
MOX–Report No. 04/2009

Finite-Element Preconditioning of G-NI
Spectral Methods

Claudio CANUTO, Paola GERVASIO,
Alfio QUARTERONI

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it

Finite-Element Preconditioning of G-NI Spectral

Methods

Claudio Canuto♯, Paola Gervasio♮, Alfio Quarteroni♭

January 13, 2009

♯ Dipartimento di Matematica, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

ccanuto@calvino.polito.it

♮ Dipartimento di Matematica, University of Brescia
via Valotti 9, 25133 Brescia, Italy

gervasio@ing.unibs.it

♭ MOX – Modellistica e Calcolo Scientifico
Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano
via Bonardi 9, 20133 Milano, Italy

and IACS–CMCS, École Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

alfio.quarteroni@epfl.ch

Keywords: Spectral Methods, Finite Elements, Preconditioned Iterative Meth-
ods, Elliptic Equations

AMS Subject Classification: 65F10, 65N35

Abstract

Several old and new finite-element preconditioners for nodal-based spec-
tral discretizations of −∆u = f in the domain Ω = (−1, 1)d (d = 2 or 3),
with Dirichlet or Neumann boundary conditions, are considered and com-
pared in terms of both condition number and computational efficiency. The
computational domain covers the case of classical single-domain spectral
approximations (see [5]), as well as that of more general spectral-element
methods in which the preconditioners are expressed in terms of local (upon
every element) algebraic solvers. The primal spectral approximation is
based on the Galerkin approach with Numerical Integration (G-NI) at the
Legendre-Gauss-Lobatto (LGL) nodes in the domain. The preconditioning
matrices rely on either P1 or Q1 or Q1,NI (i.e., with Numerical Integration)
finite elements on meshes whose vertices coincide with the LGL nodes used

1

for the spectral approximation. The analysis highlights certain precondi-
tioners, that yield the solution at an overall cost proportional to Nd+1,
where N denotes the polynomial degree in each direction.

1 Introduction

Spectral methods are nowadays recongnized as one among the fundamental
successfull strategies to numerically solve partial differential equations. Their
distinguishing feature is the intrinsic ability to yield high rate of convergence
(even exponentially fast) for smooth solutions. Their potential drawback arises
from the severe condition number (higher than those of the corresponding finite-
element or finite-difference matrices, for instance) of the associated algebraic
system. This fact has called, over the years, for the developement of ad-hoc
preconditioning strategies. In this regard, a major conceptual breakthrough for
preconditioning nodal-based spectral methods has been the intuition (early pur-
sued by Orszag [20], Deville and Mund [11] and Canuto and Quarteroni [6])
of using lower-order approximation matrices (those of finite differences or finite
elements) built up on the same grid involved by the spectral discretization.

Orszag considered the matrix arising from the Fourier or Chebyshev colloca-
tion approximation of the Laplace operator with or without periodic boundary
conditions; he proposed to precondition it by the second-order finite-difference
matrix built up on the same collocation grid. Successively, Canuto and Quar-
teroni extended the finite-difference preconditioner to the variable-coefficients
differential operator Lu = −∇ · (ν(x)∇u) +α(x)u with Dirichlet boundary con-
ditions; moreover, they introduced a bi-linear Lagrange finite-element precondi-
tioner. Independently, Deville and Mund proposed to precondition the Cheby-
shev collocation matrix by either bi-linear or bi-quadratic Lagrange finite ele-
ments, as well as by bi-cubic Hermite elements. They investigated the efficiency
of such preconditioners and they infer that bi-linear Lagrange elements produced
spectral accuracy with the minimum computational work. In the successive pa-
per [12], Deville and Mund analysed the spectrum of the Chebyshev collocation
matrix when preconditioned by finite differences, Lagrange or Hermite finite
elements, versus the variation of both boundary conditions and operator coeffi-
cients. In [24], Quarteroni and Zampieri proposed and investigated a bi-linear
finite-element preconditioner for the matrix arising from a Galerkin discrete vari-
ational formulation of the Laplace equation with either Neumann or Dirichlet
boundary conditions; the use of numerical integration based on the Legendre
Gauss-Lobatto grid yields the equivalence of the Galerkin (or weak) approach
with the collocation (or strong) approach, up to a multiplication by a diagonal
matrix coinciding with the spectral mass matrix. The use of Legendre expan-
sions instead of Chebyshev ones permits the formulation of spectral methods in
a weak form, in alternative to the strong one, yielding greater generality and
flexibility. Indeed, the weak Legendre formulation prevailed over strong forms

2

and various preconditioners based on either linear (P1) or bi-linear (Q1) finite
elements were largely used also inside multidomain strategies (see, e.g., [16, 7]).

What follows is a brief account on known theoretical results for the above
mentioned preconditioners on the Laplace operator. Orszag ([20]) proved that
the condition number of the Fourier collocation matrix (for periodic boundary
conditions) preconditioned by finite differences is bounded by π2/4. The same
result was established by Haldenwang et al [18] for the Chebyshev collocation
case. Canuto ([4]) and Parter and Rothman ([21]) proved the so-called Finite
Element - Spectral equivalence (sometimes referred to as the FEM-SEM equiv-
alence) in both L2- and H1-norms for univariate functions; in particular, the
equivalence in the H1-norm states that the linear finite-element stiffness ma-
trix built on the Legendre Gauss-Lobatto grid is spectrally equivalent to the
nodal-based Legendre Galerkin stiffness matrix. Thanks to the tensorial struc-
ture of interpolation operators, such results are easily extended to multi-variate
functions for multi-linear (Q1) finite elements. Moreover, Parter and Rothman
([21]) proved the equivalence also for P1 elements in two dimensions. Finally,
Parter ([22, 23]) investigated the preconditioning of the Legendre collocation (or
strong) spectral matrix by both bi-linear finite elements and finite differences
and he proved that the eigenvalues of the preconditioned matrices are bounded
in modulus independently of N .

In this paper we further elaborate on this algorithmic and theoretical path-
way. At first, we propose several new kinds of preconditioners and we analyze
their theoretical behaviour. Next, we extensively investigate their numerical
performance and compare them with those of already existing preconditioners.
More specifically, in addition to classical P1 and Q1 finite-element precondition-
ers we consider a number of preconditioners based on Q1 finite elements with
numerical integration. We distinguish between strong and weak forms of the ref-
erence differential problem and we adapt finite-element preconditioners to both
forms. Moreover, since strong forms are not symmetric, to allow for the use of
the Conjugate-Gradient algorithm, we propose also symmetrized-strong versions
of such preconditioners.
A careful numerical investigation, supported in many cases by theoretical proofs,
shows that all preconditioners considered in this paper are spectrally equivalent
to the corresponding Legendre spectral matrices. The inspection of the condi-
tion numbers of the preconditioned matrices indicates that the preconditioner
based on the Q1 approach for the strong form gives the smallest condition num-
ber. However, if we measure preconditioner efficiency in terms of CPU-time, the
best performance is obtained by the preconditioners based on the Q1 approach
with numerical integration, for both 2D and 3D geometries. Symmetrized strong
preconditioners show very good theoretical properties, i.e. their iterative condi-
tion numbers are very small, yet they are not efficient from the computational
point of view due to the higher cost of each iteration. Finally, we have consid-
ered three different algebraic solvers to compute the preconditioned residual at
each Conjugate Gradient iteration: the classical Cholesky factorization, a multi-

3

frontal method with nested dissection ordering, and a Preconditioned Conjugate
Gradient with inexact factorization. The computational performances of each
of these solvers have been carefully measured and compared.

Our analysis will concern the case of a reference computational domain, a
square in 2D, a cube in 3D. This choice has a twofold motivation. On one
hand, spectral methods are still widely used nowadays to approximate (initial-)
boundary value problems in a single domain (see [5]): the latter is either the
reference hypercube Ω̂ = (−1, 1)d (d = 2, 3) or another domain Ωs that can be
mapped into Ω̂ by an invertible regular map Fs : Ωs → Ω̂. On the other hand,
our results may also be of interest in the framework of Spectral Element Methods.
The latter are set up on a computational domain Ω, possibly featuring a complex
shape, that is split into smaller subdomains, say Ωm, m = 1, . . . ,M , which may
or not may overlap. In this context, domain decomposition preconditioners are
typically built upon an additive sum of local terms, which involve restriction
and prolongation matrices and local algebraic solvers on each subdomain, say,
for the sake of conciseness,

∑

mRmA
−1
m Rm. The solution of the local systems

Amwm = rm on each subdomain Ωm must therefore be efficiently addressed by
either direct factorization algorithms (in the case the size of local matrices is
moderate) or preconditioned iterative algorithms. The latter can benefit from
the preconditioning strategies developed in this paper on the reference domain
Ω̂.

An outline of the paper is as follows. In Section 2 we review both spectral and
finite-element discretizations of the Laplace problem. In Section 3 we introduce
all the preconditioners discussed in the paper. In Section 4 we theoretically
analyze the iterative condition numbers of all the weak forms and of those strong
forms based on both Q1 and Q1 with numerical integration approaches. We also
briefly consider the case of variable diffusion coefficient and Neumann boundary
conditions. In Section 5 we introduce the algebraic solvers for computing the
preconditioned residuals and we report a detailed analysis of the computational
costs of all possible strategies.

2 Galerkin - Numerical Integration and Finite-Element

matrices

We first consider the homogeneous Dirichlet boundary-value problem

−∆u = f in Ω = (−1, 1)d , u = 0 on ∂Ω , (1)

where d = 1, 2, 3 and f ∈ C0(Ω). Other boundary conditions will be discussed
later on.

The Legendre Galerkin - Numerical Integration (G-NI) discretization of this
problem consists of finding a polynomial u

N
in Q0

N (Ω) (the space of the algebraic
polynomials of degree ≤ N in each direction, vanishing on ∂Ω) satisfying

(∇u
N
,∇v

N
)N = (f, v

N
)N for all v

N
∈ Q0

N (Ω) , (2)

4

where (·, ·)N denotes the d-dimensional Legendre Gauss-Lobatto (LGL) discrete
inner product in Ω; it can be written as

(u, v)N =

(N−1)d

∑

j=1

u(xj)v(xj)wj u, v,∈ Q0
N (Ω), (3)

where xj (for j = 1, . . . , (N − 1)d) denote the (N − 1)d interior LGL nodes
(numbered in lexicographical order) and wj are the corresponding weights (see
[5, Sect. 2.2]).

The algebraic system corresponding to (2) reads

K
GNI

u = M
GNI

f , (4)

where u and f are the vectors whose components are the values of u
N

and f at
xj . Correspondingly, ψj (for j = 1, . . . , (N − 1)d) will denote the characteristic
Lagrange polynomial at xj , defined by the conditions ψj ∈ Q0

N (Ω) and ψj(xk) =
δjk for all k = 1, . . . , (N − 1)d. Thus, the symmetric positive-definite (s.p.d.)
stiffness and mass matrices K

GNI
and M

GNI
are defined as

(K
GNI

)ij = (∇ψj ,∇ψi)N , (M
GNI

)ij = (ψj , ψi)N , (5)

for i, j = 1, · · · , (N − 1)d. While the algebraic system (4) corresponds to the
discretization of the weak form of (1), the linear system

M−1
GNI

K
GNI

u = f (6)

corresponds to the discretization of (1) by the collocation approach (see [5, 3]),
also referred to as the strong form. In view of an efficient iterative solution,
system (6) can be equivalently written in symmetric form as

(M−1/2
GNI

K
GNI

M−1/2
GNI

)(M1/2
GNI

u) = M1/2
GNI

f , (7)

where, given any s.p.d. matrix B, B1/2 denotes its square root, i.e., the matrix
such that B1/2B1/2 = B, while B−1/2 is a short-hand notation for (B1/2)−1.
System (7) will be referred to as the symmetrized-strong form.

We will write systems (4), (6) and (7) in the general form

Lũ = f̃ , (8)

where, for v = u or f , the symbol ṽ means v in both (4) and (6), while it stands
for M1/2

GNI
v in (7).

The stiffness matrix K
GNI

is structured with lower and upper band-width
equal to nb = (N − 1)d−1(N − 2); the total number of its nonzero elements is
about nz = d ·N (d+1). Thanks to the orthogonality of Lagrange basis functions
ψj in the discrete inner product (·, ·)N , the mass matrix M

GNI
is diagonal.

5

The extremal eigenvalues of K
GNI

and M
GNI

satisfy the following estimates
([3, 19, 5])

λmin(KGNI
) ≍ N−2 , λmax(KGNI

) ≍ N ,
λmin(MGNI

) ≍ N−2 , λmax(MGNI
) ≍ N−1 ,

(9)

and this yields

K(K
GNI

) ≍ N3, K(M−1
GNI

K
GNI

) = K(M−1/2
GNI

K
GNI

M−1/2
GNI

) ≍ N4, (10)

where K(A) := maxi λi(A)/mini λi(A) is the so-called iterative condition number
of any matrix A similar to a s.p.d. matrix.

The matrix M−1
GNI

K
GNI

is similar to a s.p.d. matrix since both M
GNI

and

K
GNI

are s.p.d. matrices. Moreover M−1/2
GNI

K
GNI

M−1/2
GNI

is symmetric and similar
to M−1

GNI
K

GNI
.

It is well known (see, e.g., Fig. 4.46 in [5]) that the solution of (8) by
a direct method is efficient only for very small values of N (in the order of
10). For larger systems, preconditioned iterative techniques should be preferred.
Among them, algebraic preconditioners, such as those based on the diagonal
or the incomplete Cholesky factorization of the stiffness matrix, yield iterative
condition numbers of the preconditioned matrix which grow linearly with respect
to N (see Figs. 4.44-4.45 in [5]). On another side, preconditioners based on
the sparse matrices generated by low-order finite-element discretizations on the
Gauss-Lobatto grid may yield iterative condition numbers not only independent
of N but also extremely small (close to unity).

In the sequel, we will carry on a thorough comparative investigation of the
performances of several finite-element preconditioners; each of them is inspired
by one of the weak, strong or symmetrized-strong forms, (4), (6) or (7), intro-
duced above.

The finite-element matrices we are going to consider are built on the partition
(or mesh) of Ω = [−1, 1]d, made of all the rectangles in 2D or parallelepipeds in
3D (in general, d−intervals denoted by R) whose vertices are two consecutive
LGL nodes in each direction (see Fig. 1, a)). On such a mesh, piecewise d−linear
shape functions are defined, yielding Q1 finite elements. Alternatively, one can
build the finite-element preconditioners on the mesh of Ω made of triangles or
tetrahedra (in general, simplices denoted by T), still with vertices at the LGL
nodes (see Fig. 1 b), c), d) and Fig. 2), corresponding to P1 finite elements. In
2D geometries, two triangles T are obtained by splitting each rectangle R by one
of its diagonals; we distinguish among uniformly-oriented meshes as in Fig. 1 b),
alternating meshes as in 1 c), and random meshes as in 1 d). When Ω ⊂ R3, we
have considered two splittings of an hexahedron into tetrahedra, with five or six
elements, as shown in the left or right portion of Fig. 2, respectively. The latter
choice allows us to put side by side hexahedra with the same internal splitting,
leading to a globally uniformly-oriented mesh. The former choice requires two

6

R TTT

a b c d

Figure 1: Finite elements in Ω induced by the two dimensional LGL grid. a)
Q1, b) P1 with all triangles oriented in the same way, c) P1 with alternating
orientation, d) P1 with random orientation

Figure 2: At left (right, resp.), two adjacent hexahedra, each of them partitioned
into 5 (6, reps.) tetrahedra, which have two consecutive LGL nodes (in each
direction) as vertices

adjacent hexahedra to have complementary splittings which reflect into each
other across the common interface; they generate a global alternating mesh.

Let ϕj (with j = 1, . . . , (N − 1)d) denote the Q1 finite-element characteristic
Lagrange function at an interior xj , i.e., the globally continuous, piecewise d-
linear function in each R, vanishing on ∂Ω, such that ϕj(xk) = δjk for all
k = 1, . . . , (N−1)d. The associated finite-element stiffness matrix KQ1 is defined
by

(KQ1)ij = (∇ϕj ,∇ϕi) , i, j = 1, · · · , (N − 1)d , (11)

where (·, ·) denotes the standard L2−inner product in Ω. We will also consider
its numerical approximation KQ1,NI

, defined by

(KQ1,NI
)ij =

∑

R

∫

R
Π1,R(∇ϕT

j ∇ϕi) dx , i, j = 1, · · · , (N − 1)d , (12)

where Π1,R(g) denotes the d−linear interpolant of a function g at the vertices of
R; this corresponds to use the trapezoidal numerical integration formula in each
R. The finite-element mass matrix MQ1 is defined by

(MQ1)ij = (ϕj , ϕi) , i, j = 1, · · · , (N − 1)d, (13)

7

and its diagonal approximation is the lumped mass matrix MQ1,NI
, defined by

(MQ1,NI
)ij =

∑

R

∫

R
Π1,R(ϕjϕi) dx , i, j = 1, · · · , (N − 1)d. (14)

We note that KQ1 = KQ1,NI
when d = 1, thanks to the exactness of the trape-

zoidal rule for linear functions. On the contrary, MQ1 6= MQ1,NI
for d = 1, 2, 3.

Finally, for d = 2, 3 and a simplicial mesh in Ω, let ϕ̃j denote the P1 finite-
element characteristic Lagrange function at interior xj , i.e., the globally continu-
ous, piecewise linear function in each T , vanishing on ∂Ω, such that ϕ̃j(xk) = δjk
for all k = 1, . . . , (N − 1)d. The resulting stiffness and mass matrices are

(KP1)ij = (∇ϕ̃j ,∇ϕ̃i), (MP1)ij = (ϕ̃j , ϕ̃i), for i, j = 1, . . . , (N − 1)d. (15)

Remark 2.1 Since the computational domain Ω ⊂ R2 is a rectangle, the stiff-
ness matrices KQ1,NI

and KP1 coincide independently of the orientation of the
triangles of the mesh, as it can be checked in a straightforward manner. More-
over, denoting by LFD the classic five-point centered finite difference Laplace
approximation matrix, the identity LFD = M−1

Q1,NI
KQ1,NI

holds.

The matrix K
F E

, chosen among KQ1, KQ1,NI
and KP1 , may be used to

precondition system (4) in weak form; the matrix M−1
F E
K

F E
, with M

F E
chosen

among MQ1 , MQ1,NI
and MP1 may be invoked to precondition system (6) in

strong form, while the matrix M−1/2
F E

K
F E
M−1/2

F E
may be useful to precondition

system (7) in symmetrized-strong form.
We introduce the space QN (Ω) of algebraic polynomials defined on Ω, of de-

gree ≤ N in each direction (a possible basis for QN is given by the characteristic
Lagrange functions ψj associated to all nodes of the LGL grid); the space Vh of
continuous functions on Ω which are d-linear on each d−interval R induced by
the LGL mesh of Ω (the functions ϕj associated to all nodes of the LGL grid
form a basis for Vh); the space Wh of continuous functions on Ω which are linear
on each simplex T induced by the LGL mesh of Ω (the functions ϕ̃j associated
to all nodes of the LGL grid form a basis for Wh). V 0

h and W 0
h will denote the

subspaces of Vh and Wh, respectively, of vanishing functions at the boundary
∂Ω.

For any v
N
∈ QN (Ω) we denote by vh ∈ Vh the continuous piecewise d-linear

interpolation of v
N

at LGL nodes. It is well known ([4, 21]) that v
N

and vh

are linked together by an algebraic interpolation isomorphism. Moreover, for
d = 2, 3 and for any v

N
∈ QN (Ω) we will denote by wh ∈ Wh the continuous

piecewise linear interpolation of v
N

at LGL nodes. Even if, for any given N , the
nodes of the mesh in Ω are uniquely defined, the mesh of simplexes T is not, as
we have discussed above. This implies that wh will depend on the mesh chosen.
For a fixed mesh, wh and v

N
(and then also wh and vh) are linked together by

an algebraic interpolation isomorphism.

8

For any N ≥ 2, given v
N

∈ Q0
N (Ω) (or equivalently either vh ∈ V 0

h or

wh ∈ W 0
h), v ∈ R(N−1)d

will be the array whose components are the values
v

N
(xj) = vh(xj) = wh(xj) at the interior LGL nodes xj .

3 Preconditioners

The finite-element matrices introduced above can be suitably combined to pro-
duce preconditioned matrices and systems in order to solve (8). We will denote
by H any preconditioning matrix for the spectral matrix L which appears in (8),
so that the corresponding (left) preconditioned system will be

H−1Lũ = H−1f̃ . (16)

In the sequel we will set P = H−1L.
We have considered eleven possible expressions for P , which, for the readers

convenience, are listed in Table 1 (a subset of these combinations was already
reported in [5]). Three preconditioned matrices, named as Pw

Q1
, Pw

Q1,NI
and

Pw
P1

, are based on the weak form (4); three others, named as P s
Q1
, P s

Q1,NI
and

P s
P1

, are based on the strong form (6); finally, five preconditioners, named as

P ss,rt
Q1

, P ss,ch
Q1

, P ss,rt
Q1,NI

, P ss,ch
P1

, and P ss,rt
P1

, are symmetrized forms of the previous

strong preconditioners. In particular, P ss,rt
Q1

and P ss,ch
Q1

are two symmetrized

version of P s
Q1

, which differ from each other in the computation of (MQ1)
−1/2,

as we are going to explain.
For any s.p.d. matrix B, its square root B1/2 can be expressed as B1/2 =

WΛ1/2W T , where Λ and W denote respectively the matrices of eigenvalues and
eigenvectors of B. The matrix P ss,rt

Q1
is defined starting from the square root of

M−1
Q1

, computed in this way. However, when the computation of both Λ and W
becomes too expensive, as an alternative to diagonalization, one can employ the
Cholesky decomposition of B, namely B = BChB

T
Ch, with BCh lower triangular;

then, BCh replaces B1/2. The matrix P ss,ch
Q1

is defined accordingly. The matrix

P ss,rt
Q1,NI

is the symmetrized version of P s
Q1,NI

(in this case MQ1,NI
is diagonal

with positive entries and (M
−1/2
Q1,NI

)ii = (M−1
Q1,NI

)
1/2
ii), while P ss,rt

P1
and P ss,ch

P1

are symmetrized versions of P s
P1

(again based either on the square root or the
Cholesky factor of (MP1)

−1, respectively).

4 Condition number analysis

We first examine the iterative condition number of all the preconditioned ma-
trices defined in (18)–(28). In order to simplify the exposition, matrices Pw

Q1
,

Pw
Q1,NI

and Pw
P1

will be referred to as weak matrices, P s
Q1

, P s
Q1,NI

and P s
P1

as

strong matrices and P ss,rt
Q1

, P ss,ch
Q1

, P ss,rt
Q1,NI

, P ss,rt
P1

, P ss,ch
P1

as symmetrized-strong
matrices.

9

Table 1: Preconditioned matrices and associated transformed linear systems P ũ = f̃ for (4) and (6). [with B−T = (BT)−1]

P = H−1L H (preconditioner) L (spectral matrix) ũ f̃ (17)

Pw
Q1

KQ1 K
GNI

u M
GNI

f (18)

P s
Q1

(MQ1)
−1KQ1 (M

GNI
)−1K

GNI
u f (19)

Pw
Q1,NI

KQ1,NI
K

GNI
u M

GNI
f (20)

P s
Q1,NI

(MQ1,NI
)−1KQ1,NI

(M
GNI

)−1K
GNI

u f (21)

P ss,rt
Q1

(MQ1)
−1/2KQ1(MQ1)

−1/2 (M
GNI

)−1/2K
GNI

(M
GNI

)−1/2 (M
GNI

)1/2u (M
GNI

)1/2f (22)

P ss,ch
Q1

(MQ1,Ch
)−1KQ1(MQ1,Ch

)−T (M
GNI

)−1/2K
GNI

(M
GNI

)−1/2 (M
GNI

)1/2u (M
GNI

)1/2f (23)

P ss,rt
Q1,NI

(MQ1,NI
)−1/2KQ1,NI

(MQ1,NI
)−1/2 (M

GNI
)−1/2K

GNI
(M

GNI
)−1/2 (M

GNI
)1/2u (M

GNI
)1/2f (24)

Pw
P1

KP1 K
GNI

u M
GNI

f (25)

P s
P1

(MP1)
−1KP1 (M

GNI
)−1K

GNI
u f (26)

P ss,rt
P1

(MP1)
−1/2KP1(MP1)

−1/2 (M
GNI

)−1/2K
GNI

(M
GNI

)−1/2 (M
GNI

)1/2u (M
GNI

)1/2f (27)

P ss,ch
P1

(MP1,Ch
)−1KP1(MP1,Ch

)−T (M
GNI

)−1/2K
GNI

(M
GNI

)−1/2 (M
GNI

)1/2u (M
GNI

)1/2f (28)

10

In the next subsections, we review the theoretical results concerning weak
and strong matrices. The symmetrized-strong matrices are similar to s.p.d.
matrices, hence their eigenvalues are all real positive. No other theoretical result
is available so far, so we refer to Section 4.3 for numerical results.

4.1 Weak matrices

We begin by considering weak matrices. Pw
Q1

, Pw
Q1,NI

and Pw
P1

have real positive
eigenvalues, being products of two s.p.d. matrices. We start with Pw

Q1
and

Pw
Q1,NI

.
In order to analyze their iterative condition numbers we note that, since Ω

is a cartesian product of intervals, we can express both multidimensional mass
and stiffness matrices, based on either Q1, Q1,NI or QN , as Kronecker product
of one-dimensional matrices; the latter will be denoted by the super-index “(1)”.

By recalling that K
(1)
Q1,NI

≡ K
(1)
Q1

and that Ω is a cartesian product of intervals,
the following identities hold for d = 2:

KQ1 = M
(1)
Q1

⊗K
(1)
Q1

+K
(1)
Q1

⊗M
(1)
Q1
, (29)

KQ1,NI
= M

(1)
Q1,NI

⊗K
(1)
Q1

+K
(1)
Q1

⊗M
(1)
Q1,NI

(30)

K
GNI

= M (1)
GNI

⊗K(1)
GNI

+K(1)
GNI

⊗M (1)
GNI

, (31)

and for d = 3

KQ1 = M
(1)
Q1

⊗M
(1)
Q1

⊗K
(1)
Q1

+M
(1)
Q1

⊗K
(1)
Q1

⊗M
(1)
Q1

+K
(1)
Q1

⊗M
(1)
Q1

⊗M
(1)
Q1

KQ1,NI
= M

(1)
Q1,NI

⊗M
(1)
Q1,NI

⊗K
(1)
Q1

+M
(1)
Q1,NI

⊗K
(1)
Q1

⊗M
(1)
Q1,NI

+K
(1)
Q1

⊗M
(1)
Q1,NI

⊗M
(1)
Q1,NI

K
GNI

= M (1)
GNI

⊗M (1)
GNI

⊗K(1)
GNI

+M (1)
GNI

⊗K(1)
GNI

⊗M (1)
GNI

+K(1)
GNI

⊗M (1)
GNI

⊗M (1)
GNI

,

where ⊗ denotes the Kronecker product of matrices, that is the block Cij of
C = A⊗B is given by Cij = aijB.

We will use the following well-known property, see, e.g., [5, Ch. 7]: if Ai, Bi,
i = 1, 2, are s.p.d. matrices of order n such that

vTAiv ≤ αiv
TBiv for all v ∈ Rn,

for suitable choice of real positive coefficients α1, α2, then one has

vT (A1 ⊗A2)v ≤ α1α2v
T (B1 ⊗B2)v for all v ∈ Rn2

. (32)

Henceforth, the bounds on multidimensional stiffness matrices immediately fol-
low from bounds on one-dimensional matrices.

11

By definition (14), the non zero entries of M
(1)
Q1,NI

are the weights of the

composite trapezoidal rule, i.e. (M
(1)
Q1,NI

)ii =
xi+1 − xi−1

2
, for i = 1, . . . ,N − 1,

so that the following lemma is a direct consequence of a result established in [22,
formulas (2.44), (2.49)]:

Lemma 4.1 There exist two positive constants c0, c1 independent of N such
that, for any N ≥ 2, it holds

c0v
TM

(1)
Q1,NI

v ≤ vTM (1)
GNI

v ≤ c1v
TM

(1)
Q1,NI

v ∀v ∈ RN−1. (33)

Numerical results show that c1/c0 ≤ 1.00245.

Lemma 4.2 For any N ≥ 2

1

3
vTM

(1)
Q1,NI

v ≤ vTM
(1)
Q1

v ≤ vTM
(1)
Q1,NI

v ∀v ∈ RN−1. (34)

Proof. Let vh ∈ V 0
h . For any j = 0, . . . , N − 1, it holds

∫ xj+1

xj

v2
h(x)dx =

xj+1 − xj

3

[

vh(xj)
2 + vh(xj)vh(xj+1) + vh(xj+1)

2
]

.

Thanks to Young inequality it holds

−1

2

(

vh(xj)
2 + vh(xj+1)

2
)

≤ vh(xj)vh(xj+1) ≤
1

2

(

vh(xj)
2 + vh(xj+1)

2
)

and by summing on j we have

1

3
IT ≤

∫ 1

−1

v2
h(x)dx ≤ IT ,

where IT =

N−1
∑

j=0

xj+1 − xj

2

(

v2
h(xj) + v2

h(xj+1)
)

is the approximation of

∫ 1

−1

v2
hdx by the

trapezoidal rule. Therefore, if vh ∈ V 0
h is the piecewise linear function that interpolates

the (N − 1)-uple v at the interior LGL nodes, the thesis follows. �

Thanks to both Lemma 4.1 and Lemma 4.2 the following one is easily proved:

Lemma 4.3 For any N ≥ 2

c0v
TM

(1)
Q1

v ≤ vTM (1)
GNI

v ≤ 3c1v
TM

(1)
Q1

v ∀v ∈ RN−1, (35)

where c0 and c1 are the constants introduced in Lemma 4.1.

Now we need a result for stiffness matrices K(1)
GNI

and K
(1)
Q1

. To this aim we
recall the following property, stated in both [4] and [21]: ∃c2 > 1 independent
of N such that

‖v′
N
‖2

L2(−1,1) ≤ ‖v′h‖2
L2(−1,1) ≤ c2‖v′

N
‖2

L2(−1,1) (36)

for any v
N
∈ Q0

N (−1, 1), being vh ∈ V 0
h its piecewise linear interpolation.

The following Lemma is an immediate consequence of (36).

12

Lemma 4.4 For any N ≥ 2

1

c2
vTK

(1)
Q1

v ≤ vTK(1)
GNI

v ≤ vTK
(1)
Q1

v ∀v ∈ RN−1, (37)

where c2 is the constant introduced in (36).

Numerical results shown in the first column of Table 2 give c2 ≤ π2/4 < 2.5
We are now able to state the following result, whose proof is a consequence

of the previous Lemmas and the property stated in (32).

Theorem 4.1 For any N ≥ 2

K(Pw
Q1

) = K(K−1
Q1
K

GNI
) ≤ c2

(

3c1
c0

)d−1

, d = 1, 2, 3, (38)

K(Pw
Q1,NI

) = K(K−1
Q1,NI

K
GNI

) ≤ c2

(

c1
c0

)d−1

, d = 1, 2, 3, (39)

where c0 and c1 are the constants introduced in Lemma 4.1, while c2 is the
constant introduced in (36).

Remark 4.1 Both estimates (38) and (39) are corroborated by the numerical
results shown in Table 2 and in Figs. 4, 5. Estimates (38) and (39) predict
that the weak preconditioned matrix Pw

Q1,NI
based on the Q1,NI approach is

more efficient than that based on Q1 finite elements in terms of PCG iterations.
Moreover, recalling that c1/c0 ≃ 1 as mentioned above, we expect K(Pw

Q1,NI
) to

be basically independent of the dimension d (for values of d of practical interest),
as opposed to K(Pw

Q1
). This is confirmed by the numerical results of both Fig.

8 and Fig. 15.

At last, let us analyze the condition number of Pw
P1

. The following result will
be useful.

Lemma 4.5 Let d = 3 and let each hexahedron R be split into 6 tetrahedra as
in Fig. 2 right. Then, for any N ≥ 2

3

4
vTKP1v ≤ vTKQ1,NI

v ≤ 3

2
vTKP1v ∀v ∈ R(N−1)3 . (40)

Proof. First, we observe that

vTKP1
v = ‖∇wh‖2

L2(Ω), vTKQ1,NIv = ‖∇vh‖2
Ω,T ,

where ‖ · ‖Ω,T denotes the approximation of the L2(Ω)−norm obtained by using the
(tensorial) trapezoidal rule in each hexahedron R. Exploiting the additive property of
the (squared) norms, it is enough to establish the analogous of (40) in each element R,
i.e.,

3

4
uTKR

P1
u ≤ uTKR

Q1,NI
u ≤ 3

2
uTKR

P1
u,

13

hx

hy

hz

u1 u2

u3u4

u5 u6

u7u8

Figure 3: Vertices numbering in the reference hexahedron R

where u ∈ R8 is the vector collecting the values of v associated with the eight vertices
of R ordered as in Fig. 3, whereas KR

P1
and KR

Q1,NI
are the local stiffness matrices. A

length, but straightforward computation yields

uTKR
P1

u = ‖∇wh‖2
L2(R)

=
hyhz

6hx

[

2((u2 − u1)
2 + (u7 − u8)

2) + (u6 − u5)
2 + (u3 − u4)

2
]

+
hxhz

6hy

[

2((u8 − u5)
2 + (u3 − u2)

2) + (u4 − u1)
2 + (u7 − u6)

2
]

+
hxhy

6hz

[

2((u8 − u4)
2 + (u6 − u5)

2) + (u5 − u1)
2 + (u7 − u3)

2
]

and

uTKR
Q1,NI

u = ‖∇vh‖2
R,T

=
hyhz

4hx

[

(u2 − u1)
2 + (u7 − u8)

2 + (u6 − u5)
2 + (u3 − u4)

2
]

+
hxhz

4hy

[

(u8 − u5)
2 + (u3 − u2)

2 + (u4 − u1)
2 + (u7 − u6)

2
]

+
hxhy

4hz

[

(u8 − u4)
2 + (u6 − u5)

2 + (u5 − u1)
2 + (u7 − u3)

2
]

.

Then the result follows from a repeated application of the inequalities A2 + B2 ≤
2A2 +B2 ≤ 2(A2 +B2). �

Theorem 4.2 For any N ≥ 2,

K(Pw
P1

) ≤ σdc2

(

c1
c0

)d−1

, d = 1, 2, 3, (41)

where σ1 = σ2 = 1, σ3 = 2, c0, c1 are the constants introduced in Lemma 4.1,
while c2 is the constant introduced in (36).

Proof. When d = 1, KP1
= K

(1)
P1

= K
(1)
Q1

, hence the result follows from Lemma 4.4.
When d = 2, it holds KP1

= KQ1,NI (see Remark 2.1) so that, thanks to Theorem 4.1,
we have

K(Pw
P1

) ≤ c2
c1
c0
. (42)

14

When d = 3, Theorem 4.1 and Lemma 4.5 ensure that K(Pw
P1

) is bounded independently
of N also for the three-dimensional geometry; precisely, we have

K(Pw
P1

) ≤ K(K−1
P1
KQ1,NI)K(K−1

Q1,NI
K

GNI
) ≤ 2c2

(

c1
c0

)2

. (43)

�

Note that the bound (43) is not sharp, as shown by the numerical results of
Fig. 5.

4.2 Strong matrices

We consider now the strong matrices P s
Q1

, P s
Q1,NI

and P s
P1

. They are no longer
similar to s.p.d. matrices, nevertheless numerical evidence indicates that P s

Q1,NI

has real eigenvalues, while P s
Q1

and P s
P1

have complex eigenvalues with imaginary
parts hardly larger than one-tenth of the corresponding moduli.

For a matrix with this type of eigenstructure, the parameter

K∗ = K∗(A) =
maxi |λi(A)|
mini |λi(A)| ≃ K(AS), (44)

where AS denotes the symmetric part of A, is an effective surrogate for K(A)
as an indicator of the convergence properties of gradient-like methods. (In the
sequel, we will not usually comment on our use of this surrogate for K for those
matrices for which the surrogate is more appropriate; however, the relevant figure
labels and captions will reflect the use of the surrogate in those cases.)

Theorem 4.3 There exist two positive constants C1 and C2 independent of both
N and d(= 1, 2, 3), such that

K∗(P s
Q1

) ≤ C1, K∗(P s
Q1,NI

) ≤ C2. (45)

Proof. Let us consider the system P s
Q1

ũ = K−1
Q1
MQ1

f̃ , where

P s
Q1

= K−1
Q1
MQ1

M−1
GNI

K
GNI

. We begin to analyze the case d = 1. The eigenvalues
λi(P

s
Q1

) belong to the set

A1 =

{

z =
u∗K(1)

GNI
u

u∗M
(1)
GNI (M

(1)
Q1

)−1K
(1)
Q1

u
, ∀u ∈ Cn

}

=

{

z =
u∗K(1)

GNI
u

v∗K
(1)
Q1

u
, ∀u ∈ Cn, v = (M

(1)
Q1

)−1M (1)
GNI

u

}

,

(46)

where n = (N − 1) is the dimension of 1D matrices. In order to estimate inf
z∈A1

|z| and

sup
z∈A1

|z|, we take into account the bound (37) and the following results proved in [23]

(Theorem 3.1 and Lemmas 3.4, 3.5): there exist positive constants ci, i = 3, . . . , 7
independent of N , such that

c3v
∗K

(1)
Q1

v ≤ u∗K
(1)
Q1

u ≤ c4v
∗K

(1)
Q1

v,

c5v
∗K

(1)
Q1

v ≤ Re(v∗K
(1)
Q1

u) ≤ c6v
∗K

(1)
Q1

v, |v∗K
(1)
Q1

u| ≤ c7v
∗K

(1)
Q1

v
(47)

15

for any u ∈ Cn and v = (M
(1)
Q1

)−1M (1)
GNI

u. By (37) and (47) it holds

c3c5
c27c2

≤
c5

c2
u∗K

(1)
Q1

u

c27v
∗K

(1)
Q1

v
≤ Rez ≤ |z| ≤

u∗K
(1)
Q1

u

c5v∗K
(1)
Q1

v
≤ c4
c5
, ∀z ∈ A1 (48)

and then

K∗(P s
Q1

) ≤ c2c4c
2
7

c3c25
, for d = 1 and ∀N ≥ 2. (49)

Let us consider now the case d = 2. By recalling definitions (29) and (31) and by

writing MQ1
= M

(1)
Q1

⊗M
(1)
Q1

and M
GNI

= M (1)
GNI

⊗M (1)
GNI

, the eigenvalues of P s
Q1

belong
to the set

A2 =

{

z =
u∗KGNIu

u∗MGNIM
−1
Q1
KQ1

u
, ∀u ∈ Cn2

}

=

{

z =
v∗(D ⊗B +B ⊗D)v

v∗(C ⊗B +B ⊗ C)v
, ∀v ∈ Cn2

}
(50)

where B = M
(1)
Q1

(M (1)
GNI

)−1M
(1)
Q1
, C = K

(1)
Q1

(M (1)
GNI

)−1M
(1)
Q1

and

D = M
(1)
Q1

(M (1)
GNI

)−1K(1)
GNI

(M (1)
GNI

)−1M
(1)
Q1
.

By setting E = M
(1)
Q1

(M (1)
GNI

)−1K
(1)
Q1

(M (1)
GNI

)−1M
(1)
Q1
, estimates (47) read also

c3v
∗K

(1)
Q1

v ≤ v∗Ev ≤ c4v
∗K

(1)
Q1

v,

c5v
∗K

(1)
Q1

v ≤ Re(v∗Cv) ≤ c6v
∗K

(1)
Q1

v, |v∗Cv| ≤ c7v
∗K

(1)
Q1

v, ∀v ∈ Cn.
(51)

From (37), (32) and (51)1, the numerator of any z ∈ A2 satisfies the bounds

c3
c2

v∗(K
(1)
Q1

⊗B +B ⊗K
(1)
Q1

)v ≤ 1

c2
v∗(E ⊗B +B ⊗ E)v

≤ v∗(D ⊗B +B ⊗D)v ≤ v∗(E ⊗B +B ⊗ E)v ≤ c4v
∗(K

(1)
Q1

⊗B +B ⊗K
(1)
Q1

)v,

for any v ∈ Cn2

. About the denominator, we observe that if A, B and C are squared
matrices of size n, with A and B s.p.d, and if there exist positive constants αi s.t.
α1v

∗Av ≤ Re(v∗Cv) ≤ α2v
∗Av and |v∗Cv| ≤ α3v

∗Av, then

α1v
∗(A⊗B)v ≤ Re(v∗(C ⊗ B)v) ≤ α2v

∗(A⊗B)v, ∀v ∈ Cn2

,

|v∗(C ⊗B)v| ≤ α3v
∗(A⊗B)v, ∀v ∈ Cn2

.
(52)

The previous bounds may be proved by exploiting the fact that the eigenvectors of B
form a basis for the space Cn2

. Therefore, by (52) it follows

c5v
∗(K

(1)
Q1

⊗B +B ⊗K
(1)
Q1

)v ≤ Re(v∗(C ⊗B +B ⊗ C)v)

≤ c6v
∗(K

(1)
Q1

⊗B +B ⊗K
(1)
Q1

)v,

|v∗(C ⊗B +B ⊗ C)v| ≤ c7v
∗(K

(1)
Q1

⊗B +B ⊗K
(1)
Q1

)v

and it holds
c3c5
c27c2

≤ Rez ≤ |z| ≤ c4
c5
, ∀z ∈ A2, (53)

16

Table 2: 1D case. Iterative condition numbers of some of the preconditioned

matrices defined in Table 1 for d = 1. Note that K
(1)
Q1

= K
(1)
P1

= K
(1)
Q1,NI

and

M
(1)
Q1

= M
(1)
P1

, so that Pw
Q1

= Pw
P1

= Pw
Q1,NI

, P s
Q1

= P s
P1

and P ss,rt
Q1

= P ss,rt
P1

N Pw
Q1

P s
Q1

P s
Q1,NI

P ss,rt
Q1

P ss,rt
Q1,NI

16 2.18516 1.35975 2.18512 1.60205 2.18512

32 2.32011 1.38172 2.32010 1.59526 2.32010

48 2.36773 1.40196 2.36772 1.59491 2.36772

64 2.39207 1.41180 2.39207 1.59483 2.39207

80 2.40686 1.41813 2.40686 1.59479 2.40686

96 2.41680 1.42170 2.41680 1.59477 2.41680

112 2.42393 1.42507 2.42393 1.59476 2.42393

128 2.42930 1.42703 2.42930 1.59475 2.42930

so that (49) is true also for d = 2.
The extension to the case d = 3 can be carried out by the same technique.

If we consider now the matrix P s
Q1,NI

, we can follow the same steps explained above,

thanks to formulas (3.37a), (3.37b) in [22], which are the analogous of second and third

estimates in (47). Note that a bound like the first one in (47) immediately follows from

Lemma 4.1 and the fact that bothM
GNI

andMQ1,NI are diagonal matrices. In particular

the costants c3 and c4 in (47)1 are replaced now by 1/c21 and 1/c20, respectively, where

c0 and c1 are introduced in Lemma 4.1. �

Remark 4.2 About the matrix P s
P1

, we recall that it coincides with P s
Q1

when
d = 1. On the other hand, for d = 2, 3, both KP1 and MP1 do not feature
a tensorial structure, so that we cannot exploit anymore the same arguments
used for Q1 finite elements. Numerical results shown in Figs. 4-5 highlight that
K∗(P s

P1
) < C, with C independent of N , also for d = 2, 3, but now C slightly

grows up with d.

4.3 Numerical results

In Table 2 we report the iterative condition numbers, for d = 1, of some precon-
ditioned matrices P = H−1L defined in Table 1, while in Figs. 4 and 5 we report
the iterative condition numbers of all the preconditioned matrices P = H−1L
given in Table 1 for d = 2 and d = 3, respectively. We specify that numerical
results in Fig. 4 (in Fig. 5, resp.) for Pw

P1
, P s

P1
, P ss,rt

P1
and P ss,ch

P1
, refer to an

oriented mesh as that shown in Fig. 1 b) (in Fig. 2 right, resp.).

17

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

Pw
Q1

P s
Q1

Pw
Q1,NI

P s
Q1,NI

P ss,rt
Q1,NI

P ss,rt
Q1

P ss,ch
Q1

Pw
P1

P s
P1

P ss,rt
P1

P ss,ch
P1

N

K
(P

)

Figure 4: 2D case. Iterative condition numbers of the preconditioned matrices
(18)-(28). Curves relative to Pw

Q1,NI
, P s

Q1,NI
and P ss,rt

Q1,NI
are very close to each

other. Those relative to Pw
Q1,NI

and Pw
P1

coincide. For non s.p.d. matrices K has
been replaced by K∗. The triangles of P1 mesh are all oriented in the same way
as in Fig. 1 b).

5 10 15 20
0

5

10

15

20

N

K
(P

)

4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

N

Figure 5: 3D case. Iterative condition numbers of the preconditioned matrices
(18)-(28). The right picture is a zoom of the left one. Curves relative to Pw

Q1,NI
,

P s
Q1,NI

and P ss,rt
Q1,NI

are very close to each other. The 6-tetrahedra mesh has been
considered for those preconditioners based on P1 approximation. The symbols
used in these pictures follow the legend of Fig. 4.

18

Table 3: 2D case. Iterative condition number K∗ of the preconditioned matrices
P s

P1
, . . . , P ss,ch

P1
associated with problem (1). Oriented mesh, alternating mesh

and random mesh are considered. Stiffness matrix is invariant with respect to
mesh orientation, then K(Pw

P1
) is the same for all considered meshes.

oriented mesh alternating mesh random mesh

N P s
P1

P ss,rt
P1

P ss,ch
P1

P s
P1

P ss,rt
P1

P ss,ch
P1

P s
P1

P ss,rt
P1

P ss,ch
P1

8 2.630 2.857 4.434 3.802 15.693 13.441 3.052 5.731 6.282

16 2.698 3.027 5.265 3.943 108.238 73.647 3.199 11.311 11.468

24 2.737 3.056 5.569 4.034 439.980 275.359 3.321 25.420 23.230

32 2.751 3.075 5.769 4.106 1277.766 771.505 3.380 79.004 69.486

40 2.790 3.109 5.900 4.160 2995.229 1776.044 3.330 90.404 94.588

48 2.823 3.142 5.988 4.199 6072.810 3564.090 3.386 199.216 190.145

56 2.850 3.170 6.050 4.226 11097.759 6471.917 3.422 302.417 304.913

64 2.872 3.193 6.094 4.247 18764.135 10896.959 3.447 482.504 501.969

If d = 2, the stiffness matrix KP1 is invariant with respect to triangles ori-
entation, however this property does not hold true for the mass matrix MP1.
Consequently, the iterative condition number of the strong preconditioned ma-
trices depends on the mesh, even though it remains bounded independently of
N . In Table 3 (precisely in the left column of each column block of the table)
we show the iterative condition number K∗(P s

P1
) for three different meshes of

triangles induced by LGL nodes. The best performance is achieved when the
mesh has all triangles oriented in the same way, while the worst one is obtained
when the mesh has alternating triangles. This phenomenon can be ascribed to
the presence of Lagrange basis functions with support of different size in the
non-uniformly oriented cases.
The iterative condition number behaves in a similar manner also when d = 3
and each hexahedron induced by the LGL mesh is split in five instead of in six
tetrahedra (see Fig. 2). We have observed that the 6-tetrahedra mesh induces
the same effects as the oriented 2D mesh does, while the 5-tetrahedra mesh
induces the same effects as an alternating 2D mesh.

For any d = 1, 2, 3, all the condition numbers of both weak and strong
matrices are uniformly bounded with respect to N . The smallest one is obtained
for P s

Q1
, for any d = 1, 2, 3. The condition number of Pw

Q1
is significantly larger

than the others, for d ≥ 2, and it noticeably depends on the space dimension
d, according to the theoretical results presented in the previous Section (see
Theorem 4.1 and the subsequent Remark 4.1).

19

5 10 15 20
10

0

10
1

10
2

10
3

10
4

N

K
(P

)

5 10 15 20
0

2

4

6

8

10

N

K
(P

)

Figure 6: 3D case. Iterative condition numbers of the preconditioned matrices
Pw

P1
, P s

P1
, P ss,rt

P1
and P ss,ch

P1
for both 5-tetrahedra (left) and 6-tetrahedra (right)

mesh. The symbols used in these pictures follow the legend of Fig. 4

Concerning the symmetrized-strong matrices, numerical results (see Figure

4) show that the iterative condition number of P ss,rt
Q1

, P ss,ch
Q1

, P ss,rt
Q1,NI

are bounded
independently of N . On the contrary, when simplicial P1 finite elements are used,
two situations are faced. When d = 2, Table 3 shows that if all triangles are
oriented in the same way the iterative condition number of both P ss,rt

P1
and P ss,ch

P1

is uniformly bounded with respect to N ; on the contrary, if the rectangles are
split either randomly or with an alternating orientation, then both K(P ss,rt

P1
)

and K(P ss,ch
P1

) grow like Np, for some p ∈ [3, 4]. The latter growth has also been
observed for the 5-tetrahedra mesh when d = 3, as we can see in Fig. 6. For
this reason, in the sequel we will only consider the 6-tetrahedra mesh, for the
3D case.

4.4 Neumann boundary conditions and non-constant viscosity

Let us confine to the case d = 2. When Neumann boundary conditions are im-
posed on two consecutive edges of the boundary ∂Ω and homogeneous Dirichlet
boundary conditions are assigned on the remaining edges, the iterative condition
numbers of the strong matrices P s

Q1
, P s

Q1,NI
and P s

P1
and of the weak matrices

Pw
Q1
, Pw

Q1,NI
and Pw

P1
are again independent of the polynomial degree N . On the

contrary, the iterative condition numbers associated with all the symmetrized-
strong matrices now depend on N , precisely as N3. These results are shown in
Fig. 7 (top left).

Now we ask whether the preconditioners introduced in the previous sections
are still efficient when a variable viscosity shows up in (1). In particular we
consider the problem

−∇ · (ν∇u) = f in Ω = (−1, 1)d , u = 0 on ∂Ω , (54)

20

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

10
4

10
5

N

K
(P

)

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

9

N

K
(P

)

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

9

N

K
(P

)

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

9

10

N
K

(P
)

Figure 7: 2D case. At top left, iterative condition numbers of the preconditioned
matrices (18)-(28). Homogeneous Dirichlet boundary conditions are imposed on
two consecutive sides of ∂Ω and Neumann b.c. on the two others. At top
right and at bottom, iterative condition numbers of some of the preconditioned
matrices (18)-(28) referred to problem (54). Only weak and strong matrices
have been considered. At top right, ν(x, y) = 1 + x2y2, at bottom left ν(x, y) =
3 + sin(πx) + cos(πy), at bottom right: ν(x, y) = 1 + 3x2y2. In all cases, the
condition numbers relative to Pw

Q1,NI
, P s

Q1,NI
and Pw

P1
are very close to each

other. The symbols used here follow the legend of Fig. 4

where the viscosity ν = ν(x) satisfies ν ∈ L∞(Ω) and ν(x) ≥ ν0, ∀x ∈ Ω, for
some constant ν0 > 0.

In Fig. 7 we report the iterative condition numbers for both weak and strong
matrices relatively to three different choices of the viscosity function. As in
the constant-coefficient case, the condition numbers K(P) are always uniformly
bounded with respect to N , although the bounds are slightly larger. The specific
dependence on N becomes more apparent as the variation of ν in the domain
increases.

21

5 Performances of the preconditioners and the solu-

tion strategies

The preconditioned systems associated with either (4) or (7) can be solved by the
Preconditioned Conjugate Gradient (PCG) algorithm, whereas those associated
with (6) need a non-symmetric solver. As of the latter, the Preconditioned
Bi-CGStab (PBi-CGStab) method ([27]) is our matter of choice, however the
preconditioned GMRES method would represent a viable alternative.

Each PCG (PBi-CGStab, resp.) iteration applied to (16) requires the solu-
tion of one (two, resp.) system of the form

Hz = r , (55)

where r = r(k) = f̃ − Lũ(k) is the residual of (8) (corresponding to the k−th
iteration) and H is the preconditioning matrix. Taking into account the defini-
tions of H given in Table 1, it is readily seen that solving system (55) turns into
solving an equivalent system whose matrix is one of the finite-element stiffness
matrices KQ1 , KQ1,NI

, KP1 , while the mass matrices MQ1 , MQ1,NI
, MP1 (and, in

case, their square roots or Cholesky factors) are involved only in matrix-vector
products. Therefore, we are invariably left with the task of solving a system
with a symmetric positive definite banded matrix K

F E
.

From now on we prefer to treat the 2D and 3D cases separately.

5.1 2D case

The first element in comparing preconditioners is the number of iterations re-
quired by either PCG or PBi-CGstab to converge or, more precisely, to meet the
stopping criterion ||r(k)||H−1/||r(0)||H−1 < 10−14. The number of iterations will
affect the iterative process cost. Figure 8 reports the number of iterations needed
to solve problem (1) with f ≡ 1, with the initial guess u(0) = 0, by either PCG
or PBi-CGStab algorithm. It is interesting to note that this number decreases
for increasing N for almost all preconditioners. This because of the good choice
of the initial guess u(0) = 0, which is compatible with the Dirichlet boundary
conditions imposed in problem (1). In fact, by inspecting the coefficients of the
Legendre expansion of the initial residual r(0), one observes that they decay very
quickly for increasing wave-numbers; furthermore, the larger modal components
are associated with the lower wave-numbers. On the contrary, if the initial guess
u(0) for CG-iterations does not satisfy the Dirichlet boundary conditions for u,
which is the case if e.g. u(0) = 1, then the larger modal components of r(0) are
associated with both low and high wave-numbers. In this case the number of
PCG iterations needed to converge to a given tolerance remains nearly constant
for increasing N . A behaviour similar to the one reported in Fig. 8 is observed
if f is such that the solution u of problem (1) is infinitely smooth.

The previous results indicate that the smallest number of iterations is given
by P s

Q1
. However, such number is but one element in the evaluation of the

22

100 200 300 400 500
5

10

15

20

25

30

35

Pw
Q1

P s
Q1

Pw
Q1,NI

P s
Q1,NI

P ss,rt
Q1,NI

P ss,rt
Q1

P ss,ch
Q1

Pw
P1

P s
P1

P ss,rt
P1

P ss,ch
P1

N

It
er

at
io

n
s

Figure 8: 2D case. Number of PCG and PBi-CGStab iterations to solve problem
(1) with f ≡ 1 and u(0) = 0, for the preconditioners given by (18)–(28)

performance of an iterative method, the cost of the preprocessing and of the
single iteration being equally important factors of analysis. We will report below
numerical results concerning CPU-times for several iterative solution schemes
applied to the preconditioned systems (18)–(28).

Three different algebraic solvers have been considered to solve the system
(55):

1. the Lapack Cholesky factorization for banded matrices and subsequent
forward/backward substitutions (CHOL, in short);

2. the Preconditioned Conjugate Gradient with Relaxed Incomplete Cholesky
factorization with zero fill-in ([2, 8]) (RICCG(0), in short);

3. the HSL MA57 ([15, 13, 14, 25]) multifrontal algorithm with Nested Dis-
section ordering produced by MeTiS ([17]) (ND-MF, in short).

The Relaxed Incomplete Cholesky (RIC) factorization is an interpolated ver-
sion (by a relaxation parameter ω ∈ [0, 1]) of the Incomplete Cholesky (IC)
factorization with the Modified Incomplete Cholesky factorization fulfilling the
Row-Sum equivalence condition (RS-MIC in short). When ω = 0 RIC corre-
sponds to IC while, when ω = 1, it corresponds to RS-MIC. Note that the
matrix KFE is an M-matrix, which is a sufficient condition for the existence
of the RIC factorization with ω < 1. On the contrary, existence of RS-MIC
factorization is not guaranteed for general M-matrices and it is highly depen-
dent on the ordering of the unknowns ([8]). About the choice of the relaxation
parameter, van der Vorst [26] suggested to use ω = 0.95 in practice. Our exper-
iments show that, for 2D test cases, the choice ω = 0.95 performs better than
ω = 0 on both stiffness matrices KQ1 and KQ1,NI

= KP1 . On the other hand, for
3D problems, the choice ω = 0 guarantees more robustness to RICCG(0) than

23

100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

N

O(N3)

O(N7/2)

T
o
ta

l
C

P
U

-t
im

e
(s

e
c
)

350 400 450
10

20

30

40

50

60

70

N

T
o
ta

l
C

P
U

-t
im

e
(s

e
c
)

Figure 9: 2D case. Total CPU-time (sec) for solving (16) for the different pre-
conditioners defined in (18)–(28). CHOL is used for solving system (55). f ≡ 1
is chosen in (1) and u(0) = 0 as initial guess for either PCG or PBi-CGStab.
The right picture is a zoom of the left one. The symbols used in these pictures
follow the legend of Fig. 8

ω > 0, when applied to the stiffness matrix KQ1. From now on, the abbreviation
RICCG(0) will imply the choice ω = 0.95 for KQ1,NI

(d = 2, 3), KP1 (d = 2, 3)
and KQ1 (d = 2), and ω = 0 for KQ1 (d = 3).
Concerning the multifrontal algorithm, the indicated choice has been made after
a comparison with both HSL MA57 with Approximate Minimum Degree (AMD)
ordering and UMFPACK ([10, 9]) with AMD ordering, for its better performance
in the examined situations, particularly in the 3D case.

In order to implement each of these algebraic solvers, a preprocessing step is
needed, which includes the assembly of both K

F E
and M

F E
, the factorization of

K
F E

and, if required, the computation of either the square root of M−1
F E

or its
Cholesky factor. Besides, at each PCG iteration one matrix-vector product plus
one solution of the linear system (55) on the preconditioner are required, whereas
at each PBi-CGStab iteration two matrix-vector products plus two solutions of
the linear system (55) are required.

We have measured CPU-times in seconds on a HP xw4400 Workstation with
an Intel CoreTM 2 Duo processor E6700 2.67GHz. Both solvers CHOL and ND-
MF have been applied to all of the preconditioners (18)–(28), whereas RICCG(0)
has been applied only to (18)–(21) and (24)–(26).
The total CPU-times are shown in Fig. 9 – 11. We note that, for any choice of
the algebraic solver among CHOL, RICCG(0) and ND-MF, the fastest solution
was obtained from the preconditioned matrix Pw

Q1,NI
, which coincides with Pw

P1

(although the CPU-times are slightly different, due to different assembly oper-
ations). Remarkably, the corresponding preconditioning matrices produce the
best results without even involving the mass matrix.

The slowest solutions are those obtained using the preconditioned matrices
P ss,rt

Q1
and P ss,rt

P1
. In such cases the (soon prohibitive) major cost is due to the

24

100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

10
3

N

O(N3)

O(N7/2)
T
o
ta

l
C

P
U

-t
im

e
(s

e
c
)

350 400 450
40

60

80

100

120

140

160

N

T
o
ta

l
C

P
U

-t
im

e
(s

e
c
)

Figure 10: 2D case. Total CPU-time (sec) for solving (16) for the different
preconditioners defined in (18)–(21) and (24)–(26), RICCG(0) is used for solving
system (55). f ≡ 1 is chosen in (1) and u(0) = 0 as initial guess for either PCG
or PBi-CGStab. The right picture is a zoom of the left one. The symbols used
in these pictures follow the legend of Fig. 8

100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

N

O(N3)

O(N7/2)

T
o
ta

l
C

P
U

-t
im

e
(s

e
c
)

350 400 450
10

20

30

40

50

60

70

N

T
o
ta

l
C

P
U

-t
im

e
(s

e
c
)

Figure 11: 2D case. Total CPU-time (sec) for solving (16) for the different
preconditioners defined in (18)–(28). ND-MF is used for solving system (55).
f ≡ 1 is chosen in (1) and u(0) = 0 as initial guess for either PCG or PBi-
CGStab. The right picture is a zoom of the left one. The symbols used in these
pictures follow the legend of Fig. 8

25

evaluation of the square root of M−1
Q1

and M−1
P1

, respectively; due to their in-
efficiency, we have reported CPU-time for these two preconditioners only for
N ≤ 96 and we will not consider them in the subsequent analysis. The use
of the Cholesky factor of M−1

F E
inside the symmetrized-strong forms P ss,ch

Q1
and

P ss,ch
P1

is not as expensive as the computation of the square root of the matrix;
thus, the total CPU-times are comparable to those of the weak and strong forms
of the preconditioned system. Nevertheless, the latter choices require a wider
memory storage. Note, however, that P ss,rt

Q1,NI
, which makes use of the diagonal

mass matrix MQ1,NI
inside the symmetrized-strong form, produces good results

too.
Among the strong matrices, the best performing one (if we disregard the runs
invoking RICCG(0)) is P s

Q1,NI
thanks to the diagonal structure of the mass ma-

trix MQ1,NI
, in spite of the fact that P s

Q1
has the minimum iterative condition

number.

Remark 5.1 Within the option of using an incomplete factorization, say C, of
the finite-element stiffness matrix KFE, one could think of taking a “shortcut”,
i.e. applying the inverse of such factorization directly to the spectral stiffness
matrix KGNI . However, this strategy would be inefficient, since it would require
the evaluation of many spectral residuals, a significant burden in terms of com-
putational cost. Indeed, the iterative condition number of the preconditioned
matrix C−1KGNI is reported to satisfy K(C−1KGNI) = O(N2), implying an
O(N) number of CG iterations needed to solve system (4) in this way. One
should then perform an equivalent number of evaluations of the spectral resid-
ual, as opposed to the O(1) number for all the strategies investigated in the
sequel.

Our next aim is to compare the efficiency of the three algebraic solvers
(CHOL, RICCG(0) and ND-MF) when applied to solve the system (55). To
this aim we limit our analysis to consider only two preconditioners: Pw

Q1,NI
and

P s
Q1

, which are among the most efficient ones in terms of computational time; the
former does not need the mass matrix, while the latter does require such matrix
within an extra matrix-vector product. In view of the fact that Pw

P1
= Pw

Q1,NI

(in 2D), the same analysis done for Pw
Q1,NI

can be extended to Pw
P1

.
In Fig. 12 we directly compare the total CPU-times for Pw

Q1,NI
(left) and P s

Q1

(right) measured when we use CHOL, RICCG(0) and ND-MF. It is not surpris-
ing that the most efficient algebraic method is the multifrontal one. In general,
we can observe that the total CPU-time required by RICCG(0) is about six
to ten times that required by ND-MF, for any choice of the preconditioners
defined in (18)–(21), (24)–(28); furthermore the total CPU-time measured by
using CHOL grows faster than these two as N tends to infinity. CPU-times
exhibit a growth proportional to N3 when either RICCG(0) or ND-MF is used,
and to N7/2 when CHOL is used. A comparison between the plots on the left-

26

10
2

10
−2

10
−1

10
0

10
1

10
2

CHOL
RICCG(0)
ND−MF

N

O(N7/2)

O(N3)

C
P
U

-t
im

e
(s

e
c
)

10
2

10
−2

10
−1

10
0

10
1

10
2

CHOL
RICCG(0)
ND−MF

N

O(N7/2)

O(N3)

C
P
U

-t
im

e
(s

e
c
)

Figure 12: 2D case. Total CPU-time (sec) to solve (16) for both choices (20)
(left) and (19) (right). Either CHOL, RICCG(0) with ω = 0.95, or ND-MF are
used for solving system (55). f ≡ 1 is chosen in (1), while u(0) = 0 is the initial
guess for both PCG and PBi-CGStab.

hand side and on the right-hand side of Fig. 12 indicates that the weak-Q1,NI

preconditioner invariably outperforms the strong-Q1 one by a factor of about 2.

It is worthwhile analyzing in more details the cost of both the preprocessing
step, say CPRE, and the iterative process, say CLOOP, in terms of elementary
floating point operations versus either the polynomial degree N or the global
number of degrees of freedom n = (N − 1)2. We confine ourselves to the case
of weak and strong preconditioners (thus we do not address the symmetrized-
strong versions). CLOOP is given by the product of the number of iterations it
and the cost of a single iteration CITER. We thus have for the total cost CTOT:

CTOT = CPRE +CLOOP = CPRE + it ∗ CITER.

On the other hand, we have

CPRE = CASS + CFACT, CITER = CRHS + CSOL,

where we have used the following notations:

CASS: cost of assembling the matrices needed by the FEM preconditioner,
CFACT: cost of factorizing the stiffness matrix KFE,
CRHS: cost of forming the right hand side of the finite element system (55),
CSOL: cost of solving the finite-element system (55).

(We deliberately ignore the cost of assembling the stiffness matrix K
GNI

, which
scales as Nd+1 = N3, since it is common to all solution strategies and because
it could be avoided by exploiting the tensorial structure of the matrix in the
computation of the spectral residual.)

The cost of each stage can be related to the number of required floating point
operations, for which we now provide theoretical estimates. Extra time is spent

27

during memory access operations, whose analysis, being strictly related to the
knowledge of the specific hardware in use, will be omitted.

The assembly time CASS depends on the assembly of the stiffness matrix
KFE, which requires O(Nd) flops since the number of non-zero entries per row
is bounded independently of N . In addition, for the strong matrices, one has to
assemble the mass matrix MFE , in O(Nd) flops, and form the spectral matrix
L = M−1

GNI
K

GNI
in O(Nd+1) flops.

The factorization time CFACT depends on the iterative solver. CHOL requires
O(np2) flops, where n ≃ Nd, while p ≃ Nd−1 is the band-width of KFE; thus
CFACT = O(N3d−2). RICCG(0) requires O(1) flops per row, yielding CFACT =
O(Nd). Finally, the factorization time of ND-MF is given by CFACT = O(N3)
for d = 2 or CFACT = O(N6) for d = 3 [1].

The cost CRHS depends on the cost of forming the spectral residual r(k) = f−
Lu(k), which requires O(Nd+1) flops. In addition, for the strong preconditioners,
we have to account for a matrix-vector product by MFE, which costs O(Nd)
flops. In any case, this stage requires O(Nd+1) flops.

At last, let us investigate CSOL. CHOL costs 2n(2p + 1) flops, where n and
p have the same meaning as above, yielding CSOL = O(N2d−1). Concerning
RICCG(0), each inner iteration requires O(Nd) flops; on the other hand the
condition number of the preconditioned matrix C−1KFE, where C−1 stands for
the RICCG(0)-preconditioning, satisfies (experimentally) K(C−1KFE) = O(N)
for small to moderate values of N and K(C−1KFE) = O(N2) in the asymptotic
regime, as opposed to K(KFE) = O(N3) = K(K

GNI
). Recalling the convergence

rate of the Conjugate-Gradient method, which is proportional to the inverse of
√

K(C−1KFE), we obtain that the number of RICCG(0)-iterations needed to
reduce the residual to machine accuracy scales with

√
N in the first case and

with N in the second one, therefore in the asymptotic regime CSOL = O(Nd+1)
for RICCG(0). This is confirmed by Fig. 13. The same figure also displays
a comparison between the choices ω = 0.95 and ω = 0 inside RICCG(0); we
can deduce that the former is 1/3 less expensive than the latter. Concerning
ND-MF, the cost of backward/forward solution is proportional to the fill-in and
therefore given by CSOL = O(N2 logN) for d = 2 or CSOL = O(N4) for d = 3
[1].

Finally, as seen above, for both preconditioners here considered, the number
of iterations needed to solve (55) to machine accuracy is it = O(1), precisely in
the order of 10, and actually it is a decreasing function of N for certain initial
guesses u(0).

The individual theoretical bounds presented so far can be combined to pro-
duce bounds for the intermediate costs CPRE and CLOOP and for the total cost
CTOT. Table 4 collects all these results for the strategies under investigation
(the terms weak and strong refer to the Pw

Q1,NI
and P s

Q1
preconditioned matrices,

respectively). The cost of each stage is described as cNα, where α is drawn
from the previous discussion; obviously, this is the leading term in the expan-

28

10
1

10
2

10
3

10
2

10
3

H = KQ1 , ω = 0
H = KQ1,NI

, ω = 0
H = KQ1, ω = 0.95
H = KQ1,NI

, ω = 0.95

N

N

√
NIt

er
at

io
n
s

Figure 13: 2D case. Number of RICCG(0) iterations to solve the system
(55) with either H = KQ1 or H = KQ1,NI

. ω is the relaxation parameter of
RICCG(0).

sion of each cost with respect to N , i.e., it represents the expected asymptotic
behaviour as N → ∞. The theoretical results are compared, in the same Table
4, to the actual results of our experiments, which are reported below them. For
each stage, we have computed a least-square fit of a law like cNα, for N in the
range [32, 448], of the values indicated in Fig. 9 - 11 for the total CPU-times, as
well as of the measured intermediate CPU-times of the partial steps.

The results indicate a good agreement between theory and experiments.
They also confirm and provide better evidence to the ranking among the meth-
ods expressed by Fig. 12. It is worth noticing that the measured exponent of
CLOOP is higher than the one predicted by the theory; this phenomenon has to
be ascribed to the growth of the CPU-time needed for the spectral residual eval-
uation. Indeed, for N large enough, memory access costs become predominant
over floating point operations costs, yielding an overall O(N4) cost for this stage,
as opposed to the O(N3) estimate based only on flops considerations. Fig. 14
(top left) clearly documents this behaviour.

Another useful information which can be drawn from Table 4, concerns the
ratio between preprocessing cost and total cost for the different strategies. A
complementary picture is provided by Fig. 14, where the results for all precon-
ditioners are shown. Both theory and experiments indicate that this ratio tends
to 1 for CHOL (with values between 0.4 and 0.6 in the explored range of N),
whereas it tends to 0 for RICCG(0) (with values between 0.06 down to 0.01 and
below). There is evidence of the decay of such ratio also for ND-MF, although
less pronounced than for RICCG(0).

The conclusion of the 2D investigation is that the weak Q1,NI preconditioning
approach coupled with the Multifrontal solver for the FEM system allows one
to compute the solution of the spectral system (4) with a total cost which scales
as nβ in the number n ≃ N2 of d.o.f.’s, β being slightly less than 3/2; this result

29

Table 4: 2D case. Theoretical (upper rows of each case) and measured (lower
rows) costs of the various stages of the iterative solution scheme, versus N

CPRE CLOOP CTOT

= CASS + CFACT = it ∗ (CRHS + CSOL)

CHOL

weak
cAN

2 + cFN
4 cRN

3 + cSN
3 cTN

4

3 · 10−9N3.72 5 · 10−8N3.16 2 · 10−8N3.46

strong
cAN

3 + cFN
4 cRN

3 + cSN
3 cTN

4

8 · 10−9N3.59 7 · 10−8N3.19 5 · 10−8N3.38

RICCG(0)

weak
cAN

2 + cFN
2 cRN

3 + cSN
3 cTN

3

3 · 10−6N1.93 2 · 10−7N3.25 2 · 10−7N3.24

strong
cAN

3 + cFN
2 cRN

3 + cSN
3 cTN

3

2 · 10−7N2.67 3 · 10−7N3.21 3 · 10−7N3.19

ND-MF

weak
cAN

2 + cFN
3 cRN

3 + cSN
2 logN cTN

3

1 · 10−6N2.43 5 · 10−8N3.11 2 · 10−7N2.90

strong
cAN

3 + cFN
3 cRN

3 + cSN
3 logN cTN

3

8 · 10−7N2.59 3 · 10−8N3.29 2 · 10−7N2.99

holds in the range 2 ≤ N ≤ 448 at least.

5.2 3D case

We consider again the model problem (1) with f ≡ 1. In Fig. 15 we report the
number of iterations needed to meet the stopping criterion ||r(k)||H−1/||r(0)||H−1 <
10−14 with the initial guess u(0) = 0, whose behaviour agrees with that of the
iterative condition numbers reported in Fig. 5. In particular, the number of
iterations is independent of N for all preconditioners.

The high sparsity of both mass and stiffness finite-element matrices for 3D
computational domains has induced us to solve system (55) by either RICCG(0)
or ND-MF, with the exclusion of CHOL.
As done for the 2D case, we firstly compare the total CPU-times needed to solve
system (16), see Fig. 16 and Fig. 17. For both cases, the fastest solution was ob-
tained from the preconditioned matrix Pw

Q1,NI
, although also P s

Q1,NI
and P ss,rt

Q1,NI

are very competitive. These results reflect what happens in the 2D case. On the
contrary, if we compare RICCG(0) and ND-MF for the best performing precon-
ditioned matrix Pw

Q1,NI
, we find that RICCG(0) performs better than ND-MF.

In particular for N = 48, the total CPU-time needed to solve (55) with Pw
Q1,NI

is about 11 sec when RICCG(0) is used, while it is about 42 sec when ND-MF
is used, reversing what happens in the 2D case.

30

100 200 300 400 500
10

−3

10
−2

10
−1

10
0

C
P

U
T

im
e(

se
c)

N

O(N4)
O(N3)

100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

N

p
re

p
ro

ce
ss

in
g/

to
ta

l
100 150 200 250 300 350 400 450 500

0

0.01

0.02

0.03

0.04

0.05

0.06

N

p
re

p
ro

ce
ss

in
g/

to
ta

l

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

N
p
re

p
ro

ce
ss

in
g/

to
ta

l

Figure 14: 2D case. At top left, CPU-times needed for evaluating one spectral
residual r(k) = f̃ − Lũ(k). At top right and at bottom, the part of the total
CPU-time required by the preprocessing step when either CHOL (top right),
RICCG(0) (bottom left) or ND-MF (bottom right) is used to solve (55). CPU-
times shown in Fig. 9 and Fig. 10 have been considered to compute the per-
centages shown here. The symbols used in these pictures follow the legend of
Fig. 8

10 20 30 40 50

10

20

30

40

50

Pw
Q1

P s
Q1

Pw
Q1,NI

P s
Q1,NI

P ss,rt
Q1,NI

P ss,rt
Q1

P ss,ch
Q1

Pw
P1

P s
P1

P ss,rt
P1

P ss,ch
P1

N

It
er

at
io

n
s

Figure 15: 3D case. Number of PCG and PBi-CGStab iterations to solve prob-
lem (1) with f ≡ 1 and u(0) = 0, for the preconditioners defined in (18)–(28).

31

10 20 30 40 50
10

−2

10
−1

10
0

10
1

10
2

N

O(N9/2)

O(N4)

T
o
ta

l
C

P
U

-t
im

e
(s

e
c
)

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

N

T
o
ta

l
C

P
U

-t
im

e
(s

e
c
)

Figure 16: 3D case. Total CPU-time (sec) for solving (16) for the different
preconditioners defined in (18)–(21) and (24)–(26). RICCG(0) (with ω = 0.95
when either H = KQ1,NI

or H = KP1, and ω = 0 when H = KQ1) is used for
solving system (55). f ≡ 1 is chosen in (1) and u(0) = 0 as initial guess for
either PCG or PBi-CGStab. The right picture is a zoom of the left one. The
symbols used in these pictures follow the legend of Fig. 15

By using the notations introduced in the previous section and by recalling
the theoretical flops count of the various stages, expressed as function of both
the polynomial degree N and the geometric dimension d, we can estimate the
computational cost of our preconditioning approaches also for the 3D cases. In
Table 5 we exhibit the theoretical flops counts (upper rows) and the actual
results of our experiments (lower rows) for both the weak preconditioned matrix
Pw

Q1,NI
and the strong one P s

Q1
. The least-square fits have been performed with

N in the range [4, 48]. Again, a fairly good agreement between prediction and
observation is obtained.

In Fig. 18 the cost of the preprocessing step over the total CPU-time is
shown. When ND-MF is used (see Fig. 18, right), the preprocessing step in-
creasingly dominate the total computational time. Numerical results indicate
that the overall cost of the preprocessing step almost invariably takes more than
50 percent of the total solution cost and it grows with N up to 90 percent in
the range of N under consideration. About the preconditioned matrices P ss,rt

Q1

and P ss,rt
P1

, we note that the computation of the square root of both mass matri-

ces M−1
Q1

and M−1
P1

is very expensive so that the resulting strategies are greatly
inefficient. On the contrary, when RICCG(0) is used (see Fig. 18, left), the
iterative stage is the most expensive one. The preprocessing step takes at most
30 percent of the total CPU-time and its cost decreases for increasing N . This
is in agreement with the results of Table 5, columns one and two.

Finally the bottom picture of Fig. 18 shows the CPU-times needed to eval-
uate the spectral residual and the CPU-times needed to solve system (55) with
RICCG(0) for both weak Pw

Q1,NI
and strong P s

Q1
approaches. As for the 2D case,

32

10 20 30 40 50
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

C
P

U
tim

e
(s

ec
)

N

O(N6)

O(N7)

10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

C
P

U
tim

e
(s

ec
)

N

Figure 17: 3D case. Total CPU-time (sec) for solving (16) for the different
preconditioners defined in (18)–(28). ND-MF is used for solving system (55).
f ≡ 1 is chosen in (1) and u(0) = 0 as initial guess for either PCG or PBi-
CGStab. The right picture is a zoom of the left one. The symbols used in these
pictures follow the legend of Fig. 15

Table 5: 3D case. Theoretical (upper rows of each case) and measured (lower
rows) costs of the various stages of the iterative solution scheme, versus N .

CPRE CLOOP CTOT

= CASS + CFACT = it ∗ (CRHS + CSOL)

RICCG(0)

weak
cAN

3 + cFN
3 cRN

4 + cSN
4 cTN

4

5 · 10−6N3.04 2 · 10−6N4.13 2 · 10−6N3.95

strong
cAN

4 + cFN
3 cRN

4 + cSN
4 cTN

4

1 · 10−5N3.08 7 · 10−7N4.53 1 · 10−6N4.36

ND-MF

weak
cAN

3 + cFN
6 cRN

4 + cSN
4 cTN

6

4 · 10−9N5.90 2 · 10−7N4.30 2 · 10−8N5.53

strong
cAN

4 + cFN
6 cRN

4 + cSN
4 cTN

6

6 · 10−8N5.31 2 · 10−7N4.42 7 · 10−8N5.30

33

10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N

p
re

p
ro

ce
ss

in
g/

to
ta

l

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

N

p
re

p
ro

ce
ss

in
g/

to
ta

l
10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

10
1

C
P

U
−

tim
e(

se
c)

N

O(N5)

O(N4)

Figure 18: 3D case. At top, the part of the total CPU-time required by the
preprocessing step when either RICCG(0) (at left) or ND-MF (at right) solver
is used to solve (55). CPU-times shown in Fig. 16 and 17 have been considered.
The symbols used in these pictures follow the legend of Fig. 15. At bottom, the
CPU-times needed for evaluating one spectral residual r(k) = f̃ − Lũ(k) (⋆) and
for implementing the iterative RICCG(0) solution of (55), the symbol • refers
to the choice H = M−1

Q1
KQ1 , while � refers to H = KQ1,NI

the measured CPU-time needed to evaluate one spectral residual grows more
rapidly than the theoretical estimate (it is an O(Nd+1) rather than O(Nd)),
due to memory access overhead; and this sensibly affects the cost of both the
iteration step and the global solution stage.

6 Conclusions

We have considered the approximation by spectral methods of the Laplace equa-
tion −∆u = f with Dirichlet boundary conditions in Ω ⊂ Rd with d = 2, 3. We
also address the case of an elliptic operator with variable coefficients, as well as
the case of Neumann boundary conditions. Both strong (i.e. collocation based
on Legendre-Gauss-Lobatto nodes) and weak (i.e. Galerkin with Legendre-
Gauss-Lobatto Numerical Integration) approaches have been taken into account
to build up spectral matrices. We have also considered symmetrized-strong pre-

34

conditioners in order to take advantage of algebraic solvers for s.p.d. matrices.
Eleven different kind of finite element preconditioners have been considered,
based on either P1 or Q1 or Q1,NI (i.e. Q1 with Numerical Integration) shape
functions. Vertices of finite-element meshes coincide with the Legendre-Gauss-
Lobatto quadrature nodes used for the primal spectral approximation.

The preconditioner based on Q1-FEM approach for the strong form of the
primal spectral approximation gives the smallest condition number. Neverthe-
less, if we measure preconditioner efficiency in terms of memory storage and
CPU-time, the best performance is obtained for weak and strong precondi-
tioners based on Q1,NI -FEM approach, for both 2D and 3D geometries. The
efficiency of P1 preconditioners depends on the kind of mesh on which they are
built on, or, more precisely, on grid orientation. Our analysis highlights iterative
strategies for solving (4) or (6) whose overall cost scales as nβ, with β slightly
less than 3/2 (in 2D) and 4/3 (in 3D), in the total number n of d.o.f.’s (explored
up to some O(105)).

Acknowledgements

We warmly thank Dr. Mario Arioli for his advise and help on the use of multi-
frontal direct solvers.

References

[1] M. Arioli, 2008. Personal communication.

[2] O. Axelsson and G. Lindskog, On the eigenvalue distribution of a class
of preconditioning methods, Numer. Math., 48 (1986), pp. 479–498.

[3] C. Bernardi and Y. Maday., Approximations Spectrales de Problèmes
aux Limites Elliptiques, Springer Verlag, Paris, 1992.

[4] C. Canuto, Stabilization of spectral methods by finite element bubble func-
tions, Comput. Methods Appl. Mech. Engrg., 116 (1994), pp. 13–26.

[5] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spec-
tral Methods. Fundamentals in Single Domains , Springer, Heidelberg, 2006.

[6] C. Canuto and A. Quarteroni, Preconditioned minimal residual meth-
ods for Chebyshev spectral calculations, J. Comput. Phys., 60 (1985),
pp. 315–337.

[7] M.A. Casarin, Quasi-optimal Schwarz methods for the conforming spectral
element discretization, SIAM J. Numer. Anal., 34 (1997), pp. 2482–2502.

35

[8] T.F. Chan and H.A. van der Vorst, Approximate and incomplete fac-
torizations, in Parallel numerical algorithms (Hampton, VA, 1994), vol. 4,
Kluwer Acad. Publ., Dordrecht, 1997, pp. 167–202.

[9] T.A. Davis, UMFPACK Version 5.0.1, tech. report, University of Florida,
Gainesville, FL, 2006.

[10] Timothy A. Davis and Iain S. Duff, A combined unifrontal/multifrontal
method for unsymmetric sparse matrices, ACM Trans. Math. Software, 25
(1999), pp. 1–20.

[11] M.O. Deville and E.H. Mund, Chebyshev pseudospectral solution of
second-order elliptic equations with finite element preconditioning, J. Com-
put. Phys., 60 (1985), pp. 517–533.

[12] , Finite element preconditioning for pseudospectral solutions of elliptic
problems, SIAM J. Sci. Stat. Comput., 11 (1990), pp. 311–342.

[13] I.S. Duff, MA57—a code for the solution of sparse symmetric definite and
indefinite systems, ACM Trans. Math. Software, 30 (2004), pp. 118–144.

[14] I.S. Duff and S. Pralet, Strategies for scaling and pivoting for sparse
symmetric indefinite problems, SIAM J. Matrix Anal. Appl., 27 (2005),
pp. 313–340 (electronic).

[15] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse
symmetric linear equations, ACM Trans. Math. Software, 9 (1983), pp. 302–
325.

[16] P. F. Fischer, An overlapping Schwarz method for spectral element solu-
tion of the incompressible Navier-Stokes equations, J. Comput. Phys., 133
(1997), pp. 84–101.

[17] MeTiS, a software package for partitioning unstructured graphs, partitioning
meshs, and computing fill-reducing orderings of sparse matrices. G. Karypis
Lab, http://glaros.dtc.umn.edu/gkhome/views/metis.

[18] P. Haldenwang, G. Labrosse, S. Abboudi, and M. Deville, An
element-by-element solution algorithm for problems of structural and solid
mechanics, Comput. Meth. Appl. Mech. Engrg., 36 (1983), pp. 241–254.

[19] J.M. Melenk, On condition numbers in hp-FEM with Gauss-Lobatto-based
shape functions, J. Comput. Appl. Math., 139 (2002), pp. 21–48.

[20] S.A. Orszag, Spectral methods for problem in complex geometries, J. Com-
put. Phys., 37 (1980), pp. 70–92.

36

[21] S.V. Parter and E.E. Rothman, Preconditioning Legendre spectral col-
location approximations to elliptic problems, SIAM J. Numer. Anal., 32
(1995), pp. 333–385.

[22] Seymour V. Parter, Preconditioning Legendre spectral collocation meth-
ods for elliptic problems. I. Finite difference operators, SIAM J. Numer.
Anal., 39 (2001), pp. 330–347.

[23] , Preconditioning Legendre spectral collocation methods for elliptic
problems. II. Finite element operators, SIAM J. Numer. Anal., 39 (2001),
pp. 348–362.

[24] A. Quarteroni and E. Zampieri, Finite element preconditioning for Leg-
endre spectral collocation approximation to elliptic equations and systems,
SIAM J. Numer. Anal., 29 (1992), pp. 917–936.

[25] Hsl, a collection of fortran codes for large-scale scientific computation. Sci-
ence and Technology Facilities Council, http://hsl.rl.ac.uk/hsl2007.

[26] H.A. van der Vorst, High performance preconditioning, SIAM J. Sci.
Statist. Comput., 10 (1989), pp. 1174–1185. Sparse matrix algorithms on
supercomputers.

[27] Henk A. van der Vorst, Iterative Krylov methods for large linear sys-
tems, vol. 13 of Cambridge Monographs on Applied and Computational
Mathematics, Cambridge University Press, Cambridge, 2003.

37

MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

04/2009 C. Canuto, P. Gervasio, A. Quarteroni:
Finite-Element Preconditioning of G-NI Spectral Methods

03/2009 M. D’Elia, L. Dedé, A. Quarteroni:
Reduced Basis Method for Parametrized Differential Algebraic Equa-
tions

02/2009 L. Bonaventura, C. Biotto, A. Decoene, L. Mari, E. Miglio:
A couple ecological-hydrodynamic model for the spatial distribution of
sessile aquatic species in thermally forced basins

01/2009 E. Miglio, C. Sgarra:
A Finite Element Framework for Option Pricing the Bates Model

28/2008 C. D’Angelo, A. Quarteroni:
On the coupling of 1D and 3D diffusion-reaction equations. Applica-
tions to tissue perfusion problems

27/2008 A. Quarteroni:
Mathematical Models in Science and Engineering

26/2008 G. Aletti, C. May, P. Secchi:
A Central Limit Theorem, and related results, for a two-randomly re-
inforced urn

25/2008 D. Detomi, N. Parolini, A. Quarteroni:
Mathematics in the wind

24/2008 V. Bacchelli, A. Veneziani, S. Vessella:
Corrosion detection in a 2D domain with a polygonal boundary

23/2008 S. Hysing, S Turek, D. Kuzmin, N. Parolini, E. Burman, S.
Ganesan, L. Tobiska:
Quantitative benchmark computations of two-dimensional bubble dy-
namics

