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Abstract

An accurate, efficient and robust numerical method for the solution of
the section averaged equations of open channel flow is presented and dis-
cussed. The method allows for river sections of arbitrary shape and for
arbitrary bottom topography. The continuity equation is formulated in a
conservative fashion, while a non conservative form is chosen for the mo-
mentum equation, thus avoiding the need for well balanced schemes to
handle rapidly varying bathymetry. In order to achieve unconditional sta-
bility with respect to flow celerity, a semi-implicit time discretization is
introduced, which requires the solution of a weakly nonlinear system for
the free surface at each time step by a fixed point iteration technique.
A semi-Lagrangian discretization is introduced, to achieve full uncondi-
tional stability and increase efficiency at no accuracy loss in subcritical
flow regimes. An appropriate upwind discretization is also introduced for
the momentum equation, which allows to recover correct solutions also in
presence of discontinuities and strong gradients. Numerical experiments
show that the semi-Lagrangian method yields indeed accurate results also
in the case of stationary hydraulic jumps. The model is validated in a wide
range of idealised test cases, highlighting its accuracy and efficiency charac-
teristics, especially for long time range simulations of subcritical river flow.
Finally, a first model validation on realistic data is presented, concerning
simulations of flooding events of the Adda river.
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1 Introduction

Mathematical modelling of river flow is usually based on the vertically
averaged Saint-Venant equations, which can be written in one or two di-
mensions to express the conservation laws of mass and momentum for wa-
ter flow. The numerical solution of these equations has attracted great
attention in the last couple of decades. A review of numerical schemes for
these equations can be found for example in [23]. Since the Saint-Venant
equations are equivalent to the Euler equations of gas dynamics in the in-
viscid case, many numerical methods rely on the huge body of results on
nonlinear conservation laws for applications in high Mach/Froude number
regimes. The use of the fully conservative formulation is indeed necessary
for accurate simulations of hydraulic jumps and discontinuous solutions,
such as those that arise in dam break simulations. However, in presence
of strongly varying bathymetry, fully conservative formulations of the mo-
mentum equation need to be supplemented with special treatment of the
bathymetric source terms, which in some situations (e.g. still water) may
balance almost exactly the momentum flux. A number of results are now
available on well balanced schemes for the shallow water equations (see e.g.
[11], [19], [20], [21], [24], [26]), but application of these results to section
averaged models with arbitrarily shaped sections is not straightforward.

Furthermore, the numerical methods based on explicit, flux-form time
discretizations, must usually comply with CFL-type stability restrictions,
which require the use of relatively small time steps and increase substan-
tially the computational cost. This is especially true whenever long time
range river flow simulations have to be performed, which is often the case
in many important applications, such as those to the computation of river
flow scenarios including sediment transport models or based on long term
precipitation patterns.

For these reasons, in this paper we describe a semi-implicit method
that is unconditionally stable with respect to the flow celerity. Full uncon-
ditional stability is achieved by coupling to a semi-Lagrangian method for
the advective terms. Alternatively, since the semi-Lagrangian discretization
can produce inaccurate results in presence of unsteady shocks, an upwind
based scheme for momentum advection is also proposed, which is stable
under a generally milder CFL condition based on the flow velocity. The
semi-implicit, semi-Lagrangian method is based on the approaches pro-
posed in [6], [7], [18] for the two dimensional shallow water equations. In
these formulations, the momentum equation is not in full flux-form, but
expresses rather the hydrostatic pressure gradient as a function of the free
surface, thus avoiding the presence of bathymetric source terms and the
need for well balanced discretizations. Furthermore, these time discretiza-
tion approaches yield unconditionally stable numerical methods, whose time
step can be chosen based on accuracy considerations, rather than stability
restrictions related to the flow celerity. Similar applications of the semi-
implicit technique to one dimensional river flow had already been proposed
in [3], [8], but in those papers no extensive validation of the method was
presented and the numerical results only concerned rather low Courant
number cases.
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In previous implementations, this method has been used successfully
by some of the authors over the last ten years to carry out a wide range
of river hydraulics simulations. In particular, the method was used for
sediment transport simulations and river morphology studies, in which very
long time integrations had to be performed. The stable and accurate time
discretization technique allowed to reduce substantially the computational
costs, by employing time steps several times larger than those that would
have been feasible for standard explicit discretizations.

Another peculiarity of the method is that of being based on the section
averaged equations of river flow, thus allowing to handle arbitrarily shaped
sections and to recover some two dimensional information across each river
section at reduced computational cost. The use of arbitrarily shaped sec-
tions is also expected to allow for easier derivation of hybrid 1D-2D models
along the lines of [16], [17], which is one of the planned extensions of the
model presented here.

In this paper, the method is presented and validated for the case of fixed
bed flow, while the mobile bed case and the coupling to sediment transport
models will be considered in forthcoming works. In particular, our aim is to
emphasise the superior efficiency and robustness of the present approach,
which does not entail any essential loss in accuracy for the simulation of
subcritical and supercritical river flow regimes. For this purpose, the re-
sults obtained with the proposed methods have been compared to those
of more standard techniques, including explicit time discretization of the
same equations in fully conservative form.

In section 2, the model equations are introduced and discussed. In sec-
tion 3, two different methods for computing friction and Coriolis coefficients
are presented. In section 4, the numerical method is presented. In section 5,
the solution of the nonlinear system is described. In section 6, the model
results on a number of idealised test cases are presented, along with the re-
sults obtained by different numerical methods on the same tests. In section
7, we present the results of a first attempt at model validation based on real
data, in which flooding scenarios for the Adda river have been simulated.

2 The section averaged model equations for

open channel flow

The section averaged equations for fixed bed, free surface channel flow
can be written in conservative form (see e.g. [5])

∂Al

∂t
+
∂Ql

∂x
= 0, (1)

∂Ql

∂t
+

∂

∂x

(

β
Q2

l

Al
+ gI1

)

= gAl (S0 − Sf ) + gI2. (2)

Equations (1)–(2) express the conservation of liquid mass and momentum.
Here, Al denotes the area of the wet cross section, Ql the liquid discharge,
β the Coriolis averaging coefficient, I1 the first moment of the wet cross
section with respect to the free surface, I2 the spatial variation of the first
moment, S0 the bottom slope, Sf the friction slope (see figure 1 for a sketch
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Figure 1: Sketch of the generic river cross section and of the main model vari-
ables.

of the generic cross section). Terms S0, I1 and I2 depend on the channel
geometry and are defined by:

S0 = −∂zb

∂x
, (3)

I1 =

∫ h

0

(h− σ)b(x, σ)dσ, (4)

I2 =

∫ h

0

(h− σ)
∂b(x, σ)

∂x
dσ, (5)

where h = η − zb is the water depth, η and zb are the elevations of the
free surface and of the cross section lowest point above a fixed reference
level, respectively, b(x, σ) is the width-depth relationship. With simple
calculations it is possible to prove that

∂

∂x
(gI1) − gI2 + gAlS0 = gAl

∂η

∂x
. (6)

The Coriolis averaging coefficient β in the momentum conservation equa-
tion (2) takes into account the effects due to the two dimensional variability
of the local velocity u across the section and is defined by

β =
1

Al

∫

Al

u2

U2
da, (7)

where U = Ql/Al is the section averaged velocity. Assuming that the
average bottom friction τ̄0 is balanced locally by the gravity force ρgRhSf

(where Rh = Al/Cw is the hydraulic radius and Cw the length of the wet
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contour), the term −gAlSf can be rewritten as:

−gAlSf = − τ̄0
ρ
Cw. (8)

Furthermore, the bottom stress can be expressed as a function of liquid
discharge Ql using the Chézy–Tadini formula

τ̄0
ρ

= U |U | g
χ2

(9)

where χ is the Chézy roughness parameter; this yields

− τ̄0
ρ
Cw = −U |U | g

χ2
Cw = −g |U | Ql

χ2

Cw

Al
= −g |U | Ql

χ2
Rh = α1Ql (10)

where α1 = −(g|U |)/(χ2Rh). Substituting (6) and (10) into (2) it is possible
to write the quasi-conservative form of the momentum equation:

∂Ql

∂t
+

∂

∂x

(

β
Q2

l

Al

)

+ gAl
∂η

∂x
= −α1Ql. (11)

When an Eulerian discretization method is employed for momentum ad-
vection, equations (1) and (11) are discretized and solved.

For the purpose of the formulation of the semi-Lagrangian numerical
method, the momentum equation (11) is rewritten in advective form as

∂Ql

∂t
+ βU

∂Ql

∂x
+ gAl

∂η

∂x
= −(α1 + α2)Ql (12)

where α2 = ∂(βU)/∂x; for application of this numerical technique, equa-
tions (1) and (12) are discretized and solved. Both formulations can be
easily combined in a single numerical model, in which either option can be
chosen for the advective and frictional terms.

3 Computation of friction and Coriolis coef-

ficients

In general cases, bottom friction varies along the cross section due to dif-
ferent sediment characteristics and due to the presence of vegetation. This
can be represented by dividing each cross section into N subareas having
different local values of Chézy coefficient χj or of the Strickler coefficient Kj

(the label j refers to local values). A bulk friction coefficient is computed
for each cross section, accounting for variable roughness along the cross sec-
tion. Two different methods for computing such bulk roughness coefficient
are implemented: the Einstein–Horton method and the Lotter method. A
complete description of the two methods can be found in [9]. The former
performs better on compact cross sections, while the latter performs better
on non-compact cross sections. If the roughness is described by means of
local Strickler coefficient, the bulk coefficient K is computed first and then
the bulk Chézy coefficient is computed using the relation

χ = KR
1/6
h . (13)
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Figure 2: Division of the cross section into subareas using the Einstein-Horton
method (a) and the Lotter method (b).

In the Einstein–Horton method the cross section is divided into different
subareas having the same velocity U (see figure 2.a). By applying the
Chézy–Tadini formula (9) both locally on each subareas and globally on
the whole cross section, it is possible to formulate the following expression
for the bulk Chézy coefficient:

χ =

√

Cw
∑N

j=1 (Cw)j /χ
2
j

. (14)

In a similar manner, by applying both locally and globally the Strickler
formula

u = KR
2/3
h

√

Sf , (15)

it is possible to formulate the following expression for the bulk Strickler
coefficient

K =

[

Cw
∑N

j=1 (Cw)j /K
−3/2
j

]2/3

. (16)

In the Lotter method, the cross section is divided into subareas separated
by vertical lines and the hypothesis of having the same velocity in each
subarea is dropped. In this way the local and global application of the
Chézy–Tadini formula (9) leads to the following expression for the bulk
Chézy coefficient:

χ =

∑N
j=1 χj (Al)

3/2
j (Cw)

−1/2
j

A
3/2
l C

−1/2
w

. (17)

The local and global application of the Strickler formula (15) leads to the
following expression for the bulk Strickler coefficient:

K =

∑N
j=1 Kj (Al)

5/3
j (Cw)

−2/3
j

A
5/3
l C

−2/3
w

. (18)
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In both cases, the hydraulic radius is defined by Rh = Al/Cw. The Coriolis
averaging coefficient β is computed by the following discretization of (7):

β =
1

Al

N
∑

j=1

u2
j (Al)j

U2
. (19)

In the Einstein–Horton method uj = U , hence β = 1. In the Lotter method
uj 6= U , hence it is possible to compute β by substituting (9) and (15)
into (19) obtaining

β =

∑N
j=1 χ

2
j (Al)

2
j (Cw)−1

j

χ2A2
lC

−1
w

(20)

and

β =

∑N
j=1 K

2
j (Al)

7/3
j (Cw)

−4/3
j

K2A
7/3
l C

−4/3
w

, (21)

respectively.

4 The numerical method

Equations (1)–(12), or, alternatively, equations (1)–(11), are discretized
on a staggered computational grid, such that the liquid area and free sur-
face height are defined at the integer nodes xi, while the liquid discharge is
defined at the half integer nodes xi+1/2 = (xi +xi+1)/2. The node distribu-
tion is arbitrary and the node spacings are defined as ∆xi = xi+1/2−xi−1/2

and ∆xi+1/2 = xi+1 − xi, respectively.
The free surface gradients and the frictional terms in the momentum

equation are discretized in time by the ϑ-method. The nonlinear depen-
dence of these terms on η (through Al) and Ql, respectively, is linearised in
time by considering these quantities computed at time level n. As a result,
one obtains the discrete momentum equation

(Ql)
n+1
i+1/2 − Fi+1/2 [(Ql)

n]

+ ϑ∆tg(Al)
n
i+1/2

ηn+1
i+1 − ηn+1

i

∆xi+1/2

+ ϑ∆tαn
i+1/2(Ql)

n+1
i+1/2 = 0. (22)

Here, Fi+1/2 [(Ql)
n] denotes the sum of all terms discretized explicitly in

time. Furthermore, two different techniques are implemented for the in-
terpolation of the liquid area Al values at nodes i + 1/2: a quadratic in-
terpolation on an upwind biased stencil and an upwind weighted linear
interpolation of the form (Al)i+1/2 = p(Al)u + (1− p)(Al)d, where indexes
u and d refer to upwind and downwind points respectively. p is the upwind
weight that can be chosen depending on the typical Froude number. If the
semi-Lagrangian discretization is employed, this term is given by

Fi+1/2 [(Ql)
n] =

[

(Ql)
n
i+1/2 − (1 − ϑ)∆tg(Al)

n
i+1/2

ηn
i+1 − ηn

i

∆xi+1/2

− (1 − ϑ)∆tαn
i+1/2(Ql)

n
i+1/2

]

∗

(23)
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where [ · ]∗ denotes a quantity interpolated at the foot of the streamline
computed based on the velocity field βU. In the present work, a cubic
interpolation is used for the reconstruction of the momentum values at the
foot of the streamline. In case of the upwind discretization,

Fi+1/2 [(Ql)
n] = (Ql)

n
i+1/2 − ∆t

Fn
i+1 − Fn

i

∆xi+1/2

− (1 − ϑ)∆tg(Al)
n
i+1/2

ηn
i+1 − ηn

i

∆xi+1/2

− (1 − ϑ)∆tαn
i+1/2(Ql)

n
i+1/2, (24)

where Fi denotes the upwind based discretization of the momentum flux in
equation (11). Note that the definition of the effective friction coefficient
αi+1/2 changes according to the discretization method employed for the
momentum advection term (see remark at the end of the previous section).
Rearranging so as to solve for (Ql)

n+1
i+1/2 one obtains

(Ql)
n+1
i+1/2 =

Fi+1/2 [(Ql)
n]

(1 + αn
i+1/2ϑ∆t)

− ϑ∆t

∆xi+1/2

g(Al)
n
i+1/2

(1 + αn
i+1/2ϑ∆t)

(

ηn+1
i+1 − ηn+1

i

)

. (25)

Concerning the continuity equation, we consider the control volume i
comprised between the staggered momentum nodes i − 1/2 and i + 1/2;
integrating the continuity equation (1) over this control volume one obtains

(Vl)
n+1
i − (Vl)

n
i + ϑ∆t

[

(Ql)
n+1
i+1/2 − (Ql)

n+1
i−1/2

]

+ (1 − ϑ)∆t
[

(Ql)
n
i+1/2 − (Ql)

n
i−1/2

]

= 0 (26)

where (Vl)i denotes the liquid volume between nodes i − 1/2 and i+ 1/2.
It should be remarked that, if an arbitrary section shape is considered,
this quantity depends in a nonlinear fashion on the free surface value ηn+1

i .
Substituting now equation (25) in (26) one obtains

(Vl)
n+1
i − ϑ2∆t2

∆xi+1/2

g(Al)
n
i+1/2

(1 + αn
i+1/2ϑ∆t)

(

ηn+1
i+1 − ηn+1

i

)

+
ϑ2∆t2

∆xi−1/2

g(Al)
n
i−1/2

(1 + αn
i−1/2ϑ∆t)

(

ηn+1
i − ηn+1

i−1

)

= Bn
i (27)

where

Bn
i = (Vl)

n
i − (1 − ϑ)∆t

[

(Ql)
n
i+1/2 − (Ql)

n
i−1/2

]

− ϑ∆t

[

Fi+1/2 [(Ql)
n]

(1 + αn
i+1/2ϑ∆t)

− Fi−1/2 [(Ql)
n]

(1 + αn
i−1/2ϑ∆t)

]

. (28)

Equations (27) constitute a weakly nonlinear system that can be solved
after prescribing appropriate boundary conditions. In the subcritical regime,
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the characteristics of the hyperbolic system have opposite signs, so that a
condition on the discharge has to be specified at one boundary (usually
the inflow one) and a condition on the elevation or on the water depth has
to be specified at the other boundary (usually the outflow one). In the
supercritical regime, both the characteristics of the hyperbolic system are
positive, so that a condition on the discharge and a condition on the sur-
face elevation or on the water depth have to be imposed at the upstream
inflow boundary. This is consistent with the analysis carried out in [10] for
the mobile bed case. Once boundary conditions have been assigned, this
nonlinear system can be rewritten in vector notation as

Vl(η) + Mη = b. (29)

Here, η denotes a vector unknown whose components are the values ηn+1
i ,

Vl(η) denotes a vector valued function whose components are the liquid
volumes (Vl)

n+1
i , M is a symmetric tridiagonal matrix and the components

of the right hand side b are given by the terms Bn
i .

5 Solution of the nonlinear system

The numerical method described in the previous sections requires, at
each time step, the solution of the weakly nonlinear system (29). Along the
lines of [4], [13], it can be shown that, under mild regularity assumption
on the functions Vl(η)i, this system admits a unique solution that can be
computed by a fixed point method. More specifically, we will require that
Vl(η)i, is given for each i by a Lipschitz continuous function of η. This is
a reasonable assumption, since it amounts to require that the liquid area
Al = ∂(Vl)i/∂η is bounded, i.e. the flow is always contained in the river
bed and no flooding of an infinitely large river bank is taking place. Under
this hypothesis, it is easy to verify that the fixed point iterations

Mη
(k+1) = b−Vl(η

(k))

η
(0) = η

n (30)

converge to the solution of (29) provided that

∣

∣

∣

∣M−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂Vl

∂η

∣

∣

∣

∣

∣

∣

∣

∣

< 1

is satisfied, where || · || denotes the discrete `2 norm and the index k denotes
the generic iteration step. Since M depends on the time step, this condition
is always satisfied for sufficiently small ∆t. Furthermore, in order to speed
up convergence of the fixed point iterations, we introduce a slightly modified
fixed point problem. We define V′

l(η) = diag(∂(Vl)1/∂η, · · ·∂(Vl)N/∂η)
and reformulate (30) as

[

M + V′

l(η
(0))

]

η
(k+1) = b−Vl(η

(k)) + V′

l(η
(0))η(k)

η
(0) = η

n. (31)
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It is immediate that also the limit of (31) is a solution of (29), while the
sufficient condition for its convergence is now relaxed to

∣

∣

∣

∣

∣

∣

∣

∣

[

M + V′

l(η
(0))

]

−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

V′

l(η
(0)) − ∂Vl

∂η

∣

∣

∣

∣

∣

∣

∣

∣

< 1.

6 Model validation: idealised tests

In order to validate the numerical model described in the previous sec-
tions, a number of numerical tests have been carried out, concerning either
benchmark cases with analytic solutions or idealised versions of problem of-
ten encountered in practice. In general, the ϑ parameter of the semi-implicit
time discretization was taken equal to 0.6. All the tests were performed us-
ing both the semi-Lagrangian method and the Eulerian method using the
upwind scheme for the discretization of the momentum advection. Courant
numbers based on velocity and celerity are defined as

Cvel =
|βU |∆t

∆x
, Ccel =

(|βU | +
√
gh)∆t

∆x
.

The time discretization step ∆t is chosen for each time level so as to yield an
assigned maximum value of Cvel; for the semi-Lagrangian method, values
larger than one were generally chosen.

In those simulations aimed at reproducing a steady state solution, con-
vergence to steady state was considered to be achieved based on the crite-
rion

‖ηn+1 − ηn‖
‖ηn+1‖ < ε,

where ‖ · ‖ denotes the discrete `2 norm and ε is a tolerance parameter.
Friction and Coriolis coefficients were computed using the Einstein–Horton
method in all the tests where a rectangular cross section was considered
and using the Lotter method in the test where an arbitrary non-compact
cross section was considered.

In the first test, a dam break problem was considered in order to high-
light the limitations of the semi-Lagrangian method for shock wave prop-
agation. As expected from the theory (see e.g. [14] and the references
therein), the position of the shock is not correctly captured by the non con-
servative semi-Lagrangian scheme. On the other hand, when using the up-
wind scheme for the momentum advection terms and the quasi-conservative
formulation given by equations (1) and (11), the correct propagation speed
was obtained. Furthermore, in all the other tests performed, even in pres-
ence of strong hydraulic jumps, the semi-Lagrangian scheme yields results
that are very close, both qualitatively and quantitatively, to those of the
upwind method, while reducing substantially the computational cost; for
this reason, for these tests only the results of the semi-Lagrangian method
are presented. Moreover, in all the tests, apart from the dam break and the
tidal wave test, the liquid area is interpolated in points i + 1/2 by means
of an upwind biased quadratic interpolation.
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Figure 3: Dam break test: Free surface elevation 10 s after the dam break event.

6.1 Dam break in a channel with rectangular cross sec-

tion

A dam break event in a rectangular section channel with frictionless bed
is considered in this test. The domain is discretized into 1 001 uniformly
spaced sections with ∆x = 1 m. The initial conditions prescribe null dis-
charge and a water depth equal to 100 m behind the dam and equal to 1 m
past the dam. The boundary conditions prescribe a null discharge at the
inflow boundary and a constant water depth of 1 m at the outflow bound-
ary. A 10 s simulation is performed. As the dam breaks down, a shock wave
and a rarefaction wave start to travel in opposite directions with celerity
u±

√
gh (see e.g. [22]). This is a challenging test for the model, since nei-

ther the equation formulation nor its numerical approximation are in fully
conservative form.

Both the upwind and the semi-Lagrangian method are used in this test.
For this test the liquid area is interpolated in points i+1/2 by means of an
upwind weighted interpolation with weight p = 0.9. The upwind scheme is
used with Cvel = 0.5 and Ccel = 0.8 in order to achieve a stable and correct
numerical solution. The semi-Lagrangian method is used with values of
Cvel up to 0.8 and Ccel up to 1.6. The free surface elevations computed
by the two different discretizations are presented in figure 3 and compared
to the analytical solution. As expected, the semi-Lagrangian method fails
in predicting the correct amplitude and speed of the shock wave, while for
the upwind scheme both wave speed and amplitude are in good agreement
with the analytical solution.
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Figure 4: Subcritical flow over a bump: free surface elevation.

6.2 Steady flow over a bump in a rectangular section

channel: inviscid case

The steady flow over a parabolic bump has also been considered. This is
a classical test problem considered by various authors ([11], [12], [24], [26]);
moreover, exact solutions can be computed using the Bernoulli theorem
and the principle of momentum conservation. A 25 m long and 1 m wide
channel with rectangular section is considered; the bottom topography is
given by:

zb(x) =

{

0.2 − 0.05(x− 10)2 8 < x < 12

0 otherwise
(32)

In these tests, no frictional effect is considered. The flow is considered in
either subcritical regime or in transcritical regime, with or without a steady
shock. The boundary conditions for the three regimes are:

• subcritical flow
inflow: Ql = 4.42 m3/s, outflow: h = 2 m

• transcritical flow with a steady shock
inflow: Ql = 0.18 m3/s, outflow: h = 0.33 m

• transcritical flow without shock
inflow: Ql = 1.53 m3/s, outflow: h = 0.66 m (only when the flow is
subcritical)

In figures 4–6, the computed free surface elevations are compared to the ex-
act solutions. The tolerance for the steady state is ε = 10−5 and the space
discretization is ∆x = 0.25 m. In the case of subcritical flow Cvel = 1.5 is
used, corresponding to a maximum celerity Courant number Ccel = 4.1; in
the case of transcritical flow with a steady shock Cvel = 2.0 is used, cor-
responding to a maximum celerity Courant number Ccel = 3.6; in the case
of transcritical flow without a shock Cvel = 0.6 is used, corresponding to

13



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  5  10  15  20  25

B
ed

 a
nd

 S
ur

fa
ce

 E
le

va
tio

n 
(m

)

x (m)

exact
computed

Figure 5: Transcritical flow over a bump in presence of a shock: free surface
elevation.
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Figure 6: Transcritical flow over a bump in absence of a shock: free surface
elevation.
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Figure 7: Subcritical flow over a bump with friction: free surface elevation.

a maximum celerity Courant number Ccel = 1.0. These tests demonstrate
the capability of the method to capture the exact solution even in the cases
of transcritical regimes with or without a steady shock, in spite of being
based on the non-conservative form of the Saint-Venant equations.

6.3 Steady flow over a bump: frictional effects

In these tests the steady flow over a sinusoidal bump with friction is
considered. The inclusion of bottom inclination and friction makes these
tests closer than the previous ones to the situations actually encountered in
river hydraulics. Also in these cases, exact solutions can be computed using
Bernoulli theorem and the conservation of momentum principle. A 50 m
long and 10 m wide channel with rectangular cross section is considered.
The bed profile is described by:

zb(x) = 0.5 + 0.001x+

{

hb cos2
(πx

10

)

−5 < x < 5

0 otherwise
(33)

where hb is the bump height. In the present tests the bed inclination
without considering the bump is 0.1% and the Chézy roughness parameter
is taken to be constant and equal to 20 m1/2 s−1. A constant discharge of
50 m3/s is imposed at the inflow boundary, while a constant water depth
of 5 m is imposed at the outflow boundary. Two different bump heights are
considered: hb = 2 m and hb = 4 m. In the first case the flow is subcritical,
while in the second case a transcritical flow with a steady shock is obtained.
In figures 7 and 8 the results are compared to the exact solutions. The
tolerance for the steady state is ε = 10−7. In the case of subcritical flow
Cvel = 10 is used, corresponding to a maximum celerity Courant number
Ccel = 48; in the case of transcritical flow with a steady shock Cvel = 1.9
is used, corresponding to a maximum celerity Courant number Ccel = 3.1.
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Figure 8: Transcritical flow over a bump with shock and friction: free surface
elevation.

In both cases the agreement between exact and computed solution is very
good. This tests demonstrate the capability of the method to describe
frictional effects and to cope with large Courant numbers that allow a
reduction of the computational costs.

6.4 Tidal wave in a short channel with variable depth

and width

In this test the propagation of a tidal wave into a short channel with
depth and width variations is considered. In [24] an asymptotic solution
for Fr → 0 is presented. Provided that the water depth h and the discharge
per unit width ql satisfy the boundary condition:

h(0, t) = ϕ(t) + H(0) (34)

ql(L, t) = ψ(t) (35)

where ϕ and ψ are given functions of time and H is a reference level, the
asymptotic solution for Fr → 0 is:

h(x, t) = ϕ(t) + H(x) (36)

ql(L, t) = ψ(t) +
ϕ′(t)

b(x)

∫ L

x

b(s)ds (37)

where b(x) is the width of the rectangular channel and is a function of the
x coordinate only. In this test we consider

ϕ(t) = 4 + 4 sin

[

π

(

4t

86 400
− 1

2

)]

(38)

ψ(t) = 0. (39)
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Figure 9: Tide in a short channel: free surface elevation and bathymetry.
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Figure 10: Channel width for tidal channel test case.
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Figure 11: Tide in a short channel: discharge per unit width at time t = 10 800 s.
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Figure 12: Tide in a short channel: discharge per unit width at time t = 32 400 s.
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Figure 13: Flood wave in a channel with flood plains: computed free surface
elevation at different time instants in the 11th section (x = 100m).

This corresponds to a tidal wave of 8 m amplitude and to a null discharge at
x = L. Moreover, the channel length is L = 1 500 m, the Manning friction
coefficient is n = 0.1 s m−1/3, the bottom profile and width functions are
those proposed in [24] and represented in figures 9 and 10, respectively.
The space discretization step is ∆x = 7.5 m. These data correspond to the
simulation presented in [19], [20] and [24]. Since the channel geometry is
described by piecewise linear functions, the liquid area is interpolated at
points i + 1/2 by means of a linear interpolation, thus using the upwind
weighted interpolation with weight p = 0.5. The results are compared
to the asymptotic solution at two time instants: t1 = 10 800 s which
corresponds to the half-risen tide and the maximum positive velocities and
t2 = 32 400 s which corresponds to the half-ebb tide and the maximum
negative velocities. In figures 9 and 11, the free surface elevation and the
discharge per unit width at time t1 = 10 800 s are presented. The free
surface elevation at time t2 = 32 400 s is identical to that presented in
figure 9; in figure 12 the discharge per unit width at time t2 = 32 400 s is
presented. The agreement between exact and computed solution is always
very good. During the simulation the maximum Courant number based on
the velocity was 1.06 while the maximum Courant number based on the
celerity was 98 corresponding to a time step ∆t = 62 s; this time step is
much larger than those used in [19], [20] and [24]. This test demonstrates
the capability of the present method to give accurate results with time steps
much larger than those used in traditional explicit schemes.

6.5 Flood wave in a channel with idealized flood plains

In this test, a channel is considered whose cross section is composed of
a deeper main channel (thalweg) surrounded by two shallower flood plains.
This represents an idealization of the flood plains actually encountered in
many natural rivers. The bed inclination is 0.01%. The Chézy roughness
parameter varies along the section being 30 m1/2 s−1 in the thalweg and
20 m1/2 s−1 in the flood plains. The domain is discretized into 1 001 uni-
formly spaced sections with ∆x = 10 m. The initial conditions prescribe a
discharge of 6.95 m3 s−1 in the entire domain and a uniformly inclined sur-
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Figure 14: Flood wave in a channel with flood plains: discharge at the inflow
and outflow sections.

face parallel to the river bed. A flood wave with maximum water discharge
of 150 m3 s−1 is imposed at the inflow boundary x = 0; the maximum dis-
charge is reached in 1 hour and in the following hour the discharge returns
to the uniform value 6.95 m3 s−1 as shown in figure 14. At the outflow
boundary x = 10 000 a constant water depth h = 3 m is imposed.

The simulation is run to steady state (ε = 10−7) using Cvel = 1.5.
The steady state is reached in 54 693 s (3 758 time steps). The maximum
Courant number based on the celerity is 22, corresponding to a time step
∆t = 37 s. As the flood wave proceeds, the thalweg is filled and the
flood plains are flooded. The flooding of the 11th section (x = 100 m) is
presented in figure 13. The Coriolis averaging coefficient β computed on
the basis of the Lotter method is 1.04 when the water is entirely into the
thalweg and reaches values up to 1.20 when the water is outside the thalweg,
thus highlighting the importance of the section averaged formulation to
capture some two dimensional effects. In order to evaluate the conservation
properties of the method, the mass balance has been computed. At the end
of the simulation the total mass loss is 31 m3, corresponding to 0.017% of the
initial mass in the domain. This good result is achieved because the mass
conservation equation is discretized by means of a conservative finite volume
scheme and because the nonlinear dependence of the section liquid area on
the free surface elevation has been taken into account (see section 5). The
same simulation has been also performed without considering this nonlinear
dependence of the system (thus considering a linearised expression of V (η))
and produced a total mass loss of 1 197 m3. corresponding to 0.664% of the
initial mass in the domain. Finally, in figure 14 the discharges at the inflow
and outflow boundaries are presented. The attenuation of the flood wave
due to the flooding of the flood plains surrounding the thalweg is clearly
displayed.
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Figure 15: The Adda River basin.

7 Model validation: simulation of flooding

events for the Adda River

In this section, we will present results on the simulation of flooding
scenarios for the Adda River, which demonstrate the model effectiveness
in a more realistic framework. The Adda River is located in the northern
Italian region of Lombardy, see figure 15. It is the second largest contributor
to the Po river and its basin amounts to approximately 11% of the Po
river basin. The major water inflow is provided by the Como lake, but
the contributions of the smaller Brembo and Serio tributaries can also be
significant in general. Furthermore, the Martesana channel is derived from
the Adda river approximately at the same point of the Brembo confluence.
In our study, we have only considered the river tract downstream of the
Como lake until Pizzighettone, see figure 16. This part of the river is about
115 km long and is comprised between Lavello and the Po river junction,
located 16 km downstream of Pizzighettone. This choice was motivated by
the availability of measurements at some of these locations.

The river has been described by means of 222 cross sections, shown
in figure 17, where x denotes the distance from Lavello along the thalweg
and the cross sections have been aligned with the centre of the coordinate
system. The depth measurements along these sections were carried out
by ADBPO (River Po Basin Authority) and are described in [1]. These
cross sections are approximately 400 m apart from each other. Since the
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Figure 16: The hydrographic network including the Adda River. The most
relevant measurement stations are highlighted.
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Figure 17: Cross sections describing the Adda River between the Como Lake
and the junction with the Po River.

present implementation of the model cannot handle channel networks, we
have only considered so far 171 sections describing the river between the
Brembo–Martesana junction and Pizzighettone. The contribution of the
Serio tributary has been neglected in this study. In this part of the river,
the average yearly discharge is approximately Ql = 100 m3 s−1 and the
average slope is approximately 0.13%. Several bridges and other manufacts
are present along the river, which have only been accounted for via their
impact on the cross section geometry.

Semi-Lagrangian method

Cross section [Km] Absolute error [m] Relative error [-]

196.96 0.002 0.0004
200.81 0.21 0.042
202.18 1.28 0.42
207.98 0.92 0.16
219.81 0.52 0.12
219.84 1.03 0.22
232.23 0.20 0.03
232.75 0.58 0.05
233.33 0.61 0.07
244.80 0.52 0.05
259.50 0.20 0.02

‖ · ‖2 0.096

‖ · ‖∞ 0.12

Table 1: Absolute and relative errors on maximum water levels for the semi-
Lagrangian scheme, Cvel = 3

A key aspect in providing a realistic description of the river is the esti-
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mation of the friction coefficients. These have been computed as described
in section 3, starting from assigned local values of the Strickler coefficient
along the cross sections. In particular, the Einstein–Horton method was
used. These local Strickler coefficient values were expressed in terms of
the Manning coefficient n = 1/K. For the estimate of the Manning coeffi-
cient, different approaches have been used for the deepest part of the cross
sections, which are generally below the water surface in ordinary flow condi-
tions, and for the flood plains, which are only flooded in case of exceptional
events. For the deeper portions of the river cross sections, we have used
the empirical Cowan formula n = n0 + n1 (see e.g. [9] for the description
of this and other empirical formulae commonly used in these applications).
Here, n0 only depends on the typical sediment size in the river bed and
n1 on the presence of vegetation. We have neglected terms depending on
section irregularities, cross section occlusions and river sinuosity, which are
sometimes also included in the Cowan formula. In order to estimate n0,
the Keulegan formula

n0 = 0.0395d
1/6
50 (40)

was used (see e.g. [25]), where d50 is the median diameter of the sedi-
ment (expressed in meters). The data available to ADBPO showed that
this parameter varies between 0.06 m close to Lavello to 0.005 m close to
the confluence into the Po River. For the purpose of the present work,
linear interpolation along the thalweg between these two values has been
assumed to compute d50 values on each section. In the permanently wet
areas, the parameter n1 expressing dependence on vegetation was taken to
be constant along each cross section and taking values comprised between
n1 = 0.005 m−1/3s (modest vegetation cover) and n1 = 0.01 m−1/3s (large
vegetation cover). For the flood plains, different values of the Manning
coefficients have been considered, depending on the land use, which was
identified on the basis of aerial survey data available in [1]. For urban
and industrial areas, we used the value n = 0.025 m−1/3s, while we used
the value n = 0.035 m−1/3s for areas with agricultural use or with modest
vegetation cover. For areas with dense vegetation, instead, the formula

n =
√

n2
so + n2

veg was used, where nso is the Manning coefficient for bare

soil and

nveg = nso

√

1 +
Λν

2g

1

nso
R

1/3
h (41)

where Λν = Ap/axay, Ap denotes the average plant cross section area, ax

is the average distance between plants in the direction of the main river
flow, ay the average distance between plants in the direction perpendicular
to the main flow.

Following the same approach of [2], two sets of simulations have been
performed: firstly, a calibration run was carried out, in order to identify
values of the friction coefficients that allowed to reproduce as accurately as
possible water level measurements concerning a recent flood. Using these
values for the friction coefficients, a validation run was then carried out,
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which shows how the model correctly reproduces hydrological estimates of
flooding events with specified return times.

The discharge and water level data available for the November 2002
flood were used for a first model calibration. The data we used were recov-
ered from the measurements available for the time period between Novem-
ber 20th and December 2nd 2002 reported in [2]. In the simulation we
performed, the initial datum was given by a steady state profile computed
on the basis of the energy balance equation (see e.g. [9]) assuming a dis-
charge of Ql = 727 m3 s−1 and a water depth at the outflow of 7.2m. These
values correspond to the initial value of the discharge and water level time
series at the upstream and downstream boundaries, respectively, see figure
18. The Manning coefficient values in the deeper parts of the river sections
were used as calibration parameters, within the bounds reviewed above.
As in previous studies carried out by ADBPO (see [2]), the calibration was
aimed at minimizing the difference between computed and measured values
for the maximum water levels achieved at 11 specific river locations. Some
of these do not correspond to the cross sections used in the numerical sim-
ulation, so that the computed water levels were then linearly interpolated
at the appropriate location. The simulation was carried out with different
time steps, yielding a range of velocity Courant numbers comprised be-
tween Cvel = 0.8 and Cvel = 3. The water level errors obtained with the
semi-Lagrangian and upwind advection schemes are reported in tables 1
and 2, respectively. It can be observed that both schemes yield accurate
results on most of the sections for which measured flood data are available,
demonstrating the effectiveness of the semi-implicit, semi-Lagrangian ap-
proach in reducing the computational cost while maintaining the same level
of accuracy as explicit schemes. Indeed, these results are entirely analogous
to those of the simulations reported in [2], which were obtained with a fully
explicit, flux-form discretization. Larger errors, however, are still present
in some of the measured sections. These are related to the fact that the
presence of artificial manufacts such as bridges was not fully accounted for
in our simulation.

In a second set of model runs, the Manning coefficient values resulting
from the calibration on the November 2002 flood were used to simulate
flooding scenarios, based on synthetic hydrograms (discharge time series)
computed by hydrological estimation for the river Adda. These datasets
represent flood events with assigned return times, reconstructed on the ba-
sis of the available time series of rainfall and discharge data keeping into
account the geomorphology of the river basin. The synthetic hydrograms
for the Adda river we used are reported in [2] and were derived using the
methodology proposed in [15]. An example of the discharge profiles at the
upstream boundary is shown in figure 20. In the simulation we performed,
these data were used as upstream boundary conditions, while the computed
results are compared with analogous hydrological estimates at sections fur-
ther downstream. The downstream boundary was placed in this simulation
approximately 10 km downstream of the Pizzighettone section used in the
calibration run. The hydrograms computed at two different locations by
the semi-Lagrangian method with Courant number 2 for return times of 20
and 200 years are compared with the hydrological estimates in figures 21

25



Upwind

Cross section [Km] Absolute error [m] Relative error [-]

196.96 0.002 0.0004
200.81 0.22 0.042
202.18 1.27 0.42
207.98 0.92 0.16
219.81 0.34 0.08
219.84 0.85 0.18
232.23 0.37 0.06
232.75 0.46 0.04
233.33 0.48 0.05
244.80 0.62 0.06
259.50 0.29 0.04

‖ · ‖2 0.091

‖ · ‖∞ 0.12

Table 2: Absolute and relative errors on maximum water levels for the upwind
scheme, Cvel = 0.8
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Figure 18: (a) Discharge time series for the upstream boundary condition; (b)
water level time series for the downstream boundary condition.
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Figure 19: Comparison of computed (dotted line) and measured (crosses) max-
imum water levels. The continuous line represents the thalweg bottom height.
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Figure 20: Synthetic hydrograms at the upstream boundary of the computa-
tional domain for floods with return times T = 20 years and T = 200 years.

and 22, respectively. It can be observed that the peak values are correctly
reproduced in amplitude. Away from the peak, the computed values are
slightly larger than the hydrological estimates. This effect is due indeed
to a slight underestimation of the discharges in the hydrological estimates,
which was also observed in the analogous simulations presented in [2] and
computed with an explicit, flux-form method.

8 Conclusions

An efficient and robust numerical method for the solution of the section
averaged equations of open channel flow has been presented and discussed.
The use of a semi-implicit, semi-Lagrangian time discretization technique
based on the approaches proposed in [6], [7], [8], [18] for the two and three
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Figure 21: Comparison between numerically computed and statistically sim-
ulated hydrograms for a return time of 20 years at (a) Serio confluence (b)
Pizzighettone.
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Figure 22: Comparison between numerically computed and statistically sim-
ulated hydrograms for a return time of 20 years at (a) Serio confluence (b)
Pizzighettone.
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dimensional shallow water equations yields an unconditionally stable nu-
merical method, whose time step can be chosen based on accuracy consid-
erations, rather than stability restrictions. The stable and accurate time
discretization technique allows to reduce substantially the computational
costs, by employing time steps much larger than those used with standard
explicit discretizations. In the same context, also an upwind discretization
for the momentum equation has been introduced. Furthermore, the method
is based on the section-averaged equations of river flow, thus allowing to
handle arbitrarily shaped sections and to recover some two dimensional
information across the available sections.

A wide range of benchmarks relevant for river hydraulics applications
has been computed, along with a more realistic application to simulation
of flooding scenarios for the river Adda. The results obtained in these
tests show that the method is capable of achieving results entirely analo-
gous to those of more conventional explicit, flux-form discretizations, while
achieving a remarkably superior computational efficiency. The robustness
and efficiency characteristics of the method make it especially appealing
for computationally intensive simulations. In particular, an extension of
the present method to the mobile bed case is presently being developed, to
be used for sediment transport simulations and river morphology studies.
Finally, it is planned to extend the present model to a hybrid 1D-2D model
along the lines of [16], [17], exploiting the model capability of handling
arbitrarily shaped sections.
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