fluid model problem (50) is far too simplified. Hence, instead of choosing the
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Figure 8: Average number of coupling iterations for the DN and RN schemes
varying (a) time step δt, (b) porosity φ, and (c) Young’s modulus E.

combination factor αs as in (66), we take αs = βαs. Figure 9 shows the number
of average coupling iterations for factor β spanning from 10−4 to 1. The results
refer to the FPSI problem in hemodynamics: ρs = 1.1 g/cm3, ρd = 1 g/cm3,
φ = 0.15, κ ∼ 10−12 (cm3 s)/g. The mesh is the same used for the simulations
in Section 8.3 and the time step is taken equal to δt = 5 · 10−4. From Fig.
9, we see that for no factor β the RR algorithm outperforms the RN one. A
better estimate for αs should be studied in order to make the RR method more
competitive.

8.6 Qualitative results

Solving FPSI problems in hemodynamics could help understand how LDL (low
density lipoproteins) deposit, leading to the formation of atheriosclerotic plaques.
Atherosclerosis localizes at a bend and/or bifurcation of an artery, where the
LDL can accumulate. Therefore, we consider a 2d model obtained by intersecting
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Figure 9: Number of iterations for the RR scheme for different values of factor
β.

a bended, stenotic artery with a plane. The geometry we consider (see Fig. 10)
is an idealized one. However, it serves the purpose of showing qualitatively how
important it is to account for wall deformation as well as filtration flow.

We impose the same boundary conditions as for the straight artery in [59].
We solve both the Navier-Stokes/transient Darcy and the Navier-Stokes/Biot
coupled problems. The former accounts for filtration flow only, neglecting the
compliance of the artery wall, whereas the latter models both. The fluid and
structure meshes consist of 596 P1 fluid nodes and 1698 structure nodes, re-
spectively. As for the straight artery, the structure mesh nodes at the interface
correspond to the P1isoP2 degrees of freedom for the fluid velocity. The pa-
rameters are those typical of hemodynamics, i.e. the ones listed in Table 1 plus
ρd = 1 g/cm3, κ ∼ 10−12 (cm3 s)/g, and φ = 0.15. In the two cases, we adopted
a monolithic approach and an explicit treatment of the nonlinearities.

Figure 10 shows the fluid pressure pf and the pressure of the porous structure
pp every 4 ms in case the structure is governed by the transient Darcy system.
Being the fluid incompressible and the structure rigid, the pressure pulse imposed
at the inlet does not propagate. Both pressures return to zero when the pulse is
over, i.e. after 5 ms. The blood and structure dynamics change completely when
the porous medium is deformable, see Fig. 11. The pressure pulse enters the
lumen and the poroelastic structure and propagates from the upstream section
to the downstream one. Supposing that blood flow and wall movement dictate
the transport of the LDL, it is clear that a diffusion-advection model will give
significantly different LDL distributions if it uses the solution of the Navier-
Stokes/transient Darcy or the Navier-Stokes/Biot system.
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9 Conclusions

In this paper we have described a new methodology for modeling the fluid-
structure problems in hemodynamics. The novelty consists in employing a
poroelastic model for the artery wall. The necessary mathematical theory was
developed in order to couple a linear poroelastic solid with the nonlinear Navier-
Stokes fluid model. We have developed new stabilization techniques for both
the transient Darcy problem and Biot system by using a VMS approach. The
stabilized system allows to use simple FE spaces for all the unknowns of the
problem. We have also introduced the form of the coupled algebraic system that
is obtained.

Modular and non-modular solution techniques used for fluid-elastic struc-
ture interaction problems have been extended to these more complex interac-
tions. The non-modular approach is based on the ILUT preconditioner for the
whole FPSI system. The modular algorithms make use of classical domain de-
composition preconditioners: the Dirichlet-Neumann, the Robin-Robin, and the
Robin-Neumann ones. Robin conditions are linear combinations of Dirichlet and
Neumann conditions. Effective combinations coefficients for the Robin interface
conditions have been suggested thanks to simplified fluid and structure mod-
els. The convergence properties of the partitioned procedures were analyzed
through simplified blood-vessel systems. Also in the case of FPSI problems, the
Robin-Neumann algorithm converges always without relaxation and it is fairly
insensitive to the added-mass effect, unlike the Dirichlet-Neumann scheme. In
the case of a poroelastic structure, the added-mass effect is dictated by the poros-
ity: the bigger the porosity value is, the smaller the effective structure density
becomes.

Since there was an interest in the fluid-structure coupling, we dealt with the
semi-implicit versions of all the methods mentioned above. This allowed us to
focus on the effects of physical and discretization parameters variations on the
“stiffness” of the coupling.

Numerical experiments on a straight 2d artery agree with the theoretical re-
sults found for the partitioned procedures. The monolithic approach confirmed
its efficiency in presence of critical added-mass effects. Moreover, we used an
idealized bended, stenotic 2d artery to show how important it is to adopt the
poroelastic model for the simulation of complex problems, such the LDL trans-
port and accumulation in the artery wall.
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[18] F. Brezzi, T.J.R. Hughes, and E. Süli. Variational approximation of flux in
conforming finite element methods for elliptic partial differential equations:
a model problem. Rend. Mat. Acc. Lincei s. 9, 12:167–183, 2001.

[19] V. M. Calo, N. F. Brasher, Y. Bazilevs, and T. J. R. Hughes. Multiphysics
model for blood flow and drug transport with application to patient-specific
coronary artery flow. Comput. Mech., 43(1):161–177, 2008.

[20] P. Causin, J.F. Gerbeau, and F. Nobile. Added-mass effect in the design
of partitioned algorithms for fluid-structure problems. Comput. Methods
Appl. Mech. Engrg., 194(42-44):4506–4527, 2005.

[21] B. Chan, P.S. Donzelli, and R.L. Spilker. A mixed-penalty biphasic finite
element formulation incorporating viscous fluids and material interfaces.
Annals of Biomedical Enginnering, 28(589–597), 2000.

[22] M. Chiumenti, Q. Valverde, C. Agelet de Saracibar, and M. Cervera. A
stabilized formulation for incompressible elasticity using linear displace-
ment and pressure interpolations. Comput. Methods Appl. Mech. Engrg.,
191:5253–5264, 2002.

[23] R. Codina. A discontinuity-capturing crosswind-dissipation for the finite
element solution of the convection-diffusion equation. Comput. Methods
Appl. Mech. Engrg., 110:325–342, 1993.

[24] R. Codina. Comparison of some finite element methods for solving the dif-
fusion-convection-reaction equation. Comput. Methods Appl. Mech. Engrg.,
156:185–210, 1998.

[25] R. Codina. Stabilization of incompressibility and convection through or-
thogonal sub-scales in finite element methods. Comput. Methods Appl.
Mech. Engrg., 190:1579–1599, 2000.

[26] R. Codina. A stabilized finite element method for generalized stationary
incompressible flows. Comput. Methods Appl. Mech. Engrg., 190:2681–2706,
2001.

45



[27] R. Codina. Stabilized finite element approximation of transient incompress-
ible flows using orthogonal subscales. Comput. Methods Appl. Mech. Engrg.,
191:4295–4321, 2002.

[28] R. Codina, J. Principe, O. Guasch, and S. Badia. Time dependent sub-
scales in the stabilized finite element approximation of incompressible flow
problems. Comput. Methods Appl. Mech. Engrg., 196:2413–2430, 2007.

[29] O. Coussy. Mechanics of Porous Continua. John Wiley & Sons, 1995.

[30] S. Deparis. Numerical analysis of axisymmetric flows and methods for fluid-
structure interaction arising in blood flow simulation. PhD thesis, École
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[45] W. Jäger and A. Mikelić. On the interface boundary condition Beavers,
Joseph, and Saffman. SIAM J. Appl. Math., 60(4):1111–1127, 2000.

[46] I. P. Jones. Low Reynolds number flow past a porous spherical shell. Proc.
Camb. Phil. Soc., 73:231–238, 1973.

[47] N. Koshiba, J. Ando, X. Chen, and T. Hisada. Multiphysics simulation of
blood flow and LDL transport in a porohyperelastic arterial wall model. J.
of Biomech. Eng., 129:374–385, 2007.

[48] W. J. Layton, F. Schieweck, and I. Yotov. Coupling fluid flow with porous
media flow. SIAM J. Numer. Anal., 40(6):2195–2218, 2002.

[49] T. Levy and E. Sánchez-Palencia. On boundary conditions for fluid flow in
porous media. Int. J. Engng. Sci., 13:923–940, 1975.

[50] L. D. Marini and A. Quarteroni. A relaxation procedure for domain decom-
position methods using finite elements. Numer. Math., 55:575–598, 1989.

[51] A. Masud and T. J. R. Hughes. A stabilized mixed finite element method
for Darcy flow. Comput. Methods Appl. Mech. Engrg., 191:4341–4370, 2002.

[52] A. Masud and T.J.R. Hughes. A space-time Galerkin/least-squares finite el-
ement formulation of the Navier-Stokes equations for moving domain prob-
lems. Comput. Methods Appl. Mech. Engrg., 146:91–126, 1997.

[53] G. McKay. The Beavers and Joseph condition for velocity slip at the surface
of a porous medium. In B. Straugham, R. Greve, and H. Ehrentraut, editors,

47



Continuum mechanics and applications in geophysics and the environment,
pages 126–139. Springer, Berlin, 2001.

[54] C. Michler, E. H. van Brummelen, and R. de Borst. An interface Newton-
Krylov solver for fluid-structure interaction. Internat. J. Numer. Methods
Fluids, 47(10-11):1189–1195, 2005.

[55] D. P. Mok, W. A. Wall, and E. Ramm. Accelerated iterative substructuring
schemes for instationary fluid-structure interaction, in Computational Fluid
and Solid Mechanics, K.J. Bathe (Ed.), pages 1325–1328. Elsevier, 2001.

[56] M. A. Murad, J. N. Guerreiro, and A. F. D. Loula. Micromechanical com-
putational modeling of reservoir compaction and surface subsidence. Math.
Contemp., 19:41–69, 2000.

[57] M. A. Murad, J. N. Guerreiro, and A. F. D. Loula. Micromechanical compu-
tational modeling of secondary consolidation and hereditary creep in soils.
Comput. Methods Appl. Mech. Engrg., 190(15-17):1985–2016, 2001.

[58] D. A. Nield and A. Bejan. Convection in porous media. Springer-Verlag,
New York, 1999.

[59] F. Nobile. Numerical Approximation of Fluid-Structure Interaction prob-
lems with application to Haemodynamics. PhD thesis, École Polytechnique
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t = 4 ms

t = 8 ms

t = 12 ms

Figure 10: Pressure solution every 4 ms in the fluid and in the rigid porous
structure.
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t = 4 ms

t = 8 ms

t = 12 ms

Figure 11: Propagation of the initial pressure pulse in the fluid and in the
poroelastic structure. Solution at every 4 ms.
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