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tIn this paper we 
onsider the numeri
al solution of the intera
tion of anin
ompressible 
uid and an elasti
 stru
ture in a trun
ated 
omputationaldomain. As well known, in this 
ase there is the problem of pres
ribingrealisti
 boundary data on the arti�
ial se
tions, when only partial data areavailable. This problem has been investigated extensively for the rigid 
ase.In this work we start 
onsidering the 
ompliant 
ase, by fo
using on the 
owrate 
onditions for the 
uid. We propose three formulations of this problem,di�erent algorithms for its numeri
al solution and 
arry out several 2Dnumeri
al simulations with the aim of 
omparing the performan
es of thedi�erent algorithms.�This work has been supported by the Proje
t COFIN071



1 Introdu
tionNumeri
al simulations of in
ompressible 
ows in network of pipes almost in-variably require to bound the domain of interest with arti�
ial boundaries thatinterfa
es it with the entire network (see Fig. 1). Unfortunately, no physi
al
Physical Boundary (wall)

Artificial Boundary (inflow/outflow)

Figure 1: Example of trun
ated 
omputational domainarguments 
an be invoked for the pres
ription of 
onditions on these bound-aries. Data 
an be pres
ribed from available measures. In some appli
ationsthese measures are not enough for the well-posedness of the 
uid problem. Atypi
al example of interest in the present work is when 
ow rate in a pipe is mea-sured, whi
h is quite typi
al in haemodynami
s. Flow rate is the average valueof the normal velo
ity (multiplied by the 
uid density) through the arti�
ial se
-tion. Mathemati
al problem would require instead a pointwise data set for thevelo
ity (Diri
hlet 
onditions). Pra
ti
al approa
hes for over
oming the under-determination are based on the sele
tion of a realisti
 velo
ity shape �tting themeasured 
ow rate. Despite of its simpli
ity, this approa
h introdu
es a strongbias in the numeri
al simulation. In [13℄ the problem of arti�
ial boundariesand 
ow rate problems has been investigated with a more mathemati
ally soundapproa
h, resorting to the sele
tion of a suitable variational formulation of theproblem at hand. Homogeneous 
onditions natural for the sele
ted variationalformulation 
omplete the defe
tive data. For the 
ow rate problem, however,this approa
h requires the introdu
tion of non-standard fun
tional spa
es, notstraightforwardly prone to numeri
al dis
retization. Alternative approa
hes havebeen proposed in the last years, see [10, 18, 19, 12℄. A 
omplete introdu
tionto these topi
s 
an be found in [11℄, Chap. 11, in the 
ontext of geometri
almultis
ale models for the 
ir
ulation. Computational haemodynami
s is the ap-pli
ation that has mainly (even if not ex
lusively) driven the present resear
h.In this 
ontext, a 
omplete des
ription of the problem in
ludes the 
omplian
eof the walls (Fluid Stru
ture Intera
tion - FSI - problems). Arti�
ial boundaries2



should be 
onsidered not only for the 
uid but also for the stru
ture problem.Spe
i�
 mathemati
al and numeri
al appropriate te
hniques should be devisedfor the reliable solution to 
uid-stru
ture intera
tion problems with defe
tiveboundary data both for the 
uid and the stru
ture problems (see [11℄). This pa-per is a �rst step in this dire
tion. More pre
isely, we 
onsider the 
uid problemwith 
ow rate 
onditions. We assume here that the stru
ture problem featuresa 
omplete set of boundary 
onditions. In a forth
oming paper we will 
onsiderthe 
ase where both 
uid and stru
ture have defe
tive boundary data on thearti�
ial se
tions.The purpose of this paper is to devise and 
ompare possible strategies byextending the di�erent methods proposed for the rigid 
ase. It is worth men-tioning that some preliminary results have been proposed in [16℄ limitedly to oneparti
ular strategy and to the 
ase of a membrane stru
ture (i.e. a 2D stru
ture
oupled to a 3D 
uid domain). Here we 
onsider spe
i�
ally methods workingfor thi
k 3D stru
tures.The outline of the paper is as follows. In Se
t. 2 we introdu
e the mathemat-i
al formulation of the 
ow rate problem in 
ompliant domains. In view of themethods introdu
ed later on, we address a formulation where velo
ity mat
hing
ondition between 
uid and stru
tures is for
ed in a weak sense. We analyze thewell posedness of this formulation. In Se
t. 3 we present a �rst 
lass of possiblemethods, stemming from segregated pro
edures for the 
uid-stru
ture intera
-tion solution. A
tually in partitioning 
uid and stru
ture 
omputations, at ea
hstep 
uid is solved in a "frozen" domain, so that methods for the pres
ription ofthe 
ow rate proposed for the rigid 
ase 
an be straightforwardly applied. How-ever, both segregated methods and te
hniques for defe
tive 
ow rate problemsare based on iterative pro
edures, so a dire
t implementation of this approa
hleads to nested iterative methods, typi
ally having high 
omputational 
osts.Most spe
i�
 te
hniques for the 
ompliant 
ase are introdu
ed in Se
t. 4 and 5.More pre
isely, in Se
t. 4 we introdu
e a method based on the extension of theaugmented formulation introdu
ed in [10, 18℄ to the whole 
ow-rate/FSI prob-lem. In parti
ular, we 
onsider an algorithm based on an algebrai
 splitting ofthe augmented problem (see [18℄), whi
h has the pra
ti
al feature of resorting tothe solution of standard FSI problems, a�ordable, for example, by a 
ommer
ialpa
kage even when used as bla
k-box solvers. In Se
t. 5, we re
ast the problemin terms of the minimization of an appropriate fun
tional measuring the dis-tan
e between the 
omputed and the pres
ribed 
ow rates with the 
onstraintof the 
uid-stru
ture intera
tion problem, extending the strategy proposed forthe rigid 
ase in [12℄. In parti
ular, we use the normal stress on the arti�
ialboundaries as 
ontrol variable for driving the minimization of the 
onstrainedfun
tional. We present di�erent methods for the solution of the minimizationproblem, with the aim of redu
ing the 
omputational 
osts mainly by avoidingnested iterations. Se
t. 6 is devoted to the numeri
al results. We present severaltest 
ases, 
omparing numeri
al eÆ
ien
y of the proposed methods. Finally, inSe
t. 7 we draw some 
on
lusions. 3



2 The Fluid-Stru
ture Intera
tion problem2.1 General setting and weak formulationLet us 
onsider a trun
ated 
omputational domain 
t � Rd (d=2, 3, being thespa
e dimension), with r arti�
ial se
tions. This domain is divided into a sub-domain 
ts o

upied by an elasti
 stru
ture and its 
omplement 
tf o

upied bythe 
uid. The 
uid-stru
ture interfa
e �t is the 
ommon boundary between 
tsand 
tf (see Fig. 2), whilst with �ti and �ti;s we denote the 
uid and stru
turearti�
ial se
tions. Furthermore, n is the outward normal on �
tf . The initial
on�guration 
0 at t = 0 is 
onsidered as the referen
e one.
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,Figure 2: Example of trun
ated 
omputational 
uid domain 
tf (left) and soliddomain 
ts (right). In this pi
ture r = 3.We adopt a purely Lagrangian approa
h to des
ribe the stru
ture kinemati
sand then we refer always to the referen
e domain 
s := 
0s. Hereafter, b� denotesthe displa
ement of the solid medium with respe
t to this 
on�guration. Forany fun
tion bg de�ned in the referen
e solid 
on�guration, we denote by g its
ounterpart in the 
urrent domain. The solid is assumed to be a linear elasti
material, 
hara
terized by the Cau
hy stress tensorT s(�) = �(r � �)I + 
(r� + (r�)T )where � and 
 are the Lam�e 
onstants and I is the identity tensor.On the other hand, the 
uid problem is stated in an Arbitrary Lagrangian-Eulerian (ALE) framework (see, e.g., [15, 8℄). The ALE mapping is de�ned by anappropriate lifting of the stru
ture displa
ement. A 
lassi
al 
hoi
e is to 
onsidera harmoni
 extension operator in the referen
e domain. In order to write the
uid problem a

ording to the ALE formulation, we re
all the de�nition of ALEtime derivative of the velo
ity u:DAuDt = �u�t +w � ru;where �u=�t is the Eulerian derivative and w is the velo
ity of the points of the
uid domain de�ned by the ALE map. The 
uid is assumed to be homogeneous,4



Newtonian and in
ompressible, with Cau
hy stress tensor given byT f (u; p) = �pI + �(ru+ (ru)T );where p is the pressure and � the dynami
 vis
osity. Moreover, we 
olle
t the
uid arti�
al se
tions in three distin
t subregions, namely �tF := Smi=1 �ti;m �r; �tD and �tN , and the stru
ture ones in two subregions, namely �0D;s and �0N;s.Then, the 
omplete problem in strong form reads:1. Flow-rate/Fluid-stru
ture problem. Find the 
uid velo
ity u, pressure pand the stru
ture displa
ement b� su
h that8>>>>>>>><>>>>>>>>:
�f DAuDt + �f ((u�w) � r)u�r � T f = ff in 
tf � (0; T );r � u = 0 in 
tf � (0; T );�s �2b��t2 �r � bT s = bfs in 
0s � (0; T );u = ���t on �t � (0; T );T sn� T f n = 0 on �t � (0; T );R�ti u � n d
 = Fi; i = 1; : : : ;m t 2 (0; T ): (1)

2. Geometry problem. Given the interfa
e stru
ture displa
ement �j�t , �nda map A : 
0f ! 
tf through an harmoni
 extension Ext of this boundaryvalue and �nd a

ordingly the new 
uid domain 
tf by moving the pointx0 of the referen
e domain 
0f :At(x0) = x0 + Ext(b�j�0); w = �tAt Æ (At)�1; 
tf = At(
0f ):Here, �s is the stru
ture density, Fi; i = 1; : : : ;m; are given fun
tions of timeand ff and bf s the for
ing terms. System (1) has to be endowed with suitableDiri
hlet boundary 
onditions on �D and �D;s and Neumann boundary 
ondi-tions �N and �N;s. The partition between Diri
hlet and Neumann boundaries
an be di�erent for the normal and the tangential dire
tion of u and �. Twotransmission 
onditions are enfor
ed at the interfa
e: the 
ontinuity of 
uid andstru
ture velo
ities (1)4 and the 
ontinuity of stresses (1)5. The 
uid and stru
-ture are also 
oupled by the geometry problem, leading to a highly nonlinearsystem of partial di�erential equations. Finally, system (1) has to be endowedwith suitable initial 
onditions.2.2 Time dis
retization, weak formulation and treatment of theinterfa
e positionLet us now 
onsider the time dis
retization and the weak formulation of system(1). Let �t be the time step size and tn = n�t for n = 0; : : : ; N . We denoteby zn the approximation of a time dependent fun
tion z at time level tn. We5




onsider a ba
kward Euler s
heme for the time dis
retization of the 
uid problemand an impli
it se
ond order BDF s
heme for the stru
ture problem. Observe,however, that all the arguments detailed in this work 
an be extended to othertime dis
retization s
hemes.For the moment being, we 
onsider the 
ase �tF = ;, that is no 
ow rate
onditions are pres
ribed. Extension to the 
ase of su
h 
onditions is presentedlater on.In order to treat the nonlinearity given by the 
onve
tive term and by the
uid domain, we 
onsider the semi-impli
it treatment (see e.g. [9, 4, 3℄). Denoteby 
�f ; u� and w� appropriate extrapolations of the 
uid domain, 
uid velo
ityand 
uid domain velo
ity, respe
tively. The simplest 
hoi
e is given by the�rst order extrapolations 
�f = 
nf ; u� = un and w� = wn. More a

urateextrapolations 
an be 
onsidered as well.Let us introdu
e the following spa
es:V � = fv 2H1(
�f ) : vj��D = 0g;Q� = L2(
�f );W = fb 2H1(
0s) : b �0D;s = 0gZ� = n(v; b ) 2 V � �W : vj�� =  j���t o :Moreover, setA(u;�;v; )� := �f�t (u;v)�f + (T f ;rv)�f + �f (((u� �w�) � r)u;v)�f++�s b��t2 ; b �t!s +�bT s; 1�trb �sand B(q;v; )� = �(q;r � v)�fwhere (v;w)�f := R
�f v � w dx and ( ;�)s := R
0s  � � dx. Then, the weakformulation for the dis
retized-in time problem with a semi-impli
it treatmentreads as follows.For ea
h n we perform the following steps1. Compute suitable extrapolations 
�f ; u� and w� of 
n+1f ; un+1 and wn+1,respe
tively.2. Given fn+1f 2 L2(
�f ) and bfn+1s 2 L2(
0s), �nd (un+1; b�n+1) 2 Z� andpn+1 2 Q� su
h that( A(un+1;�n+1;v; )� +B(pn+1;v; )� = F �f (v) + bFs �  �t�B(q;un+1;�n+1)� = 0 (2)for all (v; b ) 2 Z� and q 2 Q�. 6



3. Update the 
uid domain obtaining 
n+1f .The fun
tionals F �f and Fs a

ount for for
ing terms, boundary data and terms
oming from the time dis
retization. We point out that, thanks to the 
oupling
ondition (1)5 and the parti
ular 
hoi
e of the 
uid-stru
ture test fun
tionsin Z�, the two interfa
e terms 
oming from the integration by parts, namelyR�� T n+1f n � v d
 and R�� T n+1s n �  �t d
, 
an
el out.A se
ond possibility is to treat the 
uid domain and the 
onve
tive termimpli
itely and to embed the 
uid-stru
ture problem into a �xed-point loopover the position of the FS interfa
e ��. However, for the sake of exposition welimit our attention to the semi-impli
it 
ase, dis
ussing whenever appropriatethe feasibility of the proposed approa
hes to impli
it algorithms.2.3 Weak formulation of the 
ontinuity velo
ityIn view of the numeri
al treatment of the 
ow rate problem based on the 
ontroltheory introdu
ed in Se
t. 5, we introdu
e here a di�erent formulation when theinterfa
e 
ontinuity 
onditions on the velo
ity are for
ed weakly. In this way, testfun
tions on the 
uid problem do not ne
essary mat
h at the FS interfa
e withthe stru
tures ones. LetD� be the spa
eH�1=2(��). At time step tn+1, we 
on-sider the following \augmented" variational formulation of the semi-dis
retizedproblem.Given fn+1f 2 L2(
�f ) and bfn+1s 2 L2(
0s), �nd un+1 2 V �; pn+1 2 Q�; b�n+1 2W and �n+1 2D� su
h that,8><>: A(un+1;�n+1;v; )� +B(pn+1;v; )� + C(�n+1;v; )� = F �f (v) + bFs �  �t�B(q;un+1;�n+1)� = 0C(�;un+1;�n+1)� = R�� � � �n�td
 (3)for all v 2 V �; q 2 Q�; b 2W and � 2D� and whereC(�;v; )� := �Z�� � � �v �  �t� d
:From now on, we drop the index n+1 for the sake of simpli
ity. Moreover, letus introdu
e the following normskvkV � := �kvk2f + krvk2f�1=2 ;k kW := �k k2s + kr k2s�1=2 ;being k � kf and k � ks the L2(
�f ) and L2(
0s)� norms. We have the followingProposition 2.1 If � is big enough, problem (2) admits a unique solution[�u; �p; ��℄. Problem (3) admits a unique solution too, namely [�u; �p; ��;�℄, with� = �T fnj�� := T f (�u; �p)nj��. 7



Proof . Let us introdu
e the following normk (v; ) k2 := kvk2V � + 



 �t


2W :From the Korn's inequality, there exist two 
onstants Kf and Ks su
h that (see,e.g, [5℄) (rv + (rv)T ;v)� � KfkvkV � ;(bT s(b ); 1�trb ) � Ks�t kb kW :Then, if the vis
osity � is big enough, we haveA(v; ;v; ) � �f�tkvk2f + �Kfkrvk2f++�f (((v� �w�) � r)v;v)�f + �s 1�t3 k k2s + Ks�tkb kW � 
k (v; ) k2;where 
 = minf�f=�t; �Kf ; Ks=�tg. From 
lassi
al arguments (see, e.g., [7,6℄), the 
uid problem is well-posed, then 8q 2 Q� there exists ev 2 V � su
h that�(q;r � ev) � �kqkf kevkV � ;for a suitable � > 0. By 
hoosing e = 0 we obtainB(q; ev; e ) � �kqkf k(ev; e )k8q 2 Q�, so that the 
uid-stru
ture problem (2) is proved to be well-posed aswell.Let us now show that the bilinear form C satis�es an inf-sup 
ondition andtherefore that problem (3) admits a unique solution (see [7℄). More pre
isely, wewill show that 8� 2D�, there exists a 
ouple (ev; e ) 2 Z� su
h thatC(�; ev; e )� � �2k�kDk(ev; e )k; (4)for a suitable �2 > 0, wherek�kD := k�kH�1=2(��) = supkwk1=2=1 R�� � �w d
and kwk1=2 := kwkH1=2(��) = inf z2V�zj��=w kzkV :Given � 2 D�, let us 
hoose e 2 W su
h that 


 e �t


1=2 = 1 and su
h thatR�� � � e �td
 � 12k�kD. We point out that this 
hoi
e is always possible thanksto the de�nition of k � kD. Moreover, we 
hoose ev 2 V � su
h that kevk1=2 = 1=4.We obtainC(�; ev; e )� = �Z�� ��ev d
+Z�� �� e �t d
 � �k�kDk kevk1=2+12k�kD = 14k�kD:8



Sin
e k(ev; e )k =p1 + 1=16, we obtainC(�; ev; e )� � 14r1617k�kDk(ev; e )k;and therefore 
ondition (4) is satis�ed with �2 = 1p17 .It is now easy to show that the solutions of problem (2) and (3) 
oin
ide andthat � = �T fnj�� (see [1℄). Let [�u; �p; ��℄ be the solution of problem (2). We havefor all v 2 V �; q 2 Q�; b 2W :A(�u; ��;v; )�+B(�p;v; ) = Z�� �T f n�v d
�Z�� �T sn�  �t d
+F �f (v)+ bFs�  �t� ;where the two terms at the FS interfa
e 
ome from the integration by partsof the 
uid and stru
ture equations in strong form. Then, by noti
ing thatC( �T fn;v; )� + R�� �T f n � �v �  �t� d
 = 0, we obtainA(�u; ��;v; )�+B(�p;v; )+C( �T fn;v; )� = Z�� �T f n�v d
�Z�� �T sn�  �t d
++F �f (v) + bFs�  �t�� Z�� �T f n ��v �  �t� d
:Finally, owing to (1)5, we obtainA(�u; ��;v; )� +B(�p;v; ) + C( �T fn;v; )� = F �f (v) + bFs�  �t� ;that is (3)1 is satis�ed with � = �T fnj�� . Moreover, from (1)4 we haveB(�; �u; ��)� = �Z�� � ���u� ���t� d
 = �Z�� � � ��n�td
and then also (3)2 is ful�lled. Therefore, the Lagrange multiplier � has thephysi
al meaning of normal stress at the FS interfa
e.On the other hand, if [�u; �p; ��; ��℄ is solution of (3), then by exploiting theproperty of the test fun
tions in Z�, it follows that [�u; �p; ��℄ is solution of (2).In the next three Se
tions we introdu
e three di�erent formulations of theFlow rate/FSI problem. For this reason, from now on we set �tF 6= ;.3 Partitioned methods for the Flow-rate/FSI prob-lemsAn immediate 
lass of methods for the Flow-rate/FSI problems stems by thestaggered or partitioned approa
hes for solving 
uid-stru
ture intera
tion (see9



e.g. [11℄, Chap. 9). When 
uid and stru
ture are solved separately, at ea
h stepwe resort to a rigid 
uid problem in a "frozen" domain. Numeri
al methods forthe 
ow rate problems in rigid domains 
an be therefore applied at ea
h iterativestep.Let us 
onsider the time dis
retization of system (1), where a 
ow rate 
on-dition is pres
ribed on the arti�
ial se
tions ��j , namelyZ��j un+1 � n d
 = F n+1j ; j = 1; : : : ;m; (5)where F n+1j = Fj(tn+1) are given fun
tions of time. We point out the semi-impli
it treatment of the interfa
e position.For the sake of generality, we refer to the 
lass of partitioned pro
eduresintrodu
ed in [3℄ as Robin-Robin s
hemes. For the ease of notation let us dropthe index n+1 of the 
urrent time step. We have the followingAlgorithm 1Given two parameters �f 6= �s; the quantities at the previous timestep, �n, �n�1 and un, and the value of the stru
ture displa
ement atthe 
urrent iteration �k, find the value of the solution at the nextiteration �k+1; uk+1 and pk+1 by solving the following steps1. Flow rate/fluid problem (Robin boundary 
ondition)8>>>><>>>>: �f uk+1�un�t + �f (u� �w�) � ruk+1 �r � T k+1f = ff in 
�f ;r � uk+1 = 0 in 
�f ;R��j �f un+1 � n d
 = F n+1j ; j = 1; : : : ;m�fuk+1 + T k+1f n = �f �k��n�t + T ksn on ��: (6)2. Stru
ture problem (Robin boundary 
ondition)( �s b�k+1�2b�n+b�n�1�t2 �r � bT k+1s = bf s in 
s0;�s�t�k+1 + T k+1s n = �s�t�n + �suk+1 + T k+1f n on ��:For a des
ription of optimal 
hoi
es of parameters �f and �s, we refer the readerto [3℄. The previous algorithm de�nes a 
lass of s
hemes. For example, if �f !1 and �s = 0 we re
over the well-known Diri
hlet-Neumann (DN) s
heme. In[3℄ it has been shown that among all the possible s
hemes of this 
lass, theRobin-Neumann (RN) (�s = 0) is the one with the best 
onvergen
e properties.For this reason, we 
onsider this s
heme in the numeri
al simulations reportedin Se
t. 6.Algorithm 1 splits the solution of the 
uid and the stru
ture problems inan iterative framework and 
ontains a 
ow rate problem at ea
h iteration. The10



latter 
an be solved by 
onsidering one of the strategies proposed for the solutionof a 
ow-rate problem in the rigid 
ase (see [14, 10, 18, 19, 12℄). Indeed, at ea
htime step, the 
uid problem (6) is solved in a �xed domain 
�f .Remark 1 Due to the mass 
onservation, in the rigid 
ase it is not possibleto pres
ribe an arbitrary 
ow rate on all the arti�
ial se
tions �ti; i = 1; : : : ;m,if �tN = ;. In the 
ompliant 
ase this 
ompatibility 
ondition does not holdanymore. Nevertheless, as pointed out in [16, 2℄, if we use a partitioned pro
edurein whi
h the stru
ture pres
ribes a Diri
hlet 
ondition at the interfa
e to the 
uid(as, e.g., in the Diri
hlet-Neumann algorithm) an in
ompatibility might arisebetween the 
ow rates Fi; i = 1; : : : ;m;, the velo
ity on �tD and the velo
ity atthe interfa
e, and then the mass 
onservationZ�t ���t � n d
 = Z�tD u � n d
 + mXi=1 Fi(t) (7)is not in general satis�ed. However, when adopting Robin-Robin s
hemes, on�t we pres
ribe a Robin 
ondition in pla
e of a Diri
hlet one, so that mass
onservation (7) is still ful�lled, for all the 
hoi
es of Fi; i = 1; : : : ;m and of theDiri
hlet datum on �tD.We point out that the previous algorithm extends easily to the impli
it treat-ment of the FS interfa
e, simply by 
onsidering it in a �xed-point loop.4 Augmented formulation of the Flow-rate/FSI prob-lemWe extend here to the FSI 
ase the augmented formulation proposed in [10℄ forthe 
ow rate problem in the rigid 
ase. In Se
t. 4.1 we introdu
e the 
ontinuousformulation and in Se
t. 4.2 we introdu
e the related algebrai
 problem. We alsodetail the GMRes+S
hur 
omplement (GSC) s
heme for its numeri
al solution.4.1 The augmented variational formualationLet us 
onsider the 
ow rate 
onditions (5) as 
onstraints to be for
ed to thevariational formulation of the FSI problem (2), by the introdu
tion of a Lagrangemultiplier �j, one for ea
h 
ow-rate 
ondition. Here we for
e the 
ontinuity ofthe velo
ity in an essential way. Then the augmented formulation for the 
ow-rate/FSI problem reads:Given fn+1f 2 L2(
�f ) and bfn+1s 2 L2(
0s), �nd (un+1; b�n+1) 2 Z�; pn+1 2 Q�
11



and �n+1 2 R su
h that,8><>: A(un+1;�n+1;v; )� +B(pn+1;v; )� +D(�n+1;v; )� = F �f (v) + bFs �  �t�B(q;un+1;�n+1)� = 0D(�;un+1;�n+1)� =Pmi=1 �iF n+1i (8)for all (v; ) 2 Z�; q 2 Q� and � 2 Rm and whereD(�;v; )� := mXj=1 �j Z��j v � n d
:Remark 2 As proven in [18℄, the bilinear form D(�; �; �) satis�es an inf-sup
ondition. Therefore, the augmented/FSI problem well-posedness is inherited bywell-posedness results of the non augmented FSI problem.4.2 The algebrai
 problem and the GSC algorithmWe dis
retize in time with the s
hemes illustrated in Se
t. 2 and in spa
e withLagrangian �nite elements. To this aim, we introdu
e a triangulation of 
uidand stru
ture domains and we assume that the meshes are 
onformal at theinterfa
e ��. At ea
h time step tn+1, we obtain the following linear system" A� (e��)Te�� 0 #� Xn+1�n+1 � = � bn+1F n+1; � : (9)where
A� = 266664 C�ff G�f C�f� 0 0D�f 0 D�� 0 00 0 M�� �M�=�t 0C��f G�� C��� S�� S�s0 0 0 Ss� Sss

377775 ; Xn+1 = 266664 Un+1fP n+1Un+1�Dn+1�Dn+1s
377775 ;

bn+1 = 266664 bn+1f0�M�=�tDn�bn+1�bn+1s
377775 ; e�n+1 = � �n+1 0 � :We have set ��ij = R��i lj � n d
, where the li's are the Lagrange basis fun
tionsrelated to the 
uid velo
ity. M� is the mass matrix at the interfa
e �� andthe size of the zero-matri
es is understood. Moreover Un+1f is the ve
tor ofnodal values of the 
uid velo
ity at the interior nodes, Un+1� that at the FSinterfa
e, Pn+1 is the ve
tor of (interior and interfa
e) nodal values for the12



pressure. Dn+1s and Dn+1� 
ontain the stru
ture degrees of freedom related tointerior and interfa
e nodes, respe
tively. Finally, �n+1 is the ve
tor of Lagrangemultipliers. The right hand side bn+1 a

ounts for external for
es, boundarydata and other terms related to the time dis
retization s
heme, whilst F n+1 isthe ve
tor whose 
omponent are the data F n+1j . The �rst two rows of (9) arethe fully dis
rete versions of the 
ow-rate/momentum and mass 
onservationequations for the 
uid. The third equation states the 
ontinuity of velo
ities onthe interfa
e and is the algebrai
 
ounterpart of (1)4. The fourth row enfor
es
ontinuity of the normal stresses at the interfa
e in weak form and the �fthrow is the stru
ture problem for the internal nodes. Finally, the last row is thealgebrai
 
ounterpart of the 
ow-rate 
onditions (5).Following [10, 18℄, we 
an formally eliminate the unknown Xn+1 from the�rst equation of system (9). Dropping for the sake of simpli
ity the index n+1,we obtain an equation for the unknown � solely, namelye�(A�)�1e�T� = e�(A�)�1b� F ; (10)whi
h is a linear system of dimension m. We point out that with (A�)�1 weindi
ate formally the solution of a FSI problem with Neumann 
onditions at thearti�
ial se
tions.Sin
e the bilinear form D(�; �; �) satis�es an inf-sup 
ondition, it follows thatker(e�)T = ;. Then, if the algebrai
-FSI problem admits a unique solution (thatis if A� is invertible), e�(A�)�1e�T is formally invertible and a unique solution� does exist. Therefore, we 
an formally apply an iterative methods, su
h asGMRes, to system (10) (as done in [18℄). In parti
ular, we haveAlgorithm 2 : GMRes + S
hur ComplementFor ea
h n solve:�0 = (�01; : : : ; �0m) is givena) A�X1 = b� (e��)T�0r0 = e��X1 � Fv1 = r0kr0kfor j = 1; : : : ;m�j = (e��)Tvjb) A�Y j = �jwj = e��Y jfor l = 1; : : : ; jhlj = (wj;vl)wj = wj � hljvl 13



endhj+1;j = kwjkif hj+1;j = 0n = j go to (+)else vj+1 = wjhj+1;jendend(+) z = minkkr0ke1 �Hnzk; Hm 2 Rm+1 � Rm : H = [hij ℄� = �0 + V z; V = [v1 : : : vm℄X =X1 � Y z; Y = [y1 : : : ym℄ �This algorithm is quite expensive, sin
e at ea
h time step it requires to solvem+1 FSI problems, indi
ated at points a) and b) in the algorithm. However, thealgorithm allows to 
ompute the unknownX at the last step without solving anyadditional linear system. Obviously, ea
h of FSI problems 
an be solved withany of the strategies proposed in the literature (partitioned, monolithi
al, et
.),sin
e all of them are equipped with standard Neumann boundary 
onditions atea
h of the arti�
ial se
tions. Despite its 
ost, this algorithm is of pra
ti
al usewhen one have at disposal a bla
k-box FSI solver, without the possibility totreating the 
uid and the stru
ture subproblems separately.We point out that the previous algorithm extends easily to the impli
it 
ase,simply by 
onsidering it in the �xed-point loop for the impli
it treatement ofthe interfa
e position.5 Control theory-based approa
hIn this se
tion we extend to the 
ompliant 
ow rate problem the strategy in-trodu
ed for the rigid 
ase in [12℄. In parti
ular, we seek for 
onstant in spa
eNeumann data at the arti�
ial se
tions whi
h enfor
e in some sense the 
owrate 
onditions. We limit our attention only to the semi-impli
it treatment ofthe interfa
e position. Indeed, the impli
it treatment would require to 
onsideralso the shape derivatives, that is the derivatives of the 
uid domain (whi
h isunknown in this 
ase) with respe
t to the other unknowns of the problem. This
ase will be 
onsidered in a forth
oming study.5.1 Reformulation of the problemLet us de�ne the state problem by 
onsidering problem (3) equipped with Neu-mann boundary 
onditions at the arti�
ial se
tions, given, at ea
h tn+1, byT f n = �kn+1j n; on ��j ; j = 1; : : : ;m; (11)14



where the k0js are the 
ontrol variables and we have set kn+1j = kj(tn+1). There-fore, the weak formulation of the state problem with a weak pres
ription of theinterfa
e velo
ities (see Se
tion 2.3) reads8>>><>>>: A(un+1;�n+1;v; )� +B(pn+1;v; )� + C(�n+1;v; )�++Pmj=1 kn+1j R��j v � n d
 = F �f (v) + bFs �  �t�B(q;un+1;�n+1)� = 0C(�;un+1;�n+1)� = R�� � � �n�td
 (12)for all v 2 V �; q 2 Q�; b 2W and � 2D�.We introdu
e at ea
h time step tl the following fun
tional (see [12℄)JF (z) = 12 mXj=1 �Z��j z � n d
 � F lj�2 ; (13)whi
h is 
learly minimal (and equal to zero) if 
onditions (5) are satis�ed andz = ul.The Lagrangian fun
tional related to (13) 
onstrained with the state problem(12), given un; �n and �n�1, readsL(U ; P;H ;B;�U ; �P ;�H ; �B ;K) = JF (U)+A(U ;H ;�U ;�H)�+B(P ;�U ;�H)�++C(B;�U ;�H)� +B(�p;U ;H)� + C(�B;U ;H)� + mXj=1 Z��j Kj�u � n d
+�Z�� �B � �n�td
 � F �f (�U )� bFs b�H�t! : (14)Here, the quantities �U ; �P ; �H and �B are the adjoint variables asso
iatedto the state variables U ; P; H and B, respe
tively. From now on, for thesake of simpli
ity we drop the temporal index n+1. In order to �nd the 
or-responding Euler equations, we impose that in 
orrespondan
e of the solution[u; p;�;�;�u; �p;��;��;k℄ the Gateaux di�erentials of L evaluated for any testfun
tion vanish. Let us introdu
e the following notation. Given N Hilbertspa
es Z1; : : : ; ZN , let Z = Z1 � Z2 � : : : � ZN and M : Z ! R, be su
h that(y1; : : : ; yN ) 2 Z !M(y1; : : : ; yN ) 2 R, and let < �; � > be the duality pairingbetween Z 0 and Z. We indi
ate with< dMyj [z1; : : : ; zN ℄; g >== lim"!0�M(y1; : : : ; yj + "g; : : : ; yN )�M(y1; : : : ; yj ; : : : ; yN )" ����y=zthe Gateaux di�erential ofM with respe
t of yj, 
omputed at z = (z1; : : : ; zN ) 2Z and a
ting along the dire
tion g 2 Zj . For the sake of notation, we will set< dMzj ; g >=< dMyj [z1; : : : ; zN ℄; g >.15



Then, the solution whi
h minimizes fun
tional J(�) under the 
onstraint isa stationary point of the Lagrangian fun
tional and therefore 
an be 
omputedby imposing that the gradient of L vanishes. In parti
ular, by setting to zerothe Gateaux derivatives of the Lagrangian fun
tional with respe
t to the statevariables we obtain the adjoint problem, namely8<: < dLu;v > + < dL�;  �t >= 0< dLp; q >= 0< dL�;� >= 0;for all v 2 V �; q 2 Q�; b 2W and � 2D�. Optimality 
onditions are obtainedby vanishing derivatives with respe
t to the 
ontrol variables< dLkj ; � >= 0; j = 1; : : : ;m;for all � 2 R. These two problems together with the state problem8<: < dL�u ;v > + < dL�� ;  �t >= 0< dL�p ; q >= 0< dL�� ;� >= 0;for all v 2 V �; q 2 Q�; b 2W and � 2D�, yield the following 
oupled system.Given F 2 Rm , ff 2 L2(
�f ) and f s 2 L2(
0s) �nd k 2 Rm ; u 2 V �; p 2Q�;� 2W ;� 2D�;�u 2 V �; �p 2 Q�; �� 2W and �� 2D�, su
h thatState problem8>>><>>>: A(u;�;v; )� +B(p;v; )� + C(�;v; )�++Pmj=1 kj R��j v � n d
 = F �f (v) + bFs �  �t�B(q;u;�)� = 0C(�;u;�)� = R�� � � �n�td
 (15a)Adjoint problem8>>><>>>: A(v; ;�u;��)� +B(�p;v; )� + C(��;v; )�++Pmj=1 �R��j u � n d
 � Fj� R��j v � n d
 = 0B(q;�u;��)� = 0C(�;�u;��)� = 0 (15b)Optimality 
onditionsZ��j ��u � n d
 = 0; j = 1; : : : ;m (15
)for all v 2 V �; q 2 Q�;  2W ; � 2D� and � 2 R.We point out that system (15) 
ouples two linearized 
uid-stru
ture intera
-tion problems and m s
alar equations. For its numeri
al solution, we 
an resortto iterative te
hniques. As already done for the rigid 
ase (see [12℄), it is worth16



noting that, if the iterative pro
ess 
onverges, at the limit, i.e. when JF = 0,the ful�llment of the adjoint problem and of the optimality 
onditions impliesthat the adjoint solution is equal to zero. Indeed, the adjoint problem is linearwith the only for
ing term given by the Neumann boundary 
onditions at thearti�
ial se
tions ��j whi
h, 
learly, are zero when JF = 0. The adjoint variablesare however needed to drive iterative s
hemes to the optimal solution.Weak imposition of the 
ontinuity of the velo
ity at the interfa
e has beenpreferred sin
e the interfa
e 
ondition for the adjoint problem in this way areeasily derived. In parti
ular, it is given by���t = �u on ��:The next result states the well-posedness of system (15).Proposition 5.1 If problem (2) admits a unique solution, then also system (15)admits a unique solution.Proof . The proof follows the same guidelines of Proposition 2.1 in [12℄. Forany h = [h1; : : : ; hm℄, let PS1;S2(h) be the velo
ity u solution of problem8><>: A(u;�;v; )� +B(p;v; )� + C(�;v; )� = �Pmj=1 hj R��j v � n d
 + S1(v; )B(q;u;�)� = 0C(�;u;�)� = S2(�); (16)8v 2 V �; q 2 Q�;  2W and � 2 D�, where S1(v; ) and S2(�) are a givenform and fun
tional, respe
tively. Moreover, let Av be the ve
tor whose j � th
omponent is R�j v � n d
, and BS1;S2 := APS1;S2 . Then, by settingG1(v; ) := F �f (v) + bFs � b �t�G2(�) := R�� � � �n�td
;we 
an write system (15) in term of the only unknown k, asB0;0[BG1;G2(k)� F ℄ = 0: (17)Moreover, by setting [ui; pi;�i;�i℄ as the solution of (16) with S1 = S2 = 0and h = ej, being ej the j � th unit ve
tor, from (16) we have, by 
hoosing[uj ; pj;�j;�j℄ as test fun
tions and by setting h = ei; S1 = 0 and S2 = 0,A(ui;�i;uj;�j)� = �Z��i uj � n d
:This implies that matrix B0;0 has 
omponent[B0;0℄ij = �A(ui;�i;uj ;�j)�:17



Thanks to the 
oer
ivity of A, it follows that B0;0 is negative de�nite and then(17) be
omes BG1;G2(k) = F :Thanks to the linearity of BG1;G2 , system (17) e�e
tively redu
es toB0;0(k) = F � BG1;G2(0)and therefore the solution k exists unique. The 
orresponding [u; p;�;�℄ and[�u; �p;��; ��℄ are then de�ned uniquely by the well posedness of problem (16)As pointed out in Proposition 1, the hypothesis of Proposition 2 is satis�edfor a linear elasti
 stru
ture 
oupled with a vis
ous 
uid featuring a large enoughvis
osity �.5.2 Algorithms for the numeri
al solutionIn this se
tion we detail some algorithms for the numeri
al solution of the 
ou-pled system (15). Resorting to iterative methods has the advantage of splittingthe global problem into simpler subproblems and of possibly using standard FSIsolvers. The steepest des
ent method applied for the lo
alization of a stationarypoint of the Lagrange fun
tional (14) 
an be equivalently thought as a Ri
hard-son method applied to equations < dLkj ; � >= 0; j = 1; : : : ;m. In this way wesolve separately the two FSI problems, namely the state and the adjoint ones,and we 
he
k the optimality 
onditions until 
onvergen
e.Let us introdu
e two inf-sup 
ompatible �nite dimensional subspa
es V �h �V � and Q�h � Q� and the �nite dimensional subspa
e W h � W . Moreover,given a quantity f , we indi
ate again with f its �nite element approximation.In what follows, we detail three alternative algorithms.\Exa
t" algorithmThe following algorithm solves the spa
e dis
retization of system (15) exa
tlyup to the error asso
iated with the 
onvergen
e test.Algorithm 3- Temporal loop- Internal loop: given k1j ; j = 1; : : : ;m; and " > 0; set l = 1 anddo until 
onvergen
e- Solve the numeri
al approximation of the state problem(15a), obtaining the solution ul; pl;- Solve the numeri
al approximation of the adjoint FSI problem(15b), obtaining the solution �lu; �lp;18



- Convergen
e test: if j R��j �lu�n d
jj R��j �1u�n d
j < "; 8j = 1; : : : ;mthen break;else kl+1j = klj + � l R��j �lu � n d
; 8j = 1; : : : ;m; and setl = l + 1;end;end temporal loop.Parameter � l 
an be 
hosen following di�erent strategies. The followingexpression � l = � lN = �JF (ul)kLlkk22 ; (18)stems from the appli
ation of the 
lassi
al Newton method for the equationJF (k) := JF (u(k)) = 0. A further improvement 
an be obtained by observingthat JF is a quadrati
 fun
tional and the asso
iate solution is supposed to havemultipli
ity 2, so that we 
ould sele
t � l = 2� lN (see [12℄).\Inexa
t" algorithmsSin
e we are not interested to the whole adjoint solution, but only in its 
owrates through the se
tions ��i ; i = 1; : : : ;m, we 
an 
onsider an inexa
t solutionof this problem, leading to a 
onsiderable saving of the 
omputational 
ost. Morepre
isely, we solve, out of the temporal loop, m FSI problems in the referen
edomain 
0f , with unit Neumann 
onditions at �0j ; j = 1; : : : ;m, that is8><>: A(v; ; e�u;j; e��;j)0 +B(e�p;j;v; )0 + C(e��;j;v; )0 = � R�0j v � n d
B(q; e�u;j; e��;j)0 = 0C(�; e�u;j; e��;j)0 = 0; (19)8v 2 V 0h; b 2W h and q 2 Q0h. Then, at ea
h internal iteration of Algorithm 3we 
ombine linearly these solutions, obtaining�u = mXj=1 Z��j u � n d
 � Fj!�u;j; (20)where the �u;j's are obtained from e�u;j through the ALE map. This introdu
esan approximation error in the 
onstru
tion of the adjoint problem, sin
e we are
ombining solutions obtained in the �xed referen
e frame.In what follows, we detail two possible inexa
t algorithms. If we 
hoose amonolithi
 strategy for the treatment of interfa
e 
onditions, the only quantitiesupdated in the inner loop in Algorithms 3 are the 
ontrol variables kj ; j =1; : : : ;m. Otherwise, if we use a partitioned pro
edure we need to subiterate19



also on the interfa
e position between the 
uid and the stru
ture subproblems.In this 
ase, we 
an 
onsider either \nested iterations" or just \one loop". Inparti
ular, we detail for the sake of exposition the 
ase in whi
h the Diri
hlet-Neumann s
heme is used for the treatment of the interfa
e 
onditions. However,extension to general Robin-Robin s
hems is straightforward.Algorithm 4 : Inexa
t Nested Loops- Solve for ea
h i = 1; : : : ;m the numeri
al approximations of theFSI problems (19), obtaining, in parti
ular, the velo
ities e�u;j;- Temporal loop;- ``Control variables'' loop (index l): given k1j ; j = 1; : : : ;mand "2 > 0; set l = 1 and do until 
onvergen
e- ``Interfa
e 
ondition'' loop (index p): given �lp and "1 >0; solve in sequen
e until 
onvergen
e� A Fluid subproblem with the following boundary 
onditionsulp+1 = �lp��n�t on ��T lf;p+1n = kljn on ��j ; j = 1; : : : ;m;� A Stru
ture subproblem with the following boundary 
onditionT ls;p+1n = T lf;p+1n on ��;- Convergen
e test: ifkulp+1 � ulpkL2(��) < "1; (21)then break;- end ``interfa
e 
onditions'' loop;- Compute the approximate adjoint solution with (20);- Convergen
e test: ifj R��j �lu;h � n d
jj R��j �1u;h � n d
j < "2; 8j = 1; : : : ;m (22)then break;else kl+1j;h = klj;h + � l Z��j �lu;h � n d
; 8j = 1; : : : ;m; (23)and set l = l + 1; 20



- end ``
ontrol variables'' loop;- end temporal loop.Algorithm 5 : Inexa
t One Loop- Solve for ea
h i = 1; : : : ;m the numeri
al approximations of theFSI problems (19), obtaining, in parti
ular, the velo
ities e�u;j;- Temporal loop;- ``Control variables'' and ``Interfa
e 
ondition'' loop (indexl): given k1j ; j = 1; : : : ;m and "1 > 0 and "2 > 0, set l = 1 andsolve until 
onvergen
e� A Fluid subproblem with the following boundary 
onditionsul = �l�1��n�t on ��T lfn = kljn on ��j ; j = 1; : : : ;m;� A Stru
ture subproblem with the following boundary 
onditionT lsn = T lf n on ��;- Compute the approximate adjoint solution with (20);- Convergen
e test: ifkul�ul�1kL2(��) < "1 and j R��j �lu;h � n d
jj R��j �1u;h � n d
j < "2; 8j = 1; : : : ;mthen break;else kl+1j;h = klj;h + � l Z��j �lu;h � n d
; 8j = 1; : : : ;m; and set l =l + 1;- end ``
ontrol variables'' and ``interfa
e 
onditions'' loop;- end temporal loop.Obviously, for Alg. 5 the 
onvergen
e is not guaranteed, sin
e at ea
h subit-eration the interfa
e 
onditions are not satis�ed exa
tly. However, the numeri
alresults presented in Se
t. 6, show that at least for the 
ases treated in this work,
onvergen
e is always a
hieved.In Fig. 3 and 4 s
hemes of Algorithms 4 and 5 are reported.21



Remark 3 In all the three strategies proposed in Se
t. 3, 4 and 5, in fa
t the
ow rate at an arti�
ial se
tion � is pres
ribed by for
ing an appropriate un-known 
onstant normal stress on �. As observed in [13, 17, 12℄, when the trans-pose formulation of the di�usion term is 
onsidered, namely �(ru + (ru)T ),the solution is a�e
ted by a spurious tangential velo
ity u�sp at �. In the rigid
ase, this drawba
k 
an be over
ome by imposing dire
tly that the tangential ve-lo
ity u� = u�sp is equal to zero (see [17℄) or by resorting to the minimization ofa suitable fun
tional (see [12℄). However, in the 
ompliant 
ase the tangentialvelo
ity on � is given by two 
ontributions, namely u� = u�sp + u��, where thelatter term is due to the displa
ement of the FS interfa
e. Numeri
al strategiesfor the separation of the two 
ontribution in order to skip the spurious one areunder investigation. However, numeri
al eviden
es show that, for the problems
onsidered in this work, the 
ontribution of u�sp is only of about 1% of the to-tal tangential velo
ity u� , so it is supposed to play a minor role in numeri
alsimulations.6 Numeri
al resultsIn this se
tion we present some numeri
al results with the aim of testing thealgorithms proposed in the previous se
tions. In all the simulations, we have
onsidered a semi-impli
it treatment of the interfa
e position.6.1 Comparison among the various algorithmsIn the �rst set of simulations we test the performan
es of Algorithms 1, 2, 3, 4 and5 in terms of number of iterations and CPU times. The numeri
al simulations areperformed in a re
tangular domain both for the 
uid and for the two stru
tures,whose size is 6�1 
m and 6�0:1 
m, respe
tively (see Fig. 5). For the stru
ture,we 
onsider the following equation of linear elasti
ity�s�tt� � 
r � (r� + (r�)t)� �r � ((r � �)I) + �� = 0;where I is the identity operator, 
 = E=(1 + �); � = �E=((1 + �)(1 � 2�))and � = E=(1 � �2)R2, with E the Young modulus, � the Poisson ratio andR the radius of the 
uid domain. The rea
tion term stands for the transversalmembrane e�e
ts. We pres
ribe the 
ow rate F = 
os(2�t) at the inlet of the
uid domain.We use a 2D Finite Element Code written in Matlab at MOX - Dipartimentodi Matemati
a - Polite
ni
o di Milano and at CMCS - EPFL - Lausanne. We
onsider P1�bubble=P1 elements for the 
uid and P1 element for the stru
ture anda spa
e dis
retization step h = 0:02 
m. Moreover, we set � = 0:035 
m2=s and�f = 1 g=
m2 and, unless otherwise spe
i�ed, we 
onsider the following referen
evalues: �t = 10�2s; �s = 1:1 g=
m2; 
 = 1:15 � 106 dyne; � = 1:7 � 106 dyne; � =6:5 � 105 dyne=
m2 and the thi
kness of the stru
ture Hs = 0:1 
m.22



For all the algorithms a Robin-Neumann partitioned pro
edure is used for thesolution of the FSI problems, with a stopping 
riterion based on the normalizedresidual (see [3℄) and toleran
e equal to 10�4. For Algorithms 3 and 4, thetolleran
e for the stopping 
riterion in the 
ontrol loop is set equal again to10�4. For Algorithm 5 we have only one tolleran
e, set again equal to 10�4.In Fig. 6 the 
uid axial velo
ity at the inlet of the domain at two di�erentinstants obtained with Algorithms 1, 2 and 3 is shown. The solution obtainedwith the inexa
t Algorithms 4 and 5 are not reported sin
e they are in ex
ellentagreement with the solution obtained with Alg. 3.In Tab. 1, the left value in ea
h box is the mean number of total iterationsper time step. In parti
ular, for Algorithm 2 we reported the sum of the meannumber of Robin-Neumann iterations needed to solve the �rst and the se
ondFSI problem in the GMRes loop. For Algorithm 1 ea
h of the RN iterations is a
ow rate problem whi
h has been solved with the GSC (rigid) s
heme, requiringthe solution of two 
uid problems. For what 
on
erns Algorithms 3 and 4, themean number of iterations per time step of the 
ontrol loop multiplied for themean number of iterations of the Robin-Neumann s
heme per 
ontrol loop'siteration, is reported. For Algorithm 5 the mean number of iterations per timestep refers to the unique loop. On the right of ea
h blo
k the CPU time toperform 10 time steps, normalized with the best performan
e, is shown.Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5�; �t; �s 9:1 � 1:00 11:4 � 1:24 3� 7:6 � 2:46 3� 5:9 � 1:96 11:6 � 1:3210�; �t; �s 4:7 � 1:00 X 3� 4:0 � 2:49 3� 3 � 1:91 5:2 � 1:16�; �t=10; �s 21:9 � 1:04 28:1 � 1:34 3� 18:2 � 2:60 3� 13:5 � 1:99 19:4 � 1:00�; �t; 10�s 8:4 � 1:00 10:8 � 1:26 3� 7:4 � 2:58 3� 5:7 � 2:05 11:4 � 1:39Table 1: Mean number of iterations per time step (left) and relative CPU timein se
onds to perform 10 time steps (right). X means that 
onvergen
e is nota
hieved.Let us dis
uss the results in Tab. 1 starting from the three algorithms forthe solution of system (15), namely Alg. 3, 4 and Alg. 5 . First of all, wepoint out that both the inexa
t algorithms 4 and 5 
onverge in all the numeri
alsimulations. A 
onvergen
e analysis of su
h s
hemes is still missing. However,these experimental results are very promising. Among these three s
hems, Alg.5 seems to be the most performing. Indeed, the (mean) redu
tion fa
tor of theCPU times is 2:08 with respe
t to Alg. 3 and 1:61 with respe
t to Alg. 4.Therefore, the use of just one loop seems to be the most promising and thenonly Algorithm 5 is 
onsidered in the sequel.Let us now fo
us on Alg. 1, 2 and 5. We observe that Alg. 1 is the mostperforming in all 
ases but one, that is for a small value of the time dis
retization,where Alg. 5 is faster. Alg. 2 works quite well for big values of �t and � anddoes not 
onverge for a value of � equal to 10 times the referen
e value. All the23



algorithms seems to be insensitive to an in
rement of the stru
ture density. Thisis due to the 
hoi
e of the Robin-Neumann s
heme as partitioned pro
edures,whi
h has been shown to be robust with respe
t to the added mass e�e
t (see[3℄).6.2 An appli
ation to a 2D bifur
ation geometryIn this se
tion we apply Alg. 1 and 5 to a 2D geometry whi
h is an idealizationof a realisti
 domain, namely the human 
arotid. We use the same parametersintrodu
ed in the previous subse
tion, apart for the values � = 1:3�106dyne=
m2and �t = 10�3s. We impose the following 
ow-rate impulseF (t) = � Fin t � 0:005 s0 t > 0:005 sand we use the Robin-Neumann s
heme as partitioned pro
edure. In Fig. 7 thepressure in the deformed 
uid domain and the exploded position of the stru
tureobtained with Alg. 5 are shown at 4 di�erent instants. The 
ow-rate impulse isFin = 50 
m2=s. The solutions obtained with Alg. 1 are in ex
ellent agreementand for this reason their visualization are not reported. In Tab. 2 the mean num-ber of iterations (left) and the CPU times normalized with the best performan
e(right) are reported for 2 values of the 
ow-rate impulse, namely Fin = 10 
m2=sand Fin = 50 
m2=s. We point out that the 
omputational e�ort of the twoAlg. 5 Alg. 1Fin = 10 
m2 14:2 � 1:00 20:25 � 1:37Fin = 50 
m2 14:3 � 1:00 19:9 � 1:39Table 2: Mean number of iterations per time step (left) and relative CPU timein se
onds (right) to perform 16 time steps for the 
arotid simulation.algorithms seems to be independent of the Reynolds number. However, Alg. 5performs better than Alg. 1, both in term of number of subiterations needed torea
h 
onvergen
e and of CPU time.7 Con
lusionsIn this paper we fo
us on the problem arising when the 
uid-stru
ture intera
-tion (FSI) problem is solved in a trun
ated 
omputational domain, in parti
ularwhen no suÆ
ient data are available to be pres
ribed at the arti�
ial se
tions.Among the varoius \defe
tive" data, we 
onsider here the 
ow rate 
onditionsfor the 
uid. This paper has to be intended as a �rst step in the dire
tion ofsolving a FSI problem with general 
uid and stru
ture defe
tive data. We pro-pose three di�erent strategies for the numeri
al solution of the Flow rate/FSI24



problem. Among the various algorithms proposed for the numeri
al solution,the numeri
al results have showed that Alg. 5 seems to be the most suited forrealisti
 simulations. Moreover, its versatility is very attra
tive when other de-fe
tive data (su
h as the ones related to the stru
ture) are 
onsidered. Indeed,the in
lusion of these defe
tive informations through the enri
hment of the fun
-tional to be minimized should not in
rease the 
omputational 
ost if just \oneloop" implementation is used, 
ontrary to the other strategies.A
knowledgementsL. Formaggia and C. Vergara wish to a
knowledge the support of the ItalianMURST, through a proje
t COFIN07. C. Vergara wishes to thank all the sta� ofthe Department of Mathemati
s & Compuer S
ien
e at Emory University, wherepart of this work has been 
arried out, for the ni
e and fruitful environment.
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Figure 6: Comparison of axial velo
ities obtained with Algorithms 1, 2 and 3. -t = 0:10 s (left), t = 0:30 s (right) .
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