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Abstract

We show an application of the k-mean alignment method presented in

Sangalli et al. (2010b). This is a method for jointly clustering and aligning

functions that puts in a unique framework two widely used methods of

functional data analysis: Procrustes continuous alignment and functional

k-mean clustering. These two methods turn out to be two special cases

of the new method. In detail we use this algorithm to analyze 65 internal

carotid arteries (ICA) in relation to the presence and rupture of cerebral

aneurysms. Some interesting issues, amenable of a biological interpretation

and pointed out by the analysis, are briefly discussed.

1 Introduction

Both the onset and the rupture of cerebral aneurysms are still matters of research

among neuro-surgeons. A cerebral aneurysm is essentially a bulge in the wall

of a brain vessel, it is generally not disrupting, and it is not rare among adult

population: epidemiological studies suggest that between 1% and 6% of adults

develop a cerebral aneurysm during their lives. On the contrary, the rupture of

a cerebral aneurysm is quite uncommon but very severe event: about 1 event

every 10,000 adults per year with a mortality rate exceeding 50%.
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Aim of the Aneurisk Project1 is to provide evidence of an existing relation

between this pathology and the geometry and hemodynamics of brain vessels.

In particular, the present analysis considers the centerlines of 65 internal carotid

arteries (ICA) whose functional form is obtained from discrete observations by

means of free-knot regression splines as shown in Sangalli et al. (2009b). Details

about the elicitation of discrete observations from row data can be found in

Antiga et al. (2008). Before the analysis, the 65 centerlines are jointly aligned

and clustered by means of the k-mean alignment method proposed in Sangalli

et al. (2010a,b) (in the same works, the properties of the method are widely

discussed both from a theoretical point of view and by means of the analysis

of synthetic and real data). The aligned and clustered centerlines are then

here analyzed along the paradigm of functional data analysis as advocated by

Ramsay and Silverman (2005). In the end, some interesting issues amenable of

a biological interpretation are discussed.

2 The k-mean Alignment Algorithm

The k-mean alignment algorithm - whose technical and numerical details for

practical implementation can be found in Sangalli et al. (2010a,b) - originates

from the need of consistently aligning and clustering a set of functional data.

This algorithm can be seen as the result of an integration of two algorithms that

are currently widely used in functional data analysis: the Procrustes continu-

ous registration algorithm (e.g Sangalli et al. 2009a) and the functional k-mean

clustering algorithm (e.g Tarpey and Kinateder 2003). With these two mother

algorithms, the new algorithm shares both aims and basic operations. Schematic

flowcharts of both algorithms are sketched in Figure 1. Alternative approaches

to the joint clustering and alignment of curves can be found in Liu and Muller

(2003), Liu and Yang (2009), and Boudaoud et al. (2010).

The aim of the Procrustes continuous alignment algorithm is to decouple

phase and amplitude variability; this task is essentially achieved by iteratively

performing an identification step and an alignment step. The former step con-

sists in the identification of a template function on the basis of the n functions

as aligned at the previous iteration; the latter step consists instead in the maxi-

mization of the similarity between each function and the template, as identified

at the previous identification step, by means of subject-by-subject warping of

1The project involves MOX Laboratory for Modeling and Scientific Computing (Dip. di

Matematica, Politecnico di Milano), Laboratory of Biological Structure Mechanics (Dip. di

Ingegneria Strutturale, Politecnico di Milano), Istituto Mario Negri (Ranica), Ospedale Ni-

guarda Ca’ Granda (Milano), and Ospedale Maggiore Policlinico (Milano), and is supported

by Fondazione Politecnico di Milano and Siemens Medical Solutions Italia.

2



Figure 1: Schematic flowcharts of the Procrustes continuous registration algorithm (left) and

the functional k-mean clustering algorithm (right). Index i refers to the sample unit while

index k to the cluster.

Figure 2: Schematic flowchart of the k-mean alignment algorithm. Index i refers to the sample

unit while index k to the cluster.
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the abscissa. The problem of curve alignment is theoretically well set when a

similarity index ρ between two functions and a set W of admissible warping

functions of the abscissa are chosen.

The aim of the k-mean clustering algorithm is instead to decouple within and

between-cluster variability (in this context within and between-cluster amplitude

variability); this task is here achieved by iteratively performing an identification

step and an assignment step. In this algorithm, the identification step consists

in the identification of k cluster template functions on the basis of the k clusters

detected at the previous iteration; the assignment step consists in the assignment

of each function to one of the k clusters, this assignment is achieved by maxi-

mizing the similarity between each function and the k templates, as identified at

the previous identification step. The problem of clustering curves is theoretically

well set when a similarity index ρ between two functions and a number of cluster

k to be detected are chosen.

The k-mean alignment algorithm, as a fall out of the two previous algorithms,

aims at jointly decoupling phase variability, within-cluster amplitude variability,

and between-cluster amplitude variability. It reaches this task by putting to-

gether the basic operations of the two mother algorithms (a schematic flowchart

of the k-mean alignment algorithm is sketched in Figure 2) and thus iteratively

performing an identification step, an alignment step, and an assignment step.

Indeed, within the identification step, k template functions are identified on the

basis of the k clusters and of the n aligned functions detected at the previous

iteration. Within the alignment step the n functions are aligned to the k tem-

plates detected at the previous iteration and k candidate aligned versions of each

curve are obtained; within the assignment step, each curve is then assigned to

the cluster which the curve can be best aligned to, i.e. the cluster for which the

similarity among its template and the corresponding candidate aligned curve is

maximized.

On the whole, the k-mean alignment algorithm takes as input a set of n

functions {c1, . . . , cn} (like both mother algorithms do) and gives as output k

clusters (like the k-mean clustering algorithm does) and n aligned functions

together with the corresponding n warping functions {h1, . . . , hn} (like the con-

tinuous alignment algorithm does).

From a theoretical point of view, the problem of jointly aligning and cluster-

ing curves is soundly posed when the number of cluster k, the similarity index ρ

between two functions, and the set W of warping functions are chosen. Let us

mention two special choices that make the k-mean alignment algorithm degen-

erate to the two mother algorithms, respectively: k = 1 and W = {1}. Indeed,

if just one single cluster is assumed (i.e. no clustering within the data), the k-

mean alignment algorithm turns out to be the continuous alignment algorithm,
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while if the group of warping functions is assumed to be made just by the iden-

tity function (i.e. no phase variability within the data), it turns out to be the

k-mean clustering algorithm.

From a practical point of view, different procedures can be used for the

implementation of the identification step, of the alignment step, and of the

assignment step. In particular, the procedure used within the identification step

appears to be very sensitive a point to the good outcome of the k-mean alignment

algorithm. To this purpose, in Sangalli et al. (2010a) two different procedures

are extensively compared: identification by local regression and identification by

means of medoids.

3 Analysis of Internal Carotid Artery Centerlines

In this section we discuss a real application of the k-mean alignment proce-

dure that is also the one that urged us to develop such method: the analysis

of the AneuRisk dataset. In detail, we deal with 65 three-dimensional curves,

each one representing the centerline of an ICA of a person hospitalized at the

Neuro-radiology Department of Ca’ Granda Hospital - Niguarda Milan. De-

tails about the elicitation of a discrete representation of the centerline from the

three-dimensional angiography can be found in Sangalli et al. (2009a), while the

consequent elicitation of the curve - by means of three-dimensional free-knot

splines - from the discrete data is detailed in Sangalli et al. (2009b). The idea of

the analysis is (i) to perform a k-mean alignment algorithm for different values

of k, (ii) compare the performances (measured by means of the mean similarity

achieved after the k-mean alignment) to choose a reasonable value for k, and

then (iii) find out possible relations between both geometry and cluster member-

ship of the aligned curves on the one hand, and presence, rupture, and location

of cerebral aneurysms on the other.

Consistently with Sangalli et al. (2009a), where another analysis of the

AneuRisk dataset is presented, we use, as similarity index ρ between two curves

c1 and c2, the average of the cosine of the angle between the first derivatives of

homologous components of the two curves:

ρ(c1, c2) =
1

3

∑
p∈{x,y,z}

∫
c′1p(s)c

′
2p(s)ds√∫

c′1p(s)
2ds

√∫
c′2p(s)

2ds
, (1)

and, as the set of warping functions W , we use the group of the affine transfor-

mation with positive slope. This joint choice for ρ and W descends from both

theoretical and medical issues that are detailed in Sangalli et al. (2009a).

Figure 3 graphically reports the main results of the application of the k-

mean alignment algorithm to the analysis of the 65 ICA centerlines. In the
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Figure 3: Top left: first derivative of the three spatial coordinates x′, y′, z′ of ICA centerlines.

Bottom: first derivatives of one-mean and two-mean aligned curves (left and right respectively);

first derivatives of templates always in black. Top center: boxplots of similarity indexes between

each curve and the corresponding template for original curves and for k-mean aligned curves,

k = 1, 2, 3. Top right: means of similarity indexes between each curve and the corresponding

template obtained by k-mean alignment and by k-mean without alignment.
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top-left plots, the original data are plotted (i.e. first derivative of the three

spatial coordinates x′, y′, z′ of 65 ICA centerlines). In the bottom-left plots, the

output provided by the one-mean alignment (i.e. first derivative of the three

spatial coordinates x′, y′, z′ of 65 ICA centerlines aligned with respect to a single

template) is reported. Similarly, in the bottom-right plots, the output provided

by the two-mean alignment (i.e. first derivative of the three spatial coordinates

x′, y′, z′ of 65 ICA centerlines aligned with respect to two templates) is reported;

the two detected clusters are identified by different colors. In the top-center

plot: boxplots of similarity indexes between each curve and the corresponding

template are reported for original curves and for k-mean aligned curves, k =

1, 2, 3. Finally, in the top-right plot, the performances of the algorithm are

shown: the orange line reports, as a function of the number of clusters k, the

mean of similarity indexes (between curves and the corresponding template)

obtained by k-mean alignment; the black line reports the mean of similarity

indexes (between curves and the corresponding template) obtained by k-mean

clustering without alignment.

Focussing on the last plot, at least two features need to be discussed. Firstly,

note the clear vertical shift between the orange and the black line: this points

out the presence of a non-negligible phase variability within the original data

and thus the necessity of aligning the data before undertaking any further anal-

ysis. The important contribution of phase variability to the variability that

characterizes these data is also confirmed in Vantini (2009); indeed in the latter

work - where consistent notions of total, amplitude, and phase variability are

introduced - the phase variability is estimated to contribute to nearly 2/3 of the

total variability.

Secondly, once decided that alignment is needed, note the absence in the

orange line of an evident improvement in the performance when three clusters

are used in place of two: this suggests k = 2 to be the correct number of clusters.

Consequently, the two-mean alignment algorithm will be used to jointly cluster

and align the 65 ICA centerlines.

In the next two subsections, we will discuss some interesting issues amenable

of a biological interpretation that the two-mean alignment algorithm points out

while neither the simple two-mean clustering without alignment nor the simple

one-mean alignment (i.e. continuous alignment) have been able to disclose. In

particular, the most interesting finds relative to the association between cluster

membership and the aneurysmal pathologies are tackled in Subsection 3.1; the

ones relative to the association between the shape of the aligned centerlines and

the aneurysmal pathologies are instead shown in Subsection 3.2; the analysis

of the warping functions is omitted since no interesting associations have been

found.
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Figure 4: Left: cluster template curves detected by two-mean alignment (S group in green and

Ω group in orange). Right: cluster template curves detected by the simple two-mean clustering.

3.1 Centerline Clusters vs Cerebral Aneurysms.

Focussing on the two clusters detected by the two-mean alignment algorithm

(bottom-right plots of Figure 3), it is noticeable that the two clusters essentially

differ within the region between 20 and 50 mm from the end of the ICA, that

is also the region where the amplitude variability is maximal within the one-

mean aligned data (bottom-left plots of Figure 3). In particular (left plot of

Figure 4 where the two cluster templates are reported), we can identify a cluster

associated to S-shaped ICAs (two siphons in the distal part of the ICA), i.e. the

30 green curves, and a cluster associated to Ω-shaped ICAs (just one siphon in

the distal part of the ICA) i.e. the 35 orange curves. To our knowledge, it is

the first time that this categorization, proposed in Krayenbuehl et al. (1982), is

statistically detected. To show the primacy of the two-mean alignment, not only

over the one-mean alignment but also over the simple two-mean clustering, in

Figure 4 the cluster templates detected by two-mean alignment (top) and by the

simple two-mean clustering (bottom) are compared. It is evident that while the

former algorithm detects two morphologically different templates (the S and the

Ω are clearly visible within the red circle), the latter detects two templates that

are essentially equal in shape but just shifted. This is not surprising since the

two-mean clustering algorithm (that is optimal if no phase variability is present

within the data) is completely driven in this case by phase variability, providing

fictitious and uninteresting amplitude clusters.

Moreover, the two clusters detected by the two-mean alignment turn out to

be associated to the aneurysmal pathology, since there is statistical evidence of

a dependence between cluster membership, and aneurysm presence and location

(MC simulated p-value of Pearson’s χ2 test for independence equal to 0.0013):

indeed, if we label the 65 patients according to the absence of an aneurysm (NO

group), the presence of an aneurysm along the ICA (YES-ICA group), and the

presence of an aneurysm downstream of the ICA (YES-DS group), we obtain

the following conditional contingency table:

8



NO YES-ICA YES-DS

S 100.0% 52.0% 30.3%

Ω 00.0% 48.0% 69.7%

A close look at the previous table makes evident that: (i) within this data

set, there are no healthy subjects within the Ω cluster and all healthy subjects

belong to the S cluster; (ii) within the YES-DS group the number of Ω patients

is nearly twice the number of S patients, while within the YES-ICA group the

two proportions are nearly equal. Wall shear stress is suspected to be associated

to aneurysm onset and rupture and thus vessel geometry and hemodynamics

could possibly explain this dependence.

Indeed, both ICA and arteries downstream of the ICA are very stressed

vessels from a mechanical point of view: the former because its syphons are

expected to act like a fluid dynamical shock-absorber for the brain; the latter

because they are floating in the brain humor without being surrounded by any

muscle tissues. In particular, while S-shaped ICAs (two syphons) are expected

to be very effective in making the flow steadier, Ω-shaped ICAs (one syphon) are

instead expected to be less effective (this could be a possible explanation to (i)).

Moreover for this same reason, in Ω-shaped ICAs, the blood flow downstream of

the ICA is expected to be less steady, providing an overloaded mechanical stress

to downstream arteries (this could be an explanation to (ii)).

3.2 Centerline Shapes vs Cerebral Aneurysms.

Let us now focus on the two-mean aligned curves in order to find out possible

relations between centerline geometry and aneurysms. In order to reduce data

dimensionality, we perform a three-dimensional functional principal component

analysis (e.g. Ramsay and Silverman 2005) of the aligned centerlines for values

of the registered abscissa between −34.0 and −6.9 mm, i.e. the abscissa interval

where all records are available. In the right plot of Figure 5 the fractions and the

cumulative fractions of explained total variance are displayed, it is evident that

one, three, or five principal components can be used to represent the centerlines.

We decide to summarize the data by means of the first five principal components

comforted by the fact that they provide a visually good representation of the

data, by the fact that they explain more than the 90% of the total variance, and

by the fact that all remaining principal components seem not to be related to

any structural mode of variability but just noise.

In the left plot of Figure 5 the projections of the 65 ICA centerlines along the

first principal component are reported (orange for the Ω cluster centerlines and

green for the S cluster ones). Nearly 42% of the total variability is explained by

this component. It is evident that the variability associated to the first compo-
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Figure 5: Left: the projections of the 65 ICA centerlines along the first principal component

(in orange centerlines belonging to the Ω cluster and in green centerlines belonging to the S

cluster). Center: the projections of the 65 ICA centerlines along the fifth principal component

(in red centerlines associated to patients with a ruptured aneurysm and in blue patients without

aneurysm or with unruptured aneurysm). Right: fractions of explained total variance.

nent is mostly concentrated at the top-right extreme (i.e. the proximal part of

the portion of centerline under investigation), and moreover it is indicating the

presence and magnitude of a second syphon before the distal one (in this picture

blood flows from right to left). The Mann-Whitney test for the first principal

component scores of the S and the Ω cluster centerline projections presents a

p-value equal to 10−14. This result strongly supports the identification of the

two clusters - detected by the two-mean alignment - with the S and Ω shaped

ICAs proposed by Krayenbuehl et al. (1982).

The second, third, and fourth principal components result difficult to inter-

pret and moreover no associations have been found between the latter ones and

the aneurysmal pathologies. For this reason they will not be discussed in this

work.

The fifth principal component (explained total variance 7%, cumulative 93%)

appears instead to be surprisingly easy to interpret (in the center plot of Figure 5

the projections of the 65 ICA centerlines along the fifth principal component are

reported: in red the centerlines associated to patients with a ruptured aneurysm

and in blue the ones associated to patients without aneurysm or with unruptured

aneurysm). Indeed, it expresses the prominence of the distal syphon, i.e., along

the fifth principal component, ICA centerlines progressively evolve from having a

very sharped distal syphon (lower scores) toward smoother distal syphons (higher

scores). It is known that the more curved the vessel is, the higher the vorticity

in the fluid and the shear stress on the wall are. Analyzing the scores relevant

to the fifth components, we find that patients with a ruptured aneurysm present

significant lower scores than patients with an unruptured aneurysm or without
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aneurysm (Mann-Whitney test p-value 0.0072), i.e. the former ones present more

marked syphons than the latter ones. These results could support the idea of a

fluid dynamical origin of the onset and/or rupture of cerebral aneurysms.

All these fluid dynamical hypotheses are going to be supported, in the future,

by fluid dynamical simulations in order to provide a mechanical interpretation

of the relation between geometry and hemodynamics on one side, and aneurysm

onset and rupture on the other, that this analysis partially already highlights.

4 Conclusions

We showed in this work an application of the k-mean alignment method proposed

in Sangalli et al. (2010b) that jointly clusters and aligns curves. This method

puts in a unique framework two widely used methods of functional data analysis:

functional k-mean clustering and Procrustes continuous alignment. Indeed, these

latter two methods turn out to be two special cases of the new one.

In particular, we used this method to perform a functional data analysis of

65 three-dimensional curves representing 65 internal carotid artery centerlines.

In this application the k-mean alignment algorithm outdoes both functional k-

mean clustering and Procrustes continuous alignment by pointing out interesting

features from a medical and fluid dynamical point of view that former methods

were not able to point out.
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