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Abstract

In this article we design new partitioned procedures for fluid-structure
interaction problems, based on Robin-type transmission conditions. The
choice of the coefficient in the Robin conditions is justified via simplified
models. The strategy is effective whenever an incompressible fluid interacts
with a relatively thin membrane, as in haemodynamics applications. We
analyze theoretically the new iterative procedures on a model problem,
which represents a simplified blood-vessel system. In particular, the Robin-

Neumann scheme exhibits enhanced convergence properties with respect to
the existing partitioned procedures. The theoretical results are checked
using numerical experimentation.
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1 Introduction

In the last three decades, there has been an increasing interest in the simulation
of fluid-structure interaction (FSI) problems that appear in several engineering
and life science applications. We consider in this work the situation of an in-
compressible Newtonian fluid interacting with a relatively thin structure. Such
situation appears for instance in hemodynamics applications when studying the
interaction between blood and arterial wall. The numerical approximation of
this type of heterogeneous systems is challenging. They are coupled and highly
nonlinear problems with the following peculiarities:

1. The position of the fluid-structure interface is an unknown of the coupled
problem. It introduces a geometrical nonlinearity.

2. The convective term of the fluid problem is nonlinear and, in case of using
an ALE formulation (introduced in Sect. 2), also depends on the velocity
of the fluid domain.

3. The fluid and structure subproblems are coupled through transmission
conditions which state the continuity of velocity and normal stresses on
the fluid-structure interface.

In this paper, we focus on algorithms based on subsequent solutions of
fluid and structure sub-problems (partitioned procedures). Every sub-problem is
solved separately, allowing the reuse of existing codes/methods. This is the main
reason why partitioned procedures are so popular, see, e.g, [16, 2, 14, 10, 13].

In order to enforce continuity of velocity and normal stresses at the interface
(condition (3)) one could consider loosely coupled strategies, which solve the
fluid and the structure only once (or just few times) per time step and do not
satisfy exactly the coupling transmission conditions. As a consequence, the work
exchanged between the two sub-problems is not perfectly balanced and this may
induce instabilities in the numerical scheme. For example, it was shown in [3]
(see also [9]) that an explicit coupling is unstable in those applications where
the added mass effect is important, as in hemodynamics. Alternatively, one can
treat implicitly (strongly) the coupling conditions at each time step, leading to
a fully coupled, monolithic system of nonlinear equations. Several strategies
have been proposed to solve such monolithic problem. In particular, one could
consider Picard or Newton iterations over the nonlinear FSI system, to handle
both nonlinearities (1) and (2) (implicit strategy, see, e.g., [14, 8]), or treat the
interface position and the convective term in an explicit way by extrapolation
from previous time steps (semi-implicit algorithm, see, e.g., [7, 15, 1]). In this
way, no iterations are needed within each time step.

Whatever strategy is adopted, a sequence of linearized FSI problems (im-
plicitly coupled through condition (3)) has to be solved. Each of these problems
can then be solved in a partitioned way via sub-iterations between the fluid
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and structure sub-problems until convergence. Several iterative procedures have
been investigated so far, see e.g. [12, 5, 13]. In all these approaches, the work
exchanged between the two sub-problems is perfectly balanced in each time step
and the numerical scheme is stable. The price to pay is a relatively large number
of sub-iterations, particularly in those cases where the added mass is important.
Up to now, the computational cost remains extremely high.

The need to reduce the computational cost for those fluid-structure sim-
ulations where it is necessary to treat implicitely the transmission conditions
has motivated this work. In particular, we start from the Dirichlet-Neumann

(DN) partitioned procedure, in which the fluid problem is solved with a Dirichlet
boundary condition at the interface (the structure velocity at the previous sub-
iteration) and the structure with a Neumann boundary condition at the inter-
face (the fluid normal stress just computed). This is the standard nomenclature
for partitioned procedures: the first kind of transmission conditions refers to
the fluid sub-problem while the second one refers to the structure sub-problem.
This scheme is very easy to implement, yet, as shown in [3], it often needs a
large relaxation to converge and a quite high number of iterations when fluid
and structure densities are comparable.

This paper proposes new partitioned procedures based on Robin transmis-
sion conditions (linear combinations of the Dirichlet and Neumann transmission
conditions), applicable to those FSI problems where the fluid and the struc-
ture have the same spatial dimension (say d = 2, 3). We introduce the general
Robin-Robin algorithm, which generates a whole family of partitioned proce-
dures that includes the classical DN and other new algorithms, such as the
Robin-Dirichlet (RD), the Robin-Neumann (RN), the Dirichlet-Robin (DR) and
the Neumann-Robin (NR) schemes. At the algebraic level, all these algorithms
can be interpreted as suitable block Gauss-Seidel iterations on the monolythic
FSI system.

The use of Robin trasmission conditions is motivated by introducing simpli-
fied models for the fluid and the structure (see [3, 15]). In particular, in [15]
a simple membrane model for a thin (d − 1)−dimensional structure has been
derived, under the assumption of normal displacements. It was shown that this
model can be embedded into the fluid problem leading to a Robin boundary
condition. Hence, the original FSI problem is reduced to a single fluid prob-
lem. For FSI problems in which the structure is d-dimensional, the previous
considerations motivate the construction of iterative procedures based on Robin
transmission conditions applied to the fluid sub-problem. The simplified model
introduced in [15] also provides an estimate for the coefficient appearing in the
Robin condition.

On the other hand, in [3] a simplified fluid model was considered, based on the
assumption of inviscid fluid. It was shown that this model can be embedded into
a (d−1)-dimensional structure equation, by introducing a suitable “added mass”
operator. In this work we consider the case of a d dimensional structure and show
that this embedding procedure leads to a generalized Robin boundary condition.
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Upon approximating the added-mass operator with a multiple of the identity
operator, the previous condition reduces to a “standard” Robin condition. This
motivates the construction of iterative procedures based on Robin trasmission
conditions applied to the structure sub-problem, as well. Again, the simplified
model introduced in [3] also provides an estimate for the coefficient appearing
in the Robin condition.

We study the convergence of the RD and RN strategies on the model FSI
problem proposed in [3] and extend the results given in [3] for the DN scheme.
In particular, we provide the range of the relaxation parameter for which conver-
gence is guaranteed. This theoretical analysis allows us to compare the efficiency
of the different schemes and to understand the dependence of the convergence
on different physical and numerical parameters. Our results indicate that, un-
like the DN strategy, the RN scheme converges always without relaxation and
independently of the added-mass effect.

Our preliminary numerical results presented in Sect. 6 show that the Robin-
Neumann scheme features excellent convergence properties in comparision to
the classical Dirichlet-Neumann approach. Moreover, the results confirm that
convergence is almost independent of the added-mass effect. For these reasons
we propose the Robin-Neumann scheme as a valid alternative to the Dirichlet-
Neumann scheme for problems where the added-mass effect is significant. Among
the other schemes, the Robin-Robin algorithm features even better convergence
properties provided that the coefficient appearing in the Robin condition for
the structure is properly chosen; the Dirichlet-Robin scheme features the same
properties of the DN, while the Robin-Dirichlet and the Neumann-Robin scheme
are very slow.

The outline of the paper is as follows. In Sect. 2 we introduce the fluid-
structure interaction problem at the continuous level. In Sect. 2.1 we provide
a suitable time discretization of the problem. In Sect. 3 we introduce the
classical Dirichlet-Neumann and the new Robin-Robin partitioned procedures.
Sect. 3.1 and 3.2 are devoted to the two simplified models used to provide
suitable coefficients for the Robin boundary conditions. In Sect. 4 we introduce
the algebraic counterpart of the FSI problem and we interpret the partitioned
procedures as a block Gauss-Seidel iterative solver. The convergence analysis
of the DN, RN and RD schemes is carried out in Sect. 5. A meaningful set of
numerical experiments are presented in Sect. 6, that confirm all the theoretical
results obtained in Sect. 5. Finally, in Sect. 7 we draw some conclusions.

2 Problem setting

Let us consider an heterogeneous mechanical system which covers a bounded
and moving domain Ωt ⊂ R

d (d=2, 3, being the space dimension), where t here
denotes time. This domain is divided into a sub-domain Ωt

s occupied by an elastic
structure and its complement Ωt

f occupied by the fluid. The fluid-structure
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interface Σt is the common boundary between Ωt
s and Ωt

f , i.e. Σt = ∂Ωt
s ∩ ∂Ωt

s.

Furthermore, nf is the outward normal to Ωt
f on Σt and ns = −nf is its

counterpart for the structure domain. The initial configuration Ω0 at t = 0 is
considered as the reference one.

In order to describe the evolution of the whole domain Ωt we define two
families of mappings:

L : Ω0
s × (0, T ) −→ Ωt

s, (x0, t) 7→ x = L(x0, t)

and
A : Ω0

f × (0, T ) −→ Ωt
f , (x0, t) 7→ x = A(x0, t).

The map Lt = L(·, t) tracks the solid domain in time and At = A(·, t) does
the same with the fluid domain. The combination of these two mappings define
an homeomorphism over Ωt under the following continuity condition on the
interface:

Lt = At on Σt, ∀t ∈ (0, T ). (1)

We adopt a purely Lagrangian approach to describe the structure kinematics.
Therefore, the solid mapping is straightforwardly determined by

Lt(x0) = x0 + η̂(x0, t),

where η̂ denotes the displacement of the solid medium with respect to the ref-
erence configuration.

The fluid problem is stated in an Arbitrary Lagrangian-Eulerian (ALE)
framework (see e.g. [11, 6]). The fluid domain mapping At is defined by an
appropriate extension of its value on the interface, which is given by condition
(1):

At(x0) = x0 + Ext(η̂(x0, t)|Σ0). (2)

A classical choice is to consider a harmonic extension operator in the reference
domain. In general, this mapping does not track the fluid particles.

For any function ĝ : Ω0
s × (0, T ) −→ R defined in the reference solid configu-

ration, we denote by g = ĝ ◦ (Lt)−1 its counterpart in the current domain:

g : Ωt
s × (0, T ) −→ R, g(x, t) = ĝ((Lt)−1(x), t).

An analogous notation is adopted for the fluid domain: given f : Ωt
f × (0, T ) −→

R defined in the current fluid configuration, we denote by f̂ = f ◦ At its coun-
terpart in the reference fluid domain:

f̂ : Ω0
f × (0, T ) −→ R, f̂(x0, t) = f(At(x0), t).
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We define the ALE time derivative as follows:

∂tf |x0
: Ωt

f × (0, T ) −→ R, ∂tf |x0
(x, t) = ∂tf̂ ◦ (At)−1(x).

Moreover, we calculate the fluid domain velocity w as

w(x, t) = ∂tx|x0
= ∂tA

t ◦ (At)−1(x).

Then, owing to (2), we have

ŵ(x0, t) = Ext(∂tη̂(x0, t)|Σ0),

provided that the extension operator chosen interchanges with the time deriva-
tives.

The solid is assumed to be an elastic material, characterized by a constitutive
law relating the Cauchy stress tensor T s to the deformation gradient F (η̂) =
I + ∇η̂. Moreover, we assume the fluid to be homogeneous, Newtonian and
incompressible. We indicate with T f its Cauchy stress tensor:

T f (u, p) = −pI + 2µG(u),

where p is the pressure, µ the dynamic viscosity and

G(u) =
1

2
(∇u + (∇u)T )

is the strain rate tensor.
In order to write the fluid problem in ALE form, let us apply the chain rule

to the velocity time derivative:

∂tu|x0
= ∂tu + w · ∇u,

where ∂tu is the partial time derivative in the spatial frame (Eulerian derivative).
Then, the fluid-structure problem in strong form reads:

1. Fluid-structure problem. Find the fluid velocity u, pressure p and the struc-
ture displacement η̂ such that

ρf∂tu|x0
+ ρf (u − w) · ∇u −∇ · T f = f f in Ωt

f × (0, T ), (3a)

∇ · u = 0 in Ωt
f × (0, T ), (3b)

ρs∂ttη̂ −∇ · T̂ s = f̂ s in Ω0
s × (0, T ), (3c)

u = ∂tη on Σt × (0, T ), (3d)

T s · ns + T f · nf = 0 on Σt × (0, T ). (3e)

2. Geometry problem. Find the fluid domain displacement

At(x0) = x0 + Ext(η̂|Σ0), w = ∂tA
t ◦ (At)−1, Ωt

f = At(Ω0
f ). (4)
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Here, ρf and ρs are the fluid and structure densities and f f and f̂s the forcing
terms. Two transmission conditions are enforced at the interface: the continuity
of fluid and structure velocities (3d), due to the adherence condition, and the
continuity of stresses (3e), expressing the action-reaction principle. The fluid
and structure problems are also coupled by the geometrical condition (4), leading
to a highly nonlinear problem. Finally, system (3)-(4) has to be endowed with
suitable boundary conditions on ∂Ωt \Σt and initial conditions. Since the choice
of boundary and initial conditions is not essential in the forecoming discussion,
they will not be detailed here.

2.1 The time discrete system

In this section we discretize in time system (3)-(4). Let ∆t be the time step
size and tn = n∆t for n = 0, . . . , N . We denote by zn the approximation
of a time dependent function z at time level tn. Let us define the backward
difference operator δt as δtz

n+1 = (zn+1 − zn)/∆t. The discrete ALE derivative
is evaluated by the following expression:

δtz
n+1|x0

= (zn+1 − zn ◦ An ◦ (An+1)−1)/∆t.

We consider a backward Euler scheme for the time discretization of the fluid
problem and an implicit first order BDF scheme for the structure problem. Ob-
serve, however, that all the partitioned procedures proposed in this work can be
easily extended to other time marching schemes.

In order to treat the nonlinearity given by the convective term and by the
fluid domain, we detail two strategies; the semi-implicit and the implicit algo-
rithms (see e.g. [1, 15]). In the first case, we use suitable extrapolations Ω∗

f , u∗

and w∗ of the fluid domain, fluid velocity and fluid domain velocity, respectively,
obtaining the following algorithm:

Semi-implicit algorithm

Given un, η̂n, η̂n−1 and Ωn
f , for each n

1. Build a suitable extrapolation Ω∗

f of the domain Ωn+1
f .

2. Solve the linearized FSI problem

ρf δtu
n+1 + ρf (u∗ − w∗) · ∇un+1 −∇ · T n+1

f = fn+1
f in Ω∗

f , (5a)

∇ · un+1 = 0 in Ω∗

f , (5b)

ρsδttη̂
n+1 −∇ · T̂

n+1
s = f̂

n+1
s in Ωs

0, (5c)

un+1 = δtη
n+1 on Σ∗, (5d)

T n+1
s · ns + T n+1

f · nf = 0 on Σ∗, (5e)
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3. Update the fluid domain

An+1(x0) = x0 + Ext(η̂n+1|Σ0),

wn+1 = δtA
n+1 ◦ (An+1)−1, Ωn+1

f = An+1(Ω0
f ),

where we have set δtt(·) = δt(δt(·)). A simple choice is given by the first order
extrapolations Ω∗

f = Ωn
f , u∗ = un and w∗ = wn.

A second possibility is to treat implicitely the fluid domain and the convec-
tive term and to embed the previous fluid-structure scheme into a fixed-point
loop on the position of the FS interface Σ∗. Indicating with i the sub-iterations
index, we obtain the following:

Implicit algorithm

Given un, η̂n, η̂n−1 and Ωn
f , for i = 0, 1, . . . do until convergence

1. Solve the linearized FSI problem

ρf δtu
n+1
i+1 + ρf (un+1

i − wn+1
i ) · ∇un+1

i+1 −∇ · T n+1
f,i+1 = fn+1

f in Ωn+1
f,i ,

(6a)

∇ · un+1
i+1 = 0 in Ωn+1

f,i ,

(6b)

ρsδttη̂
n+1
i+1 −∇ · T̂

n+1
s,i+1 = f̂

n+1
s in Ωs

0,

(6c)

un+1
i+1 = δtη

n+1
i+1 on Σn+1

i ,

(6d)

T n+1
s,i+1 · ns + T n+1

f,i+1 · nf = 0 on Σn+1
i .

(6e)

2. Update the fluid domain

An+1
i+1 (x0) = x0 + Ext(η̂n+1

i+1 |Σ0),

wn+1
i+1 = δtA

n+1
i+1 ◦ (An+1

i+1 )−1, Ωn+1
f,i+1 = An+1

i+1 (Ω0
f ).

System (5) (as well as every fixed-point iteration of (6)) is a fully coupled and
linearized fluid-structure problem, where the transmission conditions (5d)-(5e)
are kept implicit.

Our goal is then to devise partitioned procedures for the solution of such
a linearized problem. Partitioned strategies capable of splitting the linear FSI
problem into two separate sub-problems are very appeling from a computational
point of view, since they allow one to reuse codes that have been developed
for each field separately. This is the motivation of the partitioned procedures
introduced in the next section.
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3 Robin-Robin partitioned procedures

Partitioned procedures have been introduced in order to solve the linearized
fluid-structure system by separate evaluations of fluid and structure sub-problems.
These iterative algorithms can be motivated from a domain decomposition view-
point (see e.g. [5]). The most widely used partitioned procedure is the Dirichlet-
Neumann (DN) technique, that consists in solving the fluid sub-problem with
a Dirichlet boundary condition and the structure sub-problem with a Neumann
boundary condition. We recall it briefly here. To lighten the notation we omit
here and in what follows the temporal index n. Referring to the semi-implicit
scheme, system (5), and indicating with k the sub-iteration index, the DN algo-
rithm reads:

Dirichlet-Neumann algorithm

Given ηn, ηn−1, un and the current iteration ηk, find the next iteration ηk+1,
uk+1 and pk+1 such that,

1. Fluid problem (Dirichlet boundary condition)

ρfδtu
k+1 + ρf (u∗ − w∗) · ∇uk+1 −∇ · T k+1

f = ff in Ω∗

f ,

∇ · uk+1 = 0 in Ω∗

f ,

uk+1 = δtη
k on Σ∗.

2. Structure problem (Neumann boundary condition)

ρsδttη̂
k+1 −∇ · T̂

k+1
s = f̂s in Ωs

0,

T k+1
s · ns = −T k+1

f · nf on Σ∗.

Once convergence is achieved, the geometry problem is solved and the new
domain updated. Obviously, the order in which the two sub-problems are solved
can be reversed.

Remark 1 The same strategy can be applied in the implicit case to solve the
linearized FSI problem (6). This leads to a two nested loops algorithm. We
point out that the internal loop does not need to be solved to full accuracy and
in general it is enough to reduce the initial residual by a given factor.

Alternatively, one could decide to perform only one iteration in the internal
loop, which would lead to the “classical” non-linear DN (fixed-point) algorithm,
considered for example in [14, 12, 5].
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Unfortunately, the convergence properties of this algorithm deteriorate for
certain classes of problems, like the blood-vessel system. This phenomenon is
related to the added-mass effect. Roughly speaking, this effect becomes critical
when fluid and structure densities are of the same order or when the domain
is very slender. We refer to [3] for a discussion on the added-mass effect in
the frame of partitioned procedures. The straightforward alternative to DN is
the Neumann-Dirichlet (ND) partitioned procedure. However, this scheme has
even worse numerical properties. In [5] a Neumann-Neumann algorithm was also
proposed for hemodynamics problems. Yet the results obtained did not improve
substantially those obtained with a simple DN algorithm. As a conclussion,
the existing partitioned procedures are not suitable for some interesting FSI
problems, as those encountered in hemodynamics applications.

At this point, let us consider a linear combination of the continuity of ve-
locities and stresses conditions that leads to a new set of transmission condi-
tions of Robin type. These new transmission conditions lead to a new family of
partitioned procedures, introduced with the aim of getting better convergence
properties.

In particular, referring to the semi-implicit case, we replace (5d)-(5e) by the
following set of (equivalent) transmission conditions

αfun+1 + T n+1
f · nf = αf δtη

n+1 − T n+1
s · ns on Σ∗,

αs

∆tη
n+1 + T n+1

s · ns = αs

∆tη
n + αsu

n+1 − T n+1
f · nf on Σ∗,

(7)

where the combination parameters must satisfy αf 6= −αs. Moreover, to have
well-posed sub-problems we will assume αf , αs > 0. By doing this, we are re-
placing Dirichlet and Neumann boundary conditions by two Robin boundary
conditions on the FSI interface. Let us introduce now the Robin-Robin (RR)
algorithm for the solution of system (5), omitting for the sake of simplicity the
time index n+ 1:

Robin-Robin algorithm

Given ηn, ηn−1, un and the current iteration ηk, find the next iteration ηk+1, uk+1

and pk+1 such that,

1. Fluid problem (Robin boundary condition)

ρfδtu
k+1 + ρf (u∗ − w∗) · ∇uk+1 −∇ · T k+1

f = ff in Ω∗

f ,

(8a)

∇ · uk+1 = 0 in Ω∗

f ,

(8b)

αfuk+1 + T k+1
f · nf = αfδtη

k − T k
s · ns on Σ∗.

(8c)
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2. Structure problem (Robin boundary condition)

ρsδttη̂
k+1 −∇ · T̂

k+1
s = f̂ s in Ωs

0, (9a)
αs

∆t
ηk+1 + T k+1

s · ns =
αs

∆t
ηn + αsu

k+1 − T k+1
f · nf on Σ∗. (9b)

The RR partitioned procedure can be applied to the implicit system (6) as well,
as described in Remark 1.

The Robin-Robin algorithm generates a family of partitioned procedures.
Indeed, the classical DN and ND algorithms can be recovered with appropriate
values of the combination parameters. We can also consider the particular cases
αf = 0 or αs = 0, leading to the Neumann-Robin and the Robin-Neumann

schemes, respectively. Dirichlet-Robin and Robin-Dirichlet schemes are obtained
taking (conceptually) αf = ∞ and αs = ∞, respectively. We summarize all these
methods in Table 1, where p.b.v. stands for “positive and bounded value”.

Table 1: Family of partitioned procedure generated by Robin transmission con-
ditions.

Algorithm αf αs

Dirichlet-Neumann ∞ 0

Neumann-Dirichlet 0 ∞

Robin-Dirichlet p.b.v. ∞

Dirichlet-Robin ∞ p.b.v.

Robin-Neumann p.b.v. 0

Neumann-Robin 0 p.b.v.

Robin-Robin p.b.v. p.b.v.

At this point, the main issue is the evaluation of suitable combination pa-
rameters αf and αs that will improve the convergence properties of the classical
DN scheme. In the next section we provide a way to estimate such parameters,
based on two simplified models for the fluid and for the structure problems.

3.1 Simplified structure model

We consider the membrane model proposed in [15] as a simplified model for the
structure. We point out that this is a lower dimensional model describing the
structure as a (d− 1)-dimensional manifold coinciding with Σ0. Following [15],
the reference position Σ0 of the membrane is identified by a regular mapping

φ : ω ⊂ R
2 → Σ0 ⊂ R

3, φ = φ(ξ1, ξ2), ∀(ξ1, ξ2) ∈ ω.

Under the hypothesis of small deformations, negligible bending terms and only
normal displacement, the structure model reduces to the simple scalar equation
(inertial-algebraic model)

ρsHs
∂2η

∂t2
+ βη = fs − nf · (T f · nf ) in Σt × (0, T ), (10)
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where η and fs are the normal components of the structure displacement and
body force (in the direction nf ), respectively, and β is the algebraic parameter

β = β(ξ1, ξ2) =
HsE

1 − ν2
(4ρ2

1 − 2(1 − ν)ρ2),

where E and ν are the Young modulus and the Poisson coefficient of the material
at hand, Hs is the thickness of the structure and ρ1 and ρ2 are the mean and
Gaussian curvature of Σ0. Then, setting u = u ·nf and Tf = nf · (T f ·nf ) and
owing to (5d) (or (6d)), the fluid-structure interaction problem (5) (or (6)) is
reduced to a fluid problem supplemented with a Robin transmission condition
at the interface for the normal component of the velocity, namely

(ρsHs

∆t
+β∆t

)
un+1 +T n+1

f = fn+1
s +

(ρsHs

∆t2
−β

)
ηn −

ρsHs

∆t2
ηn−1 on Σ∗. (11)

In the case of a membrane structure and for an inertial-algebraic law the
fulfillment of the interface conditions (5d)-(5e) is guaranteed in just one itera-
tion between the fluid and structure problems (in fact, the structure problem
is not explicitely solved since it is embedded in the fluid one thanks to (11)).
In the case of a d dimensional structure and for more general structure models,
whose behaviour, however, is similar to the one predicted by (10), the previ-
ous derivation suggests the use of Robin trasmission condition as in (8c) with
coefficient

αf =
ρsHs

∆t
+ β∆t (12)

inferred from (11). We observe that this value is easily computed, since it de-
pends on the physical and geometrical properties of the structure at hand and
on the time step.

We point out that (11) prescribes a boundary condition at the interface in
the normal direction only. However, for easiness of implementation we propose
to use a Robin boundary condition with the same coefficient αf also in tangential
directions as written in (8c).

3.2 Simplified fluid model

The motivation of this section is to derive a simplified fluid model that would
allow us to quantify the added mass effect on the structure. Our goal is to
find an algebraic operator relating the fluid normal stress at the interface to the
structure acceleration. Unfortunately, the operator describing the added mass
effect is not algebraic and its approximation by an algebraic relationship is not
evident.

We consider the simplified fluid model proposed in [3]. In particular, the fluid
is described by a linear incompressible inviscid model, imposing at the interface
the structure velocity. We also assume small displacements for the structure,
which implies that the fluid domain can be kept fixed. We denote by η = η · nf
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the displacement of the structure in the direction nf and again u = u · nf . Let
us consider the following simplified model:

ρf∂tu + ∇p = 0 in Ωf × (0, T ),
∇ · u = 0 in Ωf × (0, T ),

u = ∂tη on Σ × (0, T ),
(13)

with suitable boundary conditions on ∂Ωf \ Σ and initial conditions. The time
discretization of (13) using backward Euler at time step n+ 1 reads

ρf δtu
n+1 + ∇pn+1 = 0 in Ωf , (14a)

∇ · un+1 = 0 in Ωf , (14b)

un+1 = δtη
n+1 on Σ. (14c)

In this system, the value of the pressure on the interface can be written as a
function of the imposed interface acceleration

pn+1 = −ρfM(δtu
n+1) + p̂n+1 on Σ,

where p̂n+1 takes into account non-homogeneous boundary conditions on ∂Ωf \Σ
and M : H−1/2(Σ) → H1/2(Σ) stands for the added-mass operator. Observe
that this operator, relating the interface pressure and acceleration is not alge-
braic. We refer to Section 5 for a detailed description of this operator. For this
simplified problem, the stress exerted by the fluid on the structure in the normal
direction is simply pn+1 and the continuity of normal stresses at the interface
becomes

T n+1
s = T n+1

f = ρfM(δtu
n+1) − p̂n+1 = ρfM(δttη

n+1) − p̂n+1,

where we have set Tf = nf · (T f ·nf ) and Ts = ns · (T s ·ns). From the previous
relationship we obtain the following generalized Robin boundary condition for
the structure in the normal direction

ρfM

∆t2
ηn+1 · ns + ns · (T

n+1
s · ns) =

ρfM

∆t2
(2ηn − ηn−1) · ns − p̂n+1ns. (15)

Condition (15) embeds the fluid problem into the structure problem. Thus, the
interface condition is again satisfied in just one iteration. The generalized Robin
condition (15) can be obtained from (9b) by taking αs = (ρf/∆t

2)M(·). In
order to obtain a “classical” Robin condition, we propose to approximate the
operator M by γµmaxI, where µmax is the maximum eigenvalue of the added-
mass operator, I is the identity operator and γ is a coefficient suitably chosen,
getting

αs = γ
ρfµmax

∆t
. (16)

In the case of a fluid governed by the Navier-Stokes equations, the embedding
of the fluid problem into the structure one is not an easy task. However, we

13



propose to use again partitioned procedures with Robin boundary conditions as
in (9b) with the coefficient (16) based on the approximation of the added-mass
operator using its largest eigenvalue.

Although the choice (16) is only heuristic, the numerical tests presented in
Sect. 6 reveal that this is a very reasonable choice. The scaling factor γ has
to be tuned to obtain good convergence properties. Yet, the tuned value seems
to be very robust and pratically independent of ρf ,∆t and some geometrical
parameters defining the physical domain (and then µmax). This indicates that
formula (16) captures the correct dependence of the coefficient αs on the physical
parameters of the problems.

We point out that the analytical evaluation of µmax is not straightforward
for a general geometry and we have to resort to a numerical approximation.
However, as we will show in Section 5, it is possible to provide an analitical
expression of µmax for particular geometries.

Finally, as for the simplified structure model, we propose to apply the Robin
transmission condition on the structure, with parameter αs given by (16), on
both the normal and tangential directions, for easiness of implementation.

4 Block Gauss-Seidel interpretation

In this section we motivate the partitioned procedures introduced above from
an algebraic point of view. We have only considered the semi-implicit case for
the sake of simplicity, but the extension to the implicit case is straightforward.
The fully coupled algebraic FSI system is obtained by writing the weak form of
the semi-discrete FSI problem (5) and discretizing it in space using the finite
element method. In particular, let us introduce a triangulation of the fluid
and structure domains and assume that the two meshes are conforming on the
fluid-structure interface Σt. Moreover, we consider suitable finite element spaces
with Lagrangian basis functions, so that the degrees of freedom correspond to
nodal values of the solution. We skip the details and refer to [1] for a detailed
discussion. We end up with the following linear system:

AXn+1 = bn+1, (17)
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where

A =




Cff Gf CfΣ 0 0
Df 0 DΣ 0 0
0 0 MΣ −MΣ/∆t 0
CΣf GΣ CΣΣ SΣΣ SΣs

0 0 0 SsΣ Sss



, (18)

Xn+1 =




Un+1
f

Pn+1

Un+1
Σ

Dn+1
Σ

Dn+1
s



, bn+1 =




bn+1
f

0

−MΣ/∆tD
n
Σ

bn+1
Σ

bn+1
s



. (19)

Here, Un+1
f is the vector of nodal values of the fluid velocity on the interior nodes,

Un+1
Σ are the fluid velocity nodal values on the interface, Pn+1 is the vector of

(interior and interface) nodal values for the pressure. Finally, Dn+1
s and Dn+1

Σ

are the vectors of structure displacements related to interior and interface nodes,
respectively. On the other hand, the right hand side bn+1 accounts for external
forces and other terms related to the time discretization scheme. The first two
rows are the fully discrete versions of the momentum and mass conservation
equations for the fluid. The third equation states the continuity of velocities
on the interface and is the algebraic counterpart of (5d). We have indicated
by MΣ the interface mass matrix, which is invertible. The fourth row enforces
continuity of stresses in a weak form. Finally, the fifth row is the structure
problem in the internal nodes. If non-conforming meshes are considered, the
third and fourth row should be modified accordingly by introducing a projection
(or interpolation) matrix between the interface structure displacement and fluid
velocity finite element spaces (see, e.g. [14]).

All the partitioned procedures introduced so far can be written as a block
Gauss-Seidel (GS) iterative solver for the preconditioned system

PAXn+1 = Pbn+1,

where P is a suitable preconditioning matrix which will be detailed later. We
consider the following partition of the unknowns vector Xn+1 into

Xn+1
f =




Un+1
f

Pn+1

Un+1
Σ


 , Xn+1

s =

[
Dn+1

Σ

Dn+1
s

]
.

This choice splits the FSI system into “fluid” and “structure” blocks. This is
the only choice that allows modularity of FSI codes. Let us denote the blocks
of PA and Pbn+1 as

PA =:

[
Bff Bfs

Bsf Bss

]
, Pbn+1 =:

[
(Pbn+1)f
(Pbn+1)s

]
.
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Therefore, omitting for the sake of simplicity the time index n+ 1, an abstract
block Gauss-Seidel procedure for the solution of the fluid-structure system (17)
at time step n+ 1 consists of: given Xk, do until convergence

BffXk+1
f = (Pb)f −BfsX

k
f ,

BssX
k+1
s = (Pb)s −BsfXk+1

f .

We supplement this iterative procedure with the following stopping criterion

‖rk+1‖

‖r0‖
:=

‖b −AXk+1‖

‖b −AX0‖
< ε, (20)

for a suitable tolerance ε. Criterion (20) requires to evaluate the residual of the
FSI monolithic system (17).

In this frame we can recover the DN, ND and RR partitioned procedures,
by designing the respective preconditioning matrices. For instance, for the DN
algorithm, the preconditioning matrix is the identity matrix. In this case, it is
easy to show that the residual reduces to

rk+1
D := −MΣUk+1

Σ +MΣδtD
k+1
Σ , (21)

that is, we have to check that the continuity of the velocity at the interface
is satisfied up to a given tolerance. We point out that, since we start with a
Dirichlet problem, the continuity of the stresses is exactly satisfied at each sub-
iteration. On the contrary, if we consider the re-ordered system in which the
structure is solved first, the stopping criterion changes and the residual becomes

rk+1
N := bΣ − CΣfUk+1

f −GΣP k+1 − CΣΣUk+1
Σ

− SΣΣDk+1
Σ − SΣsD

k+1
s . (22)

The new Robin-type partitioned procedures introduced in this article can be
obtained using a preconditioning matrix

PRR =




I 0 0 0 0
0 I 0 0 0
0 0 αf I I 0
0 0 −αsI I 0
0 0 0 0 I



, (23)

where I stands for the identity matrices for the unknown arrays. We point out
that these identity matrices have different dimensions but are not distinguished
for the sake of simplicity. The residual in this case is a combination of (21) and
(22),

rk+1 = αfr
k+1
D + rk+1

N .

From (23) we can easily obtain the different methods of Table 1 using the ap-
propriate values of αf and αs.
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5 Analysis of a model problem

In this section we analyze the convergence of the Robin-Dirichlet and Robin-
Neumann iterative procedures and compare them with the more traditional
Dirichlet-Neumann algorithm. In order to simplify the analysis, we consider
the meaningful fluid-structure interaction (FSI) test problem suggested in [3] for
the analysis of Dirichlet-Neumann and Neumann-Dirichlet algorithms, based on
the simplified fluid model reported in Sect. 3.2. In particular, we consider a FSI
system in which the fluid problem is two-dimensional and the structure problem
one-dimensional. For the structure we consider the generalized string model and
the independent rings model (see e.g. [18, 15]). This test problem is a fair ap-
proximation of a blood-vessel system. The geometrical definition and notations
are the same as in [3]. In particular, referring to Fig. 1, the fluid domain Ωf is
a rectangle and Σ is the part of its boundary on which the structure is located.
The continuous fluid-structure problem consists of: find u, p and η such that

Ωf

Σ

Γ

Γ

Γ1 2

3

L

R

Figure 1: Reference domains Ωf .

ρf∂tu + ∇p = 0 in Ωf × (0, T ), (24a)

∇ · u = 0 in Ωf × (0, T ), (24b)

p = p on Γ1 ∪ Γ2 × (0, T ), (24c)

u = 0 on Γ3 × (0, T ), (24d)

u = ∂tη on Σ × (0, T ), (24e)

ρsHs∂ttη + βη − b∂xxη = p on Σ × (0, T ). (24f)

Again, η denotes the structure displacement in the direction nf and u = u ·
nf . Equation (24e) imposes the continuity of velocities on the fluid-structure
interface while the structure equation (24f) enforces the continuity of stresses.
The rest of boundary conditions on the fluid domain boundary are: zero normal
flux on Γ3 and Neumann-type boundary conditions on the inflow and outflow
sections, where a pressure p is imposed. We consider p = p(x, y, t) possibly
depending on space and time. Finally, system (24) is equipped with suitable
initial conditions as well as homogeneous Dirichlet boundary conditions on η,
whenever b 6= 0.
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We consider the linear FSI system (24) since it is simple enough to be an-
alyzed theoretically. On the other hand, it features a behavior similar to the
more complex system (3). In particular, the structure model considered here is
based on the simplified structure model proposed in Sect. 3.1, to which we have
added a term involving space derivatives to approximate the elasticity operator
in the tangential direction. We expect that the theoretical results obtained with
this model give insightful information also for system (3).

We introduce now the time discrete version of system (24). Backward differ-
ence schemes are considered for the time integration of both fluid and structure
equations. The discretized in time FSI problem at time step n + 1 reads as
follows: given ηn and un, find ηn+1, un+1 and pn+1 such that

ρfδtu
n+1 + ∇pn+1 = 0 in Ωf , (25a)

∇ · un+1 = 0 in Ωf , (25b)

pn+1 = pn+1 on Γ1 ∪ Γ2, (25c)

un+1 = 0 on Γ3, (25d)

un+1 = δtη
n+1 on Σ, (25e)

ρsHsδttη
n+1 + βηn+1 − b∂xxη

n+1 = pn+1 on Σ, (25f)

Assuming that the solution is regular enough, the fluid problem (25a)-(25e)
can be reformulated only in terms of the pressure, obtaining the following Poisson
problem:

−∆pn+1 = 0 in Ωf , (26a)

pn+1 = pn+1 on Γ1 ∪ Γ2, (26b)

∂pn+1

∂n
= 0 on Γ3, (26c)

∂pn+1

∂n
= −ρfδtu

n+1 on Σ. (26d)

Let us introduce the solution p̂n+1 of the problem

−∆p̂n+1 = 0 in Ωf , (27a)

p̂n+1 = pn+1 on Γ1 ∪ Γ2, (27b)

∂p̂n+1

∂n
= 0 on Γ3, (27c)

∂p̂n+1

∂n
= 0 on Σ, (27d)

and the added-mass operator

M : H−1/2(Σ) → H1/2(Σ)

γ 7→ q|Σ,
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which consists of: given γ ∈ H−1/2(Σ), find q ∈ H1(Ωf ) such that

−∆q = 0 in Ωf , (28a)

q = 0 on Γ1 ∪ Γ2, (28b)

∂q

∂n
= 0 on Γ3, (28c)

∂q

∂n
= γ on Σ. (28d)

and extract the value of the solution q on Σ. It can be proved that M(·) is a
self-adjoint operator on L2(Σ) (see [3]). Then, the pressure pn+1 solution of (26)
on the interface Σ is given by

pn+1 = p̂n+1 − ρfM(δtu
n+1) on Σ. (29)

This relation holds for any (un+1, pn+1) satisfying (25a)-(25d), independently of
the type of boundary condition taken on Σ for the fluid problem. Therefore,
(29) holds for all the partitioned algorithms considered in this section.

In what follows, we will consider the Dirichlet-Neumann, the Robin-Dirichlet
and the Robin-Neumann algorithms. We will show that all of them can be
written as fixed point algorithms on the variable ηn+1. We will also investigate
the convergence rates of such algorithms according to the following definition:

Definition 1 Let ηn+1 be the exact solution of the monolithic problem (25) and
ηn+1,k the k− th iterate of the fixed point algorithm corresponding to either DN,
RD or RN algorithm. Given a relaxation parameter ω, we define the asymptotic

converge factor σ(ω) as the smallest positive number for which

‖ηn+1,k+1 − ηn+1‖L2(Σ) ≤ σ(ω)‖ηn+1,k − ηn+1‖L2(Σ)

holds for any possible solution ηn+1.

From now on, for the sake of clarity, we omit the temporal index n+1, that will
be understood.

To analyze the fixed point algorithms we will decompose η on the L2 or-

thonormal basis
{
gi(x) =

√
2
L sin( iπx

L )
}
∞

i=1
, that is

η =

∞∑

i=1

ηigi. (30)

Observe that the functions gi are both eigenfunctions of the added-mass operator
(see [3]) with corresponding eigenvalues

µi =
L

iπ tanh( iπR
L )

, i = 1, . . . ,∞, (31)
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and eigenfunctions of the Laplace operator L = −∂xx on Σ, with corresponding
eigenvalues

λi =
( iπ
L

)2
.

In particular, we point out that the values λi increase with i and λi → ∞ when
i→ ∞, whereas the values µi decrese with i and µi → 0 when i→ ∞.

As we will show, for all three algorithms, the Fourier coefficients ηi satisfy
the fixed point equation

ηk+1
i = (1 − ωγi)η

k
i + f(p̂, ηn, ηn−1,un), i = 1, . . . ,∞, (32)

for a suitable f and γi > 0. Hence, the following resut that applies for a general
Richardson algorithm (see e.g. [17]) can be used:

Lemma 5.1 For those algorithms that can be written in form (32), we have:

1. the algorithm converges for

0 < ω <
2

supi γi
;

2. there exists an optimal choice

ωopt =
2

supi γi + inf i γi

such that

σopt = σ(ωopt) =
supi γi − inf i γi

supi γi + inf i γi

is minimal.

5.1 The Robin-Dirichlet algorithm

We begin by analyzing the Robin-Dirichlet algorithm for the proposed simplified
problem. A Robin boundary condition for the fluid problem on Σ can be easily
obtained applying ρsHsδt(·) to (25e) and substituting the result in (25f). Then,
(25e) is replaced by:

−ρsHsδtu+ p = βη − b∂xxη on Σ,

which can be written equivalently as

(β∆t2 + ρsHs)δtu− p = −βηn + b∂xxη − β∆tun on Σ.

Observe that this condition is consistent with the general Robin condition (7)a

with the choice αf = ρsHs/∆t + β∆t. At this point, we can define the Robin-
Dirichlet algorithm supplemented with a relaxation technique. For time step
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n+ 1 and iteration k + 1 with k > 0, the method consists of: given ηn, un and
ηk, find ηk+1, uk+1 and pk+1 such that,

1. Fluid problem (Robin boundary condition)

ρf δtu
k+1 + ∇pk+1 = 0, in Ωf , (33a)

∇ · uk+1 = 0 in Ωf , (33b)

pk+1 = p on Γ1 ∪ Γ2, (33c)

uk+1 = 0 on Γ3, (33d)

(β∆t2 + ρsHs)δtu
k+1 − pk+1 = −βηn + b∂xxη

k − β∆tun on Σ. (33e)

2. Structure problem (Dirichlet boundary condition)

η̃k+1 = ∆tuk+1 + ηn on Σ. (33f)

3. Relaxation step

ηk+1 = ωη̃k+1 + (1 − ω)ηk. (33g)

The relaxation parameter ω might be necessary to guarantee convergence of
the method. We observe that for this simple case the structural equation is
never explicitly solved. This is due to the fact that the structure problem is a
d − 1-dimensional manifold coupled via a Dirichlet boundary condition to the
fluid. We point out that the algorithm given by (33) coincides with the Robin-

based scheme proposed in [15]. In the next theorem we analyze the convergence
properties of system (33).

Theorem 5.1 The Robin-Dirichlet iterative algorithm (33) applied to the FSI
test problem (25) never converges to the monolithic solution, when b 6= 0, for
any choice of ω > 0. Indeed, we have ωopt = 0 and σopt = 1. On the other hand,
when b = 0, the algorithm converges in just one iteration.

Proof . Substituting (29) in (33e) and thanks to (33f), we obtain

−ρfM(δttη̃
k+1) + p̂ = (β∆t2 + ρsHs)δttη̃

k+1 − b∂xxη
k + βηn + β∆tun.

Due to the orthogonality of the basis {gj}
∞

j=0, by multiplying the latter equality
by gi and integrating over Σ, we obtain

(ρfµi + β∆t2 + ρsHs)δttη̃
k+1
i = −bλiη

k
i + p̂− βηn

i − β∆tun
i .

The previous equation together with (33g) leads to:

1

ω
(ρsHs + ρfµi + β∆t2)ηk+1

i =
(

1 − ω

ω
(ρsHs + ρfµi + β∆t2) − bλi∆t

2

)
ηk

i + f(p̂i, η
n
i , η

n−1
i , un

i ),
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for a suitable f . We have then,

ηk+1
i =

(
1 − ω

(
1 +

bλi∆t
2

ρsHs + ρfµi + β∆t2

))
ηk

i + f(p̂i, η
n
i , η

n−1
i , un

i )

and therefore we obtain (32) with

γi = 1 +
bλi∆t

2

ρsHs + ρfµi + β∆t2
. (34)

By noticing that the function γi increases with i, we have, for b 6= 0,

inf
i
γi = γmin = 1 +

bλmin∆t2

ρsHs + ρfµmax + β∆t2
,

sup
i
γi = 1 +

b supi λi∆t
2

ρsHs + ρf infi µi + β∆t2
= +∞.

Therefore owing to Lemma 5.1, we can state that the algorithm never converges.
Otherwise, if b = 0, that is for the independent rings model, from (34) we

obtain γi ≡ 0 and therefore, from Lemma 5.1, ωopt = 1 and σopt = 0. This
means that in this case RD scheme converges in exactly 1 iteration. This is
not surprising, since for b = 0 the RD algorithm coincides with the monolithic
problem (see [15]).

Remark 2 When considering discrete versions of the operators M and L, for
instance by means of a finite elements discretization, we expect the discrete eigen-
values λ̂i, µ̂i to behave as

λ̂max = C1h
−2, µ̂min = C2h, (35)

where h is the space discretization parameter on Σ. Therefore, we expect that

γ̂min ' 1 +
bλ̂min∆t2

ρsHs + ρf µ̂max + β∆t2
,

γ̂max ' 1 +
bλ̂max∆t2

ρsHs + ρf µ̂min + β∆t2
,

obtaining, from Lemma 5.1 and owing to (35), that convergence should be reached
for

0 < ω̂ .
2(ρsHs + C2ρfh+ β∆t2)

ρsHs + C2ρfh+ β∆t2 + C1b∆t2h−2
.

Moreover, the best convergence rate is

σ̂opt '

C1b∆t2h−2

ρsHs+C2ρf h+β∆t2
− λ̂minb∆t2

ρsHs+µ̂maxρf+β∆t2

2 + C1b∆t2h−2

ρsHs+C2ρf h+β∆t2
+ λ̂minb∆t2

ρsHs+µ̂maxρf+β∆t2
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and therefore σ̂opt < 1, that is, in practical computations, convergence is always
possible. In particular, if we satisfy a “CFL-like” condition ∆t ' kh and take
the limit ∆t→ 0, we observe that

σopt '
C1kb

2ρsHs +C1kb
.

We expect, then, the convergence to be fast if C1b << ρsHs and slow when the
elasticity term dominates over the inertial one. This result is expected since in
the RD algorithm we treat explicitly the elastic term and implicitly the inertial
term.

5.2 The Robin-Neumann algorithm

In this section we prove convergence results for the Robin-Neumann algorithm,
the most promising of the partitioned procedures designed in this work. The
only difference with respect to system (33) is in the structure step, which does
involve the solution of the structural equation. As we will prove below, this
fact has a dramatic impact on the convergence properties of the algorithm (with
respect to the Robin-Dirichlet method). For time step n+ 1 and iteration k+ 1
with k > 0, the Robin-Neumann method consists of: given ηn, un and ηk, find
ηk+1, uk+1 and pk+1 such that,

1. Fluid problem (33a)-(33e) (Robin boundary condition)
2. Structure problem (Neumann boundary condition)

ρsHsδttη̃
k+1 + βη̃k+1 − b∂xxη̃

k+1 = pk+1 on Σ. (36)

3. Relaxation step (33g).
The next theorem is devoted to the stability properties of this method.

Theorem 5.2 The Robin-Neumann iterative algorithm (33a)-(33e), (36), (33g)
applied to the FSI test problem (25) converges to the monolithic solution under
the following condition for the relaxation parameter:

0 < ω < 2. (37)

Moreover, the convergence rate for ω = 1 is given by

σ(1) =
1

1 +
(

β∆t2+ρsHs

ρf µī
+ β∆t2+ρsHs

bλī∆t2
+ (β∆t2+ρsHs)2

bρf µīλī∆t2

) , (38)

whereas the best convergence rate is characterized by

σopt =
1

1 + 2
(

β∆t2+ρsHs

ρf µī
+ β∆t2+ρsHs

bλī∆t2
+ (β∆t2+ρsHs)2

bρf µīλī∆t2

) (39)

for a suitable index ī = argmin
(
1 + β∆t2+ρsHs

ρf µi

)(
1 + β∆t2+ρsHs

bλi∆t2

)
.
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Proof . This result can be proved following the same lines as in the previous
theorem. From (29), we know that

M−1(pk+1 − p̂) = −ρfδtu
k+1.

Invoking this equality in (33e) we get

(β∆t2 + ρsHs

ρf
M−1 + I

)
pk+1 = −b∂xxη

k + f(p̂, ηn,un), (40)

for a suitable f and where I is the identity operator. On the other hand, the
value of pk+1 is determined by (36):

pk+1 = ρsHsδttη̃
k+1 + βη̃k+1 − b∂xxη̃

k+1. (41)

Combining (40) and (41), we obtain:

(β∆t2 + ρsHs

ρf
M−1 + I

)(
ρsHsδttη̃

k+1 + βη̃k+1 − b∂xxη̃
k+1

)

= −b∂xxη
k + f(p̂, ηn,un). (42)

As above, we can use the decomposition (30) and write the previous equation
for every component ηk+1

i . Let us define the following value:

ψi =
(β∆t2 + ρsHs

ρfµi
+ 1

) (
ρsHs

∆t2
+ β + bλi

)
.

It allows us to write (42) in form (32) with

γi = 1 −
bλi

ψi
.

We observe that 0 < γi ≤ 1 and it is not monotone in general. In particular, it
reaches its maximum for i→ ∞ (where γi → 1) and its minimum for a suitable
index ī depending on the parameters of the problem. Then, owing to Lemma
5.1 and rearranging, we obtain (37) and (39). Moreover, if ω = 1, from (32) we
obtain σ(1) = maxi |1 − γi| = 1 − γī, leading to (38).

Remark 3 When b = 0 the RN scheme coincides with the monolithic problem.
Indeed, from (39) it follows that ωopt = 1 and σopt = 0 and then RN converges in
just one iteration. On the other hand, when b 6= 0 and ∆t→ 0, the convergence
gets faster and faster.

From (39), we observe that the convergence rate gets worse if the ratio ρs/ρf

decreases or if the elastic term b increases. However, due to the presence of
three terms in the bracket in (39), the value of σopt is in any case far from 1,
and therefore it seems that the RN scheme is not too sensible to the variation
of b and to the added-mass effect, as the numerical results in Sect. 6 confirm.
The same considerations holds when using ω = 1, since σ(1) exhibits the same
dependence on the parameters.
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5.3 The Dirichlet-Neumann algorithm

In this section, we extend the results shown in [3], concerning the convergence
of the DN algorithm, to the generalized string model. Moreover, we provide
also for this scheme the optimal values of the asymptotic converge factor. In
particular, we have the following

Theorem 5.3 The Dirichlet-Neumann iterative algorithm applied to the FSI
test problem (25) converges to the monolithic solution under the following con-
dition on the relaxation parameter:

0 < ω ≤
2

1 +
µmaxρf

ρsHs+β∆t2+λminb∆t2
. (43)

Moreover, the best convergence rate is characterized by

σopt =
1

1 + 2ρsHs+β∆t2+bλmin∆t2

µmaxρf

. (44)

Proof . In this case we can write the algorithm in form (32) with

γi = 1 +
ρfµi

ρsHs + β∆t2 + b∆t2λi
.

By noticing that the function γi decreases with i, owing to Lemma 5.1 we obtain
(43) and (44).

From (44), we observe that the convergence rate gets worse if b decreases.
Moreover, it depends heavily on the ratio ρs/ρf , that is the DN scheme is very
sensible to the added-mass effect, as already pointed out in [3] and as the nu-
merical results confirm.

6 Numerical results

In this section we present some numerical results with the aim of testing the
algorithms proposed in the previous sections. As pointed out in Section 2.1, we
call semi-implicit the algorithms in which we do not update in the loop neither
the convective term nor the fluid domain, otherwise we refer to them as implicit.
In particular, in Section 6.1 we test the performance of the semi-implicit Robin-
Dirichlet (ERD) and Robin-Neumann (ERN) algorithms, in comparison with the
semi-implicit Dirichlet-Neumann scheme (EDN). Moreover, we test the implicit
Robin-Neumann algorithm (IRN). In Section 6.2 we detail the performance of
the semi-implicit Robin-Robin, Dirichlet-Robin and Neumann-Robin algorithms.

For the structure, we consider the following equation of linear elasticity

ρs∂ttη − c∇ · (∇η + (∇η)t) − λ∇ · ((∇ · η)I) + βη = f s,
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where I is the identity operator, c = E/(1 + ν), λ = νE/((1 + ν)(1 − 2ν)) and
β = E/(1 − ν2)R2, where E is the Young modulus, ν the Poisson ratio and R
the radius of the fluid domain. The reaction terms stand for the transversal
membrane effects that appear when the structure is written in axisymmetric
form.

All the numerical simulations are performed in a rectangular domain both
for the fluid and for the two structures, whose size is 6 × 1 cm and 6 × 0.1 cm,
respectively (see Fig. 2). We use a 2D Finite Element Code written in Matlab

Ω

Ω

Ω

f
0

0
s

s
0

Figure 2: Computational fluid and structure domains.

at MOX - Dipartimento di Matematica - Politecnico di Milano and at CMCS -
EPFL - Lausanne. Moreover, we consider P1isoP2 and P1 elements for the fluid
and P1 element for the structure and a space discretization step h = 0.02 cm.
In all the cases we use the residual normalized on the initial one as stopping
criterion (see Sect. 4), with a tolerance equal to 10−4.

We set µ = 0.035 cm2/s and ρf = 1 g/cm2 and, unless otherwise specified,
we consider the following other values: ∆t = 10−3s, ρs = 1.1 g/cm2, c = 1.15 ·
106 dyne, λ = 1.7 · 106 dyne, β = 4 · 106 dyne/cm2 (corresponding to the values
E = 0.158MPa and ν = 0.37) and the thickness of the structure Hs = 0.1 cm.

6.1 The Robin-Neumann and the Robin-Dirichlet schemes

In this section we study the performance of the Robin-Neumann and the Robin-
Dirichlet schemes. When we prescribe a Robin boundary condition for the fluid,
an optimal choice for the parameter αf , as (12) suggests, is naturally given by
the simplified model for the structure equation, that is αf = Hsρs/∆t + β∆t.
This value is directly computable, hence very useful in practical computations.

Let us start with the semi-implicit case. In Fig. 3 we show the solution com-
puted with the ERN scheme, which, of course, is the same as the one computed
with the semi-implicit monolithic scheme (EM), up to the employed tolerance.
In particular, this figure shows average quantities on a radial section of the mean
pressure (top), the flow rate (middle), and the fluid domain radius (bottom), as
a function of the axial coordinate.

Fig. 4 shows the structure displacement, obtained with the ERN scheme, in
the deformed domain at three different instants. In Tab. 2 we show the average
number of iterations in the first 12 time steps, employed by the ERN, ERD and
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Figure 3: ERN scheme. Mean pressure (top), flow rate (middle) and fluid domain
radius (bottom) at three time instants.
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Figure 4: Displacement of the structure - ERN scheme - t = 0.004 s (left),
t = 0.008 s (middle) and at t = 0.012 s (right).

EDN schemes, in three cases: without relaxation (ω = 1), with an optimally
tuned relaxation parameter (ωopt) and using an Aitken relaxation procedure (see
[4]). First of all, we point out that ERN is the only algorithm that converges
without relaxation. This is a very interesting feature of this scheme. Moreover,
ERN is always much faster than EDN. This is confirmed also by Fig. 5 that plots
the errors on several quantities, measured in the L∞ norm, versus the number
of iterations. To compute the errors, we have taken as reference solution the one
provided by the EM scheme. In all these tests, we have employed an optimal
relaxation parameter. On the other hand, the ERD scheme is very slow and the
relative error at convergence is high, evidencing high condition number of this
problem. However, as Tab. 3 shows, the number of iterations decreases if we
consider a small value of the elastic coefficients, as expected from the analysis of
Sect. 5. Due to its inefficiency, from now on we drop the Robin-Dirichlet scheme
and we focus on the Robin-Neumann algorithm only.

In the sequel, we compare the EDN and ERN performance, studying their
sensitivity with respect to some of the parameters of the fluid and structure
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EDN ERN ERD

ω = 1 NO 7.00 NO

ωopt 73.25 7.00 394.00
(0.09) (1) (0.015)

Aitken 15.50 6.00 123.75

Table 2: Average number of iterations per time step for the 3 schemes without
relaxation (ω = 1), with an optimal choice of the relaxation parameter (ωopt)
and using an Aitken procedure. In brackets, the value of the optimal parameter.

models; see Tab. 3. First of all, we point out that ERN always converges
without relaxation, while EDN always needs a relaxation parameter smaller
than one. Moreover, ERN shows a number of iterations quite insensitive to the
values of physical and numerical parameters and 5 to 20 times less than EDN.
In particular, we observe that the convergence of EDN is deteriorated when
the added-mass effect becomes more important, that is to say, the value ρs/ρf

increases. On the contrary, ERN is insensitive to this phenomenon. Changing
the stiffness parameters c and λ, the two algorithms have different behaviours:
EDN seems to improve the convergence rate when these parameters increase,
while ERN when they decrease (even if in the last case the variation is very
small). Finally, decreasing the time step ∆t and the thickness Hs we observe
that the convergence rate of EDN gets worse, while for ERN there is only a slight
worsening. All these numerical simulations are consistent with the theoretical

EDN ERN ERD

basic 73.25 7.00 394.00
parameter (0.09) (1) (0.015)

Hs = 0.05 186.25 (0.03) 9.00 (1.25)
Hs = 0.15 32.00 (0.215) 5.50 (1)

ρs = 5 36.50 (0.185) 5.75 (1.125)
ρs = 50 14.00 (0.5) 4.00 (1)

5c, 5λ 49.75 (0.125) 7.75 (1.25)
c/5, λ/5 76.25 (0.09) 5.50 (1) 97.50 (0.075)

∆t = 0.002 27.25 (0.25) 5.50 (1)
∆t = 0.0005 112.50 (0.05) 7.50 (1.25)

Table 3: Average number of iterations per time step for EDN and ERN schemes,
with an optimal choice of the relaxation parameter, varying the structure thick-
ness Hs, the structure density ρs, the stiffness parameters c and λ and the time
step ∆t. In brackets, the value of the optimal parameter.

results presented in Sect. 5.
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Figure 5: Relative errors in L∞ norm with optimal relaxation parameter. Top,
left: fluid velocity error, t = 0.004 s. Top, right: pressure error, t = 0.004 s.
Middle, left: structure displacement error, t = 0.004 s. Middle, right: residual
normalized with the initial one, t = 0.004 s. Bottom, left: fluid velocity error,
t = 0.012 s. Bottom, right: structure displacement error, t = 0.012 s.

In conclusion, we can state that the ERN algorithm is clearly more robust
and faster than the EDN scheme.

Let us consider now the implicit algorithms. In Fig. 6 we compare the mean
pressure, the flow rate and the radius of the fluid domain obtained with the ERN
and IRN algorithms. We point out that IRN does not converge using the same
iterative loop to update the convective term and the fluid domain, on one hand,
and to solve the block Gauss-Seidel system, on the other one. Therefore, we need
to use two nested loops: an external one in which we update the convective field
and the fluid domain and an internal one in which we solve the block Gauss-Siedel
system, as described in Remark 1. However, as numerical evidence suggests, it is
sufficient to take tol = 10−1 as tolerance for the internal loop. On the other hand,
the implicit Dirichlet-Neumann scheme (IDN) converges using just one loop.
Anyhow, as Tab. 4 shows, the average number of total sub-iterations N (that
is the product of the internal and external sub-iterations) per time step is less
for IRN, showing that also in the implicit case the Robin-Neumann partitioned
procedure is faster than the Dirichlet-Neumann one. This is confirmed by Fig.
7 showing the L∞ relative errors, using the implicit-monolithic (IM) algorithm
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as the reference solution and choosing optimally the relaxation parameter.
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Figure 6: Comparision between the ERN and IRN solutions. Mean pressure
(left), flow rate (middle) and fluid domain radius (right) - t = 0.004 s.
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Figure 7: Relative errors in L∞ norm with optimal relaxation parameter for
IDN and IRN: fluid velocity error - t = 0.004 s.

IDN IRN

ωopt 0.09 1
N 61.75 14.25

Table 4: Number of iterations N for IDN and IRN schemes, with an optimal
choice of the relaxation parameter.

6.2 Schemes based on a Robin boundary condition for the struc-

ture

In this section we analyze the semi-implicit Robin-Robin (ERR), Dirichlet-Robin
(EDR) and Neumann-Robin (ENR) schemes. Let us start with the semi-implicit
Robin-Robin scheme. As pointed out in Sections 3.2 and 6.1, when we prescribe
a Robin boundary condition for the fluid, an optimal choice for the parameter
αf is naturally given by the simplified model for the structure equation. On the
other hand, when we prescribe a Robin boundary condition for the structure, we
proposed in Sect. 3.1 a value of the parameter αs depending on a coefficient γ
to be suitably chosen, namely αs = γρfµmax/∆t. Here, we study the sensitivity
of the performance of the Robin-Robin scheme with respect to the values of γ,
in terms of average number of iterations per time step. The results are given
in Tab. 5. We point out that we have an optimal performance around the
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value γ = 0.01, which provides a convergence rate higher than the ERN scheme.
For values γ < 0.005 the behaviour is the same of the ERN algorithm, while
for values greater than 0.02 the convergence rate deteriorates. In Tab. 6, we

γ 2 · 10−7 2 · 10−5 10−4 0.005 0.01 0.02 0.05 1

numb. of iter. 7.00 7.00 7.00 6.25 6.00 9.00 58.25 72.23

Table 5: Average number of iterations per time step of the ERR scheme for
different values of the coefficient γ.

show the number of iterations obtained with ERN and with ERR using the best
coefficient γ found in the previous simulation, for different values of ρf , ∆t, R
and L, that is for different parameters appearing in estimate (16). We observe
that with this choice, the performance of ERR is always better than ERN and
the value γ = 0.01 seems to be optimal also when changing the other parameters.
The results given in Tab. 6 clearly show that this choice of γ is robust.

ρf ∆t L R ERR ERN

1.0 10−3 6 0.5 6.00 7.00
1.0 5 · 10−4 6 0.5 7.00 7.50
1.0 2 · 10−3 6 0.5 5.00 5.50
0.1 10−3 6 0.5 6.75 7.00
1.0 10−3 3 0.5 6.00 7.00
1.0 10−3 6 0.25 7.00 8.00

Table 6: Average number of iterations per time step of ERR with γ = 0.01 and
of ERN. In both cases the relaxation parameter is ω = 1.

For what concerns the EDR algorithm, the numerical results shows that for
γ < 0.02 its performance is very close to the ones of EDN scheme. In particular,
for γ = 0.01 we obtain ωopt = 0.09 and 74.25 iterations (in average) to reach
convergence. Moreover, Fig. 8 shows that the relative errors for EDN and EDR
schemes are almost the same in this case. For values γ > 0.02 the performance
of the EDR scheme deteriorates as seen for the ERR scheme.

Finally, we have experienced that the ENR algorithm does not converge.

7 Conclusions

The classical Dirichlet-Neumann algorithm is negatively affected by the added-
mass effect. Therefore, for FSI applications where this effect is important, DN
needs a strong relaxation and its convergence is very slow . We have obtained
some new convergence results that are in accordance with this behavior.
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Figure 8: Relative errors in L∞ norm with optimal relaxation parameter. Left:
fluid velocity error, right: structure displacement error - t = 0.004 s.

The main contribution of this work is the design of partitioned procedures
suitable for FSI problems where the added-mass effect is important, as, for in-
stance, in hemodynamics applications. With this aim, we have introduced a new
family of partitioned procedures generated by Robin transmission conditions, i.e.
linear combination of Dirichlet (continuity of velocities) and Neumann (continu-
ity of stresses) conditions on the interface. The convergence of the Robin-based
algorithms depends on the choice of the combination coefficients. We have pro-
posed those coefficients based on explicit formulae for simplified models for the
fluid and for the structure.

In particular, we have analyzed two of these new methods: Robin-Dirichlet
and Robin-Neumann. Whereas the Robin-Dirichlet algorithm is fairly disap-
pointing, the Robin-Neumann algorithm does exhibit excellent convergence prop-
erties that make this algorithm very appealing:

• The method always converges, without any relaxation.

• The convergence is insensitive to the added-mass effect.

These properties have been proved theoretically for simplified blood-vessel sys-
tem and checked for more general fluid and structure models using numerical
experimentation. These two properties make the RN algorithm very useful in
hemodynamics applications. In fact, this method converges much faster than
DN for a wide set of numerical tests.

We have also proposed the more general RR scheme, that depends on the
scaling factor γ. By suitably tuning this coefficient, we obtain convergence prop-
erties for the RR scheme even better than those of the RN algorithm. Moreover,
the tuned value seems to be very robust and practically independent of some of
the parameters defining the problem at hand.

Even though we have not considered this point in this article, the use of a
Robin transmission condition for the fluid system allows to solve FSI problems
with enclosed fluid domains (balloon-type problems). The DN algorithm is use-
less in these cases because the fluid sub-problem is confined (Dirichlet boundary
conditions on the whole fluid boundary). Furthermore, those Dirichlet boundary
conditions for the fluid are obtained from the structure sub-problem and do not
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satisfy ∫

∂Ωf

u · nf = 0

in general. Thus, the null divergence constraint cannot be fulfilled, leading to
unphysical results. The application of RN to this kind of problems will be the
subject of a future work.
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