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Abstract

Mathematical models of complex physical problems can be based on
heterogeneous differential equations, i.e. on boundary-value problems of
different kind in different subregions of the computational domain. In this
presentation we will introduce a few representative examples, we will illus-
trate the way the coupling conditions between the different models can be
devised, then we will address several solution algorithms and discuss their
properties of convergence as well as their robustness with respect to the
variation of the physical parameters that characterize the submodels.

1 Introduction and motivation

For the description and simulation of complex physical phenomena, combination
of hierarchical mathematical models can be set up with the aim of reducing
the computational complexity. This gives rise to a system of heterogeneous
problems, where different kind of differential problems are set up in subdomains



(either disjoint or overlapping) of the original computational domain. When
facing this kind of coupled problems, two natural issues arise. The former is
concerned with the way interface coupling conditions can be devised, the latter
with the construction of suitable solution algorithms that can take advantage of
the intrinsic splitting nature of the problem at hand. This work will focus on
both issues, in the context of heterogeneous boundary-value problems that can
be used for fluid dynamics applications.

The outline of this presentation is as follows. After giving the motivation for
this investigation, we will present two different approaches for the derivation and
analysis of the interface coupling conditions: the one based on the variational for-
mulation, the other on virtual controls. For the former we will consider at first
advection-diffusion problems. After carrying out their variational analysis we
propose domain decomposition algorithms for their solution, in particular those
based on Dirichlet-Neumann, adaptive Robin-Neumann, or Steklov-Poincaré it-
erations. Then, we will focus on Navier-Stokes/Darcy or Stokes/potential cou-
pled problem presenting their asymptotic analysis together with possible solution
techniques.

For the virtual control approach, we will study the case of non-overlapping sub-
domains for advection-diffusion problems considering in particular possible tech-
niques to solve the optimality system and we will present some numerical results.
Then, we will consider the case of domain decomposition with overlap, namely
Schwarz methods with Dirichlet/Robin interface conditions. We will investigate
the virtual control approach with overlap for the advection-diffusion equations
including the case of three virtual controls and we will present some numerical
results. Finally, we will illustrate this framework for the case of the Stokes-Darcy
coupled problem, and for the coupling of incompressible flows.

In order to motivate our investigation, we begin to analyze the advection-
diffusion problem.

Let us consider a bounded domain Q ¢ R? (d = 1,2,3) with Lipschitz boundary
and the advection-diffusion equation

Au = div(—vVu+bu) + bou = f  in Q (1)
u=g on 0,

where v > 0 is a characteristic parameter of the problem, b= I;(i“’) a d—dimensional
vector valued function, by = bo(Z) and f = f(Z) scalar functions, all assigned in
Q, while g = ¢g(Z) is assigned on 0f).

The characteristic parameter v can either represent the thermal diffusivity in
heat transfer problems, or the inverse of the Reynolds number in incompressible
fluid-dynamics, or another suitable parameter.

Denoting by

Pe, (7) = @ (2)



Au = div(—vVu + bu) + bou = f

\

Q

layer

ASSEEEREEEESENRNSNNY

Figure 1: A simple computational domain and the localization of the boundary
layer

the global Péclet number, we call (1) an advection-dominated problem when
Pegy(z) > 1.

We are interested in treating advection dominated problems with boundary lay-
ers (see, e.g., Fig. 1), that arise when boundary data are incompatible with
the limit (as ¥ — 0) of the advection-diffusion equation. As an example, let us
consider the one-dimensional advection-diffusion equation

(3)

—vu(z)+ b/ () =0, 0<z<l,
{ u(0) =0, u(l) =1,

with v > 0 and b > 0. Problem (3) can be solved exactly and its solution reads
6bx/zx -1

u(z) = I

Such solution exhibits a boundary layer of width O(v/b) near to x = 1 when the
ratio v/b is small enough, that is when

Pey(7) > 1. (4)

In Fig. 2 we show the one-dimensional solution u(z) of (3) for two different
values of the Péclet number: Pey(Z) = 0.5 at left and Pey(Z) = 100 at right.
Only in the latter case a boundary layer occurs.

When (4) holds, the diffusive term is relevant only in a small part of the domain
near to the boundary layer, while it can formally be neglected in the rest of the
domain, where the advection phenomenon prevails.

The idea is then: to split the domain in two non-overlapping subdomains €2
and 9 where we denote by I' = 921 N 9€)y the interface between subdomains,
and then to solve a reduced problem as follows (see Fig. 3):

Ajug = div(gul) +bou; = f in O
Asgug = div(—vVug + I;uQ) +boug = f in o (5)
boundary conditions on 0f2.

The main question that follows is: how to couple the subproblems?
To answer this question one should:
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Figure 2: The exact solution of problem (3).The solution at right exhibits a
boundary layer in x = 1.
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div(—vVug + qu) + boug = f

Figure 3: The reduced problem on the computational domain  C R?



1. find interface conditions on I' so that the new reduced problem is well
posed and its solution is “close to” the original one; then

2. set up efficient solution algorithms to solve the reduced problem.

By a singular perturbation analysis, Gastaldi et al. ([GQL90]) proposed the
following set of interface conditions:

U = Us on "

E-ﬁpul—l—uﬂ—g-ﬁqu:O on I, (6)
8TLF

where 7ip is the normal versor to I' oriented from Q; to Qs and '™ = {el:
b(Z) - iip(Z) < 0} is the inflow interface for €.

The coupled formulation (5)-(6) allows the independent solution of a sequence
of hyperbolic problems in £2; and elliptic problems in 25, in the framework of
iterative processes between subdomains. The different possible treatments of
the interface relations is what distinguishes one iterative method from another.
In this respect, a very natural approach is defined as follows. Given a suitable
initial guess A© on I'™ and a suitable relaxation parameter 6 > 0, it iterates

between €2y and 25 until convergence as follows: for £ > 0 do

Alungrl) = f in Ql

solve W) = g on (9, \ )
ugkﬂ) =k on Iin,
Agugk+1) = f in QQ (7)
solve ungrl)(k: 19) on 9 \ I
Jr
—uaqgnr +b- ﬁpugkﬂ) =b- ﬁpugkﬂ) on I,

compute AFHD) = (1 — Ak 1 Hugk—i—l)‘rin.

The coupled advection/advection-diffusion problem has been studied in [GQL90]
and alternative interface conditions have been proposed in [Dub93, GHIMO07,
GHJ02]. In [GLQO1] the problem has been solved in the context of virtual
control approach. We refer to Sections 2.2, 2.3, 3.1 for a more detailed analysis
and solution of this problem.

Another problem which deserves our attention is the generalized Stokes equation
(see [QV99, Sect. 8.2.1]).

Let us refer to an idealised geometrical situation as depicted in Fig. 4 (left).
The bounded domain Q C R, d = 2, 3, is external to a body whose boundary is
'y, and we set I'y := 9Q \ T',. The problem we are considering reads: find the
vector field @ and the scalar field p such that

aﬁ—I/Aﬁ—i-Vp:f: divi=0 in Q
=0 on I, (8)
Bu:(poo OHFOO,
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Figure 4: The geometrical configuration for an external problem (left) and a
possible non overlapping decomposition of the computational domain (right)

where f and ¢, are given functions, B denotes the boundary operator on I'y,
while « > 0 is a given parameter. To take a« = 0 corresponds to solve the
Stokes problem. Nevertheless, this problem may arise in the process of solving
the full Navier—Stokes equations, when the discretisation of the time derivative
is performed by means of a scheme that is explicit in the non-linear convective
term. In this case, the parameter a > 0 represents the inverse of the time-step
and the function f, in fact, depends on the solution at the previous step, i.e.
f=f@m).

The boundary conditions on I', have to be prescribed in a suitable way for
assuring well-posedness. In this respect, on a portion I' of I'y, an onset flow
@ = L is given. However, assigning conditions on the outflow section 9%t
may not be simple. It is also clear that all interesting flow features occur in the
vicinity of the body due to the role of viscosity in this area.

For this reason, Schenk and Hebeker ([SH93]) have proposed the replacement of
problem (8) with a reduced one far from the obstacle.

The computational domain €2 is partitioned into a subdomain €29, next to the
body, and a far field subdomain €2;; the interface between €21 and €25 is denoted
by I', 7ir is the unit normal vector on I' directed from 2y to €25, and 7 the unit
outward normal vector on 0X2. The global Stokes equation (8) is replaced with
the following coupled problem, where the viscosity v is set to 0 in :

ati] + Vpp = ]F, divi; =0 in Oy
iy = 0o on '
p1 =20 on 94t (9)

aily — VAT + Vps = f, divila=0 in Qs

L 17220 oan,

or equivalently, by applying the divergence operator to equation (9);:



Figure 5: The domain decomposition configuration for an internal problem

Apy = divf in (4

0 > ~ .

= (f - o) -7 on T

p1=0 on 91t (10)

ailly — VAT + Vpy = f, divilb=0 in Qy

o =0 on I'y.

\

Either problem (9) and (10) are incomplete, because the matching conditions
that have to be fulfilled on I' are missing.

In [SH93] these conditions are recovered through a singular perturbation analysis
similar to that carried out for the advection—diffusion problem in [GQL90] and
they read:

g—ﬁ:(f—aﬁg)'ﬁp onT

pirip = —v(iip - V)i + porir - on I

(11)

The coupled problem (10)-(11) can be used also for the simulation of the fluid
motion inside a bounded domain, as depicted in Fig. 5. In this case the domain
4, in which the reduced problem is solved, is non-connected and separates the
interior domain from both inflow and outflow interfaces.

We observe that the system (10)-(11) models two possible different coupled prob-
lems. The first one, when o = 0, is a Stokes/potential coupling, the vector field
f is independent of the velocity «# and the pressure p; is indipendent of the
solution (s, p2). Such coupling can be used to model external flows.

The second one, when « > 0, corresponds to the single step of a time-dependent
Navier-Stokes/potential coupling where, as said above, the vector field f depends
on the solution at the previous step. This is the case of the simulation of either
the flow inside a channel (or the blood flow in the carotid) or a far field condition.



As in the case of the advection—diffusion problem, the interface conditions (11)
could be used to set-up an iterative algorithm by subdomains as follows.

~(0
Assume that )\( ) is given and satisfies / A

3
r

-7ip = 0; for any k > 0 solve

( Apgkﬂ) = divf in
9 (k+1) . ' .
P —(f-adl)-i  onTR
o2 (12)
py =0 on "ot
(k+1) R
al;lnp =(f—- a)\(k)) -fip on I,
then solve
aily ™ — p AT 4ovpty = 7 divad™ =0 i O,
st =g onTh (13)
V(ﬁp ) v)ﬁg@-{—l) . pgkﬂ)ﬁr _ —pgk—i—l)ﬁl“ onT
and finally set
~(k ~(k
A = a—ax" 4 eal) (14)
where 6 > 0 is a relaxation parameter.
Since divﬁgkﬂ) = 0 in 9, the trace ﬁgrlj' U satisfies

L(k+1)
/FU2F -np =0,

whence / X(k) -nip = 0 for each k > 0.

The anal;sis of the coupled problem (10)-(11) and the proof of convergence of
the above iterative process (12)-(14) are reported in [SH93]. The analysis can
be performed also by writing the problem in terms of the associated Steklov—
Poincaré operators, and then proving convergence by applying an abstract result
(see [QV99, Thm 4.2.2]).

Finally, we introduce a coupled free/porous-media flow problem.

The computational domain is a region naturally split into two parts: one occu-
pied by the fluid, the other by the porous media. More precisely, let Q C R?
(d = 2,3) be a bounded domain, partitioned into two non intersecting subdo-
mains €1y and €2, separated by an interface I, i.e. Q= Qf U Qp, QrnQ, =190
and ) N Q, = I'. We suppose the boundaries 952 7 and 99, to be Lipschitz con-
tinuous. From the physical point of view, I' is a surface separating the domain
1; filled by a fluid, from a domain €2, formed by a porous medium. We assume
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Figure 6: Representation of a 2D section of a possible computational domain for the
Stokes/Darcy coupling

that €1y has a fixed surface, i.e., we neglect here the case of free-surface flows.
The fluid in Q¢ can filtrate through the adjacent porous medium.
The Navier-Stokes equations describe the motion of the fluid in Qf: V¢ > 0,

{ 8th—diV T(Uf,pf)+(Uf~V)Uf =f in Qy (15)
divuy =0 in €y,
where T(uys,ps) = v(Vuy + VT uy) —pyl is the Cauchy stress tensor, | being the
identity tensor. v > 0 is the kinematic viscosity of the fluid, f a given volumetric
force, while uy and py are the fluid velocity and pressure, respectively.
The filtration of an incompressible fluid through porous media is often described
by Darcy’s law. The latter provides the simplest linear relation between velocity
and pressure in porous media under the physically reasonable assumption that
fluid flows are usually very slow and all the inertial (non-linear) terms may be
neglected.
Darcy’s law introduces a fictitious flow velocity, the Darcy velocity or specific
discharge q through a given cross section of the porous medium, rather than the
true velocity u, with respect to the porous matrix:
q

up = Ev (16)
with n being the volumetric porosity, defined as the ratio between the volume of
void space and the total volume of the porous medium.
To introduce Darcy’s law, we define a scalar quantity ¢ called piezometric head
which essentially represents the fluid pressure in €),;:

o=z+ &, (17)
g
where z is the elevation from a reference level, accounting for the potential energy

per unit weight of fluid, p, is the ratio between the fluid pressure in €2, and its
viscosity pyr, and g is the gravity acceleration.



Then, Darcy’s law can be written as

where K is a symmetric positive definite diagonal tensor K = (Kjj); j=1,..d,
K;j € L*(Qy,), Kij > 0, K;j = Kj;, called hydraulic conductivity tensor, which
depends on the properties of the fluid as well as on the characteristics of the
porous medium. Let us denote K = K /n.

In conclusion, the motion of an incompressible fluid through a saturated porous
medium is described by the following equations:

{ u, = —KVoyp in Q,

divu, =0 in Q. (19)

Finally, to represent the filtration of the free fluid through the porous medium,
we have to introduce suitable coupling conditions between the Navier-Stokes and
Darcy equations across the common interface I'. In particular we consider the
following three conditions.

1. Continuity of the normal component of the velocity:
uy-n=u,-n, (20)

where we have indicated n = ny = —n,, on I'. This condition is a conse-
quence of the incompressibility of the fluid.

2. Continuity of the normal stresses across I' (see, e.g., [JM96]):

—n-T(uy,py) -n = ge. (21)
Remark that pressures may be discontinuous across the interface.

3. Finally, in order to have a completely determined flow in the free-fluid re-
gion, we have to specify a further condition on the tangential component of
the fluid velocity at the interface. An experimental condition was obtained
by Beavers and Joseph stating that the slip velocity at the interface differs
from the seepage velocity in the porous domain and it is proportional to
the shear rate on I' [BJ67]:

”j;’ (uy —wp); — (T(uy,ps) - n), = 0. (22)

By (v), we indicate the tangential component to the interface of v:

(v),=v—v-n (23)

Since the seepage velocity u,, is far smaller than the fluid slip velocity uy
at the interface, Saffman proposed to use the following simplified condition
(the so-called Beavers-Joseph-Saffman condition) [Saf71]:

VOB (up); — (T(us,pys) -n), = 0. (24)

VK

10



This condition was later derived mathematically by means of homogeniza-
tion by Jéager and Mikeli¢ [JM96, JMO00, JMNO1].

The three coupling conditions described in this section have been extensively
studied and analysed also in [DMQ02, DQ09, LSY03, PS98, RY05].
In conclusion, the coupled Navier-Stokes/Darcy model reads:

8tuf —div T(Uf,pf) + (U.f . V)U_f =f in
divuy =0 in
u, = —KVop in Q,
div u, = 0 in Qp (25)
us-n=u,-n on I’
—n-T(us,py) n=gp onT
| K (uf)r = (T(ug,pf) -n); =0 on I

Using Darcy’s law we can rewrite the system (19) as an elliptic equation for the
scalar unknown ¢:

—V-(KVg) =0 inQ,. (26)

In this case, the differential formulation of the coupled Navier-Stokes/Darcy
problem becomes:

atU_f—diV T(Uf,pf)—l-(Uf'V)U_f =f in Qf
divuy =0 in Qf (27)
—div (KVy) =0 in €,

with the interface conditions on I':

us-n= —Kg—i
—n-T(uy,ps) -0 =gy (28)
vapy

ur), — (T(uy, -n); = 0.
N (uy)r = (T(uy,py) -m)
We refer to Sections 2.6, 2.7, 3.4 for a more exhaustive analysis of the Stokes/Darcy
coupling.
2 Variational formulation approach

The reduced problems presented above will be analysed in this Section in a
variational setting, in order to deduce suitable interface conditions which can be
rigorously justified. Moreover, different iterative algorithms to solve the reduced
problems will be presented.

11



2.1 The advection-diffusion problem

We consider an open bounded domain Q € R¢ (d = 2, 3) with Lipschitz boundary
L), and we split it into two open subsets €21 and 25 such that

Q= ﬁl U ﬁg, Q1 NQy=0. (29)

Then, we denote by
I'=00; N oY (30)
the interface between the subdomains (see Fig. 3) and we assume that T' is of

(o]
class C11; T' will denote the interior of I
Given two scalar functions f and by defined in €2, a positive function v defined

in Qo U, a d—dimensional vector valued function b defined in satisfying the
following inequalities:
dyg e R : V(f)Zl/0>0 Ve QoUul,

- (31)
Jog € R: by(Z) + =divb(Z) > 09 > 0 VI e Q,

we are interested in finding two functions w; and wug (defined in Q; and Qo,
respectively) such that wu; statisfies the advection-reaction equation

A1U1 = le(gul) + b0u1 = f in Ql, (32)
while us satisfies the advection-diffusion-reaction equation
Asug = —div(vVug) + div(qu) +bous = f in Q. (33)

For each subdomain, we distinguish between the ezternal (or physical) boundary
NIV, = 0 \T (for k= 1,2) and the internal one, i.e. the interface T
Moreover, for any non-empty subset S C 02y, we define:

the inflow part of S:  S™ ={Z e S:b(7) - i(Z) < 0}, (34)
where 7i(Z) is the outward unit normal vector on S,
the outflow part of S: S = {Z € S: b(Z) - 7H(&) > 0}. (35)

Boundary conditions for problem (32) must be assigned on 9QI".
For a given suitable function g defined on 92, we denote by ¢; and go the
restriction of g to (991 \ I')™ and 0 \ T, respectively, and we set the following

Dirichlet boundary conditions on the external boundaries:
up = g1 on (09 \ ),
(36)
Uy = g2 on 0y \ T.

Finally, let us denote by 7ir the normal versor to I' oriented from €y to €, so
that ﬁp(f) = ﬁl(f) = —ﬁg(f), vz el.

12
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Figure 7: The viscosity v} for the regularized problem. v¢|q, — v when (¢ — 0)

2.2 Variational analysis for the advection-diffusion equation

The basic steps of the analysis carried out in [GQL90] are summarized here.

1. Given a positive function v in €2, we denote by Pq(v) the advection-diffusion
problem (1) in €2. For any € > 0, we introduce a smooth function v, defined in
29, which is a regularization of v according with continuity to € on I'. Then, v/}
is the globally defined viscosity defined as (see Fig. 7)

* {E iIlQl
V. =

v, in Q9.

We denote by Pq(vX) = [Pa, (¢)/Pa, (ve)] the following advection-diffusion prob-
lem

—EAULE + div(gulﬁ) + bouLE = f in Ql
diV(—Z/EVUQ,g + 5’&2,5) + bOUQ,e =f in Qo
8 g a g
Yle _ b-firure = VG& —b-firuge onT (37)
onr ’ onr ’
uLe = U2’€ on T
U=y on 0f2.

2. For any € > 0, let Vo(e) be the variational formulation associated to Pq(e).
Solving Vq(g) means to look for the solution u. € V' of

ac(ue, w:) = F(we), Vw, € V. (38)

If we take g = 0, this means to set V = H}(Q2) and to solve
ae(Uuz, we) = / [(f-:Vu8 — bu.) - Vwe + boucw, | di, F(we) = / fw.dZ
Q Q
(39)

for any w. € V.
Otherwise, if g # 0 the formulation is the same, however the right hand side has
to be modified as follows:

Fy(we) = F(w:) — a:(Rg, we)

13



where R, is a suitable lifting of the boundary data g, so that the final solution
reads ue + Ry (see [Qua09]).

3. By asymptotic analysis on Vg, (¢), recover the reduced problem Pq,(0), so
that

Pao(vr) — [Pa,(0)/Pq,(v)] whene—0.

The new coupled problem [Pq, (0)/Pq,(v)] inherits from the limit process a
proper set of interface conditions.

According to the analysis performed in [GQL90], uy . converges weakly in L?(£2;)
and ug . converges weakly in H 1(Q) when € — 0, moreover the limit (uy,us) €
L?(Q1) x H'(Qy) satisfies the following reduced coupled problem:

([ div(buy) + bour = f in Q
div(—vVug + bug) + bous = f in Qs
—g' ﬁrul = I/?—Zi — g ﬁFUQ on F' (40)
UL = U on I
ur = g1 on (891 \F)m
U = g2 on 0 \ I

The interface conditions (40)3 4 express the continuity of the flux across the
whole interface I' and the continuity of the solution across the inflow interface
', respectively. No continuity condition is imposed on '™, as a matter of fact,
uy and 1 exhibit a jump across I'®** which is proportional to e

Note that the interface conditions (40)3 4 can be equivalently expressed as:

Ul = u2 on Fin7
[_;. n. + % — g 7 =0 Tout
nrul V@np nrug = on (41)
I/% =0 on I,
onr

In order to proceed with the analysis of the coupled problem, we introduce the
following notations. Let A be an open bounded subset in R¢, with Lipschitz
continuous boundary. For any open subset I' C 0A, we define the weighted
L?-space

L2T) ={o:T = R: \/[b-dir|p € LX(I)}, (42)

and the trace space

Hyl*(T) = {p € LA(T) : 3 € HY2(DA): @lr =, Ploar =0}  (43)

14



The space L%(F) endowed with the norm

. 1/2
el = [ 15 iclgrar)
b r
is a Hilbert space.

The following result has been proved in [GQL90]:

Theorem 2.1 Assume the following reqularity properties on the data: 0 and
0y are Lipschitz continuous, piecewise C11; T is of class Cb!;

veL™®(), be[Whe@)]* bel®Q), felQ), (44)
ge H'2(00) : g € LA((OU\T)™), go € H/2(90,\T).

Finally assume (31).

Then there is a unique pair (uy,us) € L*(Q) x H'(Q) which solves (40), where:
equations (40)1 and (40)2 hold in the sense of distributions in £y and s, re-
spectively; interface condition (41); holds a.e. on T'™, interface condition (41)s
holds in (H%Q(Fout))’; interface condition (41)3 holds in (H%Z(Fin))’. Finally,
problem (40) is limit of a family of globally elliptic variational problems.

From now on, the solution (uj,us2) of the heterogeneous problem (40) will be
named heterogeneous solution.

Other interface conditions have been proposed in the literature to close system
(32), (33), (36). For instance, the conditions

8u2 -

—b'ﬁpul = VaT —b-ﬁpUg on Fout
dur 0 (45)
Ul u9 in
up = U9, A T Ao on [,
anr 8nr

have been proposed in [Dub93] and are based on absorbing boundary condition
theory. The following set (see [GHJ02, GHIMOT7])

Ul = U onI’
3_?_{1 = 8—32 on I'» (46)
8TLF anr

takes into account the requirement of glueing the solutions across the interface
with high regularity.

However, the coupled problem with either one of these set of conditions ((45),
(46)) cannot be regarded as a limit of the original complete variational problem
as the viscosity € tends to zero in €1;.

Another possible approach to set suitable interface conditions was proposed in
[GHIJMO09] for the one-dimensional case with constant coefficients and it is based

15



on the factorization of the differential operator. To briefly explain it, let us take
Q = (z1,x2) and let zg € 2 denote the position of the interface between ; and
Oy, i.e. Q1 = (z1,20) and Qo = (29, 22). The method consists in the following
steps:

- factorize the differential operator As- = —v9? - +b3, - +bg- as

Ay = (b3, — bAT) (—%ax + %)\_) ,
where AT = (b + /b2 + 4vbg)/(2v), with AT > 0 and A\~ < 0;
- compute the function @ () = @y (z)e* @) 4 3 f;l F(H)er @0 dt, which is
the solution of the modified advection-reaction equation A, = bit;, —bAT@, = f
in 1 with a suitable boundary condition at = = x1;
- solve the advection diffusion problem Asus = f in 2o with the following inter-
face condition at x = xg:

(o) + A "uz(wo) = (—uh(@1) + TATwr () = (1)) €N 4 @ (o)
- solve the advection reaction problem Aju; = bu) + bous = f in ©; with either
ui(zo) = u2(xp) if b < 0, or a suitable boundary condition at z = x1 if b > 0.

It is shown in [GHIJMO09] that the L?—norm error between the heterogeneous
solution and the global elliptic one behaves like v (for ¥ — 0) in the domain Qy,
while in €y it exponentially decreases with v when b < 0 and it behaves like
v"™ (m =1,2,...) when b > 0. The integer m depends on the accuarcy of the
boundary condition imposed at z = x;.

2.3 Domain decomposition algorithms for the solution of the
reduced advection-diffusion problem

In this Section we will present two iterative domain decomposition methods to
solve the coupled problem (40), starting from the interface conditions (40)3 4.
Moreover we will reformulate the heterogeneous problem in terms of the Steklov-
Poincaré equation at the interface.

2.3.1 Dirichlet-Neumann algorithm

The interface conditions (40)3 and (40)4 provide, respectively, Dirichlet or Neu-
mann data at the interface I'. Then we can use the condition (40)3 as an inflow
(Dirichlet) condition for the advection problem in ©; and the condition (40)4
as a Neumann condition for the elliptic problem in 5. The algorithm, named
Dirichlet-Neumann (DN) method, produces two sequences of functions {ugk)}
and {ugk)} converging to the solutions u; and us, respectively, of the heteroge-
neous problem as follows.
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Given () e L%(Fi“), for k> 0 do:

( Alungrl) f in Ql

solve ugkﬂ) =g on (09 \ )™
ugkﬂ) =k on Iin,
( A2ug€+1) = f in Qo (47)
solve ungrl)(k: 9) on 9 \ I
+1
_V8u2 +b- ﬁpugkﬂ) =b- ﬁpungrl) on I,
\ onr

compute A*HD) = (1 — g)A*) 1 0ng+1)‘l"in7

where 6 > 0 is a suitable relaxation parameter.

The convergence properties of this method are analysed in [GQL90], while several
numerical results can be found in [FPQ93]. The convergence of DN method is
guaranteed by the following theorem ([GQL90]).

Theorem 2.2 Let us consider the assumptions of Theorem 2.1. There exists
6 > 0 such that, if \O) € L%(I’in) and 0 € (0,140), then the sequence (ugk), ugk))
converges to a limit pair (ui,us) in the following sense:

ugk) — uy in L*(Qy), ugk) — uy in HY(Qy).

The limit pair provides the unique solution to the coupled problem (40).

Other research papers connected with this approach are [GQ89, Scr90, CM94,
AL94).

We note that, when I'°"* = T', the DN algorithm (47) converges in one iteration,
since the solution in §2; is independent of the solution in 29 and, once wup is
known, the solution in 2y is obtained by a single “Neumann step”.

On the contrary, when I'™ = T", the coupled problem (40) can be solved without
iterations. As a matter of fact, by re-writing the interface condition (47)¢ as in
(41), we note that the solution in 2 is uniquely determined, independently of
a trace function A on I'. Consequently, the solution in €2 is uniquely defined by
the interface condition (41);.

2.3.2 Adaptive Robin Neumann algorithm

Another iterative algorithm, that can be invoked to solve the reduced advection-
diffusion problem (40) reads as follows. Given the functions A € L%(Fi“),

p©@ € L) and uf’) € H'(Q), for k > 0 do:
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div(gugk—i—l)) + bougkﬂ) =f in Oy
solve ugkﬂ) =9 on (99 \ T)"
(k)
—b- ﬁpungrl) = 1/85:; —b- ﬁr/\(k) on I'™,
(
( di (k+1) | 7 (k+1) (k+1) _ .
iv(—vVuy " +buy ) 4 bous =f in
48
ungrl) =g on 00 \ T “3)
solve ouFt) -
U;TLF —b- ﬁpugk-i—l) =) ﬁp,u(k) on FOUt
Hul+ .
—0 rin
\ onr ont
compute AEFD — (1 — g)AR) 4 9u§k+1) on Iin
pkt) = (1 —9)u® + Hugkﬂ) on Iout,

The algorithm (48) is obtained as the limit, when ¢ — 0, of the Adaptive-Robin-
Neumann (ARN) method proposed in [CQ95] for the homogeneous global elliptic

problem (37).

for £k > 0 do
solve
\
(
solve
\
compute {

In its original form, ARN method reads: given A, 49 and ugo)

)

—5Aug]f€+1) + div(guglfg'l)) + bouglfjl) =f in Q
ugli:rl) =g on (0§ \ )
8u§k+1) = (k1 Ouék) . . .
O(T’LE : nr?%,s )= Ve —871; —b-ipA®) on rp=re
8u1k+1 8u2k
€ =1, € Tout — pout
anr‘ v anr on i ’

div(—VEVugfjl) + 5ugk;1)) + bougij'l) =f in Q9
ugij—l) =9 on 9 \ T
8u§k+1) = (k4L 8u§k+1) - .
oug V) ouftHY out _ pin
Ve e =c e on I'9" =T",

AEHD — (1 — g)N*R) 4 HU&H) on ['n
plbt1) — (1- H)M(k) + Huglfg'l) on Iout,
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The idea of this method is to impose a Robin interface condition on the local
(i.e. referred to that subdomain) inflow interface '™ (i = 1,2) and a Neumann
interface condition on the local outflow interface '™ (i = 1,2).

Coming back to the heterogeneous coupling, it is straightforward to prove that,
if the choice of # guarantees the convergence of ARN method, then the limit
solution of ARN (48) coincides with the solution of the heterogeneous problem
(40). Moreover, if ugo) is chosen with null normal derivative on the interface I'
and 6 = 1, then ARN (48) and DN (47) methods coincide.

When either I'™ = T" or I'"* = I" we can conclude that no iterations are need
for ARN method, as for DN.

Remark 2.1 We want to remark here that in the Dirichlet/Neumann method,
the Neumann condition (47)g is in fact a conormal derivative associated to the
differential operator As. On the contrary, in the ARN method the Neumann con-
dition (as (48)7) is a pure normal derivative on the interface, while the conormal
derivative (48)g is called Robin condition, in agreement with the classical defi-
nition of Robin boundary condition. Following the latter notation, actually the
Dirichlet/Neumann method should be a Dirichlet/Robin method. O

2.3.3 Steklov-Poincaré based solution algorithms

Let us consider the heterogeneous problem (40) with homogeneous Dirichlet
conditions on 0€2, i.e., g =0. Let A\ € HééQ(I‘) denote the unknown trace of the
solution uy on I'. Thanks to the interface condition (40)4, the solution (ui,us2)
of (40) can be written as

A A
U = uy + wq, U2 = Uy + wa,

where:
wy and wo depend on the assigned function f and are the solution of

A1w1 = f in Ql Agwg = f in QQ (50)
wy; =0 on 8(211“, wy =0 on 9y,
while u3 and u are the solutions of
Aju =0 in Asuy =0 in
u} =0 on (9 \T)™ uy =0 on 90 \ T (51)
uy = Ajpinon I, uy = A on I

Given A\ € Héf(F), we define the Steklov-Poincaré operators S; and Sy such
that
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and
ouy -
22 g firuy  on IO
SaA=1 9m (53)
5 .
—= e,
Onp on
Actually, Si\ depends only on the values of A on I'™,
Then the interface conditions (40)3 can be equivalently expressed in terms of
Steklov-Poincaré operators as

S)\ESl)\-l-SQ/\:X, (54)
where
—b- nrwy — I/% +b- firwy  on oW
X = Owg - . (55)
—v— on I,
anr

The operator S : H(%Q(F) — (H&G(F ))' is the so-called Steklov-Poincaré oper-

ator and the equation (54) is the Steklov-Poincaré equation associated to the
heterogeneous problem (40). The solution of (40) can be reached by sequentially
solving the problems (50), (54) and (51).

Several methods may be invoked to solve the Steklov-Poincaré equation (54).
To start, let us consider the preconditioned Richardson method

A0 given (56)
PAFEHD _ XB)y = g(y — SAK)), for k >0,

where P is the preconditioner and 6 > 0 an acceleration parameter.
Thanks to the well-posedness of the ellitpic problem in €, the operator Sy is
invertible and we can use it as preconditioner, so that (56) becomes:

{ A0 given

AEHD = (1 — 9)A®) 1985 (y — S1AR)), for & > 0. o7

By comparing (57) with (47), we recognize that the Dirichlet-Neumann method
is equivalent to the Richardson iterative method applied to the Steklov-Poincaré
equation (54) with preconditioner Sy, since the identity ng—i—l)‘r = Syt (x —
S1A*)) holds.

After a discretization of the heterogeneous problem (by, e.g., finite elements or
spectral methods) it is possible to write the discrete counterpart of both the
Steklov-Poincaré equation (54) and the Dirichlet-Neumann algorithm (47).

It can be be proven that the Dirichlet-Neumann algorithm converges, for suit-
able choices of the relaxation parameter 6, independently of the discretization
parameter h for finite elements or N for spectral methods (see, e.g., [GQL90] for
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a proof in the spectral method context). This because the local Steklov-Poincaré
operator Sy is spectrally equivalent to the global Steklov-Poincaré operator S.
Krylov methods are valid alternatives to Richardson iterations to solve the pre-
conditioned Steklov-Poincaré equation

SytSA = Sy . (58)

In the next section we will provide numerical results about the numerical so-
lution of the coupled problem (40) by using either Dirichlet-Neumann method
(47), Adaptive Robin-Neumann method (48) and the preconditioned Bi-CGStab
([vdV92]) on the equation (58).

2.4 Numerical results for the advection-diffusion problem

In this Section we will provide the numerical solution of a test case in two-
dimensional computational domains. The discretization of the differential equa-
tion inside each subdomain is performed by quadrilateral conformal Spectral
Element Methods (SEM). We refer to [CHQZO07] for a detailed description of
these methods, while here we recall in brief their basic features.

Let 7 = {T;,}™_, be a partition of the computational domain Q C R?, where
each element T, is obtained by a bijective and differentiable transformation F},
from the reference (or parent) element Q% = (—1, 1)%. On the reference element
we define the finite dimensional space Qy = span{i”! ce @ 0< g1, 04 <
N} and, for any Ty, € T: Tp, = F, (Q9), set hy, = diam(T},) and

Vi, (Tpn) ={v : v="10F," for some o € Qy, }.
The SEM multidimensional space is
X5 ={veCQ) : v, € VN, (Tnn), VT, € T}

where § is an abridged notation for “discrete”, that accounts for the local geo-
metric sizes {h,,} and the local polynomial degrees {N,,}, for m =1,..., M.
Let us consider the variational formulation (38) and, for simplicity, impose the
homogeneous Dirichlet condition on the boundary (i.e. ¢ = 0). The SEM
approximation of the solution of (38) is the function us € V5 = X5 N H(Q),
such that

ZaTm (u(g,v(;) = Z(f, U&)Tm Yvs € Vs (59)

holds, where a7, and (f,v)r,, denote the restrictions to 7, of the bilinear form
and the Lo-inner product (respectively) defined in (39).

Since the high computational cost in evaluating integrals in (59), the bilinear
form ag, and the Lo-inner product (f,v)r, are often approximated by a dis-
crete bilinear form ay,, 7,, and a discrete inner product (f,v)n,, 7,., respectively,
in which exact integrals are replaced by Numerical Integration (NI) based on
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Figure 8: Test case #1. The data of the test case (left) and the heterogeneous
solution for v = 0.01 (left) and v = 0.001 (right)

Legendre-Gauss-Lobatto formulas.
The SEM-NT approximation of the solution of (38) will be the function us € Vj
such that
ZaNm,Tm(uévvé) = Z(f, U(S)Nm,Tm V’L)5 S V5 (60)
m m
We consider now a test case and we compare the convergence rate of the it-
erative methods explained in Section 2.3. We will denote by DN the Dirichlet
Neumann method (47), by ARN the Adaptive Robin-Neumann method (48) and
by BiCGStab-SP the preconditioned BiCGstab method applied to the precon-
ditioned Steklov-Poincaré equation (58). Our aim is twofold. From one hand
we will represent the numerical solution of the heterogeneous problem (40), on
the other hand we want to investigate and compare the convergence rate of the
iterative methods versus the magnitude of the viscosity v and the discretization
size (i.e. the local geometric sizes h,, and the local polynomial degrees N,,).

Test case #1

Let us consider problem (40). The computational domain 2 = (—1,1)? is split
in Q; = (—1,0.8) x (—=1,1) and Q9 = (0.8,1) x (—1,1). The interface is I' =
{0.8} x (=1,1). The data of the problem are: b = [y,0]", by = 1, f = 1 and
the inflow interface is I'™ = {0.8} x (—1,0). Dirichlet boundary conditions are
imposed on the vertical sides of , precisely ¢ = 1 on {—1} x (0,1), g = 0
on {1} x (—1,1), while homogeneous Neumann conditions are imposed on the
horizontal sides of €25. The viscosity will be specified below.

In Fig. 8 the SEM-NI solutions for v = 1072 and v = 1072 are shown. A
non-uniform partition in 3 x 6 (4 x 6, resp.) quadrilaterals has been considered
in Q; (92, resp.). The same polynomial degree N = 8 has been fixed inside each
spectral element. The jump of the solution across I'°" is evident for v = 0.01,
in particular we have obtained |u; — ua||pec(routy =~ 0.237 when v = 0.01 and
lur — ual| oo (routy = 0.020 when v = 0.001.

Now we want to compare DN, ARN and BiCGStab-SP methods for what con-
cerns the convergence rate and the computational efficiency.

22



DN
e -8-ARN

Iterations

8.5 0..6 O‘.7 O‘.8 39 i ll.l l‘.2 13

Figure 9: Test case #1 with v = 0.01. DN and ARN iterations to satisfy the
stopping test (61) versus the relaxation parameter 6

The convergence of both DN and ARN is measured by the stopping test on the
difference between two iterates, i.e.

[AEFD — XR)|| < e for DN

61
max{AC+D — A, [u¢+) — B[} < for ARN, (61)

while the convergence of BiCGStab-SP is measured by the stopping test on the
residual (51 = — SAG+D) e,

[l (62)
lr @ =

The convergence of both DN and ARN methods depends on the choice of the
relaxation parameter 6, on the contrary, the BiCGStab-SP algorithm does not
require to set any acceleration parameter.
In Fig. 9 we report the number of iterations of both DN and ARN methods
in order to converge up to a tolerance of 107% for v = 0.01 and we conclude
that, for this test case, the optimal value of ¢ is 0,,; = 1. Analogous results are
obtained for smaller values of the viscosity.
In Table 1 we report the number of iterations needed by every iterative scheme
(DN, ARN, BiCGstab-SP) to converge up to a tolerance of 1075, versus the
polynomial degree N. For both DN and ARN method we set § = 1. The
partition of € is not uniform and it coincides with that used to represent the
numerical solutions in Fig. 8. The discretization we have used is fine enough to
guarantee the absence of spurious oscillations due to large Péclet number.
As we can see, the convergence rate of all methods is independent of both poly-
nomial degree N and viscosity v.
The BiCGStab-SP method requires the smallest number of iterations, neverthe-
less each Bi-CGStab iteration costs about two and a half iterations of either
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vr=20.1 v =0.01 v = 0.001
N | DN ARN SP | DN ARN SP | DN ARN SP
4 2 3 1 2 3 1 2 3 1
6 2 3 1 2 3 1 2 3 1
8 2 3 1 2 3 1 2 3 1
10| 2 3 1 2 3 1 2 3 1
12| 2 3 1 2 3 1 2 3 1
14| 2 3 1 2 3 1 2 3 1
16 | 2 3 1 2 3 1 2 3 1

Table 1: Test case #1. Number of iterations to satisfy stopping test with ¢ =
1079, The relaxation parameter is @ = 1 in both DN and ARN. SP is an abridged
notation for BiCGStab-SP method.

DN or ARN. As a matter of fact, each iteration of DN (or equivalenlty ARN)
requires the solution of an advection problem in €2y plus the solution of an el-
liptic problem in 5. On the contrary, each iteration of BiCGstab-SP requires
two matrix vector products to compute the residual *) = y — SA®) plus the
solution of two linear systems on the preconditioner Soz*) = r(*) meaning that
we have to solve two advection problems in 7 plus three elliptic problems in
9 at each iteration.

For this test case, we conclude that all three methods are very efficient and their
computational costs are comparable. Nevertheless, both DN and ARN methods
require a-priori knowledge of the optimal relaxation parameter 6.

2.5 Navier-Stokes/potential coupled problem

Models similar to the (Navier-)Stokes/Darcy problem introduced in Sect. 1 can
be used in external aerodynamics to describe the motion of an incompressible
fluid around a body such as, for example, a ship, a boat or a submerged body
in a water basin. In fact, such problems can be studied by decomposing the
computational domain into two parts: a region {25 close to the body where, due
to the viscosity effects, all the interesting features of the flow occur, and an outer
region (21 far away from the body where one can neglect the viscosity effects.
See, e.g., Fig. 10.

Therefore, suitable heterogeneous differential models comprising Navier-Stokes
equations, Euler equations, potential flows and other models from fluid dynamics
could be envisaged (see, e.g., [BCR&9, IC03]).

Here, we present a simple model where in €29 we consider the full Navier-Stokes
equations, while in €y we adopt a Laplace equation for the velocity potential.
A coupled heterogeneous model of this kind has been studied in [SH93| consid-
ering a computational domain as in Fig. 11 and the following generalized Stokes
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Figure 10: Flow around a cylinder computed using a Navier-Stokes/potential
coupled problem.

problem:
Qe — VAl + Vpe = f in
V-u.=0 in Q (63)
@ =0 on I'y,

with suitable boundary conditions on the outer boundary I',. The viscosity is
ve = v in o, while v, = € in .

inflow

Figure 11: Representation of the computational domain for an external aerody-
namics problem

In [SH93| a vanishing viscosity argument is used letting e — 0 in € in order
to set up a suitable global model and to define the correct interface conditions
across I'. Precisely, the following limit coupled problem was characterized:

aﬁ—I/Aﬁ—i-Vp:f in Q9

—

Aq=V-f in Oy

25



with suitable boundary conditions and the coupling conditions across the inter-
face I’ 9
a—%:(f—aﬁ)~ﬁp onT

i
—V—— + prip = qir onT.
onr

7ip denotes the unit normal vector on I' directed from 5 to €. We remark
that, apart from the physical meaning of the variables, the coupling conditions
(65) are similar in their structure to those used for the Navier-Stokes/Darcy
coupling (28). In fact, (65); corresponds to (28);, and in (65)2 the pressure is
still discontinuous across the interface, even if there is no distinction between
the normal and the tangential components of the stress tensor as in (28)2 and
(28)s.

Because of these similarities, the analysis that we shall develop in Sect. 2.6 for
the Navier-Stokes/Darcy problem could be accommodated to account also for
the heterogenous coupling (64)-(65).

However, one has to keep in mind that the physical meaning of the two coupled
problems is very different. In the Navier-Stokes/Darcy case we have two viscous
models where Darcy equation and the coupling conditions can be obtained by
homgenization in the limit € — 0 in €, where € represents the size of the pores
in the porous medium. On the other hand, the Navier-Stokes/potential model
couples viscous and inviscid equations, the latter being obtained in the limit
v — 0 like also the corresponding coupling conditions.

(65)

2.6 Asymptotic analysis of the coupled Navier-Stokes/Darcy
problem

We focus now on the coupled Navier-Stokes/Darcy problem (27)-(28), however
we confine ourselves to the steady problem by dropping the time-derivative in
the momentum equation (27);:

—div T(U_f,pf) + (U.f . V)Uf =f in Qy. (66)

Even when considering the time-dependent problem, a similar kind of “steady”
problem can be found when using an implicit finite difference time-advancing
scheme. In that case, however, an extra reaction term au; would show up on
the left-hand side of (66), where the positive coefficient « plays the role of inverse
of the time-step. This reaction term would not affect our forthcoming analysis,
though.

To discuss possible boundary conditions on the external boundary of {2y and (2,,,
let us split the boundaries 02y and 012, as 9€)y = FUF?P and 092, = FUFI,UFZ,
as shown in Fig. 6, left.

For the Darcy equation we assign the piezometric head ¢ = ¢, on I';,; moreover,
we require that the normal component of the velocity vanishes on the bottom
surface, that is, u, - n, =0 on Fg.
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For the Navier-Stokes problem, several combinations of boundary conditions are
possible, representing different kinds of flow problems. Here, we assign a non-
null inflow uy = u;, on I‘;" and a no-slip condition uy = 0 on the remaining
boundary I'y.

To summarize, the coupled problem (66)-(28) is supplemented with the boundary
conditions: A

us = u;, on I‘}", uy =0on Iy,
(67)

¢ b
@ = @pon Iy, K%zoonfp.

We introduce the following functional spaces:

Hy={ve(H(Q)": v=0onT U},
Hy={ve(HQ): v=0onT;UT}, (68)
Q=L*y), H,={YeH (Q) : v=00nT,}.

We denote by |- |; and || - [; the H'-seminorm and norm, respectively, and
by || - |lo the L?-norm; it will always be clear form the context whether we are
referring to spaces on {2y or €2,

The space W = Hy x H), is a Hilbert space with norm

lwlw = (1wl + [213)"* Va = (w,¢) e W.

Finally, we consider on I' the trace space A = H(%Q(F ) and denote its norm by
Il (see [LMGS).

We introduce a continuous extension operator
Ep: (HYAT'M)? — Hy . (69)

Then Vu;, € (H%Q(F?‘))d we can construct a vector function Eruy, € H 7 such

that Efuin|pin = Ujn.
f
We introduce another continuous extension operator:
E,: H'*(TY) — H'(Q,) such that E,p, =0onT. (70)

Then, for all ¢ € H*(Q,) we define the function ¢y = ¢ — E,p,.

Finally, we define the following bilinear forms:
ap(v,w) = / g(vV +Viv) (Vw4 Viw) W, we (H(Q),
2
bylvaa) == [ adivy e (@), VgeQ. ()
Qy

apio, ) = /Q Vi KVe Ve, € HY(Q,).
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and, for all v,w,z € (H'(Q¢))?, the trilinear form

crwin) = [ w9 v = 3 L v (72)

ij=1
Now, if we multiply (66) by v € H; and integrate by parts we obtain
ap(ug ) +eslupiug ) +by(vpg) = [ neTapp)v= [ v
Notice that we can write

~ [Ty == [l Tlagpg) nivn = [ (Tagpg) -0, - (),

so that we can incorporate in weak form the interface conditions (28)2 and (28)3
as follows:

- [Ty [etvom+ [ 2w ),

Finally, we consider the lifting E'ru;;, of the boundary datum and we split uy =
u(} + Eru;, with u? € Hy; we recall that Eru;, = 0 on I and we get
af(u?, v) + Cf(u(j)c + Erugp; u? + Efuin, v) + bg(v,py)

vaBJ == -V —a u; V).
4 /F gp(v ) + /F 5B (), () = /fo (Efuin,v). (73)

From (27)2 we find
br(u},q) = —bp(Epuin,q) Vg€ Q. (74)

On the other hand, if we multiply (27)3 by ¢ € H, and integrate by parts we

get
+ / K2
r

Now we incorporate the interface condition (28); in weak form as

ap(ip, 1) — /F (ug ) =0,

and, considering the splitting ¢ = ¢o + Ej,¢, we obtain

ap (00, ) — / (g - 0) = —ap(Eppp, 1)- (75)
r
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We multiply (75) by ¢ and sum to (73) and (74); then, we define

A, w) = ag(v,w) + g apleo, ) +/ngo<w-n>—/rg¢<v'n>

vapg
+ . W(W)r (V) (76)

C(v;w,u) = cy(v;w,u),

B(w,q) = bf(w,q),

for all v = (v, ), w = (wW,?), u = (u,§) € W, ¢ € Q. Finally, we define the
following linear functionals:
(F w) = /Q £-w—ar(Epan, w) — gay(Epep, 1),
f

for all w = (w,¥) € W, g € Q.
Adopting these notations, the weak formulation of the coupled Navier-Stokes/Darcy
problem reads:

find u = (u(j)c,cpo) € W, pr € Q such that

(77)

{ A(u,v) + Clu+ u*su+u*,v) + B, py) = (F,v) Vo= (v,9) e W
B(u,q) = (G, q) Vq € Q,

N (78)
with u* = (Efu;,,0) € Hy x H'(Q,).

Remark that the interface conditions (28) have been incorporated in the weak
formulation as natural conditions on I': in particular, (28)y and (28)3 are nat-
ural conditions for the Navier-Stokes problem, while (28); becomes a natural
condition for Darcy’s problem.

The well-posedness of (78) can be proved quite easily in the case of the Stokes/Darcy
coupling, i.e. when we neglect the trilinear form C(-;-,-). Indeed, in this case
the existence and uniqueness of the solution follows from the classical theory
of Brezzi for saddle-point problems after proving the continuity of A(-,-), its
coerciveness on the kernel of B(-,-) and that an inf-sup condition holds between
the spaces W and Q. For details of this analysis we refer to [DQO3].

The case of the Navier-Stokes/Darcy problem is more involved. In particular, in
this case we could prove the well-posedness only under some hypotheses on the
data similar to those required for the sole Navier-Stokes equations. Moreover,
uniqueness is guaranteed only in the case of small enough filtration velocities
uy - n across I'. The analysis that we have carried out is based on classical
results for nonlinear saddle-point problems (see, e.g., [GR86]). We refer the
reader to [BDQO8, DQO09]. Similar results have been proved using a different
approach in [GRO7].
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2.7 Solution techniques for the Navier-Stokes/Darcy coupling

A possible approach to solve the Navier-Stokes/Darcy problem is to exploit its
naturally decoupled structure keeping separated the fluid and the porous media
parts and exchanging information between surface and groundwater flows only
through boundary conditions at the interface. From the computational point of
view, this strategy is useful at the stage of setting up effective methods to solve
the problem numerically.

Therefore, we apply a domain decomposition technique at the differential level
to study the Navier-Stokes/Darcy coupled problem. Our aim will be to intro-
duce and analyze a generalized Steklov-Poincaré interface equation (see [QV99])
associated to our problem, in order to reformulate it solely in terms of inter-
face unknowns. This re-interpretation is crucial to set up iterative procedures
between the subdomains {27 and €2, that can be used at the discrete level.
Here we illustrate the main ideas behind this approach, and refer to [DQ09] for
a complete analysis.

We choose a suitable governing variable on the interface I'. Considering the
interface conditions (28); and (28)2, we can foresee two different strategies to
select the interface variable:

1. we can set the interface variable A\ as the trace of the normal velocity on
the interface:

I
A=u;-n=-K—7; 79
us-n on’ ( )
2. we can define the interface variable o as the trace of the piezometric head
on I': ]
U:¢:—§n~T(uf,pf)-n. (80)

Both choices are suitable from the mathematical viewpoint since they guarantee
well-posed subproblems in the fluid and the porous medium part.

We discuss here the approach in the case of the Stokes/Darcy coupling consid-
ering the choice of the interface variable A as in (79). We refer the reader to
[Dis04a] for the second case (80).

For simplicity, from now on we consider the following condition on the interface:

(uf)=0 onl (81)

instead of (28)s.

Consider the auxiliary problems:

—div T(u*,p*) =f  in Qf —div (KVg*) =0  inQ,
div u* =0 in Q ¥ =p on Iy
u' = i on F?”n Kai =0 on Tt  (82)
(u*), =0 on I’ af)n* :
u"-n=0 on I, K@SO =0 on I'.

n
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Then, assuming to know the value of A € Ay, with

Ao = {p € Hyf*(T) : fopn =0},

we consider the problems:

—div T(u)‘,p)‘) =0 in Qf —;hV (KVQO)‘) =0 in Qp
div ut = 0 in Q o =0 on Iy
ur =0 on F?” Kai =0 on I’g (83)
(), =0 onT 8”/\
ud n=)\ on I, Kaai:)\ onI'.
n

We can prove that the solution of the Stokes-Darcy problem can be expressed
as: uy = ut + u*, pr = PN+ p*, © = " + p*, where A € Ag is the solution of
the Steklov-Poincaré equation

(Sg+Sp)A=x onl. (84)
Sy and ) are the local Steklov-Poincaré operators formally defined as:
St Ao — Af such that SpA =n- T(ut,p)) - nonT,

while
S, : Ag — A such that SyA = g* on T.

Finally,
x=-n-T(u*,p*) - n—gp*onl.

The analysis of the operators Sy and S, as well as the study of the well-posedness
of the interface equation (84) have been carried out in [DQO3]. In particular, we
have proved that the operator Sy is invertible on the trace space Ag and it is
spectrally equivalent to Sy + S, i.e., there exist two positive constants k; and
ko (independent of ) such that

ki(Sgn,my < (Sm,m) < ko(Sym,m)  Vn € Ag.

The same property holds at the discrete level considering conforming finite ele-
ment approximations of Sy and S, with constants k; and k3 that do not depend
on the grid size h. This property makes the operator Sy an attractive precon-
ditioner to solve the interface problem (84) via an iterative method like, e.g.,
Richardson or the Conjugate Gradient, yielding a convergence rate independent
of h.
For example, we can consider the following Richardson iterations: given A(QinA,
for k> 0,

AR = XY 40571 (x = (Sp+ 8p)AW) on T, (85)

where 0 < 6 < 1 is a suitable relaxation parameter.
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This method requires at each step to apply S, and S]?l, i.e., recalling the defi-
nitions of these operators, to solve a Darcy problem in ), with given flux across
I' and a Stokes problem in € with assigned normal stress on I'. More precisely,
we can rewrite (85) as: let A(?) € A be an initial guess; for k > 0,

—div (KVpFt))y =0  inQ,
SD(kJrL)C :1)90]7 on Fp
DRt b
solve K S = 0 on T}
(k+1)
k22w on T,
\ on
“div T(uk+D) pktD)y — ¢ in Q; (86)
div u**+) =0 in Qf
solve ulkth) =y, on I"]}"
(u(k+1))T =0 on I’
{ —n- T(u(kJrl)’p(kJrl)) .n= gsp(kJrl) on I‘7

compute AED — (1 — AR 4 gul+D .n on T

Remark that this algorithm has the same structure as the Dirichlet-Neumann
method in the domain decomposition framework.

Another possible algorithm that we have studied in [DQVO0T7] is a sequential
Robin-Robin method which at each iteration requires to solve a Darcy problem
in (), followed by a Stokes problem in ¢, both with Robin conditions on TI'.
Precisely, the algorithm reads as follows.

Having assigned a trace function n° € L?(I'), and two acceleration parameters
v = 0 and 7, > 0, for each k > 0:
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—div (KVp*+h) =0 in Q,
SO(IH_;){ :1)9010 on Iy
Op\Ft ,
solve o =0 on Fp
8g0(k+1) b1
—WK=o—+ gert =n®  onr,
—div T(u®+D p+)y = ¢ in Qf
div uk+) =0 in Qf (87)
ulbtl) = uy, on Fj‘n
solve (u+1D) =0 onT
n- T(ubt phtl) o+ okt
B
k+1 0
— —ggpfr—i— ) — ’ny (pan on F,
compute nkhtl) = _n. T(u&kﬂ),p;kﬂ)) -n+ ’ypu;kﬂ) -n on I

Both the Stokes problem in 2 and the Darcy problem in €2, are well-posed and,
at convergence, we recover the solution (uy,py) € Hy x Q and ¢ € H), of the
coupled Stokes/Darcy problem. Indeed, denoting by ¢* the limit of the sequence
" in H(Q,) and by (u},p}) that of (u]]i,p’}) in (HY(2))? x Q, we obtain

a * * * *
—’ypKa—fl—i-ggo‘F =-n-T(up,py) n+ypu;-n onl, (88)

so that we have

. dp*
(vr +p)ur n=—(vr +)K ;:l onI,

yielding, since vy + 7, # 0, u} -n = —K% on I', and also, from (88), that
n-T(u},p}) n = —g¢fp on I'. Thus, the two interface conditions (28); and
(28)2 are satisfied, and we can conclude that the limit functions ¢* € H), and
(u}i, p}i) € Hy x @ are the solutions of the coupled Stokes/Darcy problem.

A proof of convergence is presented in [DQV07] and it follows the guidelines of
the theory by P.-L. Lions [Lio90] for the Robin-Robin method (see also [QV99,
Sect. 4.5]).

A crucial point in the algorithm is the choice of the acceleration parameters -y
and v,. A general strategy is not available, but thanks to a reinterpretation
of the Robin-Robin method as an alternating direction scheme a la Peaceman-
Rachford (see [PR55]), we were able to give some hints on how to choose them.
We refer to [DQVO07].

We will illustrate the numerical behavior of the Dirichlet-Neumann and of the
Robin-Robin algorithms in Sect. 2.8.
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Finally, we address the case of the Navier-Stokes/Darcy coupling. Also to this
nonlinear problem we can asociate an interface equation similar to (84) still
involving the operator S, but a nonlinear operator S + analogous to Sy. Formally,
we can represent S ¢ Ao — Af as the operator associated to the Navier-Stokes

problem:
—div T(u},p*) + (v - V)ur =0 in Qf
divu* =0 in Q
u =0 on I'7 (89)
(ut), =0 on T
u' n=)\ on I

such that SgA =n - T(u*,p*) -non T.
Then, we can write the interface problem:

find A\ € Ag:  Sf(\)+S,A=x, onT, (90)

with x, =, and prove its equivalence to the global coupled problem.

A rigorous presentation of this approach can be found in [BDQOS|.

The set-up of effective iterative methods for the interface problem (90) is not
straightforward. In particular, no results are available yet on the characterization
of suitable operators spectrally equivalent to S + 4+ Sp. In [BDQOS, DQO9| we
have proposed and analyzed two classical schemes, fixed-point or Newton, for
(90) showing their equivalence to the following algorithms, respectively.

Fized-point iterations. Given u(} € Hy, for k > 1, find ugck) € Hy, p;k) € Q,
ONS H,, such that, for all v.e Hy, g € Q, ¥ € Hy,

ar () v) et v) +bp(v.plf)

®) (v .n POBT (W), (v), = Y
+/ng0< >+/F¢R<f>f<>f /fo o

7

Newton-like methods. Let u(])c € Hy be given; then, for k¥ > 1, find ugck) € Hy,
P € Q, ¢ € H, such that, for all v € Hy, g € Q, ¥ € Hy,

( af(ugck),v) + Cf(u;k); u;kfl),v) + Cf(u;kfl); u;k),v) + bf(v,pgck))
n VOB, (k)
—|—/ v-n +/ u;’)r-(v)r
Fg<p( ) F\/R(f) (v)
:cf(u;k—l)’u;k—l),v)Jr/ f-v (92)
Q

by(uf q) =0
a0 = [ o) w)
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Some numerical results will be presented in Sect. 2.8

2.8 Numerical results for the Navier-Stokes/Darcy problem

We consider a regular triangulation 7, of the domain r U ﬁp, depending on a
positive parameter A > 0, made up of triangles T'. We assume that the triangu-
lations 7y, and 7, induced on the subdomains €2y and €, are compatible on T',
that is they share the same edges therein. Finally, we suppose the triangulation
induced on I' to be quasi-uniform (see, e.g., [Qua09]).

Several choices of finite element spaces can be made. If we indicate by W}, and
@}, the finite element spaces which approximate the velocity and pressure fields,
respectively, for the Navier-Stokes problem, there must exist a positive constant
G* > 0, independent of h, such that the classical inf-sup condition is satisfied,
i.e., Vqn € Qn, Ivy € Wy, v, # 0, such that

/Q an div v, = B¥(|vall g lanll 2 ;)
!

No additional compatibility condition is required when coupling with the Darcy
equations. Thus, for our tests we use the Py — Py Taylor-Hood finite elements
for Stokes or Navier-Stokes and Py elements for Darcy equation.

We investigate the convergence properties of algorithm (86) (or, equivalently,
(85)) and the PCG algorithm for (84) with preconditioner S]?l. For the moment
we set the physical parameters v, K, g to 1. We consider the computational
domain © C R? with Q7 = (0,1) x (1,2), , = (0,1) x (0,1) and the interface
I'=(0,1) x {1}. The boundary conditions and the forcing terms are chosen in
such a way that the exact solution of the coupled Stokes/Darcy problem is

™ . ™ . s s

(uf); = —cos (§y> sin <§x> , (uf)2 =sin <§y) cos <§$) -1+,

pr=1l—z, ¢= %cos (gac) cos (gy> —ylx —1),
where (uy); and (uy)s are the components of the velocity field uy (see [DQ09]).
Four different regular conforming meshes have been considered whose number
of elements in 2 and of nodes on I' are reported in Table 2, together with the
number of iterations to convergence. A tolerance 10~ !° has been prescribed for
the convergence tests based on the relative residues. In the Dirichlet-Neumann-
like algorithm (86) we set the relaxation parameter 6 = 0.7.
Figure 12 shows the computed residues for the adopted iterative methods when
using the finest mesh (logarithmic scale on the y-axis).
These numerical tests show that the discrete preconditioner Sy is optimal with

respect to the grid parameter h since the corresponding preconditioned methods
yield convergence in a number of iterations independent of h.

We consider now the influence of the physical parameters, which govern the cou-
pled problem, on the convergence rate. We use the PCG method as it embeds
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Table 2: Number of iterations obtained on different grids.

Number of Number of  Algorithm (86) PCG for (84)
mesh elements nodes on I (0 =0.7) (preconditioner Sf_l)
172 13 18 )
688 27 18 5
2752 55 18 5
11008 111 18 5

—— Algoﬁthm (8
—— PCG for (84)]]

~

10 . 15 20
Iterations

Figure 12: Computed relative residues for the interface variable A.

the choice of dynamic optimal acceleration parameters. We take the same com-
putational domain, but here the boundary data and the forcing terms are chosen
in such a way that the exact solution of the coupled problem is (see [DQ09]):

(=9 =29 +1 (ue=a’—a2, p;=2v(a+y—1)+,
1 3 92
¢:R<$(1_$)(y—1)+%—y2+y>+?Vx.

The most relevant physical quantities for the coupling are the fluid viscosity v
and the hydraulic conductivity K. Therefore, we test our algorithms with respect
to different values of v and K, and set the other physical parameters to 1. We
consider a convergence test based on the relative residue with tolerance 10719,
In Table 3 we report the number of iterations necessary for several choices of v
and K. The symbol # indicates that the method did not converge within 150
iterations.

We can see that the convergence of the algorithm is troublesome when the values
of v and K decrease. In fact, in that case the method converges in a large number
of iterations which increases when h decreases, losing its optimality properties.
The subdomain iterative method that we have proposed is then effective only
when the product vK is sufficiently large, while dealing with small values causes
severe difficulties.
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Table 3: Tterations using the PCG method (preconditioner S;l) with respect to
several values of v and K.

v K h=1/7 h=1/14 h=1/28 h =1/56

1 1 5 5 5 5
10~ 107! 11 11 10 10
10-2 10! 15 19 18 17
103 1072 20 54 73 56
107 1073 20 59 # #
1076 107 20 59 148 #

However, the algorithm still performs well if, instead of the steady Stokes prob-
lem, one considers the generalized Stokes momentum equation:

yup —div T(ug,py) = £ in Qy, (93)

where v can represent the inverse of a time step within a time discretization
using, e.g., the implicit Euler method. Some numerical results are reported in
Table 4 (see also [Dis04b]).

Table 4: Number of iterations to solve problem the modified Stokes/Darcy prob-
lem using (93) for different values of v, K and ~.

Iterations on the mesh with grid size

v K 5 h=1/7 h=1/14 h=1/28 h=1/56
10 15 24 28 28
1073 1072 102 12 14 16 14
103 8 9 9 8
10° 15 23 28 33
1076 1074 104 13 14 17 18
10° 8 9 9 9

On the other hand, the Robin-Robin method (87) performs quite well in presence
of small values of v and K. We present hereafter a test considering the same
setting as for Table 3. The analogy with the Peaceman-Rachford method has
suggested us to set v = 0.3 and 7, = 0.1 (see [Dis0O4a] for more details). In
Table 5 we report the number of iterations obtained using the Robin-Robin
method for some small values of v and K and for four different computational
grids. A convergence test based on the relative increment of the trace of the
discrete normal velocity on the interface u’}h -nyr has been considered with
tolerance 1077, (See [DQV07].)

Finally, we present some numerical tests for the Navier-Stokes/Darcy coupling
using the fixed-point and Newton algorithms of Sect. 2.7. The computational
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Table 5: Number of iterations using the Robin-Robin method with respect to v, K and
four different grid sizes h; the acceleration parameters are vy = 0.3 and vy, = 0.1.

v K h=1/T  h=1/14  h=1/28  h=1/56
107 10°° 19 19 19 19
10-6 10-* 20 20 20 20
10-6 107 20 20 20 20

domain and the finite element discretization are the same as in the previous
tests. (See also [BDQOS].)

In a first test, we set the boundary conditions in such a way that the ana-
lytical solution for the coupled problem is uy = (e*1¥ + y, —e* "V — z), py =
cos(mz) cos(my) + z, o = €*TY — cos(mx) + xy. In order to check the behavior of
the iter