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Abstract

We study the effects that a curvature correction to a bare value of the line tension
has on the equilibrium and stability of droplets laid upon a rigid substrate. In the
simple case of cylindric liquid bridges we prove that even a tiny curvature correction
prevents the onset of wildly oscillating perturbations that would make the contact
line unstable if a negative line tension were present alone. However, if the curvature
correction is not large enough, unstable modes can persist that are not related to
the classical Rayleigh instability.
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1 Introduction

Since Gibbs’ fundamental paper [1] on the equilibrium of heterogeneous substances, there
has been an increasing interest in modelling both the statics and the dynamics of multi-
phase bodies. In particular, a faithful description of the interface separating two different
phases has been sought along different lines originating from either the continuum point
of view or the microscopic point of view that relies upon statistical mechanics. In his
original approach Gibbs modelled the thin interfacial three-dimensional region where
the physical properties of two adjoining phases rapidly change as a two dimensional
surface, called the dividing surface, that separates two bulk regions where the phases
are homogeneous. In general, extensive properties like energy or entropy differ in the
real system and in the idealized one. Gibbs ascribed the excess energy or entropy to the
dividing surface, adding surface energy and entropy to the bulk terms characterizing the
homogeneous phases. The simplest surface energy introduced by Gibbs is proportional
to the area of the dividing surface, the constant of proportionality—called the surface

tension—being positive for stability reasons. Gibbs clearly stated that the surface en-
ergy he envisaged was appropriate only for flat or weakly curved interfaces, while in the
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general case other contributions depending on the interface curvature should enter the
energy balance. It was Tolman [2] who first analysed curvature corrections by expanding
the surface tension pertaining to a spherical interface of radius R in powers of 1/R. The
length-scale at which this correction is relevant is the Tolman length δT that has been
found to be a molecular length both in numerical simulations [3] of Lennard-Jones fluids
and in the analytic treatment of Ref. [4].

A general format to incorporate curvature corrections in the surface energy was
sketched by Gibbs himself and later exploited, for instance, in [5] where the following
expression for the surface tension

γ = γ0 + κ(c0H +
1

2
H2) + κ̂K (1)

was proposed, in which γ0 is the surface tension for a flat interface, c0 is the spontaneous

curvature of the interface, H and K are the total and the Gaussian curvatures of the
interface, while the constitutive parameters κ and κ̂ are bending rigidities. We record
here that the Tolman length can be expressed as [5]

δT =
κc0

γ0
. (2)

Eq. (1) is a truncated expansion that also covers the case of non-spherical interfaces. It
can also be noticed that the correction (1) to the surface tension transforms the surface
energy into the Canham-Helfrich Hamiltonian so successfully employed in modelling bi-
ological membranes. To obtain more tractable expressions for the curvature corrections,
an alternative procedure was recently put forward in Ref. [6] by performing a curvature
expansion of the lowest order equation in the Born-Green-Yvon hierarchy.

Up to this point we have considered interfaces separating two distinct phases. How-
ever, contact lines where three different phases coexist at equilibrium also occur. A line
energy proportional to the length of the contact curve had been introduced by Gibbs
himself in [1] to model the excess free energy residing there. The constant of proportion-
ality is called the line tension. Since line tension effects on equilibrium are detectable
for systems in the submicrons regime, its rôle has been neglected, until exprerimental
techniques became available, which allow explorations of these small-sized droplets. As a
consequence, the impact of line tension on the equilibrium [7, 8] and the stability [9]-[16]
of sessile droplets was studied thoroughly during the past decade. In particular, a contro-
versy arose on the admissibility of a negative line tension within a continuum model. At
variance with surface tension, Gibbs did not put restrictions on the sign of line tension,
but it was proved in [9] that negative values of line tension would make the free-energy
functional unbounded from below, and so make any equilibrium configuration unstable.
Precisely, if the contact line is corrugated enough, a droplet at equilibrium can follow a
path along which its energy is reduced. It was pointed out [12, 16, 17], however, that
the characteristic wavelength induced by destabilizing perturbations on the equilibrium
droplet could be a molecular length, detectable at a length-scale outside the realm of a
continuum model. In [17, 18] a criterion of marginal stability was proposed to estimate,
roughly speaking, the number of stable modes for a given equilibrium configuration and
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for a given negative line tension. In this way, we could ascertain that negative line ten-
sions as those reported in [19] were compatible with a large set of stable modes, and
that the onset of instability was related to perturbations with so short a wavelength that
they presumably operate at a scale where also curvature corrections to the line tension
should be accounted for [17]. Incorporating these corrections into a continuum model to
study their impact on the stability of sessile droplets is the aim of this paper.

In fact Boruvka and Neumann introduced long ago [20] curvature corrections for
both the surface and the line energy, by building a formal theory where the free-energy
contains contributions depending on both the normal and the geodesic curvatures as well
as on the geodesic torsion of the contact line, conceived as a curve lying either on the
substrate or on the free surface of the liquid droplet. Here we do not insist in making
all these differential-geometric properties enter the free-energy functional, as this would
lead to a large number of constitutive parameters which, in turn, would make predictions
rather difficult, if possible at all. So, we simply imagine that the line tension depends
on the curvature σ of the contact line. In this sense our approach departs from Boruvka
and Neumann’s who did not consider corrections only depending on the curvature σ of
the contact line since σ has no relation with either the free surface of the droplet or
the substrate. However, on computing the first and the second variation of the line free
energy, we will see that it is natural to consider deformations of a sessile droplet that map
contact lines into contact lines. In this way, the geometry of the substrate is naturally
coupled with that of the contact line and both the first and the second variation of the
line energy depend on the geometric properties of the contact line, conceived as a curve
on the substrate.

It should also be recalled that recent studies [21] have focussed on the dependence
of line tension upon the radius of curvature of the dividing line. We also mention that
a different kind of curvature correction to line tension was studied in [22], where the
dependence of line tension on the substrate’s curvature was examined within an effective
interfacial Hamiltonian approach, in the limit of weakly curved cylindric substrates.

The reader might wonder why we do not treat line and surface tension on the same
footing, by assuming a dependence of this latter on curvature too. While in the next
section we will give a technical reason for neglecting such corrections, a simple argument
can be given, by comparing the typical energy of the term κc0

∫
S

HdA associated with
Tolman’s correction with the energy β

∫
C
σ2d` associated with the curvature correction

of line tension. Taking a spherical capsule of radius R, and recalling Eq. (2), the
contribution due to curvature correction of line tension prevails whenever

R �
√

β

γ0δT
:

since δT is a molecular length, the set of values of the ratio β/γ0 that make this inequality
obeyed by micron-sized droplets is non-empty.

This paper is organized as follows. In Section 2 we introduce the curvature correction
to line tension and we discuss the length-scales hidden in our model. In Section 3 we
compute the first variation of the curvature correction arriving at a modified Young
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equation obeyed along the contact line. Here we also write down the second variation of
the curvature-dependent correction, deferring to an Appendix the lengthly calculations
needed to obtain it. As an application, in Section 4 we address the stability of a liquid
bridge lying on a flat substrate that was explored without curvature correction in [14] and
[15]. We prove that the curvature correction cancels the systematic instability induced
by negative line tension for modes with arbitrarily short wavelengths, regardless of the
magnitude of the correction. However, different stability scenarios can be singled out,
depending on the magnitude of both the bare line tension and its curvature correction.
The paper is closed by a section where we summarize our results and we outline some
possible applications.

2 Free energy

We consider a sessile droplet B consisting of incompressible fluid (see Figure 1). Its

S∗

S∗

ϑc

νS∗

νS∗

ν∗

ν
∗

C

Figure 1: A sessile droplet laid on a rigid substrate. The boundary of the droplet is split
into a free surface S∗ and an adhering surface S∗: on the former, the droplet is in contact
with a vapour phase, on the latter it is in contact with the substrate. These surfaces
meet along the contact line C. The outer unit normal vectors ν and ν∗ to S∗ and S∗

are also shown, together with the conormal unit vectors νS∗ and νS∗
to the contact line,

conceived as a curve on S∗ and S∗, respectively. Finally, the contact angle ϑc, defined
as the angle between νS∗ and νS∗

, is also shown.

boundary ∂B is naturally split as ∂B = S∗ ∪ S∗ where the adhering surface S∗ is laid
on a rigid substrate. The portion S∗ of ∂B that is not in contact with the substrate
is referred to as the free surface. The curve C := S ∗ ∩ S∗ is the contact line, where
three phases coexist at equilibrium. We shall assume, for simplicity, that C is connected.
The equilibrium shapes of a droplet are the critical points of the following free-energy
functional

F [B] := γ0

∫

S∗

da − w

∫

S∗

da + τ0

∫

C

d` + β

∫

C

σ2d` (3)
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that consists of several contributions. Firstly, γ0

∫
S∗

da accounts for the surface tension
γ0 := γlv > 0 associated with the interface between the liquid and the vapour phase. Here
a is the area-measure on either S∗ or S∗. The term −w

∫
S∗

da is responsible for the excess
energy at the solid-liquid interface. We introduced the adhesion potential w > 0 that is
often expressed as w = γlv − γls + γsv, where the surface tensions γls and γsv associated
with the liquid-solid and with the solid-vapour interfaces intervene. We then consider two
line-energy contributions, τ0

∫
C
d`, associated with the bare line tension τ0, a constant

associated with an ideal straight contact line, and β
∫
C
σ2d`, where σ is the curvature of

the contact line C and β > 0 is a constant parameter. This term measures the curvature
correction to the bare line tension and a squared dependence upon σ has been chosen
because a linear term

∫
C
σd` would simply contribute a constant to F , since C is a

closed curve. Here ` is the length-measure along C. In studying the impact of curvature
corrections on the stability of liquid droplets, Tolman length plays an ancillary rôle. In
fact, we learnt in previous work on this topic [15, 17] that the stability is determined by
the natural boundary condition along the contact line that arises in the minimization of
the second variation of the free-energy functional. Incorporating a curvature correction
to the surface tension would add to this boundary condition terms depending on the
curvature of the contact line that are qualitatively equivalent to those considered here.
Moreover, this dependence would lead to a non-constant mean curvature in the free-
surface profile that would render the normal mode analysis more intricate to follow.
Hence, we think that the essential effects of curvature corrections are captured by just
taking a curvature-dependent line tension. No bulk terms have been included in (3),
thus excluding both gravitational effects, as well as the bulk terms that are introduced
into effective interfacial models that bridge the continuum and the statistical approach
(see, e.g. [23]). Since the stability of the contact line is independent of the presence of
bulk terms, we think that this omission has not serious drawbacks.

We aim at exploring the stabilizing rôle of a curvature correction to the line tension
and so we will assume hereafter τ0 < 0 since negative line tensions play a systematic,
destabilizing effect. As we discussed in several geometries [15, 17, 18], conditionally
stable equilibria in the presence of negative line tension are possible provided that |τ0|
is sufficiently small. In this case, it can be shown that the typical wavelength of desta-
bilizing modes is a molecular length, that lies outside the realm of application of the
continuum picture adopted here. We expect that a curvature correction penalizing wild
oscillations of the contact line could enhance the stability of an equilibrium configuration,
even if line tension is negative.

We now digress slightly to introduce the characteristic lengths hidden in our model.
A first length scale `τ can be defined as the typical linear dimension of a droplet for
which the surface energy and the line energy associated with bare line tension τ0 have
the same order of magnitude:

γ0

∫

S∗

da ≈ |τ0|
∫

C

d` .

If S∗ is a spherical capsule of radius `τ so that C is a circumference of radius R ∝ `τ , we
obtain `τ ≈ |τ0|/γ0. Estimates for `τ can be obtained from line tension measurements
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like those in [19], and range from 10−8 to 10−6 m. The following ratio

ξ :=
τ0

γ0
(4)

will be employed in the application shown in Sec. 4. Finally, we can define a length `β

as the typical size of a droplet for which

|τ0|
∫

C

d` ≡ β

∫

C

σ2d`

so that `β ≈
√

β/|τ0|. We are unaware of any measure or estimate of `β. Although it
might be reasonable to assume `β � `τ , we will not make such a restriction in this paper.
In any case, we do not need to apply our model up to the small lengths discussed here
to appreciate the effects of line energies. As we will see in Sec. 4, for instance, β could
affect the stability of equilibrium configurations both quantitatively and qualitatively,
even if it does not modify the equilibrium profile of C at all.

3 Equilibrium and stability

The first and the second variation of the free-energy functional F in (3) have been
computed in [13] for β = 0. Here we simply arrive at the first variation δF ∗ of the
reduced functional

F∗[C] :=

∫

C

σ2d` : (5)

the equilibrium equation obeyed by the droplet B is obtained by adding βδF ∗ to the
Young equation (Eq. (2.44)2 of [13]) specialized to to case where both the surface and
the bare line tension are constant. It will be useful to write the functional F as

F = F0 + βF∗ ,

where F0 is the free-energy functional when β = 0.
Since F∗ is concentrated along the contact line, it cannot affect the equilibrium

shape of the free surface S∗ which, in the absence of bulk contributions, is a surface with
constant mean curvature.

To compute δF∗ we perturb C by mapping points p ∈ C into points

p 7→ pε := p + εu + ε2
v, (6)

where the regular fields u and v are defined on S. Since we do not repeat the computa-
tions for the complete functional F , here we can deal with the restrictions of these fields
along C. In general, u and v are subject to the constraints [13]

u · ν∗ = 0 and v · ν∗ = −1

2
u · (∇sν∗)u on S∗ (7)

where ∇sν∗ := (∇ν∗)(I − ν∗ ⊗ ν∗) is the surface gradient of the outer unit normal ν∗

of S∗. Eqs. (7) guarantee that the perturbed contact line glides on the substrate both
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at the first-order—Eq. (7)1—and at the second-order—Eq. (7)2—in the perturbation
parameter ε. The field v does not enter in the equilibrium equations, but it plays a
crucial rôle in the stability of the equilibrium configurations.

Let s be the arc-length of the contact line C, and t∗ its unit-tangent vector. We
will frequently use the Darboux trihedron associated with C: it is the set {t∗,ν∗,νS∗

}
formed by three orthogonal unit vectors: t∗, ν∗ and νS∗

:= t∗ ∧ ν∗, the conormal unit
vector of C on S∗. When a point moves along C, the associated Darboux trihedron obeys
the following Darboux equations (see p.241 of [24])





dt∗

ds
= κ∗

gνS∗
+ κ∗

nν∗

dνS∗

ds
= −κ∗

gt∗ − τ∗
g ν∗

dν∗

ds
= −κ∗

nt∗ + τ∗
g νS∗

,

(8)

where

κ∗
n :=

dt
∗

ds
· ν∗, κ∗

g :=
dt

∗

ds
· νS∗

, and τ∗
g :=

dν∗

ds
· νS∗

(9)

are, respectively, the normal curvature, the geodesic curvature, and the geodesic torsion

of C, viewed as a curve on the substrate S∗. Hereafter, to avoid clutter, we keep the star
∗ only when we are referring to the unit normal ν∗ of S∗, and when confusion might
occur. No ambiguity should arise, since we always imagine C as a curve on S∗.

By Eq. (6), we obtain
dpε

ds
= t + εu′ + ε2

v
′

and so
ds

dsε
=

∣∣∣∣
dpε

ds

∣∣∣∣
−1

= [1 + 2εu · t + ε2(u′ · u′ + 2v′ · t)]−1/2 ,

where a prime denotes differentiation with respect to s. Since

tε =
dpε

dsε
=

dpε

ds

ds

dsε
,

it follows that

tε = t + ε[u′ − (u′ · t)t] + ε2[v′ − 1

2
(u′ ·u′)t− (v′ · t)t +

3

2
(u′ · t)2t− (u′ · t)u′] + O(ε3) .

We introduce the vector fields

a := u
′ − (u′ · t)t and c := v

′ − (v′ · t)t (10)

that satisfy a · t = c · t = 0. By setting a2 := a · a, we have u
′ · u′ = a2 + (u′ · t)2 and

so we can recast tε as

tε = t + εa + ε2[c − a2

2
t − (u′ · t)a] + O(ε3) . (11)
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For a regular curve, the first Frénet-Serret equation states that

dt

ds
= σn (12)

where n is the principal unit normal to the curve. Hence, on Cε we have

σε =

[
dtε

dsε
· dtε

dsε

]1/2

which, after rearrangements yields

σ2
ε

dsε

ds
=

dtε

ds
· dtε

ds

ds

dsε
. (13)

By use of Eqs. (11) and (12) and after tedious but straightforward computations we
obtain

σ2
ε

dsε

ds = σ2 + ε[2σa
′ · n − σ2(u′ · t)] + ε2[a′ · a′ + 2σn · c′−

−2σ(u′ · t)′n · a − 4σ(u′ · t)n · a′ − 3
2a2σ2 + σ2(u′ · t)2 − σ2

v
′ · t] .

(14)

By definition, the first variation δF ∗ of F∗ is given by

δF∗ :=
dF∗[Cε]

dε

∣∣∣∣
ε=0

=

∫

C

[2σa
′ · n − σ2(u′ · t)]ds =

∫

C

[(σ2
t)′ · u − 2(σn)′ · a]ds (15)

where integration by parts has been used in the last passage. By recalling the definition
of a in Eq. (10) and by performing several integrations by parts to get rid of the
derivatives u

′, we obtain

δF∗ =

∫

C

{[(σ2
t)′ + 2(σn)′′ − 2[((σn)′ · t)t]′} · uds .

Since the second Frénet-Serret equation reads

dn

ds
= −(σt + τ̃b) ,

where τ̃ and b := t ∧ n are the torsion and the unit binormal vector of C, we finally
arrive at

δF∗ =

∫

C

u · [3(σ2
t)′ + 2(σn)′′]ds .

The differential properties of C as a curve on S∗ enter the scene when Eq. (8)1 is
compared with Eq. (12) so that δF ∗ reads as

δF∗ =

∫

C

u · [6σσ′
t + 3σ3

n + 2(κgνS + κnν∗)′′]ds .
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Since, by Eq. (7)1,
u = utt + usνS (16)

along C, by applying repeatedly Darboux equations (8), by performing several integra-
tions by parts and by using the identity

σ2 = κ2
g + κ2

n , (17)

we obtain

δF∗ =
∫
C
{[κgσ

2 + 2(τ ′
gκn + 2τgκ

′
n + κ′′

g − κgτ
2
g )]us+

+2[σσ′ − κgκ
′
g − κnκ′

n]ut}ds =
∫
C
[κgσ

2 + 2(τ ′
gκn + 2τgκ

′
n + κ′′

g − κgτ
2
g )]usds ,

where Eq. (17) was differentiated with respect to s to suppress the term multiplying
ut. The first variation δF ∗ is thus independent of the component ut of u along the unit
tangent vector t of C, as it should be, since ut simply reparameterizes C. One could
assume a pragmatic attitude by setting ut ≡ 0 from the very beginning. We prefer to
keep this term since its disappearance from both the first and the second variation serves
as a check of consistency for our computations.

If βδF∗ is added to the first variation of F0 as given in Eq. (2.44) of [13], the following
equilibrium equation should be obeyed along C

γ0 cos ϑc + γ0 − w − τ0κg + βκgσ
2 + 2β(τ ′

gκn + 2τgκ
′
n + κ′′

g − κgτ
2
g ) = 0 , (18)

where ϑc is the contact angle, that is, the angle between the conormal unit vectors νS∗

and νS∗
of C viewed as a curve on either S∗ or S∗, respectively (see Fig. 1). At variance

with Eq. (2.44) of [13], the subscript ∗ has been dropped since no confusion can arise
here.

The format just employed gives also the second variation of F ∗. Since computations
are much more involved, however, we prefer to move the details into an Appendix, while
here we simply record the final result:

δ2F∗ =
∫
C
(u′′

s)
2ds +

∫
C
(6τ2

g − κ2
g − 3

2σ2)(u′
s)

2ds +
∫
C
{τ4

g + (τ ′
g)

2 + σ2(κ2
g − 3

2τ2
g )+

+(κnτg)
2 + 2κnκ′

gτg − 4τ2
g κ2

g + 4κgτgκ
′
n + [2τgκgκn + 3κgκ

′
g]
′+

+(H − κn)(1
2σ2κn + κ′′

n − 2τgκ
′
g − κgτ

′
g − κnτ2

g )}u2
sds ,

(19)
where H is the total curvature of S∗. By adding βδ2F∗ to Eq. (3.16) of [13] we obtain
the complete second variation of the functional F . We remind the reader that us∗ in
[13] coincides with us employed here.
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Figure 2: a): Sketch of a liquid bridge, conceived as a straight circular cylinder of
radius R, with symmetry axis along ez. The bridge is laid on a flat substrate. Here L
denotes the typical length along which the cylinder is perturbed. b) the cylindric polar
coordinates z and ϑ used to parameterize the free surface of the bridge are shown together
with the contact angle ϑc, which is constant along the contact line. The conormal unit
vectors νS∗ and νS∗

of C as a curve on either the free or the adhering surface of the
bridge have been drawn too.

4 Application

We apply the results of the previous sections to study the stability of a liquid bridge,
conceived as a straight circular cylinder with radius R laid on a flat substrate (see
Figure 2a). Since a cylinder is a surface with constant mean curvature, it represents
an admissible equilibrium free surface. By Eq. (18), we see that a straight equilibrium
contact line is unaffected by both the line tension and its curvature correction: the
contact angle has a constant value ϑc along C. We assume that the cylinder’s axis lies
along the ez direction and we parameterize the free surface of the cylinder by using the
angle ϑ ∈ [−ϑc, ϑc] and z ∈ R (see Fig. 2b). Since σ = κn = κg = τg = 0, by Eq. (19)
we have

βδ2F∗ = β

∫

C

(u′′
s)

2ds

that, when added to the second variation of F0 (see Eq. (3) of [15])

δ2F0[u] = γ0

∫

S∗

{
|∇suν |2 −

1

R2
u2

ν

}
da +

∫

C

{
τ0(u

′
s)

2 − γ0

R
cos ϑc sinϑcu

2
s

}
ds ,

yields the second variation of the functional F

δ2F [u] = γ0

∫

S∗

{
|∇suν |2 −

1

R2
u2

ν

}
da +

∫

C

{
β(u′′

s)
2 + τ0(u

′
s)

2 − γ0

R
cos ϑc sinϑcu

2
s

}
ds .

(20)
In eq. (20), ∇suν = (I − ν ⊗ ν)∇uν is the surface gradient of the scalar field uν . We
warn the reader that in [15] the line tension was denoted by γ, and the surface tension
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by τ . In Eq. (20), uν is the component of u along the outer unit normal vector of the
free surface S∗ and it is related to us via the equation

uν = sinϑcus . (21)

With the aid of Eq. (21), δ2F becomes a quadratic functional of uν and so, either
its minimum is zero, or it is unbounded from below. To deal with finite minima, we
minimize δ2F on the set of functions obeying the constraint

∫

S∗

u2
νda = 1 : (22)

if the minimum of δ2F on this set is positive, δ2F is positive definite, and so the equi-
librium configuration is locally stable whereas, if the minimum of δ2F on the set (22)
is negative, the equilibrium configuration is unstable [13]. Since we assume that the
liquid bridge is made of incompressible fluid, uν should also obey the incompressibility
constraint ∫

S∗

uνda . (23)

The constraint (23), together with its second order implementation (Eq. (2.29)2 of
[13]) have been used in [13, 15] to obtain both the first and the second variation of F0.
Until now we did not need them since we only dealt with F ∗ which is unaffected by this
constraint, as it is concentrated on C. However, to proceed we need to study δ2F and so
we have to enforce incompressibility as well. Precisely, the first-order requirement (23)
is needed since we have to compute only the first variation of δ2F . Hence, we minimize
the quadratic functional

G[uν ] := δ2F [uν ] − µ

2

∫

S

u2
νda + λ

∫

S∗

uνda ,

where µ/2 and λ are Lagrange multipliers corresponding to the constraints (22) and
(23). The scalar field uν is perturbed according to

uν 7→ uνε := uν + ε h ,

where h is a regular scalar field. Here we focus on the contribution arising from curvature
correction. Much in the spirit of Rayleigh instability, we imagine that the cylinder has
infinite length and we call L the length of C over which perturbations are effective. As
a consequence, we require

uν(ϑ, 0) = uν(ϑ,L) = 0 , ∀ϑ ∈ [−ϑc, ϑc] (24)

so that also h has to vanish at z = 0, L. By setting χ := 1/ sin ϑc, using Eq. (21) and
integrating by parts twice, we obtain

∫

C

(u′′
sε)

2d` =

∫ L

0
(u′′

sε)
2dz = χ2

∫ L

0
(u′′

ν)2dz+2χ2

∫ L

0
hu(iv)

ν dz+u′′
ν(L)h′(L)−u′′

ν(0)h′(0) ,

(25)
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where a prime stands for differentiation along the arc-length z of C, and use of Eq. (24)
has been made. Since in this case C is an open curve we need to require

u′′
ν(ϑ, 0) = u′′

ν(ϑ,L) ∀ϑ ∈ [−ϑc, ϑc] . (26)

By adding (25) to the terms of the first variation of G that were computed in Eqs. (7)-(8)
of [15], we conclude that finding the minimum of G on the set (22) amounts at finding
the minimum eigenvalue µ of the following problem

4suν + (µ +
1

R2
)uν + λ = 0 on S∗, (27)

sin2 ϑc∇suν · νS +
β

γ0
u(iv)

ν − ξu′′
ν − 1

R
sinϑc cos ϑcuν = 0 along C . (28)

Here 4s is the surface-Laplacian defined on S and ξ is defined according to Eq. (4).
Hereafter we drop the subscript ν from uν . As proved in [13], the smallest value µmin

of µ that solves the problem (27-28) coincides with the minimum value of δ2F on the
constraint (22) and so we conclude that an equilibrium configuration is locally stable or
not according to whether µmin is positive or not.

To analyse Eqs. (27-28), we expand u as a sine series

u(ϑ, z) =

∞∑

n=1

an sin

(
2nπ

L
z

)
un(ϑ) , (29)

where un(ϑ) are unknown functions of ϑ. In this class, we can satisfy the boundary
conditions (24) and (26) as well as the incompressibility constraint (23), so that we can
set λ = 0 in (27). The reader might wonder whether the second variation just obtained,
as well as that computed in Refs. [13, 15] for sessile droplets with closed contact line
are valid here, where the contact line is open. A glance at the derivations of the second
variation in the Appendix and in Refs. [13, 15] shows that terms at the end-points of
the contact line are always coupled with the curvature—normal or geodesic— or to the
geodesic torsion of C which vanish identically along a straight contact line and so never
contribute.

We split our discussion into two parts, according to whether un(ϑ) is symmetric with
respect to the plane ϑ = 0, or if it is skew-symmetric. We call peristaltic modes those
in the former class, for which

∂un

∂ϑ

∣∣∣∣
ϑ=0

= 0 ∀z ∈ [0, L] (30)

holds and we call varicose the modes in the latter class, which in turn obey

un(ϑ) = 0 ∀z ∈ [0, L] . (31)

12



4.1 Peristaltic Modes

When a mode

u(ϑ, z) = sin

(
2nπ

L
z

)
un(ϑ) (32)

in the expansion (29) is inserted into Eq. (27) with λ = 0 and the multiplier µ is scaled
to R2, un(ϑ) has to satisfy

1

R2
ün −

(
2nπ

L

)2

un +

(
µ + 1

R2

)
un = 0 ,

where we exploited the expression

4sf =
1

R2

∂2f

∂ϑ2
+

∂2f

∂z2

of the surface-Laplacian acting on a scalar function f = f(ϑ, z) defined on S ∗ and
where a superimposed dot denotes differentiation with respect to ϑ. By introducing the
dimensionless ratio

%n :=

(
2πnR

L

)2

(33)

and setting
σn := µ + 1 − %n , (34)

by Eq. (30) the peristaltic modes are given by

un(ϑ) =





A cos(
√

σnϑ) if σn > 0
A if σn = 0
A cosh(

√−σnϑ) if σn < 0 ,
(35)

where A is an inessential constant that can be adjusted by imposing the constraint (22).
If the mode (32) is inserted into Eq. (28), also by use of Eq. (35), we conclude that
u(ϑ, z) is an acceptable eigenfunction if

β

γ 0

(
2nπ

L

)4

un(ϑc) +
1

R
u̇n(ϑc) + ξ

(
2nπ

L

)2

%nun(ϑc) −
1

R
un(ϑc) sin ϑc cos ϑc = 0 (36)

holds, where we noted that

∇su · νS =
∂u

∂ϑ
= u̇(ϑ) .

Also by use of Eq. (4) we introduce the dimensionless parameters

ε :=
ξ

R
=

τ0

γ0R
and η :=

β

γ0R3
.

By setting

xn :=

{ √
σnϑc if σn > 0√−σnϑc if σn < 0 ,

(37)
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we can recast (36) as

η%2
n + ε%n = sinϑc[cos ϑc +

sinϑc

ϑc
xn tanxn] if σn > 0 , (38)

η%2
n + ε%n = sinϑc[cos ϑc −

sinϑc

ϑc
xn tanhxn] if σn < 0 , (39)

and
η%2

n + ε%n = sinϑc cos ϑc if σn = 0 . (40)

Following [15], modes satisfying (38), (39), and (40) are called circular, hyperbolic, and
linear modes, respectively. Compared to the analysis performed in [15], the left-hand
side of Eqs. (38-40) is a second- instead of a first-degree polynomial in %n: in this sense,
the curvature correction acts as a singular perturbation term. As we remarked before,
stable modes correspond to positive values of µ, whereas unstable modes correspond to
µ < 0. To ascertain the stability of a particular mode, it is then crucial to localize the
marginal modes, corresponding to µ = 0. By the definitions (34) and (37) we can write

µ =





%n − 1 +
(

xn

ϑc

)2
if σn > 0

%n − 1 −
(

xn

ϑc

)2
if σn < 0

%n − 1 if σn = 0 .

(41)

From (41)1 we conclude that points in the quadrant Q := {(xn, %n)| xn ≥ 0, %n ≥ 0}
of the (xn, %n)-plane that lie below the parabola

%n = 1 −
(

xn

ϑc

)2

(42)

are unstable against circular modes, whereas points in Q above this parabola are stable
against circular modes. Similarly, it follows from (41)2 that points of Q below the
parabola

%n = 1 +

(
xn

ϑc

)2

(43)

are unstable against hyperbolic modes, whereas points above it are stable against hy-
perbolic modes. Finally, points in Q that lie below the straight line

%n = 1 (44)

are unstable against linear modes, while points above this line are stable. We now replace
%n in Eqs. (38-40) with the appropriate expressions found in Eqs. (42-44), we divide
Eqs. (38-40) by ε and define the functions

gc(xn) := φ



η

[
1 −

(
xn

ϑc

)2
]2

− sinϑc[cos ϑc +
sinϑc

ϑc
xn tan xn]



 ,
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gh(xn) := φ



η

[
1 +

(
xn

ϑc

)2
]2

− sinϑc[cos ϑc −
sinϑc

ϑc
xn tanhxn]



 ,

and
gl(xn) := φ[η − sinϑc cos ϑc] .

where, for simplicity, we set φ := 1/|ε|. Increasing values of φ correspond to line tensions
with decreasing magnitude. By Eq. (41), the marginal modes are the smaller pairs
(xn, %n) in Q that obey the equation





1 −
(

xn

ϑc

)2
= gc(xn) if σn > 0

1 +
(

xn

ϑc

)2
= gh(xn) if σn < 0

1 = gl(xn) if σn = 0

(45)

The pairs (φ, %n) that solve Eq. (45) and yield the most restrictive stability condition
lie on the marginal curve which divides the (φ, %n)-plane into a stable and an unstable
set. Figure 3 shows the marginal curves for ϑc = 65◦ and for several values of η: no
qualitative differences occur if other values of ϑc < π/2 are chosen. To follow the
discussion the reader is also urged to look at Fig. 4, where the semi-logarithmic plot of
the marginal curves of Fig. 3 are shown. The numerical solution of Eq. (45) (and of
Eq. (46) below) has been performed in a Matlab environment by resorting to a simple
bisection algorithm. An educated guess based on an a priori analytical study of the
equation has been used to select the intervals in which the solutions are first sought. We
stress that, by definition of φ and since we only consider negative line tensions, moving
from left to right amounts at spanning the interval (−∞, 0) for the line tension.

Hyperbolic modes are most effective and, depending on the value of η, we can single
out three stability diagrams, according to the profile of the marginal curve. If η = 0
(solid line a) the marginal curve has a turning point and the stability diagram coincides
with that obtained in [15]. A straight line φ = φ0 = const. either intersects the marginal
curve twice or it does not intersect it at all, according to the value of φ0. When two

intersections (φ0, %
(1)
n ) and (φ0, %

(2)
n ) exist (%

(1)
n < %

(2)
n ), Rayleigh instability makes liquid

bridges unstable when %n < %
(1)
n . When %n ∈ (%

(1)
n , %

(2)
n ) liquid bridges are locally stable

and they become unstable again when %n > %
(2)
n . Since %n is proportional to n, modes

with n = 1 are more likely to induce Rayleigh instability: in fact, we leave the unstable

set %n < %
(1)
n earlier and earlier on increasing n at fixed L and R. The effects of line

tension are more related to the unstable set %n > %
(2)
n . In this case, modes with large

n are most likely to cause instability. However [15], n cannot be increased arbitrarily
in a coherent theory since the typical length scale L/n associated with the corrugations
induced on the contact line by the perturbation falls below the smallest scale that can
be reached within a continuum approach. Hence, only a finite number of values of n
can be considered and it is clear from Figure 3 that the smaller the line tension, the
more values of n will fall within the region of local stability. When φ = φ0 does not

15



14

30

a

b

%n

φ

Figure 3: Stability diagram for peristaltic modes when ϑc = 65◦, for several values of
η: η = 0 ( solid line a), 10−3 (dashed line), 10−1 (dotted line), 1 (solid line b). Only
hyperbolic modes are effective. For a given value of η, the region bounded by the
coordinate axes and the marginal curve is unstable, while the remaining portion of the
(φ, %n) plane is stable. On increasing η, Rayleigh instability persists while the instability
induced by negative line tension for large values of n is reduced, since the marginal
curve only diverges in the limit as φ → 0, that is, when the magnitude of line tension is
exceedingly high (see also Fig. 4 for further details).

intersect the marginal curve, and so the line tension has a large magnitude, no stable
modes survive, and no stable equilibrium liquid bridge exists.

If η ∈ (0, ηc(ϑc)] (dashed line in Fig. 3 or, better, line 2) in Fig. 4) the marginal
curve has two turning points. A line φ = φ0 crosses the marginal curve three times
if φ0 ∈ [φm

0 , φM
0 ] and only once elsewhere. In this latter case only Rayleigh instability

occurs: it is slightly reduced by a curvature correction when φ0 > φM
0 , but it becomes

more and more restrictive if φ0 < φm
0 , since the marginal curve diverges along the %n axis.

When φ0 ∈ [φm
0 , φM

0 ] the points (φ0, %
(1)
n ), (φ0, %

(2)
n ), and (φ0, %

(3)
n ) (%

(1)
n < %

(2)
n < %

(3)
n )

on the marginal curve impose the following scenario: a liquid bridge being unstable

when either %n < %
(1)
n (Rayleigh instability) or % ∈ (%

(2)
n < %

(3)
n ) and stable when either

% ∈ (%
(1)
n < %

(2)
n ) or % > %

(3)
n . In particular, the local stability when % > %

(3)
n mirrors

the stabilizing rôle even of a tiny curvature correction. The undulating behaviour for

%n ∈ (%
(1)
n , %

(3)
n ) disappears when η attains a critical value ηc(ϑc) at which φm

0 = φM
0 . For

16



larger values of η (dotted line, solid line b), Fig. 3, lines 3) and 4), Fig. 4) the marginal

curve has a monotonic profile and it is crossed by a line φ = φ0 at a unique point (φ0, %
(1)
n ):

only liquid bridges such that %n < %
(1)
n are unstable: a Rayleigh instability occurs which

becomes stronger and stronger when the magnitude of line tension increases. Figure 5

0 5 10 15 20 25
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50
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φ

log %n
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log %n

2)

log %n

3)
4)

Figure 4: Semi-logarithmic plot of the stability diagram for peristaltic modes shown in
Fig. 3. The four curves correspond to the values 1) η = 0, 2) η = 10−3, 3) η = 10−1,
and 4) η = 1. The region of Rayleigh instability can be perceived only for η = 10−1 and
η = 1. Three regimes exist, depending on the value of η. When η = 0 a line φ = φ0

either crosses the marginal curve twice or it does not cross it at all. This mirrors the
destabilizing rôle of negative line tension when there are no curvature corrections. The
second regime covers the set η ∈ (0, ηc] (curve 2): then, when φ is either very small
or large φ = φ0 crosses the marginal curve only once, and so only Rayleigh instability
occurs. There is an intermediate set of values of φ0 for which three intersections exist
between φ = φ0 and the marginal curve. Finally, when η > ηc there is always one
intersection between a line φ = φ0 and the marginal curve: only Rayleigh instability
occurs here.

shows the graph of ηc(ϑc) against the contact angle ϑc. We conclude that small and
large values of ϑc require lower values of η to wash out the instability at large n typical
of a negative line tension. To prove that the marginal curve cannot diverge in the limit
φ → ∞ and when η assumes any fixed, non-vanishing value, we simply look at Eqs. (45)
before division by ε is performed. By applying the method of dominant balance [26], we
conclude that %n → ∞ and φ → ∞ would yield

η%2
n = −sin2 ϑc

ϑc
xn tanhxn
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Figure 5: The critical value ηc of η is plotted against the contact angle ϑc for peristaltic
modes. When η exceeds ηc, the marginal curve is a monotonic function of φ.

which is clearly inconsistent because of the different sign of the two sides. Similarly, we
exclude that %n could diverge at a finite value of φ. Hence, given a fixed value of η > 0
%n could diverge only in the limit where φ → 0, that is, if the negative line tension has
a large magnitude. This argument corroborates the outcomes of the numerical analysis
of Eq. (45). Figure 6 shows the stability of a liquid bridge against peristaltic modes,
when the contact angle is larger than π/2: precisely, here ϑc = 125◦. Both circular and
hyperbolic modes are effective in this case but, apart from this, there is no substantial
difference from the case where ϑc < π/2. Similarly, the semi-logarithmic plot shown in
Fig. 7 does not have new features as compared with that shown in Fig. 4.

4.2 Varicose modes

In this class, un(0) ≡ 0 and so, by retracing the same steps as before, we obtain

un =

{
A sin(

√
σnϑ) if σn > 0

A sinh(
√−σnϑ) if σn < 0 ,

for circular and hyperbolic modes, respectively, while linear modes are absent. From this
point, the analysis of Sec. 4.1 can be repeated verbatim. After introducing the functions

kc(xn) := φ



η

[
1 −

(
xn

ϑc

)2
]2

− sinϑc[cos ϑc −
sinϑc

ϑc
xn cot xn]



 ,

kh(xn) := φ



η

[
1 +

(
xn

ϑc

)2
]2

− sinϑc[cos ϑc −
sinϑc

ϑc
xn coth xn]



 ,
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marginal modes are obtained by determining the smallest pairs in Q that obey





1 −
(

xn

ϑc

)2
= kc(xn) if σn > 0

1 +
(

xn

ϑc

)2
= kh(xn) if σn < 0 .

(46)

Figure 8 shows the stability diagram of a liquid bridge against varicose modes, when
ϑc = 65◦. The branch of the marginal curve corresponding to Rayleigh instability
disappears. When φ → ∞, varicose modes are stable, as it should be, since they do
not affect Rayleigh instability in the absence of line tension. Let us first consider the
case η = 0. When the magnitude of negative line tension is progressively decreased,
instability occurs for large values of %n. To grasp the behaviour of the marginal curve
in the limit where φ → ∞, we still employ the method of dominant balance. Since large
values of %n also imply large values of xn by Eq. (43), we can look for solutions to Eq.
(46)2 in the form xn = bφα, where b and α are two positive numbers to be determined.
When we replace this ansatz into Eq. (46)2 and discard negligible terms, we arrive at

b

ϑc
φα

[
b

ϑc
φα − φ sin2 ϑc

]
= 0

whence α = 1 and b = ϑc sin2 ϑc follow. Fig. 8 points out a difference between peristaltic
and varicose modes since for these latter the marginal curves emanate from a precise
point φ(ϑc) of the φ axis: φ(65◦) = 2.66. As for peristaltic modes, as soon as a non-
vanishing value for η is fixed, the marginal curve diverges along the %n axis (see the semi-
logarithmic plot shown in Fig. 9) confirming the stabilizing rôle of curvature corrections.
The same regimes discussed for peristaltic modes exist here, apart from the absence of
Rayleigh instability when φ > φ(ϑc).

Figure 10 shows the stability diagram when ϑc = 125◦. As already discussed for
peristaltic modes, there are no essential differences with respect to the case in which
the contact angle ϑc is less than π/2. Similar remarks hold for the semi-logarithmic
counterpart shown in Fig. 11. Finally, Figure 12 shows the critical value of ηc(ϑc)
at which the marginal curve follows a monotonic profile: it has the same qualitative
behaviour as that computed for peristaltic modes.

5 Conclusions

We determined the effects of a curvature correction to line tension on both the equilib-
rium and the stability of sessile droplets through a general variational analysis. While
the effects on the equilibrium could be even absent, those on stability are relevant in any
case. As a first consequence, we proved for liquid bridges that the curvature correction
makes wildly oscillating perturbations unrewarding, and so the systematic instability
against all modes with short wavelength induced by negative line tensions is removed,
regardless of the magnitude of the correction. This magnitude, however, plays a crucial
rôle in determining whether only Rayleigh instability occurs or not. As a general result,

19



Rayleigh instability is the only destabilizing mechanism whenever the curvature correc-
tion is large enough. The analysis employed here for liquid bridges could serve to explore
the stabilizing effects of curvature corrections on droplets with a closed geometry.

6 Appendix: Second variation of F ∗

We show in detail how to obtain the expression (19) for the second variation δ2F∗ of
F∗, obtained by integrating along C the terms in (14) that are quadratic in ε. We start
with

I1 :=

∫

C

[2σc
′ · n − σ′

v · t]ds

which contains contributions related to the field v defined in Eq. (6). The integral I1

has the same structure as the first variation of F ∗ given in (15), with u and a replaced
by v and c. The crucial difference in this formal change is that, at variance with u,
the field v has also a non trivial component along the unit normal vector ν∗ of S∗. By
retracing the same steps as in Sec. 3, we can check that the component v · t does not
contribute and the component along νS∗

vanishes by virtue of the equilibrium equation
(18). Hence, we are left with the component v · ν∗ which, by use of (7)2, can be recast
as

I1 = −
∫

C

1

2
u · (∇sν∗)u[σ2κn + 2κ′′

n − 4τgκ
′
g − 2κgτ

′
g − 2κnτ2

g ]ds ,

where perusal of Darboux equations (8) has been made. By recalling that [25]

∇sν∗ = −κnt ⊗ t − κn⊥νS ⊗ νS + τg(νS ⊗ t + t ⊗ νS) , (47)

where κn⊥ := H − κn is expressed in terms of the total curvature H of S∗, we finally
arrive at

I1 =

∫

C

1

2
[κnu2

t − 2τgutus + (H − κn)u2
s]{σ2κn + 2κ′′

n − 4τgκ
′
g − 2κgτ

′
g − 2κnτ2

g }ds , (48)

It is also expedient to expand u
′ and a along the Darboux trihedron of C, by resorting

to Eqs. (8), (10)1 and (17):

u
′ = (u′

t − κgus)t + (u′
s + κgut)νS + (κnut − τgus)ν (49)

and
a = (u′

s + κgut)νS + (κnut − τgus)ν (50)

from which
a2 = u2

t σ
2 + u′2

s + τ2
g u2

s + 2κgutu
′
s − 2τgκnutus

easily follows. By differentiating a with respect to s we also obtain, by Eq. (8),

a
′ = [κnτgus − κgu

′
s − σ2ut]t + [(u′

s + κgut)
′ + τg(κnut − τgus)]νS+

+[(κnut − τgus)
′ − τg(u

′
s + κgut)]ν

(51)
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whence, after straightforward computations also involving differentiation of the identity
(17), we arrive at

I2 :=
∫
C
a
′ · a′ds =

∫
C
[σ4 + (κ′

g)
2 + (κ′

n)2 + σ2τ2
g + 2τg(κnκ′

g − κgκ
′
n)]u2

t +

+
∫
C
(σ2)′utu

′
t +

∫
C
σ2(u′

t)
2ds +

∫
C

2[κgσ
2 − 2τg(κ

′
n − τgκg)]utu

′
s−

−
∫
C

2[κnτgσ
2 + τ2

g (κ′
g + κnτg) + τ ′

g(κ
′
n − τgκg)]utus −

∫
C
2[τg(κnκg + 2τ ′

g)]usu
′
s+

+
∫
C
(κ2

g + 4τ2
g )(u′

s)
2 +

∫
C
[(κnτg)

2 + τ4
g + (τ ′

g)
2]u2

s +
∫
C
(u′′

s)
2 +

∫
C
2κgu

′
tu

′′
s−

−
∫
C

2[κgτ
2
g + τ ′

gκn]usu
′
t +

∫
C

2[κ′
g + κnτg]utu

′′
s −

∫
C
2τ2

g usu
′′
s −

∫
C
4τgκnu′

su
′
t .

(52)
To proceed, we consider the terms

I3 :=

∫

C

σ2[(u′ · t)2 − 3

2
a2]ds ,

that, by use of Eqs. (49-50) can be recast as

I3 =
∫
C

σ2(u′
t)

2 +
∫
C
σ2(κ2

g − 3
2τ2

g )u2
s −

∫
C
2κgσ

2usu
′
t −

∫
C

3
2σ4u2

t −
∫
C

3
2σ2(u′

s)
2−

−
∫
C
3σ2κgutu

′
s +

∫
C
3κnτgσ

2utus .
(53)

Finally, by integration by parts we change

I4 := −2

∫

C

[(u′ · t)′σn · a + 2(u′ · t)a′ · σn]ds

into

I4 = 2

∫

C

a · σn(u′ · t)′ds + 4

∫

C

a · (σn)′(u′ · t)ds

which, also by use of Eqs. (8)1, (17), and (49), yields

I4 =
∫
C
2σ2utu

′′
t +

∫
C

2κgu
′
su

′′
t −

∫
C
2κnτgusu

′′
t +

∫
C
4[(κ′

g + κnτg)]u
′
tu

′
s−

−2
∫
C
κ2

g(u
′
s)

2 −
∫
C
2[κg[κnτg + 3κ′

g]]usu
′
s +

∫
C
2[κ′

gκnτg − 2κg(κgτ
2
g − τgκ

′
n)]u2

s−

−
∫
C

2(σ2κg)
′usut +

∫
C
2(σ2)′utu

′
t +

∫
C
4(κgτg − κ′

n)τgu
′
tus − 2

∫
C
κgσ

2utu
′
s .

(54)
As already mentioned for δF ∗, the component ut cannot appear in the final expression

of δ2F∗. To prove this, we collect terms in δ2F∗ with the same dependence on ut and
its derivatives with respect to s, and integrate repeatedly by parts.

• Terms containing u′2
t and utu

′′
t in I3 and I4 are

2

∫

C

σ2(u′2
t + utu

′′
t )ds = −2

∫

C

(σ2)′utu
′
tds (55)
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that are combined with the term 3
∫
C
σ2utu

′
tds found in I2 and I4 to obtain, by Eq.

(17),

∫

C

(σ2)′utu
′
tds = −1

2

∫

C

(σ2)′′u2
t ds = −

∫

C

(κ′2
g + κ′2

n + κgκ
′′
g + κnκ′′

n)u2
t ds . (56)

• Further terms containing u2
t in I1-I3 are collected together to yield, also by use of

Eq. (17),

∫

C

[−σ4

2
+ (κ′

g)
2 + (κ′

n)2 + τ2
g κ2

g − 2τgκgκ
′
n +

σ2

2
κ2

n + κnκ′′
n − κgκnτ ′

g]u
2
t ds

that, when added to (56), gives

∫

C

[−σ4

2
+

κg

2
(2κgτ

2
g − 4τgκ

′
n − 2κ′′

g − 2κnτ ′
g) +

σ2

2
κ2

n]u2
t ds . (57)

Now, terms in ut should simplify separately for each integral in F . Hence, we can use
the reduced equilibrium equation

κgσ
2 + 2(τ ′

gκn + 2τgκ
′
n + κ′′

g − κgτ
2
g ) = 0 , (58)

obtained by setting δF ∗ = 0 together with Eq. (17) to show that the integral (57)
vanishes identically on any equilibrium configuration.

We now prove that mixed terms containing products of ut and us or of their deriva-
tives do not enter in δ2F∗.

• The terms in I2 containing the product utu
′′
s can be transformed via integration

by parts as

2

∫

C

(κ′
g + κnτg)utu

′′
sds = −2

∫

C

(κ′
g + κnτg)u

′
tu

′
sds − 2

∫

C

utu
′
s(κ

′′
g + κ′

nτg + κnτ ′
g)ds

to which we add the term in I4

2

∫

C

κgu
′′
t u

′
sds = −2

∫

C

(κgu
′′
su

′
t + κ′

gu
′
su

′
t)ds ,

containing u′′
t u

′
s and then add the term in I2 that contains u′′

su
′
t: as a result, we are left

with

−2

∫

C

(2κ′
g + κnτg)u

′
tu

′
sds − 2

∫

C

utu
′
s(κ

′′
g + κ′

nτg + κnτ ′
g)ds . (59)

Since the remaining terms in I2 and I4 containing u′
tu

′
s reduce to

4

∫

C

κ′
gu

′
tu

′
sds

we finally arrive at

−2

∫

C

{[κ′′
g + (τgκn)′]utu

′
s + κnτgu

′
tu

′
s}ds . (60)
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• The term

−2

∫

C

κnτgusu
′′
t ds = 2

∫

C

[κnτgu
′
tu

′
s + (κnτg)

′usu
′
t]ds ,

of I4 can be added to the integral (60), to arrive at

2

∫

C

{usu
′
t(κnτg)

′ − [κ′′
g + (κnτg)

′]utu
′
s}ds , (61)

or, after integration by parts, at

−2

∫

C

{usut(κnτg)
′′ + utu

′
s[κ

′′
g + 2(κnτg)

′]}ds . (62)

• We then consider the following terms in I2-I4 that contain u′
tus

2

∫

C

u′
tus[κgτ

2
g − τ ′

gκn − κgσ
2 − 2τgκ

′
n]ds

and integrate them by parts obtaining

2

∫

C

{u′
sut[−κgτ

2
g + τ ′

gκn + κgσ
2 + 2τgκ

′
n] + utus[τ

′
gκn + κgσ

2 + 2τgκ
′
n − κgτ

2
g ]′}ds . (63)

• Further integrals containing u′
sut in I2-I4 are collected to give

−
∫

C

[3κgσ
2 + 4τg(κ

′
n − τgκg)]u

′
sutds (64)

that, after algebraic manipulations and use of (58), when added to (62) and (63) yield

2

∫

C

usut{[τ ′
gκn + κgσ

2 + 2τgκ
′
n − κgτ

2
g ]′ − (κnτg)

′′}ds

that simplifies to zero when it is added to the remaining terms in I1 − I4 containing
usut, namely,

2

∫

C

usut[τ
2
g κ′

g + 2τgτ
′
gκg − τ ′

gκ
′
n − (κgσ

2)′ − κ′′
nτg]ds ,

as can be easily checked.
Hence, we proved that only terms containing u′′

s , u′
s and us appear in the second

variation of F∗. Precisely, we can recast δ2F∗ into a diagonal form in which only (u′′
s)

2,
(u′

s)
2, and (us)

2 appear.
• In I2 we consider the terms

∫

C

[(u′′
s)

2 − 2τ2
g usu

′′
s ]ds =

∫

C

{(u′′
s )2 + 2τ2

g (u′
s)

2 + 4τgτ
′
gusu

′
s}ds

that, when added to the remaining terms in I2-I4 containing (u′
s)

2, yield
∫

C

{(u′′
s )2 + (6τ2

g − κ2
g −

3

2
σ2)(u′

s)
2 + 4τgτ

′
gusu

′
s}ds . (65)
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• We now add to (65) the terms in I2 and I4 with usu
′
s arriving at

∫

C

{(u′′
s)

2 + (6τ2
g − κ2

g −
3

2
σ2)(u′

s)
2 − 2[2τgκgκn + 3κgκ

′
g]usu

′
s}ds . (66)

Finally, if we add the remaining contributions in I1-I4 that contain u2
s and then integrate

by parts the last term in (66), we obtain the expression (19) for δ2F∗.
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a

b

%n

φ

Figure 6: Stability diagram against peristaltic modes when ϑc = 125◦, for several values
of η: η = 0 ( solid line a), 10−3 (dashed line), 10−1 (dotted line), 1 (solid line b). Here,
both circular and hyperbolic modes are effective. The portion of a given marginal curve
that lies above the circle consists of hyperbolic modes, while the portion below the circle
consists of circular modes. Linear modes never affect the stability diagram. Apart from
the presence of two families of modes, there is no qualitative difference with respect to
the case ϑc < π/2.
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Figure 7: Semi-logarithmic plot of the stability diagram for peristaltic modes shown in
Fig. 6. The curves 1)-4) correspond, respectively, to the values η = 0, 10−3, 10−1, and
1.
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Figure 8: Stability diagrams for varicose—both circular and hyperbolic—modes. Here,
ϑc = 65◦ and η = 0 (solid line a), 10−3 (dotted line), 10−1 (dashed line), 1 ( solid line b).
The portion of a given marginal curve that lies above the circle consists of hyperbolic
modes, while the portion below the circle consists of circular modes. The marginal curves
coalesce along the φ axis, since %n = 0 always solves Eq. (46)1. This solution does not
cause instability since only positive values of %n are meaningful. For any given value of
η the region bounded by the marginal curve and the %n-axis is unstable against varicose
modes.
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Figure 9: Semi-logarithmic plot of the stability diagrams for varicose modes shown in
Fig. 8. From 1) to 4), the marginal curves correspond to η = 0, 10−3, 10−1, and 1.
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Figure 10: Stability diagram against varicose modes when ϑc = 125◦, for several values
of η: η = 0 ( solid line a), 10−3 (dotted line), 10−1 (dashed line), 1 (solid line b). Both
circular and hyperbolic modes are effective, but the transition between them is too close
to the φ axis to be shown here. Linear modes never affect the stability diagram. Also
in this case, there is a correspondence with the the case ϑc < π/2.
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Figure 11: Semi-logarithmic plot of the stability diagrams for varicose modes shown in
Fig. 10. From right to left, the marginal curves correspond to η = 0, 10−3, 10−1, and 1.
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Figure 12: The critical value ηc of η is plotted against the contact angle ϑc for varicose
modes. When η exceeds ηc, the marginal curve is a monotonic function of φ.
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