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Abstract

In this paper we consider the numerical solution of the interaction of an
incompressible fluid and an elastic structure in a truncated computational
domain. As well known, in this case there is the problem of prescribing
realistic boundary data on the artificial sections, when only partial data are
available. This problem has been investigated extensively for the rigid case.
In this work we start considering the compliant case, by focusing on the flow
rate conditions for the fluid. We propose three formulations of this problem,
different algorithms for its numerical solution and carry out several 2D
numerical simulations with the aim of comparing the performances of the
different algorithms.

“This work has been supported by the Project COFINO7



1 Introduction

Numerical simulations of incompressible flows in network of pipes almost in-
variably require to bound the domain of interest with artificial boundaries that
interfaces it with the entire network (see Fig. 1). Unfortunately, no physical

Artificial Boundary (inflow/outflow)

Physical Boundary (wall)

Figure 1: Example of truncated computational domain

arguments can be invoked for the prescription of conditions on these bound-
aries. Data can be prescribed from available measures. In some applications
these measures are not enough for the well-posedness of the fluid problem. A
typical example of interest in the present work is when flow rate in a pipe is mea-
sured, which is quite typical in haemodynamics. Flow rate is the average value
of the normal velocity (multiplied by the fluid density) through the artificial sec-
tion. Mathematical problem would require instead a pointwise data set for the
velocity (Dirichlet conditions). Practical approaches for overcoming the under-
determination are based on the selection of a realistic velocity shape fitting the
measured flow rate. Despite of its simplicity, this approach introduces a strong
bias in the numerical simulation. In [13] the problem of artificial boundaries
and flow rate problems has been investigated with a more mathematically sound
approach, resorting to the selection of a suitable variational formulation of the
problem at hand. Homogeneous conditions natural for the selected variational
formulation complete the defective data. For the flow rate problem, however,
this approach requires the introduction of non-standard functional spaces, not
straightforwardly prone to numerical discretization. Alternative approaches have
been proposed in the last years, see [10, 18, 19, 12]. A complete introduction
to these topics can be found in [11], Chap. 11, in the context of geometrical
multiscale models for the circulation. Computational haemodynamics is the ap-
plication that has mainly (even if not exclusively) driven the present research.
In this context, a complete description of the problem includes the compliance
of the walls (Fluid Structure Interaction - FSI - problems). Artificial boundaries



should be considered not only for the fluid but also for the structure problem.
Specific mathematical and numerical appropriate techniques should be devised
for the reliable solution to fluid-structure interaction problems with defective
boundary data both for the fluid and the structure problems (see [11]). This pa-
per is a first step in this direction. More precisely, we consider the fluid problem
with flow rate conditions. We assume here that the structure problem features
a complete set of boundary conditions. In a forthcoming paper we will consider
the case where both fluid and structure have defective boundary data on the
artificial sections.

The purpose of this paper is to devise and compare possible strategies by
extending the different methods proposed for the rigid case. It is worth men-
tioning that some preliminary results have been proposed in [16] limitedly to one
particular strategy and to the case of a membrane structure (i.e. a 2D structure
coupled to a 3D fluid domain). Here we consider specifically methods working
for thick 3D structures.

The outline of the paper is as follows. In Sect. 2 we introduce the mathemat-
ical formulation of the flow rate problem in compliant domains. In view of the
methods introduced later on, we address a formulation where velocity matching
condition between fluid and structures is forced in a weak sense. We analyze the
well posedness of this formulation. In Sect. 3 we present a first class of possible
methods, stemming from segregated procedures for the fluid-structure interac-
tion solution. Actually in partitioning fluid and structure computations, at each
step fluid is solved in a ”frozen” domain, so that methods for the prescription of
the flow rate proposed for the rigid case can be straightforwardly applied. How-
ever, both segregated methods and techniques for defective flow rate problems
are based on iterative procedures, so a direct implementation of this approach
leads to nested iterative methods, typically having high computational costs.
Most specific techniques for the compliant case are introduced in Sect. 4 and 5.
More precisely, in Sect. 4 we introduce a method based on the extension of the
augmented formulation introduced in [10, 18] to the whole flow-rate/FSI prob-
lem. In particular, we consider an algorithm based on an algebraic splitting of
the augmented problem (see [18]), which has the practical feature of resorting to
the solution of standard FSI problems, affordable, for example, by a commercial
package even when used as black-box solvers. In Sect. 5, we recast the problem
in terms of the minimization of an appropriate functional measuring the dis-
tance between the computed and the prescribed flow rates with the constraint
of the fluid-structure interaction problem, extending the strategy proposed for
the rigid case in [12]. In particular, we use the normal stress on the artificial
boundaries as control variable for driving the minimization of the constrained
functional. We present different methods for the solution of the minimization
problem, with the aim of reducing the computational costs mainly by avoiding
nested iterations. Sect. 6 is devoted to the numerical results. We present several
test cases, comparing numerical efficiency of the proposed methods. Finally, in
Sect. 7 we draw some conclusions.



2 The Fluid-Structure Interaction problem

2.1 General setting and weak formulation

Let us consider a truncated computational domain Qf ¢ R? (d=2, 3, being the
space dimension), with r artificial sections. This domain is divided into a sub-
domain Q% occupied by an elastic structure and its complement Q’} occupied by
the fluid. The fluid-structure interface ' is the common boundary between Q%
and Q'} (see Fig. 2), whilst with ' and F;S we denote the fluid and structure
artificial sections. Furthermore, n is the outward normal on BQ’}. The initial

configuration Q¥ at ¢ = 0 is considered as the reference one.

Figure 2: Example of truncated computational fluid domain Q} (left) and solid
domain Q! (right). In this picture r = 3.

We adopt a purely Lagrangian approach to describe the structure kinematics
and then we refer always to the reference domain €, := QY. Hereafter, § denotes
the displacement of the solid medium with respect to this configuration. For
any function g defined in the reference solid configuration, we denote by g its
counterpart in the current domain. The solid is assumed to be a linear elastic
material, characterized by the Cauchy stress tensor

Ts(n) = XV -n)I+c(Vn+(Vn)")

where A and ¢ are the Lamé constants and I is the identity tensor.

On the other hand, the fluid problem is stated in an Arbitrary Lagrangian-
Eulerian (ALE) framework (see, e.g., [15, 8]). The ALE mapping is defined by an
appropriate lifting of the structure displacement. A classical choice is to consider
a harmonic extension operator in the reference domain. In order to write the
fluid problem according to the ALE formulation, we recall the definition of ALE
time derivative of the velocity w:

Dt ot
where du /0t is the Eulerian derivative and w is the velocity of the points of the
fluid domain defined by the ALE map. The fluid is assumed to be homogeneous,



Newtonian and incompressible, with Cauchy stress tensor given by
Ty(u,p) = —pI + n(Vu + (Vu)"),

where p is the pressure and p the dynamic viscosity. Moreover, we collect the
fluid artifical sections in three distinct subregions, namely T’ := U, Itm <
T, FtD and F’}V, and the structure ones in two subregions, namely F%’S and F?v’s.
Then, the complete problem in strong form reads:

1. Flow-rate/Fluid-structure problem. Find the fluid velocity w, pressure p
and the structure displacement 7 such that

rpf_D];‘tu+pf((ufw).v)ufv-1’f:ff in Q4 x (0,7),
V-u=0 in Q% x (0,7),
P _g.p _F in Q) x (0,7
) Ps a2 s fs m SX(, )a (1)
u:% on E:X(O,T),
Tsin—-T;n=20 on X" x (0,7T),
L Jpruw-ndy=F;, i=1...,m te (0,7)

2. Geometry problem. Given the interface structure displacement n|x:¢, find
amap A : Q(} — Q’} through an harmonic extension Fxt of this boundary
value and find accordingly the new fluid domain Q’} by moving the point

xo of the reference domain Q?:

Al(mo) = mo + Bxt(flyo),  w = 94 o (A1) ", Q= AYQY).

Here, p, is the structure density, F;, i = 1,...,m, are given functions of time
and f, and fs the forcing terms. System (1) has to be endowed with suitable
Dirichlet boundary conditions on I'p and I'p s and Neumann boundary condi-
tions I'y and I'y ;. The partition between Dirichlet and Neumann boundaries
can be different for the normal and the tangential direction of w and n. Two
transmission conditions are enforced at the interface: the continuity of fluid and
structure velocities (1), and the continuity of stresses (1),. The fluid and struc-
ture are also coupled by the geometry problem, leading to a highly nonlinear
system of partial differential equations. Finally, system (1) has to be endowed
with suitable initial conditions.

2.2 Time discretization, weak formulation and treatment of the
interface position

Let us now consider the time discretization and the weak formulation of system
(1). Let At be the time step size and t” = nAt for n = 0,..., N. We denote
by 2" the approximation of a time dependent function z at time level t". We



consider a backward Euler scheme for the time discretization of the fluid problem
and an implicit second order BDF scheme for the structure problem. Observe,
however, that all the arguments detailed in this work can be extended to other
time discretization schemes.

For the moment being, we consider the case I';; = (), that is no flow rate
conditions are prescribed. Extension to the case of such conditions is presented
later on.

In order to treat the nonlinearity given by the convective term and by the
fluid domain, we consider the semi-implicit treatment (see e.g. [9, 4, 3]). Denote
by Q* u* and w* appropriate extrapolations of the fluid domain, fluid velocity
and ﬂuld domain velocity, respectively. The §1mpleqt choice is given by the
first order extrapolations Q = Q" u* = u” and w* = w". More accurate
extrapolations can be (‘oneldered a@ well

Let us introduce the following spaces:

V*={v GH](Q}): v = 0},
Q" = 12(9).
W= {3 ¢ H](Q”) L hro = 0}

z*:{(v,¢)ev* Z*:wg}.

Moreover, set

p k k * *
Alu,m;0,9)" = 2L (u,0)) + (Tf, Vo) +pp((w" — w?) - V)u,0)j+
TR, o1~
L T. —
+ps<At2’At> +( S’Atwp)s
and

B(gv, )" = —(q,V “v);
where (v, w)% = fQ* v-wde and (Y, x)s = fQO - x dx. Then, the weak

formulation for the d1scret17ed in time problem with a semi-implicit treatment
reads as follows.
For each n we perform the following steps

1. Compute suitable extrapolations %, u* and w* of Q’;H, u"t! and w™t!,
respectively.

~n+1
2. Given f”“ € LQ(Q’}) and f:+ e L*(99), find (u"*',75"*") € Z* and
p"tle Q* such that

A )+ B ) = Fo) 4 B () )
B(g;u™ g t)* =0

for all ('v,{ﬁ) € Z* and q € Q*.



3. Update the fluid domain obtaining Q’;H.

The functionals F; and Fs account for forcing terms, boundary data and terms
coming from the time discretization. We point out that, thanks to the coupling
condition (1), and the particular choice of the fluid-structure test functions
in Z*, the two interface terms coming from the integration by parts, namely
- T?H n-vdyand [5. T 'n . A% dry, cancel out.

A second possibility is to treat the fluid domain and the convective term
implicitely and to embed the fluid-structure problem into a fixed-point loop
over the position of the FS interface ¥*. However, for the sake of exposition we
limit our attention to the semi-implicit case, discussing whenever appropriate
the feasibility of the proposed approaches to implicit algorithms.

2.3 Weak formulation of the continuity velocity

In view of the numerical treatment of the flow rate problem based on the control
theory introduced in Sect. 5, we introduce here a different formulation when the
interface continuity conditions on the velocity are forced weakly. In this way, test
functions on the fluid problem do not necessary match at the FS interface with
the structures ones. Let D* be the space Hﬁl/Z(E*). At time step t"*!, we con-
sider the following “augmented” variational formulation of the semi-discretized
problem.

~An+1
Given 2! € L2(}) and F, ' € L*(Q)), find w™' € V*, "' € @, 7"+ €
W and 8" € D* such that,

A gm0, 9)" + B 0,9)" + C(B" 0, 9) = Fi(v) + By ()
B(g;u™! ") =0 )
Clagu ") =[5 a - Fidy
~ (3)
forallv e V¥ g€ Q*, ¢ € W and a € D* and where

Cla;v, )" ::/*a- <v%> dry.

From now on, we drop the index "*! for the sake of simplicity. Moreover, let
us introduce the following norms

1/2
lollv- = (ol + 1Vol2) "
1/2

[¥llw = (I3 +1IV3) ",
being || - ||y and | - [|s the L*(Q}) and L*(])— norms. We have the following

Proposition 2.1 If u is big enough, problem (2) admits a unique solution
[w,p,n]. Problem (3) admits a unique solution too, namely [u,p,n,B], with

ﬁ = Tfn o 1= Tf(ﬁ,ﬁ)n

PP



Proof. Let us introduce the following norm

It
|, 9) 12 = Tl + | 2 -

From the Korn’s inequality, there exist two constants K; and K such that (see,

e.g, [5))
(Vo + (Vo) 0)* > K llo]v-,

(Ts(), V) > Kel[op]|w.

Then, if the viscosity u is big enough, we have

p
Ao, p:0.9) > Zlolf +p K| Volj+

* * * 1 KS N
07 (v = w") - V)0, 0)} + poz 112 + S5 1 lw > vl (v, 9) 11,

where v = min{p;/At, n Ky, K;/At}. From classical arguments (see, e.g., [7,
6]), the fluid problem is well-posed, then Vg € Q* there exists v € V* such that

~(q,V-0) >0olql s ||

V*,
for a suitable o > 0. By choosing 'zz = 0 we obtain

B(g; v, %) > ollqlly [|(@, %)

Vg € Q*, so that the fluid-structure problem (2) is proved to be well-posed as
well.

Let us now show that the bilinear form C' satisfies an inf-sup condition and
therefore that problem (3) admits a unique solution (see [7]). More precisely, we
will show that Yo € D*, there exists a couple (v, 17)) € Z* such that

Cle; B, 9)" > ool pl|(@, 9], (4)

for a suitable o9 > 0, where

||a||D = ||aHH71/2(E*) = S11p||wH1/2:1 fE* o - wdfy
and ‘
||w||1/2 = ||w||[_{1/2(2*) - lnf ZEV* ||z||v
Z|yx =W

Given a € D*, let us choose Tp € W such that H%H ) = 1 and such that
1/2

Js. - %dv > L|ee||p. We point out that this choice is always possible thanks
to the definition of || - | p. Moreover, we choose v € V* such that [[v];/, = 1/4.
We obtain

~ T\ ~ ’;Z ~ 1 1
Claiv ) = - [ avdrt [ aXdr>-lalpll3ly+ylaln = flalp,
* E* 7



Since ||(¥, )| = /T + 1/16, we obtain

Cless 9" > 12 ool 5. 9.

and therefore condition (4) is satisfied with o9 = \/Lﬁ
It is now easy to show that the solutions of problem (2) and (3) coincide and
that 8 = T yn|s- (see [1]). Let [u,p,n] be the solution of problem (2). We have

forallve V', ge Q* ¢ ¢ W:

Alu,g;v,9) +B(p;v, ) = / Tfnvd'y / T, n- Z d7+Ff( )—i—F (Kt)’

where the two terms at the FS interface come from the integration by parts
of the fluid and structure equations in strong form. Then, by noticing that

O(T,fn3”a¢)* + fz* Tf’n : (v — %) dy = 0, we obtain

A(’&,’f],’U,’lp)*—i‘B(ﬁ,'l),’l,b)‘l‘O(Tfn,’U,’lp)* = Tfnvdfy* ani

dy+
E* : E* At

Y . P
+F (v v) + Fy <At> —'Z*Tfn- (vKt> dry.

Finally, owing to (1);, we obtain

Al m0,9)" + B(piv. ) + O(Tmsv. )" = Fi (v) + F, (;@)

that is (3)

-. Moreover, from (1), we have

- AV 7"
Blasu,m)” = /*a <u At)‘h / A

and then also (3), is fulfilled. Therefore, the Lagrange multiplier 8 has the
physical meaning of normal stress at the FS interface.

On the other hand, if [@,p,n,B] is solution of (3), then by exploiting the
property of the test functions in Z*, it follows that [u,p, 7] is solution of (2).
a

In the next three Sections we introduce three different formulations of the
Flow rate/FSI problem. For this reason, from now on we set I't, # ().

3 Partitioned methods for the Flow-rate/FSI prob-
lems

An immediate class of methods for the Flow-rate/FSI problems stems by the
staggered or partitioned approaches for solving fluid-structure interaction (see



e.g. [11], Chap. 9). When fluid and structure are solved separately, at each step
we resort to a rigid fluid problem in a ”frozen” domain. Numerical methods for
the flow rate problems in rigid domains can be therefore applied at each iterative
step.

Let us consider the time discretization of system (1), where a flow rate con-

dition is prescribed on the artificial sections I'}, namely

/ u”“-ndfy:Fj”H, j=1,...,m, (5)
r '
where F}"H = F;(t"*!) are given functions of time. We point out the semi-
implicit treatment of the interface position.

For the sake of generality, we refer to the class of partitioned procedures
introduced in [3] as Robin-Robin schemes. For the ease of notation let us drop
the index "*! of the current time step. We have the following

Algorithm 1

Given two parameters oa; # a4 the quantities at the previous time
step, n”, n” ' and u”, and the value of the structure displacement at
the current iteration nk,find the value of the solution at the next
iteration nf*t! wF*! and p**! by solving the following steps

1. Flow rate/fluid problem (Robin boundary condition)

PG+ pp(u — w®) Vbt - VT = f i 0,

V-u’“"'l:() inQ?,

f]“fpfun_l_l'nd’YZan_'—lv j:l,_..,m (6)
J

o T o L T on 3

2. Structure problem (Robin boundary condition)

=k+1 =n ~n—1 ~ k41 ~
—om"+ + .
{pQ" Antan 7V'Ts :fs 1 an?]a
as k41 41, . Qs oo k+1 o+ *
AN +T;" n=7xn"+ou™ +T," ' n on X*.

For a description of optimal choices of parameters a; and «,, we refer the reader
to [3]. The previous algorithm defines a class of schemes. For example, if o —
oo and ag = 0 we recover the well-known Dirichlet-Neumann (DN) scheme. In
[3] it has been shown that among all the possible schemes of this class, the
Robin-Neumann (RN) (as = 0) is the one with the best convergence properties.
For this reason, we consider this scheme in the numerical simulations reported
in Sect. 6.

Algorithm 1 splits the solution of the fluid and the structure problems in
an iterative framework and contains a flow rate problem at each iteration. The

10



latter can be solved by considering one of the strategies proposed for the solution
of a flow-rate problem in the rigid case (see [14, 10, 18, 19, 12]). Indeed, at each
time step, the fluid problem (6) is solved in a fixed domain Q3.

Remark 1 Due to the mass conservation, in the rigid case it is not possible
to prescribe an arbitrary flow rate on all the artificial sections Tt i =1,...,m,
if T = 0. In the compliant case this compatibility condition does not hold
anymore. Nevertheless, as pointed out in [16, 2], if we use a partitioned procedure
in which the structure prescribes a Dirichlet condition at the interface to the fluid
(as, e.g., in the Dirichlet-Neumann algorithm) an incompatibility might arise
between the flow rates F;, 1 = 1,...,m,, the velocity on F’}j and the velocity at
the interface, and then the mass conservation

on

— ndy= ‘nd Fi(t 7
[ 5 ./rg“"”; 0 (7

1s not in general satisfied. However, when adopting Robin-Robin schemes, on
Yt we prescribe a Robin condition in place of a Dirichlet one, so that mass
conservation (7) is still fulfilled, for all the choices of F;, i = 1,...,m and of the
Dirichlet datum on T't,.

We point out that the previous algorithm extends easily to the implicit treat-
ment of the FS interface, simply by considering it in a fixed-point loop.

4 Augmented formulation of the Flow-rate/FSI prob-
lem

We extend here to the FSI case the augmented formulation proposed in [10] for
the flow rate problem in the rigid case. In Sect. 4.1 we introduce the continuous
formulation and in Sect. 4.2 we introduce the related algebraic problem. We also
detail the GMRes+Schur complement (GSC) scheme for its numerical solution.

4.1 The augmented variational formualation

Let us consider the flow rate conditions (5) as constraints to be forced to the
variational formulation of the FSI problem (2), by the introduction of a Lagrange
multiplier )\;, one for each flow-rate condition. Here we force the continuity of
the velocity in an essential way. Then the augmented formulation for the flow-
rate/FSI problem reads:

Given £7* € L2(2)) and 717 € L*(@)), find (u*7"*) € 2%, " € Q°

11



and A"*! € R such that,

A(un+],’rln+];'v,¢)* +B(pn+];v,¢)* +D(An+1;v’,¢)* = F;(’U) +F\s (%)
Bl ) =
D(V:, Un+1a77n+1)* = 27 1 Van+]

for all (v,¢) € Z*, g € Q* and v € R™ and where

D(v;v,¢)” Zw/vndv.

Remark 2 As proven in [18], the bilinear form D(-;-,-) satisfies an inf-sup
condition. Therefore, the augmented/FSI problem well-posedness is inherited by
well-posedness results of the non augmented FSI problem.

4.2 The algebraic problem and the GSC algorithm

We discretize in time with the schemes illustrated in Sect. 2 and in space with
Lagrangian finite elements. To this aim, we introduce a triangulation of fluid
and structure domains and we assume that the meshes are conformal at the
interface 3*. At each time step t"*!, we obtain the following linear system

A* ((5*)7“ Xn+1 bn+1
&)* 0 [ An+1 :| = |: Fn+] :| (9)
where
* * * 41
Dy 0 Dy 0 0 prt!
A= 0 0 My —Mg/At 0 |, X"T'=| Uit |,
Cy; Gy Ciy Sy Sy DL
0 0 0 Sex, Sis D!
n-+1
b
0 o~
't = | —My/AtDY |, ot =[ "t 0 ].
bn+1
v 1
bnt

We have set (I> fr* -n dvy, where the [;’s are the Lagrange basis functions

related to the ﬂu1d veloc1ty My is the mass matrix at the interface ¥X* and
the size of the zero-matrices is understood. Moreover U?H is the vector of

nodal values of the fluid velocity at the interior nodes, Ug“ that at the FS
interface, P"*! is the vector of (interior and interface) nodal values for the

12



pressure. D?*! and Dg“ contain the structure degrees of freedom related to
interior and interface nodes, respectively. Finally, A"*! is the vector of Lagrange
multipliers. The right hand side b"*! accounts for external forces, boundary
data and other terms related to the time discretization scheme, whilst F7*! is
the vector whose component are the data Fj"‘+1. The first two rows of (9) are
the fully discrete versions of the flow-rate/momentum and mass conservation
equations for the fluid. The third equation states the continuity of velocities on
the interface and is the algebraic counterpart of (1),. The fourth row enforces
continuity of the normal stresses at the interface in weak form and the fifth
row is the structure problem for the internal nodes. Finally, the last row is the
algebraic counterpart of the flow-rate conditions (5).

Following [10, 18], we can formally eliminate the unknown X"*' from the

first equation of system (9). Dropping for the sake of simplicity the index "1,
we obtain an equation for the unknown A solely, namely
d(A*) '®TA = B(A*) 'b - F, (10)

which is a linear system of dimension m. We point out that with (A4*)"! we
indicate formally the solution of a FSI problem with Neumann conditions at the
artificial sections.

Since the bilinear form D(-;-,-) satisfies an inf-sup condition, it follows that
ker(®)" = (). Then, if the algebraic-FSI problem admits a unique solution (that
is if A* is invertible), ®(A*)~'®7 is formally invertible and a unique solution
A does exist. Therefore, we can formally apply an iterative methods, such as
GMRes, to system (10) (as done in [18]). In particular, we have

Algorithm 2 : GMRes + Schur Complement
For each n solve:
Ao = (Xo1,- -, Aom) 18 given
a) A*X, =b— (9*)TAg

ro=0*X, — F

_ T
V1= o]
forj=1,...,m
n; = (‘I)*)T”j
b) AY; =mn;
’U)j = (I)*Y]

forl=1,...,5
hij = (wj, v))

Ww; = w; — hlj'vl

13



end

hjt1; = l|w;]
if hjp1; =0
n=j go to (+)

else Vjiy1 = m
end
end
(+) 2 = min||roller — Hzll,  Hp € R™ X R™ . H = [hyj]

A=Ay +Vz, V=[vy...vp]
X=X,-Yz, Y=[y, ...y, °

This algorithm is quite expensive, since at each time step it requires to solve
m+1 FSI problems, indicated at points a) and b) in the algorithm. However, the
algorithm allows to compute the unknown X at the last step without solving any
additional linear system. Obviously, each of FSI problems can be solved with
any of the strategies proposed in the literature (partitioned, monolithical, etc.),
since all of them are equipped with standard Neumann boundary conditions at
each of the artificial sections. Despite its cost, this algorithm is of practical use
when one have at disposal a black-box FSI solver, without the possibility to
treating the fluid and the structure subproblems separately.

We point out that the previous algorithm extends easily to the implicit case,
simply by considering it in the fixed-point loop for the implicit treatement of
the interface position.

5 Control theory-based approach

In this section we extend to the compliant flow rate problem the strategy in-
troduced for the rigid case in [12]. In particular, we seek for constant in space
Neumann data at the artificial sections which enforce in some sense the flow
rate conditions. We limit our attention only to the semi-implicit treatment of
the interface position. Indeed, the implicit treatment would require to consider
also the shape derivatives, that is the derivatives of the fluid domain (which is
unknown in this case) with respect to the other unknowns of the problem. This
case will be considered in a forthcoming study.

5.1 Reformulation of the problem

Let us define the state problem by considering problem (3) equipped with Neu-
mann boundary conditions at the artificial sections, given, at each t"*!, by

Tfn:fk;"ﬂn, on I', j=1,...,m, (11)

14



where the ks are the control variables and we have set k;“ = k;(t"*1). There-
fore, the weak formulation of the state problem with a weak prescription of the
interface velocities (see Section 2.3) reads

A o) + B o) + C(ﬂ”“ 0,

1 *
Yk v nd'y Fi( (A%) 12)
B(q;un+1’nn+l) =0
Clazumt! nith)* = [y Ttd7

forallvEV*,qEQ*,'ZﬁEWandaED*.
We introduce at each time step ' the following functional (see [12])

JF(z):%i</¥z-ndfyF}>2, (13)

which is clearly minimal (and equal to zero) if conditions (5) are satisfied and
z =ul.
The Lagrangian functional related to (13) constrained with the state problem

(12), given u™, ™ and n" !, reads

LWU,P,H,B;Ay,A\p, A, Ap; K) = Jp(U)+ AU, H; Ay, Ag)"+B(P; Av, Au)*+

m
+C(B; Ay, Ap)* + B\ U, H)* + C(Ap; U, H)" + Z/ KA, - ndy+

- [ 2o - ryon - 7 (32) (11
Here, the quantities Ay, Ap, Ay and Ap are the adjoint variables associated
to the state variables U, P, H and B, respectively. From now on, for the
sake of simplicity we drop the temporal index "*!. In order to find the cor-
responding Kuler equations, we impose that in correspondance of the solution
[w,p, M, B; Au, Aps Ay, Ag; k] the Gateaux differentials of £ evaluated for any test
function vanish. Let us introduce the following notation. Given N Hilbert
spaces Z1,..., 4N, let Z =71 X Zyg x ... x Zny and M : Z — R, be such that
(y1,---,yn) € Z = M(y1,...,yn) € R, and let < -, > be the duality pairing
between 7' and Z. We indicate with

<dMy,[z1,... 2N], 9 >=

= lim
e—0

(M(y]a ay7 +EgaayN) - M(y]a ay7aayN)>‘

£ Y=z
the Gateaux differential of M with respect of y;, computed at z = (21,...,2y) €
Z and acting along the direction g € Z;. For the sake of notation, we will set

< d/\/lzj,g >=< d./\/ly7 [Zl, R ,ZN],_(] >.
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Then, the solution which minimizes functional J(-) under the constraint is
a stationary point of the Lagrangian functional and therefore can be computed
by imposing that the gradient of £ vanishes. In particular, by setting to zero
the Gateaux derivatives of the Lagrangian functional with respect to the state
variables we obtain the adjoint problem, namely

<dLy,v >+ <dLy, L >=0
<dLy,q>=0
<dLg,o >= 0,

forallv € V*, g € Q*, 1/; € W and a € D*. Optimality conditions are obtained
by vanishing derivatives with respect to the control variables

<d£k]‘ay>:03 jzla"'ama
for all v € R. These two problems together with the state problem

<dlx,.v >+ <dlx, L >=0
<dLy,,q>=0
< dﬁ)‘ﬁ,a >=0,

forallv e V*, g € Q*, 'Zﬁ € W and a € D*, yield the following coupled system.

Given F € R™, f; € LQ(Q;) and f, € L*(Q)) find k €¢ R™, u € V*p €
QmeW,BeD" X\, €V* A\, €Q" X € W and Ag € D*, such that

( A(u,m;0,9)" + B(p;v, )" + C(B;v,4)" +
+Z;n:1kj.fr;”'nd7:F}‘(”) + (%)
B(g;u,m)* =0 §
[ Clasu,m)* = [ a- Ty

State problem <

(15a)
[ A(v, 5 A0, A)" + B(Apiv,9)" + C(Ag;v,9) +
+307 (.fr;u'nd7_Fj> .fr;”'”ch:o
Bl(g; Au,)\n)* =0
[ Clas Ay, Ay)" =0

Adjoint problem <

(15b)

Optimality conditions / vy mndy=0, j=1,...,m (15c¢)
JT*
J

foralve V', qe Q" v e W,ae D" and v € R

We point out that system (15) couples two linearized fluid-structure interac-
tion problems and m scalar equations. For its numerical solution, we can resort
to iterative techniques. As already done for the rigid case (see [12]), it is worth
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noting that, if the iterative process converges, at the limit, i.e. when Jp = 0,
the fulfillment of the adjoint problem and of the optimality conditions implies
that the adjoint solution is equal to zero. Indeed, the adjoint problem is linear
with the only forcing term given by the Neumann boundary conditions at the
artificial sections I'; which, clearly, are zero when Jp = 0. The adjoint variables
are however needed to drive iterative schemes to the optimal solution.

Weak imposition of the continuity of the velocity at the interface has been
preferred since the interface condition for the adjoint problem in this way are
easily derived. In particular, it is given by

% =), on X%
The next result states the well-posedness of system (15).

Proposition 5.1 If problem (2) admits a unique solution, then also system (15)
admits a unique solution.

Proof. The proof follows the same guidelines of Proposition 2.1 in [12]. For
any h = [hi,..., hy], let Ps, s, (k) be the velocity u solution of problem

Alu,m;v,9)" + Blpio,4)* + O(Bi0.9)" = = 3501 by [ v mdy + Si(v. )
B(g;u,m)* =0
Clex; u,m)* = Sr(er),
(16)
Vo e V¥ g€ Q" ¢ € W and a € D*, where Si(v,1) and So(a) are a given
form and functional, respectively. Moreover, let Av be the vector whose j — th
component is .fr]- v -ndy, and Bg, s, := APs, s,. Then, by setting

Gi(v.9) == Fj(v) + P\ (%)
Ga(a@) = [ a- Z_Zd%

we can write system (15) in term of the only unknown k, as
Boo[Bay . (k) — F] = 0. (17)

Moreover, by setting [w;, p;, n;, 3;] as the solution of (16) with S; = Sy = 0
and h = ej, being e; the j — th unit vector, from (16) we have, by choosing
[uj,pj,m;,B,] as test functions and by setting h = e;, S1 =0 and Sy = 0,

i

This implies that matrix By has component
[Boolij = —A(ui, m;5u5,m;)"
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Thanks to the coercivity of A, it follows that By is negative definite and then
(17) becomes
BGl,Gz (k) =F.

Thanks to the linearity of Bg, a,, system (17) effectively reduces to
Boo(k) = F — Ba,,6,(0)

and therefore the solution k exists unique. The corresponding [u,p,n, 3] and
[Aus Ap, Ay, Ag] are then defined uniquely by the well posedness of problem (16)
d

As pointed out in Proposition 1, the hypothesis of Proposition 2 is satisfied
for a linear elastic structure coupled with a viscous fluid featuring a large enough
viscosity u.

5.2 Algorithms for the numerical solution

In this section we detail some algorithms for the numerical solution of the cou-
pled system (15). Resorting to iterative methods has the advantage of splitting
the global problem into simpler subproblems and of possibly using standard FSI
solvers. The steepest descent method applied for the localization of a stationary
point of the Lagrange functional (14) can be equivalently thought as a Richard-
son method applied to equations < dly;,v >=0, j = 1,...,m. In this way we
solve separately the two FSI problems, namely the state and the adjoint ones,
and we check the optimality conditions until convergence.

Let us introduce two inf-sup compatible finite dimensional subspaces V'; C
V* and Q) C Q" and the finite dimensional subspace W), C W. Moreover,
given a quantity f, we indicate again with f its finite element approximation.
In what follows, we detail three alternative algorithms.

“Exact” algorithm

The following algorithm solves the space discretization of system (15) exactly
up to the error associated with the convergence test.

Algorithm 3

- Temporal loop
- Internal loop: given kjl-, j=1,...,m,and e >0, set [ =1 and
do until convergence

- Solve the numerical approximation of the state problem
(15a), obtaining the solution ', p';

- Solve the numerical approximation of the adjoint FSI problem

(15b), obtaining the solution M/ )\;’3;

u
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m < €,v,] = 1,...,m
7

- Convergence test: if

then break;
else k:;+1 = k; + 7t fr; )\Z -ndy, Vj=1,...,m, and set
l=1+1; ‘

end;
end temporal loop.

l

Parameter 7' can be chosen following different strategies. The following

expression
Jr(uh)
1L 115

stems from the application of the classical Newton method for the equation
Jr(k) := Jp(u(k)) = 0. A further improvement can be obtained by observing
that Jr is a quadratic functional and the associate solution is supposed to have
multiplicity 2, so that we could select 7! = 274 (see [12]).

TZ:TJZV:—

(18)

“Inexact” algorithms

Since we are not interested to the whole adjoint solution, but only in its flow
rates through the sections I'}, 7 = 1,...,m, we can consider an inexact solution
of this problem, leading to a considerable saving of the computational cost. More
precisely, we solve, out of the temporal loop, m FSI problems in the reference
domain Q(}, with unit Neumann conditions at F?, j=1,...,m, that is

A, 95 Ay Ap )+ By 0,9)° + C(Agj50,9)° = — f[‘? v-ndy

B(q; A js Apy)? =0 (19)

Yo e VY, '(//; e Wy and g € Q%. Then, at each internal iteration of Algorithm 3
we combine linearly these solutions, obtaining

=3 (f

u - ndy Fj> Aujs (20)
J=1

*
J

where the A\, ;’s are obtained from Xuy through the ALE map. This introduces
an approximation error in the construction of the adjoint problem, since we are
combining solutions obtained in the fixed reference frame.

In what follows, we detail two possible inexact algorithms. If we choose a
monolithic strategy for the treatment of interface conditions, the only quantities
updated in the inner loop in Algorithms 3 are the control variables k;, j =
1,...,m. Otherwise, if we use a partitioned procedure we need to subiterate
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also on the interface position between the fluid and the structure subproblems.
In this case, we can consider either “nested iterations” or just “one loop”. In
particular, we detail for the sake of exposition the case in which the Dirichlet-
Neumann scheme is used for the treatment of the interface conditions. However,
extension to general Robin-Robin schems is straightforward.

Algorithm 4 : Inexact Nested Loops

- Solve for each 7 = 1,...,m the numerical approximations of the
FSI problems (19), obtaining, in particular, the velocities A,

- Temporal loop;

- ‘‘Control variables’’ loop (index [): given kjl-, j=1,...,m
and €2 > (, set [ =1 and do until convergence

- ‘‘Interface condition’’ loop (index p): given n;) and e >
(0, solve in sequence until convergence

e A Fluid subproblem with the following boundary conditions

1 n
l —Mn *
u1;+1 = Tar on X
T, n=Fkn onI7, j=1...,m

e A Structure subproblem with the following boundary condition
l l .
Ts,p1n=Tf,1n onX¥
- Convergence test: if

by — upll 2 < e1 (21)

then break;
- end ‘‘interface conditions’’ loop;
- Compute the approximate adjoint solution with (20);

- Convergence test: if

1
| frj*. Aup-m dy|

<eg,Vi=1,....,m (22)
|fF;‘ )‘1]1,,h, ndfﬂ

then break;

else

Kb =K+ ! /F Njpmdy, Vi=1,...,m, (23)
and set [ =1[1+1;
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- end ‘‘control variables’’ loop;

- end temporal loop.

Algorithm 5 : Inexact One Loop

- Solve for each 7 = 1,...,m the numerical approximations of the
FSI problems (19), obtaining, in particular, the velocities A, j;

- Temporal loop;

‘‘Control variables’’ and ‘‘Interface condition’’ loop (index
0: given.k},j =1,...,mand e; > 0 and €9 > 0, set [ = 1 and
solve until convergence

e A Fluid subproblem with the following boundary conditions

I _ntoqgn *
= A7 on X

Tzcn:kén onF;, j=1,...,m;

u

e A Structure subproblem with the following boundary condition
Tlsn:Ticn on ¥%;

- Compute the approximate adjoint solution with (20);

- Convergence test: if

| fr]*. )‘L,h -ndy|
| fF;‘ A7]1.,h, : ln’d’ﬂ

||ul—ul*]||L2(E*) < e and <eg, Vi=1,....m

then break;

else k‘]:;ll = k;,h + Tl/ )‘L,h ‘ndy, Vj=1,...,m, and set [=
: r

7

I+ 1;

- end ‘‘control variables’’ and ‘‘interface conditions’’ loop;

- end temporal loop.

Obviously, for Alg. 5 the convergence is not guaranteed, since at each subit-
eration the interface conditions are not satisfied exactly. However, the numerical
results presented in Sect. 6, show that at least for the cases treated in this work,
convergence is always achieved.

In Fig. 3 and 4 schemes of Algorithms 4 and 5 are reported.
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Remark 3 In all the three strategies proposed in Sect. 3, 4 and 5, in fact the
flow rate at an artificial section T' is prescribed by forcing an appropriate un-
known constant normal stress on T'. As observed in [13, 17, 12], when the trans-
pose formulation of the diffusion term is considered, namely p(Vu + (Vu)T),
the solution is affected by a spurious tangential velocity ug, at T'. In the rigid
case, this drawback can be overcome by imposing directly that the tangential ve-
locity u™ = ug, is equal to zero (see [17]) or by resorting to the minimization of
a suitable functional (see [12]). However, in the compliant case the tangential
velocity on T' is given by two coniributions, namely u™ = ug, + uy, where the
latter term is due to the displacement of the FS interface. Numerical strategies
for the separation of the two contribution in order to skip the spurious ome are
under investigation. However, numerical evidences show that, for the problems
considered in this work, the contribution of uj, is only of about 1% of the to-
tal tangential velocity u”, so it is supposed to play a minor role in numerical
simulations.

6 Numerical results

In this section we present some numerical results with the aim of testing the
algorithms proposed in the previous sections. In all the simulations, we have
considered a semi-implicit treatment of the interface position.

6.1 Comparison among the various algorithms

In the first set of simulations we test the performances of Algorithms 1, 2, 3, 4 and
5 in terms of number of iterations and CPU times. The numerical simulations are
performed in a rectangular domain both for the fluid and for the two structures,
whose size is 6 x 1 ¢cm and 6 x 0.1 ¢m, respectively (see Fig. 5). For the structure,
we consider the following equation of linear elasticity

psOum — ¢V - (Vn + (Vn)") = AV - (V- p)I) + fn = 0,

where I is the identity operator, ¢ = E/(1 +v), A = vE/((1 + v)(1 — 2v))
and 8 = E/(1 — v?)R?, with E the Young modulus, v the Poisson ratio and
R the radius of the fluid domain. The reaction term stands for the transversal
membrane effects. We prescribe the flow rate F' = cos(2nt) at the inlet of the
fluid domain.

We use a 2D Finite Element Code written in Matlab at MOX - Dipartimento
di Matematica - Politecnico di Milano and at CMCS - EPFL - Lausanne. We
consider Py —bubble /Py elements for the fluid and P; element for the structure and
a space discretization step h = 0.02cm. Moreover, we set u = 0.035cm? /s and
pr= 1 g/em? and, unless otherwise specified, we consider the following reference
values: At =10"2s,p, = 1.1g/cm?, ¢ = 1.15 - 10 dyne, A = 1.7 - 10° dyne, 8 =
6.5 - 10° dyne/em? and the thickness of the structure Hy = 0.1 cm.
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For all the algorithms a Robin-Neumann partitioned procedure is used for the
solution of the FSI problems, with a stopping criterion based on the normalized
residual (see [3]) and tolerance equal to 10~ *. For Algorithms 3 and 4, the
tollerance for the stopping criterion in the control loop is set equal again to
10~*. For Algorithm 5 we have only one tollerance, set again equal to 10~%.

In Fig. 6 the fluid axial velocity at the inlet of the domain at two different
instants obtained with Algorithms 1, 2 and 3 is shown. The solution obtained
with the inexact Algorithms 4 and 5 are not reported since they are in excellent
agreement with the solution obtained with Alg. 3.

In Tab. 1, the left value in each box is the mean number of total iterations
per time step. In particular, for Algorithm 2 we reported the sum of the mean
number of Robin-Neumann iterations needed to solve the first and the second
FSI problem in the GMRes loop. For Algorithm 1 each of the RN iterations is a
flow rate problem which has been solved with the GSC (rigid) scheme, requiring
the solution of two fluid problems. For what concerns Algorithms 3 and 4, the
mean number of iterations per time step of the control loop multiplied for the
mean number of iterations of the Robin-Neumann scheme per control loop’s
iteration, is reported. For Algorithm 5 the mean number of iterations per time
step refers to the unique loop. On the right of each block the CPU time to
perform 10 time steps, normalized with the best performance, is shown.

| Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5
B, At, ps 91 — 1.00 11.4 — 1.24 3x76 — 246 3x59 — 196 11.6 — 1.32
108, At, ps | 4.7 — 1.00 X 3x4.0-249 3x3-191 52— 1.16
B, At/10, ps | 21.9 — 1.04 28.1 — 1.34 3 x 182 — 2.60 3 x13.5 — 1.99 19.4 — 1.00
B, At, 10p, | 84 —1.00 108 —1.26 3x74 —258 3 x57—205 11.4 —1.39

Table 1: Mean number of iterations per time step (left) and relative CPU time
in seconds to perform 10 time steps (right). X means that convergence is not
achieved.

Let us discuss the results in Tab. 1 starting from the three algorithms for
the solution of system (15), namely Alg. 3, 4 and Alg. 5 . First of all, we
point out that both the inexact algorithms 4 and 5 converge in all the numerical
simulations. A convergence analysis of such schemes is still missing. However,
these experimental results are very promising. Among these three schems, Alg.
5 seems to be the most performing. Indeed, the (mean) reduction factor of the
CPU times is 2.08 with respect to Alg. 3 and 1.61 with respect to Alg. 4.
Therefore, the use of just one loop seems to be the most promising and then
only Algorithm 5 is considered in the sequel.

Let us now focus on Alg. 1, 2 and 5. We observe that Alg. 1 is the most
performing in all cases but one, that is for a small value of the time discretization,
where Alg. 5 is faster. Alg. 2 works quite well for big values of At and  and
does not converge for a value of 8 equal to 10 times the reference value. All the
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algorithms seems to be insensitive to an increment of the structure density. This
is due to the choice of the Robin-Neumann scheme as partitioned procedures,
which has been shown to be robust with respect to the added mass effect (see

[31)-

6.2 An application to a 2D bifurcation geometry

In this section we apply Alg. 1 and 5 to a 2D geometry which is an idealization
of a realistic domain, namely the human carotid. We use the same parameters
introduced in the previous subsection, apart for the values 8 = 1.3-10%dyne/cm?
and At = 10~%s. We impose the following flow-rate impulse

[ Fi t<0.005s
F(t)_{o t>0.005s

and we use the Robin-Neumann scheme as partitioned procedure. In Fig. 7 the
pressure in the deformed fluid domain and the exploded position of the structure
obtained with Alg. 5 are shown at 4 different instants. The flow-rate impulse is
F;, = 50cm?/s. The solutions obtained with Alg. 1 are in excellent agreement
and for this reason their visualization are not reported. In Tab. 2 the mean num-
ber of iterations (left) and the CPU times normalized with the best performance
(right) are reported for 2 values of the flow-rate impulse, namely F, = 10cm?/s
and Fj, = 50cm?/s. We point out that the computational effort of the two

Alg. 5 Alg. 1
F,, =10em? | 14.2 — 1.00 20.25 — 1.37
F;, =50cm? | 143 — 1.00 19.9 — 1.39

Table 2: Mean number of iterations per time step (left) and relative CPU time
in seconds (right) to perform 16 time steps for the carotid simulation.

algorithms seems to be independent of the Reynolds number. However, Alg. 5
performs better than Alg. 1, both in term of number of subiterations needed to
reach convergence and of CPU time.

7 Conclusions

In this paper we focus on the problem arising when the fluid-structure interac-
tion (FSI) problem is solved in a truncated computational domain, in particular
when no sufficient data are available to be prescribed at the artificial sections.
Among the varoius “defective” data, we consider here the flow rate conditions
for the fluid. This paper has to be intended as a first step in the direction of
solving a FSI problem with general fluid and structure defective data. We pro-
pose three different strategies for the numerical solution of the Flow rate/FSI
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problem. Among the various algorithms proposed for the numerical solution,
the numerical results have showed that Alg. 5 seems to be the most suited for
realistic simulations. Moreover, its versatility is very attractive when other de-
fective data (such as the ones related to the structure) are considered. Indeed,
the inclusion of these defective informations through the enrichment of the func-
tional to be minimized should not increase the computational cost if just “one
loop” implementation is used, contrary to the other strategies.
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Solve (19) Vj =1,...,m

CONTROL LOOP

n=ntl FSI LOOP

=]
|So|vethef|uid problem |

p=pr |

| Solve the structure problem |

Update rule
(23)
A Convergence test
(21)
NO

YES

Compute the adjoint

solution with(20)

NO

Convergence test
(22)

YES

Figure 3: Scheme of Algorithm 4.
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Solve (19) Vj =1,...,m

CONTROL & FSI LOOP

n=n+l

A | Solve the fluid problem |

]

| Solve the structure problem |

!

Update rule Compute the adjoint
(23) solution with(20)

A ¢

Convergence tests
(22) and  (21)

NO

YES

Figure 4: Scheme of Algorithm 5.

Figure 5: Computational fluid and structure domains.
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Figure 6: Comparison of axial velocities obtained with Algorithms 1, 2 and 3. -
t=0.10s (left), £ = 0.30 s (right) .

Figure 7: Pressure in the deformed fluid domain and position of the structure
obtained with Alg. 5 - ¢ = 0.004 (up-left), ¢ = 0.008 s (up-right), t = 0.012s
(bottom-left) and ¢ = 0.016 s (bottom-right).
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