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Abstract

Let
q

L= Z aij(w)Xin + ag (33') Xo,
i,j=1
where Xo, X1, ..., X4 are real smooth vector fields satisfying Hérmander$
condition in some bounded domain  C R" (n > g + 1), the coeffi cients
a;j = aji,ap are real valued, bounded measurable functions defined in £,
satisfying the uniform positivity conditions:

plél? < > an(@)6s < p P p<ao () <pt

4,j=1

for a.e. x € Q, every £ € R?, some constant p > 0.

We prove that if the coeffi cientsa;j,ao belong to the Holder space
C% () with respect to the distance induced by the vector fields, then
local Schauder estimates of the following kind hold:

XXl gy + 1 Xoull g ) < ¢ {1Lullcg oy + 1l o o) }
for any Q' € Q;
if the coeffi cientsu;;, ap belong to the space VM Ox 100 (2) with respect

to the distance induced by the vector fields, then local L? estimates of the
following kind hold, for every p € (1, 00):

||XinUHLp(Q/) + HXOuHLP(Q’) < C{HLUHLP(Q) + ”uHLP(Q)} :

*2000 AMS Classification: Primary 35H20. Secondary: 35B45, 42B20, 53C17. Key-
words: Hormander$ vector fields, Schauder estimates, LP estimates, drift
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1 Introduction

Let us consider a family of real smooth vector fields

n

X, = Zbij (1‘)8%., i=0,1,2,....q

j=1

(¢g+ 1 < n) defined in some bounded domain Q of R™ and satisfying Hérman-
ders condition: the Lie algebra generated by the X;$ at any point of {2 span



R™. Under these assumptions, Hérmander$ operators

q

i=1

have been studied since the late 19605. Hormander [20] proved that L is hy-
poelliptic, while Rothschild-Stein [25] proved that for these operators a priori
estimates of LP type for second order derivatives with respect to the vector fields
hold, namely:

q q
D 1K Xull Loy I Xoull o gy < C{|£“||LP(Q) + ooy + D 1 Xl oo
i,j=1 i=1

(1.1)
for any p € (1,00),Q € Q.

Note that the “drift’vector field X, has weight two, compared with the vec-
tor fields X; for i = 1,2, ...,q. For operators without the drift term (“sum of
squares” of Hormander type) many more results have been proved in the liter-
ature than for complete Hérmander$ operators. On the other hand, complete
operators owe their interest, for instance, to the class of Kolmogorov-Fokker-
Planck operators, naturally arising in many fields of physics, natural sciences
and finance, as the transport-diffusion equations satisfied by the transition prob-
ability density of stochastic systems of O.D.E.s which describe some real system
led to a basically deterministic law perturbed by some kind of white noise. The
study of Kolmogorov-Fokker-Planck operators in the framework of Hérmanders
operators received a strong impulse by the paper [22] by Lanconelli-Polidoro,
which started a lively line of research. We refer to [21] for a good survey on
this field, with further motivations for the study of these equations and related
references.

Let us also note that the study of Hérmander$ operators is considerably
easier when L is left invariant with respect to a suitable Lie group of translations
and homogeneous of degree two with respect to a suitable family of dilations
(which are group automorphisms of the corresponding group of translations).
In this case we say that £ has an underlying structure of homogeneous group
and, by a famous result due to Folland [16], £ possesses a homogeneous left
invariant global fundamental solution, which turns out to be a precious tool in
proving a priori estimates.

In the last ten years, more general classes of nonvariational operators struc-
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tured on Hérmander$ vector fields have been studied, namely

q
i,7=1
q
L= Z (%%] (x) XZX] - (9,5 (13)
i,7=1
q
L= ai(z) X;X; + ao () Xo (1.4)
i,7=1

where the matrix {a;; ()} ._, is symmetric positive defiite, the coeffi cients

i,j=1
are bounded (ag is bounded ajwvay from zero) and satisfy suitable mild regularity
assumptions, for instance they belong to Holder or VMO spaces defmed with
respect to the distance induced by the vector fields. Since the a;;5 are not C*°,
these operators are no longer hypoelliptic. Nevertheless, a priori estimates on
second order derivatives with respect to the vector fields are a natural result
which does not in principle require smoothness of the coeffi cients. Namely,a
priori estimates in LP (with coeffi cientsa;; in VM ON L) have been proved in
[3] for operators (1.2) and in [2] for operators (1.4) but in homogeneous groups;
a priori estimates in C spaces (with coeffi cientsa;; in C*) have been proved in
[4] for operators (1.3) and in [19] for operators (1.4) but in homogeneous groups.

In the particular case of Kolmogorov-Fokker-Planck operators, which can be
written as

q
L= ai(@)03,, +Xo
ij=1

for a suitable drift Xy, L” estimates (when a;; are VMO) have been proved
in [7] in homogeneous groups, while Schauder estimates (when a;; are Holder
continuous) have been proved in [15], under more general assumptions (namely,
assuming the existence of translations but not necessarily dilations, adapted to
the operator). We recall that the idea of proving LP estimates for nonvaria-
tional operators with leading coeffi cients inV MO N L (instead of assuming
their uniform continuity) appeared for the first time in the papers [11], [12] by
Chiarenza-Frasca-Longo, in the uniformly elliptic case.

The aim of the present paper is to prove both LP and C® local estimates
for general operators (1.4) structured on Hormander$ vector fields “with drift”,
without assuming the existence of any group structure, under the appropriate
assumptions on the coeffi cientsa;j,ap. Namely, our basic estimates read as
follows:

gty < e {I1Eul ey + 1l ooy } (1.5)

for p € (1,00) and any Q' € 2 if the coefli cients areVMOx 1o (), and

el iy < e {1Culleg @ + e } (1.6)



for @ € (0,1) and Q' € Q if the coeffi cients areC§ (£2). The related Sobolev
and Holder spaces Sf(’p , C?ga, are those induced by the vector fields X3, and
will be precisely defined in §3.4. Clearly, these estimates are more general than
those contained in all the aforementioned papers.

At first sight, this kind of result could seem a straightforward generaliza-
tion of existing theories. However, several diffi culties exist, sometimes hidden in
subtle details. First of all, we have to remark that in the paper [25], although
the results are stated for both sum of squares and complete Hérmanders oper-
ators, proofs are given only in the first case. While some adaptations are quite
straightforward, this is not always the case. Therefore, some results proved in
the present paper can be seen also as a detailed proof of results stated in [25],
in the drift case. We will justify this statement later, when dealing with these
details. For the moment we just point out that these diffi culties are mainly
related to the proof of suitable representation formulas for second order deriva-
tives X;Xu of a test function, in terms of u and Lu, via singular integrals and
commutators of singular integrals. In turn, the reason why these representation
formulas are harder to be proved in presence of a drift relies on the fact that
a technical result which allows to exchange, in a suitable sense, the action of
X;-derivatives with that of suitable integral operators, assumes a more involved
form when the drift is present.

Once the suitable representation formulas are established, a real variable
machinery similar to that used in [3] and [4] can be applied, and this is the
reason why we have chosen to give here a unified treatment to LP and C¢
estimates. More specifically, one considers a bounded domain  endowed with
the control distance induced by the vector fields X;$, which has been defined,
in the drift case, by Nagel-Stein-Wainger in [23], and the Lebesgue measure,
which is locally doubling with respect to these metric balls, as proved in [23].
However, a problem arises when trying to apply to this context known results
about singular integrals in metric doubling spaces (or “spaces of homogeneous
type”, after [14]). Namely, what we should know to apply this theory is a
doubling property as

(B (x,2r)N Q) < cu(B(x,r)NQ) forany z € Q' € Q,r >0 (1.7)
while what we actually know in view of [23] is
w(B(z,2r)) < cu (B (x,r)) for any x € ' € Q,0 < r < ro. (1.8)

Now, it has been known since [18] that, when ' is for instance a metric ball,
condition (1.7) follows from (1.8) as soon as the distance satisfies a kind of
segment property which reads as follows: for any couple of points x1,z2 at
distance r and for any number § < r and ¢ > 0 there exists a point zy having
distance < § from z; and < r — § + ¢ from x5. However, while when the drift
term is lacking the distance induced by the X3 is easily seen to satisfy this
property, this is no longer the case when the field X, with weight two enters
the defmition of distance and, as far as we know, a condition of kind (1.7)
has never been proved in this context for Q' a metric ball, or for any other



special kind of bounded domain 2. Thus we are forced to apply a theory of
singular integrals which does not require the full strength of the global doubling
condition (1.7). A first possibility is to consider the context of nondoubling
spaces, as studied by Tolsa, Nazarov-Treil-Volberg, and other authors (see for
instance [28], [24], and references therein). Results of LP and C* continuity for
singular integrals of this kind, applicable to our context, have been proved in
[1]. However, to prove our LP estimates (1.5), we also need some commutator
estimates, of the kind of the well-known result proved by [13], that, as far as
we know, are not presently available in the framework of general nondoubling
quasimetric (or metric) spaces. For this reason, we have recently developed in
[8] a theory of locally homogeneous spaces which is a quite natural framework
where all the results we need about singular integrals and their commutators
with BMO functions can be proved. To give a unified treatment to both LP
and C'“ estimates, here we have decided to prove both exploiting the results in
[8]. We note that our Schauder estimates could also be obtained applying the
results in [1], while L estimates cannot.

The necessity of avoiding the use of a doubling property of type (1.7), as
well as some modifications required by the presence of the drift X, also refbcts
in the way we have studied several properties of the function spaces C% and
BMO, as we will see in § 3.4.

Once the basic estimates on second order derivatives are established, a nat-
ural, but nontrivial, extension consists in proving similar estimates for deriva-
tives of (weighted) order k 4 2, in terms of k derivatives of Lu (assuming, of
course, that the coeffi cients of the operator possess the corresponding further
regularity). In presence of a drift, it is reasonable to restrict this study to the
case of k even, as already appears from the analog result proved in homogeneous
groups in [2]. Even in this case, a proof of this extensions seems to be a diffi cult
task, and we have preferred not to address this problem in the present paper,
in order not to further increase its length.

Acknowledgements. This research was mainly carried out while Maochun
Zhu was visiting the Department of Mathematics of Politecnico di Milano, which
we wish to thank for the hospitality. The project was supported by the National
Natural Science Foundation of China (Grant No. 10871157), Specialized Re-
search Fund for the Doctoral Program of Higher Education (No. 200806990032).

2 Assumptions and main results

We now state precisely our assumptions and main results. All the function
spaces involved in the statements below will be defined precisely in § 3. Our
basic assumption is:

Assumption (H). Let

q
L= Z aij(x)Xin + ag (.Z‘) Xo,
=1



where the Xy, X,..., X, are real smooth vector fields satisfying Hérmander$
condition in some bounded domain €2 C R", the coeffi cientsa;; = a;;, a0 are
real valued, bounded measurable functions defined in €, satisfying the uniform
positivity conditions:

q
plel? < > ag(@)& < p g
i,j=1

p<ag(z)<p’

for a.e. z € Q), every £ € RY, some constant p > 0.

Our main results are the following:

Theorem 2.1 In addition to assumption (H), assume that the coeffi cients;j, ao
belong to C% () for some a € (0,1). Then for every domain Q' € Q, there
exists a constant ¢ > 0 depending on ', Q, X;, o, 1, ”aij”CS”((Q) and Ha0||c§(m

such that, for every u € Cx*(Q), one has

lull oz < e {I2ulog @y + lull oy }

Theorem 2.2 In addition to assumption (H), assume that the coeffi cients;j, ag
belong to the space VMOx 100 (). Then for every p € (1,00), any ' € Q, there
exists a constant ¢ depending on X;,n,q,p, 1,2, Q and the VMO moduli of a;;
and ag, such that for every u € Sg(’p (Q),

lll oy < € {10l oy + Il e}

Remark 2.3 Under the assumptions of the previous theorems, it is not restric-
tive to assume ag (x) to be equal to 1, for we can always rewrite the equation

q
Z ainin + CL()X() = f
i,5=1

in the form
q

s

> XX+ Xo = e

= ao ao

2,7=1

and apply the a-priori estimates to this equation, controlling C* or VMO moduli
of the mnew coeffi cients™L in terms of the analogous moduli of a;;j,ao and the

a
constant p. Therefore thﬁoughout the following we will always take ag = 1.




3 Known results and preparatory material from
real analysis and geometry of vector fields
3.1 Some known facts about Hormander$ vector fields,
lifting and approximation

Let Xo, X1,..., X, be a system of real smooth vector fields,
Xi = bij ()0, i=0,1,2,...,q
j=1

(¢ +1 < n) defmed in some bounded, open and connected subset  of R™. Let
us assign to each X; a weight p;, saying that
po=2and p; =1fori=1,2,...q.

For any multiindex

I = (i1,02, ..., 0k),

we define the weight of I as

!
I1=> pi,.
J=1

For any couple of vector fields X,Y, let [X,Y] = XY — Y X be their com-
mutator. Now, for any multiindex I = (i1, i2, ..., i) for 0 < iy < g we set:
Xr = Xi, Xi, .. X3,

and

Xy = [Xor [Xep o [Xo 0 X0 ] ]

19 PIRERE

If I = (il), then

Xy = Xy = X1

We will say that X is a commutator of weight |I|. As usual, X7 can be seen
either as a differential operator or as a vector field. We will write

X f

to denote the differential operator X acting on a function f, and

(Xin),
to denote the vector field X|j; evaluated at the point z € ().



We shall say that X = {Xo, X1,...,X,} satisfy Hormanders condition of
weight s if these vector fields, together with their commutators of weight < s,
span the tangent space at every point = € Q.

Let ¢ be the free Lie algebra of weight s on g + 1 generators, that is the
quotient of the free Lie algebra with ¢+1 generators by the ideal generated by the
commutators of weight at least s + 1. We say that the vector fields Xo, ..., X,
which satisfy Hormander$ condition of weight s at some point zy € R", are
free up to order s at xg if n =dim ¢, as a vector space (note that inequality <
always holds). The famous Lifting Theorem proved by Rothschild-Stein in [25,
p. 272] reads as follows:

Theorem 3.1 Let X = (Xo,X1,...,X,) be C* real vector fields on a domain
Q C R” satisfying Hormander$ condition of weight s in Q). Then, for anyT € Q,
in terms of new variables, hpt1,...,hy, there exist smooth functions A\ (x,h)
(0<i<gqg,n+1<I1<N)defined in a neighborhood U of € = (7,0) € RN such
that the vector fields )Z'Z given by

N
> 0
X=X+ Y Nalwh)yz-, i=0,...,
+l:n+1 l(x )ahl ! e

satisfy Hormanders condition of weight s and are free up to weight s at every
point in U.

Let X = ()N(o,)?l, e ,)N(q) be the lifted vector fields which are free up to

weight s at some point £ € RY and £ be the free Lie algebra generated by X.

For each j, 1 < j < s, we can select a family {X]k}k of commutators of weight
j, with )N(l,k = )N(k,)?m = )Zo,k =1,2,...,q, such that {X]k} " is a basis of
j

£, that is to say, there exists a set A of double-indices « such that {)?a} N is
1S

a basis of £. Note that CardA = N, which allows us to identify ¢ with R,

Now, in RY we can consider the group structure of N(q + 1,s), which is
the simply connected Lie group associated to ¢. We will write o for the Lie
group operation (which we think as a translation) and will assume that the
group identity is the origin. It is also possible to assume that u~' = —u (the
group inverse is the Euclidean opposite). We can naturally defme dilations in
N(q+1,s) by

DO (ta)gen) = (Alua ) (3.1)

These are group automorphisms, hence N (g + 1, s) is a homogeneous group, in
the sense of Stein (see [27, p. 618-622]). We will call it G, leaving the numbers
q, s implicitly understood.

We can define in G a homogeneous norm ||| as follows. For any u € G,

u #£ 0, set
1
lu| =r < ’D <> u
r

acA ’

:1’




where |-| denotes the Euclidean norm.
The function
dg (u,v) = |[v " oul|

is a quasidistance, that is:

dg (u,v) > 0 and dg (u,v) = 0 if and only if u = v;
dg (u,v) = dg (v,u); (3.2)
dg (u,v) < ¢(dg (u, 2) + dg (2,v)),

for every u,v,z € G and some positive constant ¢ (G) > 1. We define the balls
with respect to dg as

B(u,r)={veR" :dg (u,v) <r}.

It can be proved (see [27, p.619]) that the Lebesgue measure in RY is the
Haar measure of G. Therefore, by (3.1),

|B (u, )| = |B (u, 1)| 9,

for every u € G and r > 0, where Q = >_  , |a|. We will call @ the homoge-
neous dimension of G.
Next, we define the convolution of two functions in G as

()@= [ Fluor)g@)do= [ g0 o) f o)

for every couple of functions for which the above integrals make sense.

Let 7, be the left translation operator acting on functions: (7,f) (v)
f (uowv). Wesay that a differential operator P on G is left invariant if P (1, f)
Tu (Pf) for every smooth function f. From the above defmition of convolution
we read that if P is any left invariant differential operator,

P(fxg)=[f*Pg (3.3)
(provided the integrals converge).
We say that a differential operator P on G is homogeneous of degree 6 > 0
if
P(f(D(Nu) = (Pf)(D(Nu)
for every test function f and A > 0,u € G. Also, we say that a function f is
homogeneous of degree 6 € R if

F(D\)u) =X f (u) for every A > 0,u € G.

Clearly, if P is a differential operator homogeneous of degree §; and f is a
homogeneous function of degree s, then P f is a homogeneous function of degree
09 — 01, while fP is a differential operator, homogeneous of degree ¢; — ds.

10



Let Y, be the left invariant vector field which agrees with % at 0 and set
Yir=Yy,k=1,---,q,Y21 =Y. The differential operator Y; j is homogeneous
of degree i, and {Y,} .4 is a basis of the free Lie algebra .

A differential operator on G is said to have local degree less than or equal to
A if, after taking the Taylor expansion at 0 of its coefli cients, each term obtained
is a differential operator homogeneous of degree < A.

Also, a function on G is said to have local degree greater than or equal to A
if, after taking the Taylor expansion at 0 of its coefli cients, each term obtained
is a homogeneous function of degree > A.

For &,n € U, define the map

@7}(5) = (ua)aEA

with £ = exp (ZaeA Ug, )}a) 7. We will also write © (1, £) = 6,,(£).

We can now state Rothschild-Steing approximation theorem (see [25, p.
273)).

Theorem 3.2 In the coordinates given by O (n,-) we can write X, =Y+ R}
on an open neighborhoods of 0, where R] is a vector field of local degree < 0 for
i=1,...,q(<1 fori=0) depending smoothly onn. Explicitly, this means that
for every f € C§°(G):

X [f(© ()] (€)= (Vif + RIf)(©(n,). (3-4)

More generally, for every double-index (i,k) € A, we can write

Kok £ © ) (©) = (Vif + RIS ) (00,6, (3.5)
where Rzk is a vector field of local degree < i — 1 depending smoothly on n.

This theorem says that the lifted vector fields X ; can be locally approximated
by the homogeneous, left invariant vector fields Y; on the group G. Some other
important properties of the map O are stated in the next theorem (see [25, p.
284-287)):

Theorem 3.3 Let £ e RY and U be a~neighb0rh00d~ofg such that for any
n € U the map © (n,-) is well defined in U. For &, € U, define

p(n,€) =10 (n, &) || (3.6)

where || - || is the homogeneous norm defined above. Then:
(@) ©(n,&=0(n " ==0(n) for every &,n € U;
(b) pis a quasidistance in U (that is satisfies the three properties (3.2));
(¢) under the change of coordinates u = ©O¢ (1), the measure element be-
comes:

dn = c(§) - (1 +w (&, u)) du, (3.7)

11



where ¢(§) is a smooth function, bounded and bounded away from zero in ﬁ,
w (&, u) is a smooth function in both variables, with

w (&, uw)| < cllull,
and an analogous statement is true for the change of coordinates u = ©,, (£).

Remark 3.4 As we have recalled in the introduction, in the paper [25] detailed
proofs are given only when the drift term Xg is lacking. A proof of the lifting
and approzimation results explicitly covering the drift case can be found in [6],
where the theory is also extended to the case of nonsmooth Hormander$ vector
fields. We refer to the introduction of [6] for further bibliographic remarks about
existing alternative proofs of the lifting and approximation theorems.

3.2 Metric induced by vector fields

Let us start recalling the definition of control distance given by Nagel-Stein-
Wainger in [23] for Hormander$ vector fields with drift:

Definition 3.5 For any § > 0, let C () be the class of absolutely continuous
mappings ¢: [0,1] — Q which satisfy

Ot) =Y Ar(t) (X)) a-e t€(0,1) (3.8)

[1|<s
with |Ap(t)] < SV, We define
d(z,y) =inf {6 : Jp € C(8) with ¢ (0) =z, (1) =y}.

The finiteness of d immediately follows by Hoérmander$ condition: since the
vector fields {XU]}\IKS span R™, we can always join any two points z,y with a

curve ¢ of the kind (3.8); moreover, d turns out to be a distance. Analogously
to what Nagel-Stein-Wainger do in [23] when X is lacking, in [5] the following
notion is introduced:

Definition 3.6 For any § > 0, let Cy (0) be the class of absolutely continuous
mappings ¢ : [0,1] — Q which satisfy

q

o' (t) = Z)\i(t) (Xi)yu a-e te(0,1)

with Mo (t)| < 62 and [N\;(t)] <& forj=1,---q.
We define

dx(z,y) =inf {d: Jp € C1 (8) with ¢ (0) =z, (1) =y}.

12



Note that the finiteness of dx (x,y) for any two points x,y € € is not a trivial
fact, but depends on a connectivity result (“Chow$ theorem”); moreover, it can
be proved that d and dx are equivalent, and that dx is still a distance (see [5],
where these results are proved in the more general setting of nonsmooth vector
fields). From now on we will always refer to dx as to the control distance,
induced by the system of Hormander$ vector fields X. It is well-known that
this distance is topologically equivalent to the Euclidean one. For any x € €,
we set

B, (z)={y e Q:dx (z,y) <r}.

The basic result about the measure of metric balls is the famous local dou-
bling condition proved by Nagel-Stein-Wainger [23]:

Theorem 3.7 For every Q' € Q there exist positive constants c,ry such that
for any x € Q' r <,
|B (z,2r)| < c[B(z,r)].

As already pointed out in the introduction, the distance dx does not satisfy
the segment property: given two points at distance r, it is generally impossible
to find a third point at distance r/2 from both. A weaker property which this
distance actually satisfies is contained in the next lemma, and will be useful
when dealing with the properties of Holder spaces C'*:

Lemma 3.8 For any z,y € Q0 and any positive integer n, we can join x to y
with a curve v and find n + 1 points pg = x,P1,P2, -, Pn =Y ON 7y, such that

dX €,y .
dX (pjvaJrl) S \(/7’71) fOT’j = 0,2,...777/ -1

Proof. For any z,y € Q with dx (z,y) = R, any € > 0, by Defmition 3.6 we
can join z and y with a curve « (¢) satisfying

v(0)=y,v(1) =2

and
q

Y () =Y A () (Xi)y »

=0

with |\ ()| R+e fori=1,....qand [\ (t)] < (R+¢)”.

Let ; (¢ ( 1), for j =0,1,2,...,n — 1. Then v; (t) satisfies
AN j+1
O =) =pi )=y~ — | =pis

in particular, pg = = and p,, = y; moreover,
zq: N t+g X))
v ()

13



with

1. [t+] R+¢e\°
= L)<
w (5= ()

fori=1,...,4,5=0,2,....n— 1. Thus

1. (t+] R+e
nA’< n )‘< ND

R+e
‘\/ﬁ )
for j =0,2,...,n — 1 and any € > 0, so we are done. ®
The free lifted vector fields X; induce, in the neighborhood where they are
defined, a control distance dg; we will denote by B (,r) the corresponding
metric balls. In this lifted setting we can also consider the quasidistance p
defined in (3.6). The two functions turn out to be equivalent:

dx (pj,pj+1) <

Lemma 3.9 Let E,(? be as in Thm. 3.3. There exists B (Z, R) c U such

that the distance dg is equivalent to the quasidistance p in (8.6) in B (E, R),
and both are greater than the FEuclidean distance; namely there exist positive
constants ci, ca, c3 such that

€1 |§ — 77‘ < CZP(Uag) < d)?(’l%g) < CSP(nag) fOT’ every 5777 € E (g, R) .

This fact is proved in [23], see also [6, Proposition 22].

3.3 Some known results about locally homogeneous spaces

We are now going to recall the notion of locally homogeneous space, introduced
in [8]. This is the abstract setting which will allow us to apply suitable results
about singular integrals. Roughly speaking, a locally homogeneous space is a set
) endowed with a function d which is a quasidistance on any compact subset,
and a measure p which is locally doubling, in a sense which will be made precise
here below. In our concrete situation, our set is endowed with a function d
which is a distance in 2, and a locally doubling measure. We can therefore give
the following defmition, which is simpler than that given in [8]:

Definition 3.10 Let Q be a set, endowed with a distance d. Let us denote by
B (z,r) the metric ball of center x and radius r. We will endow Q@ with the
topology induced by the metric.

Let p be a positive reqular Borel measure in €.

Assume there exists an increasing sequence {Q,} >~ of bounded measurable
subsets of ), such that:

fj Q, =0 (3.9)
n=1

and such for, anyn =1,2,3,...:
(i) the closure of Q, in Q is compact;
(i) there exists €, > 0 such that

{r € Q:d(z,y) < 2e, for somey € U} C Qpy; (3.10)
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(1i) there exists Cy, > 1 such that for any x € Qp,,0 < r < e, we have
0<pu(B(z,2r) <Chu(B(z,r)) < oco. (3.11)

(Note that for x € Q,, and r < &, we also have B (x,2r) C Qpi1).
We will say that (Q,{Q,}.—, . d, i) is a (metric) locally homogeneous space
if the above assumptions hold.

Any space satisfying the above definition a fortior: satisfies the defmition
of locally homogeneous space given in [8]. In the following, we will recall the
statements of several results proved in [8].

Next, we introduce the notion of local singular kernel.

Assumption (K). For fixed Q,,Q,11, and a fixed ball B (Z, Ry), with
T € Q, and Ry < 2¢, (hence B (T, Ry) C Qp41), let K (z,y) be a measurable
function defined for z,y € B (Z, Ry), © # y. Let R > 0 be any number satisfying

cR < Ry (3.12)

for some ¢ > 1; let a,b € C§ (Q+1), B(T,c1R) < a < B(Z,c2R), B(T,c3R) <
b < B(Z,c4R) for some fixed constants ¢; € (0,1), ¢ = 1,...,4 (the symbol
By < f < By means that f =1 in By, vanishes outside B, and takes values in
[0,1]). The new kernel

K (z,y) =a(z) K (z,y)b(y) (3.13)

can be considered defined in the whole Q11 X Q41 \ {z = y}.
We now list a series of possible assumptions on the kernel K which will be
recalled in the following theorems.
(i) We say that K satisfies the standard estimates for some v € [0, 1) if the
following hold:
Ad (z,y)"

(B (,d(z,y)))

|K (z,y)] < (3.14)

for z,y € B (%, Ry), = # y, and

Bd (0, y)" d(zo, ) ’
|K($an) K(‘ray)|+|K(y7$0) K(y,$)| < /J(B(.de(-'l?o,y))) (d(.’lﬁo,y))
(3.15)
for any xo,z,y € B (T, Ry) with d(zo,y) > 2d(xo,z), some S > 0.
(ii) We say that K satisfies the cancellation property if the following holds:
there exists C' > 0 such that for a.e. x € B (T, Ry) and every €1, &5 such that
0<e1 <erand B, (x,62) C Qppa

<C,

K(z,y)du(y)| +

/ / K (2 2) du(2)
Qny1,e1<p(z,y)<e2 Qny1,61<p(z,2)<e2

(3.16)
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where p is any quasidistance, equivalent to d in €2,41 and B, denotes p-balls.
This means that p satisfies the axioms of distance, except for the triangle in-
equality, which is replaced by the weaker

p(z,y) <clp(z,2) +p(z,9)]

for any z,y, z € Q2,41 and some constant ¢ > 1; moreover,

cid (z,y) < p(z,y) < cod (z,y)

for any x,y and some positive constants ¢y, cs.
(iil) We say that K satisfies the convergence condition if the following holds:
for a.e. x € B (T, Ry) such that B, (x, R) C 0,41 there exists

hr(z) = lim K(z,y)du(y), (3.17)

€200, 1,e<p(z,y)<R

where p is any quasidistance equivalent to d in €,,11.

All the following results in this section have been proved in [8]. In some
statements we have introduced some slight simplifications (with respect to [8])
due to the fact that our space is assumed to be metric.

Theorem 3.11 (L? and C" estimates for singular integrals) Let K,IZ' be
as in Assumption (K), with K satisfying the standard estimates (i) with v = 0,
the cancellation property (ii) and the convergence condition (iii) stated above.

If

Tf(z) = lim K(z,y)f (y) du(y),
€YU B R).p(w,y)>e
then for any p € (1, 00)

1T f 2o Bz,r) < fllo Bz Ry -

The constant ¢ depends on p,n and the constants of K involved in the assump-
tions (but not on R).
Moreover, T satisfies a weak 1-1 estimate:

p({o € B@R): ITf (@) > 1) < S 1fll sy for anyt>0.

Assume that, in addition, the kernel K satisfies the condition
h (z) = lim / Rz, 9)du(y) € C7 (Qsr) (3.18)
p(z,y)>e

for some v > 0 (where p is the same appearing in the assumed convergence
condition (iii)). Then

||Tf||cn(3(§73)) <c ||f||cn(B(z,HR)) (3.19)

16



for any positive n < min (a, 8,7) and some constant H > 1 independent of R.
(Recall that « is the Holder exponent related to the cutoff functions defining

K, 3 appears in the standard estimates (i) and ~y is the number in (3.18)).
The constant ¢ depends on n,n, R, the constants involved in the assumptions
on K, and the C7 norm of h.

Remark 3.12 (Estimates for C{ functions) Applying the Hélder continu-
ity result to functions f € Cf (B (Z,r)) with r < R we can get a a bound

1T fllen @) < clflenseEm
with ¢ depending on R but not on r.

Theorem 3.13 (L? — L? estimate for fractional integrals) Let K, K be as

in Assumption (K), with K satisfying the growth condition
c

0 (B (@,d(z,9) "

for some v € (0,1),¢>0, any z,y € B(T,Ry), x £ y. If

0< K (2,y) <

(3.20)

Liw=[ Rl @)
B(Z,R)

then, for any p € (1, %) ,% = % — v there exists ¢ such that

||Ivf||Lq(B(f,R)) <c ||fHLp(B(f,R))

for any f € LP (B (T, R)). The constant ¢ depends on p,n, and the constants of
K involved in the assumptions (but not on R).

Theorem 3.14 (C" estimate for fractional integrals) Let K,K be as in
Assumption (K), with K satisfying (3.14) and (3.15) for some v € (0,1),5 > 0.
If
L= [ Ru)f)du)
B(z,R)

then, for any n < min (o, 8,v)

Hquch(B@R)) <c Hf||cn(B(§7HR)) :

The constant ¢ depends on n,n, R and the constants of K involved in the as-
sumptions; the number H only depends on n.

Reasoning as in Remark 3.12, we can also say that for functions f € C{ (B (z,))
with » < R the following bound holds
||qu||cn(B(z,r)) <c ||f||Cn(B(§77~))

with ¢ depending on R but not on r.
To state the commutator theorems that we will need, we have first to recall
the following
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Definition 3.15 (Local BMO and VMO spaces) Let (Q,{Q,},—,,d, i) be
a locally homogeneous space. For any function u € L' (Q,11), and r > 0, with
r < ep, set

1

n*nan:supsupi/ u(z) —up|dp (),
W, , ( ) r<r mOGQnM(B (xo,ﬁ)) B(mo,t)| ( ) | ( )

where up = (B (zo,t))~* fB(wo U We say that w € BMOjoc (), Qpa1) if

||u||BMOlOC(Qn,Qn+1) = sup nZaQn7Qn+l (T) < 0.
r<en

We say that uw € VMOjpe (0, Qnt1) if 4 € BMOjoe (O, Qnt1) and
nZ’QanH(r) —0asr — 0.
The function n, o q ., will be called VMO local modulus of w in (2, Qpi1).

Note that in the previous definition we integrate u over balls centered at
points of €2,, and enclosed in €,,11. This is a fairly natural defmition if we want
to avoid integrating over the intersection B (xg,t) N Q.

Theorem 3.16 (Commutators of local singular integrals) Let K, K be as
in Assumption (K), with K satisfying the standard estimates (i) with v = 0, the
cancellation property (ii) and the convergence condition (iii). If

Tf(x) = lim K(z,9)f (y) du(y)
e—0 B(E,R),p(x,y)>s

and, for a € BMOjoe (ny2, Qni3), we set
Cof (2) =T (af) (z) —a(x)Tf(z),

then for any p € (1,00) there exists ¢ > 0 such that

1CaflltoBaEr) < cllallsrron,.@nis0nis) Il (5@ R)) -
Moreover, if a € VMO (12, Qnts) for any e > 0 there exists r > 0 such
that for any f € L? (B (T,r)) we have
”CafHLP(B(E,r)) <e ||f||Lp(B(§,r)) :

The constant ¢ depends on p,n and the constants of K involved in the assump-
tions (but not on R); the constant r also depends on the VM Ojoe (nt2, Qnts)
modulus of a.

Theorem 3.17 (Positive commutators of local fractional integrals) Let
K, K be as in Assumption (K), with K satisfying the growth condition (3.20)
for some v > 0. If

L= [ Ru)f)du)
B(z,R)
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and, for a € BMOjoe (nt2, Qnys), we set

Coaf @)= [ Rl -al)l fG)dus) (320
B(z,R)

then, for any p € (1, l) ,% = % — v there exists ¢ such that

1CvafllLas@.ry < clallBrior,.@nia0m0) 1o R)

for any f € L? (B (T, R)).
Moreover, if a € VMO (Qna2, Qnrs) for any e > 0 there exists r > 0 such
that for any f € LP (B (T, r)) we have

||Cu,uf||Lq(B(§7r)) <e ||f||Lp(B(5,T)) .

The constant ¢ depends on p,v,n and the constants involved in the assumptions
on K (but not on R); the constant r also depends on the VMOjoe (Qpt2, Qpas)
modulus of a.

Theorem 3.18 (Positive commutators of nonsingular integrals) Let K, K
be as in Assumption (K), with K satisfying condition (3.15) with v = 0. Assume
that the operator

Tﬂ@=é(m§@wﬂww@

is continuous on LP (B (T, R)) for anyp € (1,00). Fora € BMOjoc (Qnt2, Qnts)
set

Cuf@) = [ Reo)l@-a@lf W), (2)
B(z,R)

then
ICaf Lo Bzr) < clall saron,.@nis0nis) I Lo R))
for any f € L? (B(Z,R)),p € (1,00).
Moreover, if a € VMO (12, Qnts) for any e > 0 there exists r > 0 such
that for any f € L? (B (T,r)) we have

”CafHLp(B(i-,r)) <e ||f||LZD(B(E77-)) .
The constant ¢ depends on n, the constants involved in the assumptions on K,

and the LP-LP norm of the operator T' (but not explicitly on R); the constant r
also depends on the VM Ojpe (g2, Qnts) modulus of a.

Remark 3.19 In the statements of Theorems 3.11, 3.18, 3.14, 3.16, 3.17, 3.18
we wrote that the constant depends on the kernel only through the constants
inwvolved in the assumptions. In the following we will need some additional
information about this dependence. A standard sublinearity argument allows
us to say that if, for example, our assumptions on the kernel are (3.14), (3.15),
(8.16), then the constant in our upper bound will have the form

c-(A+B+C)

where A, B,C are the constants appearing in (3.14), (3.15), (3.16), and ¢ does
not depend on the kernel.
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We will also need the notion of local mazimal operator in locally homoge-
neous spaces.

Definition 3.20 Fiz Q,,Q,41 and, for any f € L' (Qu41) define the local
maximal function

1
Moy, f @)= sw — s [ (7 @)ldu(y) foroce,
o r<rn :U’(B (IIJ,’/‘)) B(x,r)
where T, = 2e, /5.
Theorem 3.21 Let f be a measurable function defined on ,11. The following
hold:
(a) If f € LP (Q41) for some p € [1,00], then Mg, .., [ is finite almost

everywhere in ., ;
(b) if f € L* (Qny1), then for every t > 0,

p(fr e (Moo, )@ >t <% [ Ifw)ldu):

Qn+1

(c) if f € LP? (1), 1 <p < o0, then Mg, .., f € L (,) and

n+1
HMQn7Qn+1fHLP(Qn) < Cn,p ||fHLp(Q"+1) :

Finally, we need to discuss an integral characterization of Hélder continuous,
analogous to the one classically introduced by Campanato [10], in our abstract
and local setting.

Definition 3.22 (Local Campanato spaces) Let (Q,{Q,},—,,d, i) be a lo-

cally homogeneous space. For any function u € L' (Q,41), a € (0,1), let

1
Myq, q,,,u= sup inf ——— u(y) —cldu(y) .
et = sup ik S B(w’r)l (y) —cldu(y)

Set
LY (s Q1) = {U € L (1) : Mo, 0,40 < OO} :
If u € C% (Q,41) then clearly
Mo, 20t < oo, ) -

A converse result is contained in the following;:

Theorem 3.23 For any u € LY (Qy, Qpt1), there exists a function u*, equal
to u a.e. in Q,,such that u* belongs to C* (Q,). Namely, for any x,y € Q,
with 2d (z,y) < €, we have

|u* (SC) —u” (y)l < CM&,Qn,Qn+1UJd (xvy)a : (323)
If 2d (z,y) > €, then
|u* (.'L') - U/* (y)l S c {MQ;Q'rL)Q'rL+1u + HuHLl(Q,H,l)} d(x7y)a : (324)

The constant ¢ in (3.28), (3.24) depends on C,, but not on e,.
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Application of the abstract theory to our setting
Let$ now explain the way how this abstract setting will be used to describe
our concrete situation. The a-priori estimates we will prove in Theorems 2.1, 2.2,
involve a fixed subdomain Q' € Q. Fix once and for all this Q'. For any T € Q/
we can perform in a suitable neighborhood of T the lifting and approximation
procedure as explained in § 3.1. Let & = (,0) € RY and B (a R) be as in
Lemma 3.9. We can then choose
0= B(ER): 0 =B (g, Iﬂ) for k=1,2,3,...

By the properties of d¢ that we have listed in § 3.2, and particularly Theorem

3.7, N
(ﬁ’ {Qk}kzl g d§)

is a metric locally homogeneous space. The function p(£§,n) = ||© (n, )| will
play the role of the quasidistance appearing in conditions (3.16) and (3.17), in
view of Lemma 3.9. This will be the basic setting where we will apply singular
integral estimates.

In the space of the original variables (£2,dx,dz), instead, we will not apply
singular integral estimates, but we will use again the local doubling condition,
when we will establish some important properties of function spaces C“ and
VMO (see § 3.4). Note that, if Qi is an increasing sequence of domains with
Q € Qi1 € Q, we can say that

(Q, {Qk}k,dx,dl‘)

is a metric locally homogeneous space.

3.4 Function spaces

The aim of this section is twofold. First, we want to defme the basic function
spaces we will need and point out their main properties; second, we want to
find a relation between function spaces defmed over a ball B (z,r) C @ C R”
and on the corresponding lifted ball B (€,7) ¢ RY. More precisely, we need
to know that f (z) belongs to some function space on B if and only f(x, h) =
f (z) belongs to the analogous function space on B. This last fact relies on the
following known result (see [23, Lemmas 3.1 and 3.2, p. 139]):

Theorem 3.24 Let us denote by B, B the balls defined with respect to dx in 2
and dg in €, respectively. There exist constants dg € (0,1),79,c1,c2 > 0 such
that

c1vol (Er (z, h)) < wol (B, (z)) - vol {h' eERN": (2,1) € B, (=, h)} (3.25)

< cyvol (ET (x, h))
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for every x € Q,z € Bs, (x) and r < ro. (Here “vol” stands for the Lebesgue
measure in the appropriate dimension, x denotes a point in R™ and h a point in
RN="). More precisely, the condition z € Bs,, () is needed only for the validity
of the first inequality in (3.25). Moreover:

dg ((z,h), (2", 0)) > dx (z,2). (3.26)

Finally, the projection of the lifted ball By (x,h) on R™ is just the ball B (z,r),
and this projection is onto.

A consequence of the above theorem is the following

Corollary 3.25 For any positive function g defined in B, (x) C Q,r < rg, one
has

C1 ’
9 (y)dy < / y) dydh’ < /
|B507 ( )| Bsgr () {L' h ’ (z,h) ‘B |

where &g 1s the constant in Theorem 3.24.

(3. 27)

Proof. By (3.25) and the locally doubling condition, we have, for some fixed
do < 1 as in Theorem 3.24,

/ y) dydh’
‘B z, h‘ By
‘B x, h) ‘ h/GJRN*”:(y,h’)EET(m,h)
> / (1) () d
> =g (y) dy
’B z,h) ’ Bsgr() |B z)|

=yl g(y)dy
\Béor @) JBsy ()

where in the last inequality we exploited the doubling condition |B, (z)| <
¢|Bs,r ()], which holds because B, (z) C Q and r < ro. The proof of the
second inequality in (3.27) is analogous but easier, since it involves the second
inequality in (3.25), which does not require the condition y € Bs,, (). ®
3.4.1 Holder spaces

Definition 3.26 (Holder spaces) For any 0 < a < 1,u:Q — R, let:

(z) —u(y)l

|u }
U] qa () = SUP > z,yeQax#y,,
[vlog { dx (z,y) 7

lulleg @) = lulgaay + Ul ) »

Cs(Q) = {u (=R ullgeg) < oo} .
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For any positive integer k and 0 < o < 0, let
k,a
k(@) = {u: @ = R ullgrao < oo}
with

‘u”Ck o Z Z ”le : 'leu”ca(g) + ”u”Ca(Q)

[I|=17:=0

where I = (41,72, s J1)-

We will set C% , () and C’?(’% (Q) for the subspaces of C% (Q) and CE* (Q)
of functions which are compactly supported in 2, and set C% (?Z), C’%a (Q),
C% 0 (()) and C’%O(‘) (SNI) for the analogous function spaces over Q defined by the
X,

We will also write Cf(’o (Q) to denote the space of functions with continuous
X -derivatives up to weight k.

Finally, whenever there is no risk of confusion, we will drop the index X,
writing C* () instead of C% (2), and so on.

The next Proposition, adapted from [4, Proposition 4.2], collects some prop-
erties of C'* functions which will be useful later. We will apply these properties
mainly in the context of lifted variables, that is for the vector fields X; on a ball

B(ER).

Proposition 3.27 Let B (Z,2R) be a ficed ball where the vector fields X; and
the control distance d are well defined.
(i) For any 6 € (0,1), for any f € C* (B (Z,(1+ §) R)), one has

q

F(@) ~ F)] < Sdx (@) (}j sup | Xuf| +dx (e,y)  sup IXof>
TIB@.(1+0)R) B(z,(1+6)R
(3.28)

for any x,y € B (T, R).
If f € CY(B (=, R)), one can simply write, for any =,y € B (T, R),
|f(z) = f(y)| < cdx (z,y) (ZBS(U%) [ Xif|+dx (2,9) S IXof|> (3.29)
i=1 z,R

In particular, for f € C}(B (z, R),

fleo(p@.ny < R (Z sup | X; f|+RBs(u%) |Xof> (3.30)

1B(Z,R)
Here C' (and C} ) stands for the classical space of (compactly supported) con-

tinuously differentiable functions. The assumption f € C' (or C§ ) can be
replaced by f € C% (or C% o, respectively).
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(i1) For any couple of functions f,g € C% (B (T, R)), one has

lf9lce @.r) < fleg s@,r) 19~ B@R) +19lce (B@,r) 111~ (Bz,R)
and
1f9llcs (@) < 2 llce B@.ry) 19lcg (5@.R)) - (3.31)
Moreover, if both f and g vanish at least at a point of B (T, R), then

1f9lce (B@.r)) < B |flos (B@.r)) 19lce (B@.R)) - (3.32)

(11i) Let B (z;,r) (i = 1,2,---,k) be a finite family of balls of the same
radius v, such that U¥_, B (z;,2r) C Q. Then for any f € C$(Q),

k
||fHC§‘((UleB(zi7'r)) = CZ “f||c;(3(wi,27-)) (3.33)
i=1

with ¢ depending on the family of balls, but not on f.
(iv) There exists ro > 0 such that for any f € CE(’% (B(Z,R)) and 0 < r <19,
we have the following interpolation inequality:

o 2
1X0 1l 1= Bz r)) < 7% 1 Xoflog 5@y + Mz (@) - (3.34)

Proof. The proof for (ii)-(iii) is similar to that in [4, Proposition 4.2], hence
we will only prove (i) and (iv).

Throughout the proof we will write d for dx.

(i) Fix 6 € (0,1) and let R' = (1 + ) R. Let us distinguish two cases:

(a) d(z,y) < R —max (d (T,z),d (T,y)) . Let € > 0 such that also

d(z,y)+e < R —max (d(z,z),d(T,y)), (3.35)

hence by Defnition 3.6 there exists a curve ¢(t), such that ¢(0) =z, p(1) =y,

and
q

©'(t) =D Ni(t) (Xi) o)

=0

with |A;(8)] < (d(z,y) +€),|Mo(t)] < (d(z,y) +¢)° fori =1,...q. By (3.35),
B(z,d(z,y)+¢) C B(z,R')

hence every point 7 (¢) for ¢ € (0,1) belongs to B (%, R’). Then we can write:
1
d
— t))dt| =
[ el

1.4
/0 ;Ai(t) (Xif) ey dt
q

< (d(x,y)+e)Y sup |Xif| +(d(z,y)+¢)* sup [Xof],
B(.R) B(Z,R')

|f(z) = f(y)l =
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and since ¢ is arbitrary this implies

() = fy)| < d(z,y {Z sup IXfI +d(z,y) e |X0f|}

[ 1

Note that the above argument relies on the differentiability of f along the curve
¢, which holds under either the assumption f € C' (B (Z,(1+6)R)) or f €
C% (B (7, (1+d) R)) (since X, has weight two).

(b) Let now d (z,y) > R’ — max (d (Z,z),d (T,y)), and let us write

[f(@) = fW)I < |f(@) = f @) +1f (@) - fly)| = A+ B.

Each of the terms A, B can be bounded by an argument similar to that in case
(a) (since both z and y can be joined to T by curves contained in B (Z, R)) ,
getting

[f(@) = fy)l <[d(z,7) +d(y, T {Z e | Xif| +1d (x’x)+d(y7$)]Bb£UI;z)|Xof|}-

Now it is enough to show that
d(z,7) +d(y,7) < 5d(x y)-
To show this, let r = max (d (%, z) ,d (T,y)). Then:
2, 2
z <z
= (R = 1) < =d(2,9)

where the second inequality holds since r < R and R’ = (1+§) R, and the
last inequality is assumption (b). This completes the proof of (3.28), which
immediately implies (3.29) and (3.30).

Let us now prove (vi). Let f € 0)2(’% (B (z,R)). For any z € B(Z,R), let
~(t) be the curve such that

7/(t) = (XO)'y(t) ,’Y(O) = x.

This 7 (t) will be defined at least for t € [0, rg] where 79 > 0 is a number only
depending on B (7, R) and X,. Then, for any r € (0,ry) we can write, for some

6 € (0,1):
(Xof) () = (Xof) (4(0) = & 17 G0)];o

d(w,7) +d(y,7) < 2r <

- % [F (VD)o — [F (V) = £ (OD] + [ (4()) = £ (1(0))]
- % [f (V)]0 — T% [f (V)] g + [ (1)) = F (7(0))]

- % [f (@)= (L= 7) + 7 (C‘;t [f (Y] — % If (W(t))h_er> n

+[f (v(r) = f (v(0))]
= (1 =7)(Xof) (z) +r[(Xof) (7(0)) = (Xof) (v(67))]
+ [ (v(r) = f (1 (0))],

25



hence

r|(Xof) (@)] < r[(Xof) (v(0)) = (Xof) (v(Or)[ + 2| /]|
(‘97“)0/2 [(Xof) (4(0)) = (Xof) (v(07))]
(07")0(/2
Since, by defition of v and d, d(y(0),v(0r)) < (97")1/2,

2
|(X0f) (@)] < (01 1Xofleg (5 ry + - 1l (5.1

+ 2 fll oo -

X 2
<12 |Xoflog 5@ ry T - 1l

and we are done. m
Next, we are going to study the relation between the spaces C§ (Bg) and

2 (Bn) .-
Proposition 3.28 Let B (E, R) be a lifted ball (as described at the end of §
3.8), with € = (,0). If f is a function defined in B (z, R) and f (z,h) = f (2)

18 regarded as a function defined on Bp (E, R), then the following inequalities
hold (whenever the right-hand side is finite):

< o - 9
mCz(E(E,R)) - |f|CX(B("’R))

where ¢ also depends on R Moreover,

‘Xquz ' Xlkﬂ 5 < |Xi1Xi2 e Xikf‘C‘;é(B(E7R)) ) (337)

R))

c
CR(BEN = P |

)?i)?i---)?i”‘ . 3.38
Ko | ey O

|Xi1Xi2 e Xikf N B({,t))

for0<s<t<Randi; =0,1,2,...,q

As already done in [4, Proposition 8.3], to prove the above relation between
Holder spaces over B and B we have to exploit an equivalent integral charac-
terization of Holder continuous functions, analogous to the one established in
the classical case by Campanato in [10]. However, to avoid integration over
sets of the kind QN B (z,r) (with the related problem of assuring a suitable
doubling condition) we need to apply the local version of this result which has
been established in [8] and recalled in § 3.3. We are going to apply Defmition
3.22 in our context.

Definition 3.29 Forz € Q',B(z,R) C Q,f € L' (B(zZ,R)),a € (0,1), 0 <
s<t<l1, let

1
Ma.Bor,Bin () = sup - -
B () ©€B(Z,sR),r<(t— s)RCGR By (z)| /B, ()

[f (y) = cldy.
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If feC%(B(%,R)) then

Ma.B.r,Bir (f) < |f|ca(BR(1-U)) :

Moreover:

Lemma 3.30 Forz € Q,B(Z,2Ry) CQ, R< Ry, a € (0,1),0<s<t <1,
if f € LY (B(Z,tR)) is a function such that My B, B, (f) < 00, then there
exists a function f*, a.e. equal to f, such that f* € C§% (B (T, sR)) and

Cc

‘f*|C§‘((B(E,sR)) S mMaaBsRvBtR (f)

for some c independent of f,s,t.

Proof. We can apply Theorem 3.23 choosing Q, = B (T, sR) , Q41 = B(Z,tR) e, =
R (t — s). The locally doubling constant can be chosen independently of R, since

B (%,2Ry) C 2, R < Ry. We conclude there exists a function f*, a.e. equal to

f, such that

[f* (z) = f* W) < Mo B.s B (f) dx (2,9)"

for any x,y € B (Z,sR) with dx (z,y) < R(t —s) /2
If now z,y are any two points in Bsg (x¢), and r = dx (z,y), by Lemma 3.8
we can find n + 1 points zg = z, 1, x2, ...,T, =y in Bgg (xg) such that

'
dx (xi, xi—1) < —=.

NG
Let n be the least integer such that - < R (t —s) /2, then

n

|f* (@) = [ (y)] < Z 15 (@) = f* (@) €D eMa pg,Bs (f) dx (@5,251)"

i=1
<ncMa B p.B,n () dx (2,y)".

Let us find an upper bound on n. We know that

dX(x7y) c
< <
\/ﬁ_cR(t—s) “t—s

since dx (x,y) < 2R for x,y € By (o). Hence n < ¢/ (t — s)* and the lemma
is proved. m

Proof of Proposition 3.28. The first inequality immediately follows by (3.26),
so let us prove the second one.

Let 0 < s <t <1,z € B(Z,0d9sR), where §p is the number in Theorem 3.24,
r<R(t—s), €= (,0). Since the projection 7 : B ((z,s),d) — B (x,) is onto
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(see Theorem 3.24), there exists h € RN~ such that £ = (z,h) € B (€, 60sR) .
Then we have the following inequalities:

1 c
Ta |Bt;07"( )| B,;w(z
(by Corollary 3.25)

c 1
=5 (&, r)‘ /ém-)

choosing k = f (z) = f(
ﬂca ‘Tca (B(g,m) (3:39)

Since r < R(t — s) and d (5,2) < dpsR, we have the inclusion

|f (y) — k| dy

F () = k| dn

<7
= o

B(&,r)C B(§0sR+R(t—s))=B(,R)
so that (3.39) implies

Ma T,008 T S c ’”‘ ~ = ’
B(%.80sR),B(x50tR) ([f) f o2 (BER))

and by Lemma 3.30, we conclude

|f*‘C§é(B(E,6osR)) = ‘ Wca B(g, R'
Note that R’ — dpsR = R (t — s), hence changing our notation as
dosR = s’
R =t
we get c
[ log (B@E.s) < m ‘ﬂc;(é(é,t'))

for 0 < s’ <t' < R, with ¢ also depending on R. This is (3.36).
Now, inequalities (3.37) and (3.38) are also consequences of what we have

proved because X; f X; f , hence the same reasoning can be iterated to higher
order derivatives. m

3.4.2 [LP and Sobolev spaces

We are going to define the Sobolev spaces S;’p () in the present context as in
[25].

Definition 3.31 (Sobolev spaces) If X = (X, X1,...,X,) is any system of
smooth vector fields satisfying Hormander$ condition in a domain € C R™, the
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Sobolev space S§(’p (1) (1 < p < oo,k positive integer) consists of LP-functions
with k (weighted) derivatives with respect to the vector fields X;&, in LP. Ex-
plicitly,

k
||u||S§gP(Q) = ||uHLp(Q) + Z HDiuHLP(Q) , where
=1
”DkuHLP(Q) = Z 1 Xrull o) -

|I|=k

Also, we can define the spaces of functions vanishing at the boundary saying
that u € Sg”f( (Q) if there exists a sequence {uy} of C§° () functions converging

tow in S?gp (Q). Similarly, we can define the Sobolev spaces S;i(’p (E), S;i(’po (E)
over a lifted ball g, induced by the X

It can be proved (see [3, Proposition 3.5]) that:
Proposition 3.32 If u € S¥* (Q) and ¢ € C§° (Q), then uyp € Sg”g( (Q), and
an analogous property holds for the space Si’% (E)

Moreover:

Theorem 3.33 Let f € LP (B (x,7)), f (z,h) = f (), B(&,7) be the lifted ball
of B (x,r), with £ = (z,0) € RN, Then

€1 ”f”LP(B(gc,(SOr)) = Hﬂ

Cq1 Hf“s’i”’(B(x,tgoT)) < Hﬂ

<
(Bem) = 2 ([l 2o By

=~ <c f 2P (B(x,r
S;p(B(ﬁ,T)) 2 || ||SX (B(z,r))

where §g < 1 is the number appearing in Theorem 3.24.

Proof. The first inequality follows by Theorem 3.24; the second follows by the
first one, since

X, f=X.f= (X/\17)

3.4.3 Vanishing mean oscillation

The defition of VMO (Q, Qk+1) in an abstract locally homogeneous space
has been recalled in § 3.3 (see Defition 3.15); let us endow our domain  with
the structure

(Q,{Q%}, . dx, d)
of locally homogeneous space described at the end of § 3.3. Then:
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Definition 3.34 (Local VMO) We say that a € VMOx 0. () if
a € VMOpe (Q, Qpy1) for every k.

More explicitly, this means that for any fixed ' € Q, the function
valr) = ju(z) d
M o q(r) =sup sup ——— u(x) —up x,
w2 t<r zoe | Bt (20)] J B, (20) «(wo)

is fmite for r» < roy and vanishes for » — 0, where r( is the number such that the
local doubling condition of Theorem 3.7 holds:

|B (x,2r)| < c¢|B(z,r)| for any z € Q',r < r.

As for Holder continuous and Sobolev functions, we need a comparison result
for VMO functions in the original variables and the lifted ones. By Corollary
3.25 we immediately have the following:

Proposition 3.35 Leta € VMOx joc (Q) then for any QY € Q,z0 € @', B (x0, R)
and Qi = B (50, f—ﬁ) as before, we have that a (x,h) = a () belongs to the class

VMO, (Qk, ﬁk) for every k, with

M G0 60y () < OMaar (7).

In other words, the V M O,,. modulus of the original function a controls the
V MOy, modulus of its lifted version.

4 Operators of type A\ and representation for-
mulas

4.1 Differential operators and fundamental solutions

We now define various differential operators that we will handle in the following.
Our main interest is to study the operator

q
L= Z aij(x)Xin + X,
ij=1

under the Assumption (H) in § 2. Recall that in view of Remark 2.3 we have
set ag (x) = 1.

For any T € Q we can apply the “lifting theorem” to the vector fields X;
(see § 3.1 for the statement and notation), obtaining new vector fields X; which
are free up to weight s and satisfy Hormanders condition of weight s in a
neighborhood of £ = (7,0) € RY. For ¢ = (z,t) € B (a R), with B (57 R) as in
Lemma 3.9, set

aij(z,t) = aij(z),
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and let

q
L= @(O)X:X;+Xo (4.1)
id=1

be the lifted operator, defined in B (E, R). Next, we freeze L at some point
& € B (E, R), and consider the frozen lifted operator:

q
Lo= > Gi;(%)X:X; + Xo. (4.2)

4,j=1

To study Lo, in view of the “approximation theorem” (Thm. 3.2), we will
consider the approximating operator, defmed on the homogeneous group G:

q
L= @i;(&)YiY; + Yo
ij=1

and its transpose:
q

L7 =Y a(&)YiY; — Yo
i,j=1
where {Y;} are the left invariant vector fields on the group G defined in § 3.1.
We will apply to £§ and £3T several results proved in [2], which in turn are
based on results due to Folland [16, Thm. 2.1 and Corollary 2.8] and Folland-
Stein [17, Proposition 8.5]. They are collected in the following theorem:

Theorem 4.1 Assume that the homogeneous dimension of G is QQ > 3. For
every & € B (E, R) the operator L has a unique fundamental solution T (&g;-)
such that: :

(a) I'(&;-) € C= (RN \ {0});

(b) T (&o;-) is homogeneous of degree (2 — Q);

() for every test function f and every v € RV,

f0) = (G5 * T (@i ) ©) = [ T (s 00) Lif(w)du
R
moreover, for every i,j =1,...,q, there exist constants o;;j(&o) such that

YY; f(v) = PV. VYT (€0; u™ " ov) L f(u)du +ay;(&o) - L3 f(v); (4.3)
RN

Sy

) Y;YiT (o) € C (RN \ {0});
e) ;YT (& ;) is homogeneous of degree —Q);

AAA
=<

/ Y.Y;T (&; w) du = / Y;Y;T' (€o; w) do(u) =0 for every R > 1 > 0.
r<|lull<R

flull=1
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In (4.3) the notation P.V. [,y (...) du stands for lim._.o f\l (...) du.

u~tov||>e

Remark 4.2 By [16, Remark on p.174], we know that the fundamental solution
of the transposed operator LT is

I7 (&o;u) =T (So;u™") =T (&o; —u).
(However, beware that Y;I'" (€95 u) # Yil (€03 —u)).

Throughout the following, we will set, for i,7 =1,...,q,

Lij(6osu) = YiYj [['(&os )] (u);
FZ}(&o;u) =YY [T7(&0:)] (w).

A second fundamental result we need contains a bound on the derivatives of
", uniform with respect to &y, and is proved in [2, Thm. 12]:

Theorem 4.3 For every multi-index 3, there exists a constant ¢ = ¢(8, G, )

such that
9 B
sup — ) Ty (&) <«
Jull=1 <5u) !
¢€B(E,R)
for any i,j = 1,...,q; moreover, for the a;;$ appearing in (4.3), the uniform
bound

sup [ (§)] < 2
¢€B(E,R)

holds for some constant co = co (G, ).

Remark 4.4 Theorems 4.1 and 4.3 still hold when we replace T by T'T and Ly;
by F;";

4.2 Operators of type A\

As in [25] and [3], we are going to build a parametrix for £ shaped on the
homogeneous fundamental solution of L£j. More generally, we need to define
a class of integral operators with different degrees of singularity. The next
defmition is adapted from [3], the difference being the necessity, in the present
case, to consider integral kernels shaped on the fundamental solutions of both
Ly and L5T.

Definition 4.5 For any & € B (&, R), we say that k(&o;€,m) is a frozen kernel
of type A (over the ball B (E, R)), for some nonnegative integer A, if for every
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positive integer m we can write, for £,m € B (E, R) ,
k(&); 67 ) = k/(&); 67 ) + k//(&); 67 77)

{Zaz n) DI (€o; ) + ao(§)bo(1) Dol (&o; )} (©(,%))

{}:a Drwﬁ,y+%@wumDM*@mo}«xma>

where a;, b;, al, b € C§° (E (Z, R)) (1=0,1,...Hy,), D; and D are differential
operators such that: for i =1,...,Hy , D; and D} are homogeneous of degree
< 2-X (so that D;T'(&o;+) and DITT (€03 -) are homogeneous functions of degree >
A—Q); Dy and D}y are differential operators such that Dol'(&o;+) and D{TT (€95 -)
have m (weighted) derivatives with respect to the vector fields Y; (i = 0,1,...,q).
Moreover, the coeffi cients of the diff erential operatord;, D} fori=0,1,...,Hp,
possibly depend also on the variables £, m, in such a way that the joint dependence

on (§,m,u) is smooth.

In order to simplify notation, we will not always express explicitly this de-
pendence of the coeffi cients of D; on &,n. Only when it is necessary we will
write, for instance, ai(g)bi(n)Df’"F(&); O(n,&)) to recall this dependence.

Remark 4.6 Note that if a smooth function ¢ (&§,n,u) is D (\)-homogeneous of
some degree 3 with respect to u, then any & or n derivative of ¢ has the same
homogeneity with respect to u, since

CEn DN u) = N2 (€ n ).

¢(€,m, D () w) = Noe(&,n,u) implies 2o 3¢

3

Hence any derivative

(2 27) 160 (5057 Tl6or )

has the same homogeneity as

DS (&3 ).

Definition 4.7 For any & € B (E, R), we say that T'(&y) is a frozen operator

of type A > 1 (over the ball B (&, R)) if k(%0;&,m) is a frozen kernel of type A
and

ﬂ@ﬂ@=éﬂ&@mﬂmm

for f € C§° (E (a R)) We say that T(&o) is a frozen operator of type 0 if
k(€0;€,m) is a frozen kernel of type 0 and

T%H@=PVAM&&MNMM+M&@f@,
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where a is a bounded measurable function, smooth in &, and the principal value
integral exists. Explicitly, this principal value is defined by:

P.V./Ek(fo;fvn)f(n) dn = lim k(€o;€,m) f(n) dn.

=0 J)o(m,6)l>e

Definition 4.8 If k(£0;&,m) is a frozen kernel of type A > 0, we say that
k(& €,m) is a variable kernel of type A (over the ball B (€, R)), and

Ti(E) = /Ek(ﬁ;f,n)f(n) dn

18 a variable operator of type A. If A\ = 0, the integral must be taken in principal
value sense and a term a (&,€) f () must be added.

With reference to Defmition 4.5, we will call the k', k" parts of k “frozen
kernel of type A modeled on I', "7, respectively. Analogously we will sometimes
speak of frozen operators of type A modeled on I' or I'", to denote that the kernel
has this special form.

A common operation on frozen operators is transposition:

Definition 4.9 If T (&) is a frozen operator of type A > 0 over B (&, R) ,we
will denote by T(fO)T the transposed operator, formally defined by

/j(é)T(fo)Tg(s)df:[g<§>T<§o>f<s>df
B B

for any f,g € C§° (E (Z, R)) .

Clearly, if k (&, &,n) is the kernel of T (&), then k (&, 7,&) is the kernel of
T (&))" . Tt is useful to note that:

Proposition 4.10 If T (&) is a frozen operator of type A > 0 over B (E, R) ,

modeled on T or I'T, then T({o)T s a frozen operator of type A, modeled on
I'T T, respectively. In particular, the transposed of a frozen operator of type \
18 still a frozen operator of type .

Proof. Let D be any differential operator on the group G. For any f €
Cge (E (&, R)) ,let f/ (u) = f(—u). Let D’ be the differential operator defined
by the identity

!

D'f =(D(f) .

Clearly, if D is homogeneous of some degree (3, the same is true for D’; if
DT (&; ) or DT'T(&p;-) have m (weighted) derivatives with respect to the vector
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fields Y; (i = 0,1,...,q), the same is true for D'T'\(&y;-) or D'TT(&;-). Also,
recalling that I'" (&y;u) = T'(&; —u), we have

(D'T) (u) = (DI'") (—u)
(D'TT) (u) = (DT) (—u).

Moreover, these identities can be iterated, for instance:
(D1D2T) (—u) = (D1 (DaD) (—u) = (D} (D2T)') (u) = (D1 DyIT) (u).-

Then, if

k' (€0,€,m) {Zaz m)DiT' (s +) + ao(€)bo (1) DoT (€o; )} ©(,8))

is a frozen kernel of type A modeled on T,

k' (€0, m,€) {Zaz §)DiT' (o5 -) + ao(€)bo (1) Dol (&o; )} (=0(n,9))

{Zaz E)DITT (€0;+) + ao(€)bo(n) DHTT (&o; )} ©(,))

is a frozen kernel of type A modeled on I'". Analogously one can prove the
converse. W

We have now to deal with the relations between operators of type A and the
differential operators represented by the vector fields X;. This is a study which
has been carried out in [25, § 14], and adapted to nonvariational operators in [3].
We are interested in two main results. Roughly speaking, the first says that the
composition, in any order, of an operator of type A with the X; or X, derivative
is an operator of type A — 1 or A — 2, respectively. The second says that the X;
derivative of an operator of type A can be rewritten as the sum of other operators
of type A, each acting on a different X; derivative, plus a suitable remainder.
In [25] these results are proved only for a system of Hérmander$ vector fields
of weight one (that is, without the drift), and some proofs are quite condensed.
Hence we need to extend and modify some arguments in [25, § 14] to cover the
present situation. Moreover, as in [3], we need to keep under careful control the
dependence of any quantity on the frozen point & appearing in I' (&g, ). For
these and other technical reasons, we prefer to write complete proofs of these
properties, even though they are not so different from known results. The first
result is the following:

Theorem 4.11 (See [25, Thm. 8]). Suppose T' (o) is a frozen operator of type
A>1. Then XkT (&o) and T (&) Xk (k=1,2,...,q) are operators of type A — 1.
If X > 2, then XoT (&) and T (&) Xo are operators of type A — 2.
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To prove this, we begin by stating the following two lemmas:

Lemma 4.12 If k(£0;&,n) is a frozen kernel of type A > 1 over B (E, R), then
()?Jk) (&o;-,m) (&) ( = 1,2,...,q) is a frozen kernel of type A — 1. If X > 2,
then <)~(0k:) (&o;+,m) (&) is a frozen kernel of type A — 2.

Proof. This basically follows by the definition of kernel of type A and Theorem
3.2in §3.1. When the X; derivative acts on the § variable of a kernel Dfr (&o,°) s
one also has to take into account Remark 4.6.

Here we just want to point out the following fact. The prototype of frozen
kernel of type 2 is the function

a(§)T (€0;©(n,€))b(n).

Note that the computation

Xila ()T (@: O, ) b ()] (€)
= a(©) (Vi + BT (60: )] (O, )b (1) + (Kia) (€T (€0:0(1,)) b ()

in particular generates the term

a (&) (BT) (€0;-) (©(n,€)) b (n)

where the differential operator R has coeffi cients depending omr). In the proof
of Theorem 4.11 we will see another basic computation on frozen kernels which
generates differential operators with coeffi cients also depending oné. This is the
reason why Defiition 4.5 allows for this kind of dependence. m

Lemma 4.13 If T(&) is a frozen operator of type A > 1 over B (E, R), then
)~(Z-T(§0) (i=1,2,...,q) is a frozen operator of type \—1. If X > 2, then XoT (&)
18 a frozen operator of type A — 2.

Proof. With reference to Defmition 4.5, it is enough to consider the part k' of
the kernel of T, the proof for " being completely analogous. So, let us consider
the operator X;T(&) (i = 1,2, ...,q), where T (&) has kernel k’.

If A > 1, the result immediately follows by the previous lemma. If A\ = 1,
then

a(§)b(n) DT (§0; O (1, €)) f (n) dn +T" (&) f (£)

B(&,R)

T(&0)f (€) = /

where T7 (£y) is a frozen operator of type 2, and D; is a 1-homogeneous differ-
ential operator. We already know that X;T"(&) is a frozen operator of type 1,
so we are left to show that

%, / al&)b(m)DiT(Eo; (O, €)))f () dny
B(er)
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is a frozen operator of type 0. To do this, we have to apply a distributional
argument, which will be used several times in the following: let us compute, for

any w € G (B (€.R))
T 3 .
/}§ . /B ey O E 001, ) o)

= lim XTw(©) / _ al©)b(m)e: (6(n. €)) DiT(o: (O(n. €))f (n) dndé
=0 JB(eR) B(ER)

where . (u) = ¢ (D (e7') u) and p € C§° (RY) , ¢ (u) = 0 for ||lul| < 1,¢ (u) =
1 for |Ju|| > 2. Here we have written D% to recall that the coeffi cients of the dif-

ferential operator D; also depend (smoothly) on £ as a parameter. By Theorem
3.2,

R

LT

b(n)f (n) /E(& Y

b(n)f () /é@ Y

o 20 /| oy OO [0 B (o.DiT 600 )] (Ol asar

-+ B.+C.. (4.4)

™

/ KT (6) / a(€)b(n)p- (O(n, €)) DET (&3 (O(1,€))) () dde
BER)

(X7w) (©) al€)p- (001,€)) DT (Eo; (0(01,€))dedn

J‘n

(€.R)

+
>'>mz\m\m\w\

w (&) (Xia) (©)¢- (O(n, ©) DT (6: (©(n, §)))dedr
B(&R)

w (&) al€)p- (0(1,€)) (XiDF) T(Eo; (©(1,€)))dedn
5(E.R)

Now,
Ao / E R / 5 R) (6) ()?Za) (g)Dll—‘(gOa (@(n,f)))dfdﬂ
[ rmsi@wman
B(&R)

- / w8 (&) f () dn (4.5)
B(&,R)
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where S (&) is a frozen operator of type 1, and S} (§O)T , its transpose, is still
a frozen operator of type 1 (see Proposition 4.10).

- w a ~. 3 .
B, / en / ey ©500 (R0 Tc: 00 i
= [ st sm
5(En)

- / w8 (&) () dn (4.6)
B(&,R)

where, by Remark 4.6, S} (&) is a frozen operator of type 1, and the same is
true for S} (&))" by Proposition 4.10.

C. = / / w0 (€) al6) [p-Y:DiT (€0: )] (O, €)) ded
B(&,R) B(&,R)
+ /B e 20 /B g (OO DT 6] (000 8) st

+ /B e M) /B oy (OO0 R0 D6 ] (O00.8) e
=Cl+C2+C2. (4.7)

Now:

cl / { / ] a(»:)mr(fo;@w,&))b(n)f(n)dn}ds
BER) B(En)
/ W (©)T (€0) £ (€) de (4.8)
B(Een)

with T (&) frozen operator of type 0. Note that the principal value exists
because the kernel Y;DqT'(£p;u) has vanishing integral over spherical shells
{v e G:r < ||ul]| <72} (see Theorem 4.1).

o / { / a(f)R?le(fo;G(n,f))b(n)f(n)dn}d€
gR [lul|[ <R
/ w(€) S (&) () de (4.9)
B(e.R)

with S (&) frozen operator of type 1.
To handle C3, let us perform the change of variables u = ©(n, £) which, by
Theorem 3.3 gives

C3 = /E(&R) (0f) (n) /|u|<R (wa) (©(n, )" (W) [(Y; + RY) pDiT (€03 )] (u) -

~e(n) (L+ O ([[ul])) dudn
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On the other hand, Y;¢. (u) = 1Y;¢ (D (1)u), while R]¢. (u) is uniformly
bounded in . Hence the change of variables D (%) u = v gives

1
C3 = b wa) (0(n, )t e)v)) | =Yoo (v)+ O .
2= e @00 [, ) 00007 (D) [ ¥p ) -0

~c(n) e 9DIT (&) (1 + O (¢ |Jull)) ¥dvdn

o [ een) [ we) (8.7 (0) Yig (6) DIT (6030) dud
B(&,R) loll<€

= wabe Yip (v) DIT (&o;v) dvd

/E(&R)( N [ Yie @ DT @) ded

— [ Gwabef) ) a o) dn (1.10)
B(en)

which is the integral of w times the multiplicative part of a frozen operator of
type 0. It is worthwhile (although not logically necessary to prove the theorem)
to realize that the quantity « (o, ) appearing in (4.10) actually does not depend
on the function ¢. Namely, recalling that Y;¢ (v) is supported in the spherical
shell 1 < [jv]] < 2, with ¢ (u) =1 for |ju|| = 2 and ¢ (u) = 0 for |lul]| = 1, an
integration by parts gives

/ Yiep (v) DT (€;v) do
1<]v]| <2

—— [ @YD iv)dv+ [ DIT (iv)nido ()
1<]lol <2 flv]|=2
with n; = Z;VZI bi;j (u) v, where Y; = Zjvzl bij (u) Oy; and v is the outer normal
on ||v|| = 2. The vanishing property of the kernel YiDﬁl" (€o; ) implies that if ¢
is a radial function the first integral vanishes. Therefore

o (€0,m) = /| DT o 0

which also shows that « (&p,n) smoothly depends on 7 and is bounded in &,
(by Theorem 4.3). By (4.4), (4.5), (4.6), (4.8), (4.9), (4.10) we have therefore
proved that

X;T(€0)f (€)= S1(€0)" f(&) + 81 (&) f (&) +T (&) £ (€) + a (&0, €) (abef) (€)

which is a frozen operator of type 0.

This completes the proof of the first statement of the Lemma. The proof
of the fact that if A > 2 then XoT (&) is a frozen operator of type A — 2 is
completely analogous. m

The above two lemmas imply the assertion on X;T (&) and XoT (&) in
Theorem 4.11. To prove the assertions about T (£y) X, T (£0) Xo we need a

39



way to express {-derivatives of the integral kernel in terms of n-derivatives of
the kernel, in order to integrate by parts. This will involve the use of right
invariant vector fields on the group G: throughout the following, we will denote
by

Y

the right invariant vector field on G satisfying Yi{if(()) =Y, 1 f(0). We have the
following:

Lemma 4.14 For any f € C{°(G) and 1, in a neighborhood of &, we can
write, for any i =1,2,...,8, k = 1,2, ..., k; (recall s is the step of the Lie algebra)

Koulf @O = (N ©m.e) + ((7.) 1) ©mo). @

!
where (R§,k) is a vector field of local degree < i — 1 smoothly depending on &.

Proof. We start with the following
Claim. For any function f defined on G, let

f(u) = f(-u)
(recall that —u = u~1); then the following identities hold:
Yir (F) == (V). (4.12)

To prove this, let us define the vector fields )A/i,k by

Vi (f) = = (Vias ) (4.13)

then for any a € G, denoting by L,, R, the corresponding operators of left and
right translation, respectively (acting on functions), we have

(VikRaf) = —Yir((Raf)) = —Yir(L af') =
=—L_oYipf =L o(-Yirf) =
=L o(Virf) = (RaYirf),

hence 2 r are right invariant vector fields. Also, note that for any vector field
Y =3 a;j(u) 0y, we have

Y (f)(0) == (¥f)(0)

because

(u) = Zaj u) Oy, [f Za7 (Ou, f) (—u) implies
0=-Y a0 aujf ) —( D)
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hence by (4.13) we know that Yjf(0) = Yj,f(0). Therefore Y is the right

invariant vector field which coincides with Y}, at the origin, that is Yk = Yk ,
and the Claim is proved.
By (3.5) and (4.12),

Kok £ (O N1 (0) = K [/ (©(€.)] (n) = (4.14)
= (Yiud + B, ') (©(6,m) =
= — (YA O m) + B, (€ m) =
— - @A) ©mo)+ ((7) 1) © 0.

(<R§vk‘)/f> (w) = (RS,f") (~u)

is a differential operator of degree < ¢ — 1. This proves (4.11). m

where

Proof of Theorem 4.11. As we noted after Lemma 4.13, we are left to prove
the assertion about 7" (&y) X; and T (&) Xo. We only give the proof for the case
A>1,i=1,--- ¢, the proof for A > 2, i = 0 being very similar. Like in the
proof of Lemma 4.13, it is enough to consider the part &’ of the kernel of T, the
proof for k" being completely analogous (see Definition 4.5). Let us expand

k' (€05 €,m) Za7 n)D;T (€03 ) + ao(§)bo(n) Dol (€03 -) ¢ (©(n,€))

where DoI'(£p; ) has bounded Y;-derivatives (i = 1,2,...,q). We can consider
each of the terms

1) (60) Xif (€)= [ a;(€)b; (n) DIT (60 000, ) Kef ()

(this time it is important to recall the n-dependence of the coeffi cients ofD;)
and distinguish 2 cases:

(i) D;I' is homogeneous of degree > 2 — @ or it is regular (i.e. D;I' has
bounded Y;-derivatives);

(ii) T; (&o) is a frozen operator of type 1 and D;I" is homogeneous of degree
1-Q.

Case (i). We can integrate by parts, recalling that the transpose of X is

~\T ~
(Xi> g(m) =-Xig(n)+ci(n)gn)
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with ¢; smooth functions:
5 (60) if (€)= [ () a; (€)b; () DIT(€0: O, ) () d
- [ a5 (%its) (0 DT (60 00, ) f ()
~ [ a5 b () % [DJT(&0: ©C- )] () £ () di

= [ a5 (€5 () (R707) D60 €00, ()

=A)+B(E+C(&)+D().

Now, A (§) + B (&) is still an operator of type A, applied to f; in particular, it
can be seen as operator of type A — 1; the same is true for D (£), by Remark
4.6. To study C (&), we apply Lemma 4.14,

~ /

X, [DIT(€; 0(-€)] (n) = = (YDIT) (£, © <n,5>>+((R§) D;-'r) (60:© (1,)) .
Since Y is homogeneous of flegree 1, a; (£)b; (n) YiRDgF (£0,© (n,€)) is a ker-
nel of type A—1. Since (Rf) is a differential operator of degree < 0, the kernel

o ©8; ) () DIT) (60:0 (1,60 5 of e A

Note that, even when the coeffi cients of the differential operatorD; (in the
expression D;T'(&y; ©(n,&))) do not depend on ¢ and 7, this procedure intro-

/
duces, with the operator (Rf) , a new &-dependence of the coefli cients. Com-

pare with what we have remarked in the proof of Lemma 4.12.
Case (ii). In this case the kernel (YiRDjF) is singular, so that the computa-
tion must be handled with more care. We can write

T (&) Xif (€) =
— limy [ a;(6)b; () 92 (B(6.1)) DT (60: O, )Xo () = iy T €)

with . as in the proof of Lemma 4.13. Note that, choosing a radial ¢, we have

@ (O(&,m) = ¢e (©(n,£)) . Then
8= / ci () a5 (€) by (n) = (O(&,m)) D3T (€0 ©(1,)) f (n) dn

= [ a5 (@) (%) () - (©X€.m) DT (s O €))7 )y
— [ a5 (€1, ) Xi - (6 €)) DT (6 O €] () f ()

= [ a3 ©; 0 0c ©(€.) (X707) Tl 000 ) ()
A (O + B () + C. (9 +D. €).
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Now A, (§)+B. (§)+D: (§) converge to an operator of type A, as A (€), B (§), D (&)
are in Case (i), while by Theorem 3.2 and Lemma 4.14

Co&) =~ [ ;(©); (1) £ (1) (¥ig) (0. DT (65 O(n. )
(€)b; (n) £ () (RSee- ) (O, €)) DT (€0 ©(n, €))dl
()b, (n) f

- (1) @< (©(n,8)) (Y*D,T) (0,0 (n,€)) dn

- [ @b 001w e ©m.0) ((7) Dir) €0 o)
=E: (§) + Fo () + G- (§) + He (€) -
Now: H, (§) tends to an operator of type 1; G (£) tends to

Rv/%w%mﬁmHWTﬁM%GWOMm

which is an operator of type 0. As to E. (§), the same computation performed
in the proof of Lemma 4.13 gives

B (€) — a(60,) (abef) (€)
with
a (60, 6) /mo ) DT (€03 0) do

which is the multiplicative part of an operator of type 0. A similar computation
shows that F. (£) — 0, so we are done. m

Let us come to the second important result of this section. In [25, Corollary
p. 296], the following fact is proved in the case of a family of Hérmander3 vector
fields of weight one (that is, without the drift Xy): for any frozen operator T (&)
of type 1, ¢ = 1,2, ..., g, there exist operators T;; (&), T; (§o) of type 1 such that

q
T(&)=> Ty (&) X; + Ti (%) -
j=1

This possibility of exchanging the order of integral and differential operators will
be crucial in the proof of representation formulas. However, such an identity
cannot be proved in this form when the drift Xy is present. Instead, we are
going to prove the following, which will be enough for our purposes:

Theorem 4.15 If T (&) is a frozen operator of type A > 1, kg = 1,2...q, then

ZT}% (b0) Xx+ Z Gnj () T (€0) X5 +T5° (&0)+T* (€0) Lo,
e (4.15)
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where T,fo (€0) (k=0,1,...,q) and T"o° (&) are frozen operators of type A,
T* (&) are frozen operators of type A + 1, and an; (&) are the frozen coef-
ficients of Eg,

If T (&) is a frozen operator of type \ > 2, then

q

XoT (&0) = D> Th (S0) Xe+ D anj (£0) T" (€0) X;+Th (€0)+T (&) Lo, (4.16)

k=1 h,j=1

where Ty (&) (k=0,1,...,q) and T" (&) are frozen operators of type A — 1,
T (&) is a frozen operator of type A.

We start with the following lemma, which is similar to that proved in [25,
p. 296]. Again, we prefer to present a detailed proof since the one given in [25]
is very condensed.

Lemma 4.16 For any vector field )~(j07k0 (Go=1,2,....,8, ko =1,2,..., kj, ) there

exist smooth functions {a](;ck“”}j:u 77777 s having local degree > max {j — jo,0}

k=1,2,...h;
and smoothly depending on n, such that for any f € C§° (G), one can write

Ko ko [F (O (1,))] (€) = (4.17)
= Y T OMO) Xkl OO+ (BF) (O(0.6)

=1,2,...,8

J
E=1,2,....k;
where Rﬁ(’)n s a vector field of local degree < jo — 1, smoothly depending on &,m.

Proof. By Theorem 3.2 we know that

Kijosko [F © (D (©) = (Yiwrad + B, 1) (O (1) = (Z1,1) (0 (n,€)).
(4.18)
where Z]”0 is a vector field of local degree < jg, smoothly depending on 7. To

rewrite (Zjno f) in the suitable form, we start from the following identities:

Y= au " +Y 0> g 8ul (4.19)

roi<l<s

forany 1 =1,2,...,sand k=1,2,..., k;;

Yir = gif (w) Y, (4.20)

where g/¥ (u) are homogeneous of degree [ — i (see [25, p. 295]). Hence we can

write
n o_
Z Zaﬂc 8u k
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where aj;, has local degree > j — jo and smoothly depends on 7. By inverting
(for any i, k) the triangular system (4.19), we obtain

0

a ] J,k“‘Z }/lm

i<l<s

where each fljrk (u) is homogeneous of degree | — j. Using also (4.20), we have

w) = aj, (u) |(Y + > (W) (Yirf) (w)
J<I<s
= S0 () (V) (w), (421)
where

b has local degree > max {l — jo,0} (4.22)

and smoothly depends on 7. By Lemma 4.14, then

(22 ) Z —b}. ) X [£ (© ()] (n)
£y (b?r (r5,) f) ©1.). (1.23)
Lr

!
where (Rir> is a differential operator of local degree <[ — 1, hence the differ-
ential operator on G

/
Rﬁ(’]" = Z by (ng,r> has local degree < jo — 1, (4.24)
Lr

and depends smoothly on &,7. Collecting (4.18), (4.22), (4.23), (4.24), the
Lemma is proved, with a;”k‘”’ b, =

With this lemma in hand, we can prove the following, similar to [25, Thm
9]:

Theorem 4.17 (i) Suppose T (&) is a frozen operator of type A > 1. Given a

vector field X; for i = 1,2,...,q, there exist T' (&y), frozen operator of type A,
and T;k (&0), frozen operators of type A+ j — 1, such that:

X,T (&) = Z e (€0) X + T (60) 5 (4.25)

(ii) Suppose T (£&o) is a frozen operator of type A > 2. There exist T° (&y) ,T;k (&)
frozen operators of type X — 1, A+ max {j — 2,0}, respectively, such that:

XoT (&) = Z % (60) Xk +T° (0); (4.26)
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Proof. First of all, it is enough to consider the part k' of the kernel of T (&),
the proof for k” being completely analogous (see Defition 4.5).

(i) If T (&) is a frozen operator of type A > 1 with kernel &’ we can write it
as

T (&) £ (€) = / a/(€) DT (€0:0 (. €) b (1) £ () dn + T' (60)  (€)

where DT (&, -) is homogeneous of degree A — @ and T” (&) is a frozen operator
of degree A+ 1. Since X;T" (§y) is a frozen operator of type J, it has already the
form T* (&) required by the theorem, hence it is enough to prove that

% [[al€) DL (60s0 (1.€) b (0) £ ()
can be rewritten in the form

Z ik () X f () + T (0) £ (€)

with T;k (€0) , T (&0) frozen operators of type A+j—1 and A, respectively. Next,
we have to distinguish two cases.

Case 1: A > 2. In this case the X; derivative can be taken under the integral
sign, writing:

X/ €) DT (€00 (1,€)) b (1) £ (n) dn

— [ (%a) ©) DT (6650 (1.6 b0) £ ()

+ / a (&) X: [DT (O (0, )] (€) b (1) [ (n) dn
A©)+B(©).

Now A (£) is frozen operator of type A, while applying Lemma 4.16 with j, = 1
we get

/ Zalr ) Xir [DT (603 © (- €))] () b (n) £ (n)
/ Zal, ) (B.DT) (600 (1,€)) b (n) f (m) dn
= C@©+D(©)

where RS, are differential operators of local degree < 0, and the a}, % have local
degree > [—1. Hence D is a frozen operator of type A, while, since the transposed
vector field of X, is

Xl Xlr"'clr

r
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with ¢, smooth functions,
O [ Xor [0} (0. b()] () DT (€0:0 (1.€)) £ ()
D3 [ i ©0.) DL (660 (0.6 v ()b (1) £ (n)
X0 [ i (©1.6) D (60:0 (1) (1) o f (1) d

The first two terms in the last expression are still frozen operators of type A
applied to f, while the third is a sum of operators of type A +{ — 1 applied to
Xi.»f, as required by the theorem.

Case 2. A = 1. In this case we have to compute the derivative of the integral
in distributional sense, as already done in the proof of Lemma 4.13: with the
same meaning of ., let us compute

lim X [ a(€) ¢ (O (n,€)) DT (€0;© (1,€)) b (1) f (1) dn.
Actually, this gives exactly the same result as in case 1:

%, / ) DT (60:© (1,€)) b (n) f (1)

-/ (Xz-a) (€) (O (1,)) DI (60; © (1,)) b ) £ (n) i

+ [ a(©) Zil(e:DD) @ (0. )] ©) b 0) £ ()

— A () + B (&)
where
A H/ (Xia) (€ DT (€0:0 (1.€) b (n) f (n)
and
B. ( / Za,r ) X [2 (O (- €)) DT (€030 (-, )] (m) b (n) F () iy
+ [at© Sl (01,6 (S, (5:DD) (110 (1) (0) S o)
G © + .0

where C; (§) converges to the expression called C () in the computation of case
1; as to D, (£),
R}, (pDT) = (Ryp:) DT + R}, DT
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Now, R, DT — RS, DI while (RS p.) DI' — 0, being RS, a vector field of
local degree < 0. Hence also D, (§) converges to the expression called D (&) in
the computation of case 1, and we are done.

(i) Let now T (&o) be a frozen operator of type A > 2 with kernel £’. As in
the case (i), it is enough to prove that

%o [ (&) DL (€010 (0.€)b(0) £ () i,
where DI is homogeneous of degree A — @), can be rewritten in the form

DT (60) Xyaf (6) +T° (60) £ (©)

with TO (&), TV (&) frozen operators of type A+ j — 2 and A — 1, respectively.
Let us con51der only the case A > 3, the case A = 2 being handled with the
modification seen in (i), Case 2.

%o [a(©) DL (€0 (1.€) b () £ ()
— [ (Roa) (€) DT (& (1.) b ) £ () dt
+ [[@(© %o DT (50 (1)) (€)b () £ ()
— [ (%oa) (© DX (€010 (0. b o) f () dit
/ Zalr )) Xir [DI (6050 ()] () b (n) f ()

+ [ate )36l (0/1.9) (BELDI) (6016 (1)) b (1) f 1)
A0+ D).

where RS, are now differential operators of local degree < 1, and the al $ have
local degree > max {j — 2,0}. Then A (&) is a frozen operator of type A, applied
to f; D (£) is a frozen operator of type A — 1, applied to f. Moreover,

o9y / Ko [9 (0 (-€))b()] (1) DT (€0:© (1,€)) £ (n) dny
L,r

+a(£)2/a?r (©(17,€)) DI (§0;© (n,€)) e () b (n) f (n) dn

Lr
—a©Y / af, (O (1. €)) DT (€0:© (. €)) b () X1 () dy
Lr

where the first two terms are still frozen operators of type A, applied to f, while
the third is the sum of frozen operators of type A + max {j — 2,0} applied to
Xl,rf- | ]
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We can now proceed to the:
Proof of Theorem 4.15. It suffi ces to prove the formula (4.15), for the second
is similar. Let us consider one of the terms T7, (&) X« appearing in (4.25).

If j = 1, the term is already in the form required by the Theorem.

Ifj = 2, then X5, can be written as a combination of commutators of

the vector fields )?1, )~(2, Xq7 plus (possibly) the field Xo. Then Ti. (&) X2 k

contains terms T4, (€o) XhX and possibly a term T%; (&) Xo. By the above
theorem we know Tjk is a frozen operator of type A + 1. Now:

T (60) Xn X, = (T (€0) Kn ) X = T} (€0) K5,

where by Theorem 4.11, T} (&) is a frozen operator of type \; on the other
hand, by (4.2),

q
T3y, (€0) Xo = Tay, (S0) | Lo— D any (S0) XnX;
h,j=1
= T3, (%) Lo— Y @nj () (Tﬁk (50))?11) X;
h,j=1
= T4y, (&) Lo — Z anj (S0) Th i (S0) X5,

h,j=1

with T3, (&), Tﬁ,k (&o), frozen operators of type A + 1, A, which is in the form
allowed by the thesis of the Theorem.

Finally, if j > 2, it is enough to look at the final part of the differential
operator Xkt it is always possible to rewrite X, j,k either as X, -1 le L Or as

Xj 2, ng k- In the first case, we have

T} (o) gk—(jk(fo) - lk)Xlk— ]k(ﬁo)X1k7

with Tﬁ@ (&o) frozen operator of type A, which is already in the proper form; in
the second case, we have

e (€0) Xy = ( x (€0) Xjo k) Xogo =T (€0) Xak

with Tj’ic (&o) frozen operator of type A + 1, and then we can proceed as in the
case j = 2. So the Theorem is proved. m

4.3 Parametrix and representation formulas

Throughout this subsection we will make extensive use of computations on
frozen operators of type A. To make more readable our formulas, we will use the
symbols

T (&) 55 (&) P (%0)
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(with possibly other indexes) to denote frozen operators of type 0,1, 2, respec-
tively.

In order to prove representation formulas for second order derivatives, we
start with the following parametrix identities, analogous to [25, Thm. 10], [3,
Thm. 3.1].

Theorem 4.18 Given a € C§° (E (E R)), there exist S;j(£0), So (§0), S7;(&o),
Sg (&o) , frozen operators of type 1 and P(&y), P*(&o), frozen operators of type 2
(over the ball B (¢, R)) such that:

q
al = L P* (&) + Z aij (§0) S5 (€o0) + 55 (€0) 5

ij=1
q
al = P(§0)Lo + ) G (€0) Sij (§0) + So (o) (4.27)
ij=1

where I denotes the identity. Moreover, S}; (o) ,55 (o), P (&) are modeled
on I'T, while S;j (&) ,So (€0), P (&) are modeled on T. Explicitly,

P*(60) £ (6) = —Z‘Eg [T (650009 b0a) S01)
P &) £ (€)= —b(e) /B ZE;’;r(so; On,€)) f(n) di

where c is the function appearing in Theorem 3.3 (c).

The proof of this result is similar to that of [25], [3, Thm. 3.1]. However, we
will write a detailed version.
Proof. Let us defme

P*(E0) f(6) = Eg [ 1760 s(a)

where a,b € C§° (5 (E, R)) such that ab = a, and ¢ (£) is the function appearing

in the formula of change of variables (3.7), and let us compute LI P*(&)f, for
fecy (E (E, R)) We have to apply a distributional argument like in the

proof of Lemma 4.13: for w € C§° (é (E, R)) , let us evaluate
[ B © P f e = tim [ Fuwo(6) P2(60)f (©)d¢
where

P& = 5 [ e (©00.6) T (601001 €)) bia) £

B
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with ¢, as in the proof of the quoted Lemma.

/E Low (€) P2 (60)f (€) de

- [ v ( [ 58 0. ) T (0. )L ) dg) iy

_ o (al©) - y

= [ oson [ 25 (45 ) o- @) T (e 000 ) () )

(
a(e) sy (e o0 )] (6
+ [ osn ([ S [o- 00T (6 000.1)] (€0 (€) ) i

+ /B (/ D e (60) X (C)@)XZ[soe<@<n,->>rT<ao;@<n,~>>]@)w(f)ds) dn

ac— oo ([ 25 (48 17 (e 0w €)de ) d

= S e () /B )P (€0) e (m) dn + /§f<n>PoT (60) w (n) dn

= 3 ) [ (O Pur60) FOE + [ ()P () FE)E

h,k=1

where

Pa (§0) £(6) = XX (2) (© ( 7o b f(n)dn) d
P60 16 = XF (2) (@ ( [ 17000 o) S ) ae

are frozen operators of type 2, modeled on I'T.

CL(E) *T T .. w
7 ){ [ S 37 (o (0 0)] OO )0 (01

( jen” (o3 w)) () (O, )~ (w)) (14O (J[ul)) du> dn

= [
( e (Z () [YiR] + RIY; + RIR]) +R3) (I (05°)) (O, ) w (€) df)}dn

/u|<R (Z aij (&) | YRW + R}Y; + R?R;?] + Rg) (ge () TT (€03 0))

2V

- (aw) ( (,) 7" (w) (1 + O ([[ull)) dudn
— D, +E..
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To study De, let (aw), (u) = (aw) (©(n,-)* (u)) . Then

- /J)f(n) / e (u) TT (603 u) L5 (aw), () dudiy+
B [lul| <R
T Tea: N (w) (aw). (u u U
+/§bf(n)/lu|<Rﬁo (0T (€03 )] () (aw), () O ([Jul]) dudy

ED;—FDS.

Dl — / b (i /| T e (), () dudy =~ /B bf(n) (aw), (0) dn
- [ s @) ) dn = - [ (af) ()i
B B

D= [ o) [ (€57 ee) (017 6oi ) ), ) O () dudy
B lul|[<R
+ /B (n /u|<RQZ“” (60) (Yipe) () Y;T7 (03 w) (aw), () O (Jul]) ducn.

Y

A dilation argument as in the proof of Lemma 4.13 then gives
D? — 0.
Moreover,

g [ [, (Z% (6o) [YiR] + RIY; + RIR]) + Rzz) 7 (6o )

(aw) (©(n, )" () (1 + O (Jlull)) dudy

coming back to the original variables £ in the inner integral

= /E bf(n)/_é (Zaij (%) [YiR! + R}Y; + RIRY| T (&0; )+
2]

R (60 000 €) D) dgan

:/E f() [Z aij (§0) Sij (§0) + 5o (fo)] w (n) dn

= /]§ w(n) [ZEU (&) S5 (&) + 55" (50)} f(n)dn
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where S}, (o) ,5) (§o) are transposed of frozen operators of type one modeled

on I'", hence are frozen operators of type one, modeled on I' (see Proposition
4.10); therefore Sl’f (€0), SET (&) are frozen operators of type one, modeled on
I'". Analogously, one can check that

q

Co= 3 (&) [ (@) S (60) )t

hk=1

where S,/L/k (&) are frozen operators of type one, modeled on I'7".
Hence we have proved that

LEP (&) f =Py (o) f —af + | D ai (&) ST (o) + S¢T (&0) | £

1,3

= —af + | Yy (&) 85 (60) + S5 o) | f

,J
since S{T (£0)+ Py (&) is a frozen operator of type 1, and simplifying our notation

with S;; in place of S!T. Note that S}; (&), S; (£9) are frozen operators of type
J 17 1] 0

1, modeled on I'". This proves the first identity in the statement of the theorem,
apart from an immaterial change of sign in the defmition of P*(&p).
Next, let us transpose this identity, getting

PT(&)Lof (&) = | D ai (S0) S5 (€0) + 557 (&) | £(&) — (af) (6).

j

Note that
P €)= 0(e) [ ;‘Egr%; o(&.m)) £(n) dn
-~ a(m) . .
=b16) [ ST 00.0) f) dn

which is a frozen operator of type two, modeled on I'. On the other hand,
Si (€0), 557 (&) are transposed of frozen operators of type 1 modeled on I'",
therefore are frozen operators of type 1, modeled on I'. This concludes the proof.
[

Theorem 4.19 (Representation of )?m)?lu by frozen operators) Givena €
(O (E (E, R)) ,€o0 € B (E, R) , for any m,l=1,2,....q, there exist frozen oper-
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ators over the ball B (Z, R) , such that for any v € C§° (E (E, R))

q
X Xy (au) = Tim (S0) Lo+ Y Tim i (€0) Xite + Ty, (0) u
k=1

q
+ ) @i (%) Zﬂlmk (&) Xpu + Z ank (€0) T1e) 1, (€0) Xput

ij=1 k=1 hk=1
(4.28)

Si7, (€0) Lou+ Tp, (&) u}
(All the T.. (&) are frozen operators of type 0, S;fn (&o) are of type 1). Also,

X X (au) = Tim (§0) Lu+ Tim (&) | Y [@15(&0) — @i (1)) XiXju | +

ij=1

q
+ Z Tim.k (€0) Xpu + 17, (o) u
k=1

+ ) @i (%) Z W (€0) Xpu + Z ank (€0) T2 1, (€0) Xpu + Sp2, (€0) Lu

i,j=1 k=1

+879, (€o) | D [@i5(60) — @i ()] XaXju | + 33, (€0) ¢ - (4.29)
i,j=1

Remark 4.20 The representation formulas of the above theorem have a cum-

bersome aspect, due to the presence of the coeffi cientsa;;(§o) which appear sev-

eral times as multiplicative factors. Anyway, if we agree to leave implicitly

understood in the symbol of frozen operators the possible multiplication by the
coeffi cientsay;, our formulas assume the following more compact form:

q
X X (au) = Ty (§0) Lou+ Y T (&) Xpu + T, (So) u
k=1
and

q

XnLijl (CLU) = ﬂrrL (50) EU + ﬂm (50) Z al] 50 Zil]()] )?Z‘SZJU' +

q
+ Y T (&) Xeu+ T, (&) u
k=1
In the proof of a priori estimates, when we will take C* or LP norms of both
sides of these identities, the multiplicative factors an; will be simply bounded by
taking, respectively, the C* or the L™ norms of the ap;; hence leaving these
factors implicitly understood is harmless.
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Proof. For u € C§° (§ (E, R)), let us start with the identity

= P (&) Lou + Z aij (€o) Sij (o) u+ So (o) u

ij=1

(see Theorem 4.18); taking one derivative X; (I = 1,2, ..., q) and applying The-
orem 4.11 and Theorem 4.15, we get

Xi (au) = X, P (§) Lou + > ai (¢o) X183 (§0) u+ XS0 (&) u

ij=1
q q
=81 (&) Lou+ Y @i (€0) {ZSZ?}C (€0) Xyu+
ij=1 =1
q ..
+ Z ang ( l b ' (€0) Xpu+ P (&) Lou+ S (EO)U} +
hoh—1

+ZS (&0) Xpu + Z ans (€0) S™ (€0) Xyu + Sb (&0) u + P! (&) Lou
=1

h,k=1

q
= 5] (€0) Lou+ Y Sk () Xeu+ S (&) u

k=1
q q q
+ 3y (&) {ZS;?; (o) Xnu+ > ank (€0) S5 (€0) Xpu +
i,j=1 k=1 h,k=1

+P7 (&) Lou+ S (&) U}

where all the S (&) are frozen operators of type 1 and Plij (&o) is of type 2.
Next, we perform another derivative X, of both sides, getting

q
X X1 (au) = Tim ($0) Low+ Y Tom,r (§0) X+ T, (o) u
k=1

q
+ Z aij (§o) {Zszk (&0) Xru + Z ank (o) lmh(fo)Xku+

ij=1 k=1 h,k=1

lm (50) E()’UJ + T'lrm (50) }

where all the T (&) are frozen operators of type 0, and Slij (&o) is of type 1.
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This is exactly (4.28). Finally, inserting in this equation the identity

Lou(€) = Lu(€) + (Lo — L)u(€) (4.30)
= Lu(é) + Z (@i (€0) — @i (§)] XiXju(€)

ij=1

we find (4.29), and the theorem is proved. m
The above theorem is suited to the proof of C% estimates for X;X;u. In

order to prove LP estimate for X; X ju we need the following variation:

Theorem 4.21 (Representation of )?m)?lu by variable operators) Given
a € C§° (E (E, R)), for any m,l =1,2,...,q, there exist variable operators over

the ball B (E, R) , such that for any uw € C§° (E (E, R))

q q
XX (au) = TymLu+ Y (G5, Tin) XiXju+ Y Do p Xpw + T, ut

ij=1 k=1

q q q
+ > @ > T Xeu+ > @y, Xpu+ Sf Lut

ij=1 k=1 hk=1
q .. ~ ~ ..
+ 3 [a i) XiXju+ Ty (4.31)
ij—=1

Here all the T . are variable operators of type 0, Slzfn is of type 1, [a,T] denotes
the commutator of the multiplication for a with the operator T', and a;; are the
coeffi cients of the operatorL (which are no longer frozen at &).

Remark 4.22 The above representation formula can be written in a shorter
way as
Xle (CLU) = Emﬁu + z [aij; ﬂ771] Xinu + an,kau + T‘](:nu
i,j=1 k=1

if we leave understood in the symbol of variable operator the possible multiplica-
tion by the coeffi cientsa;j. See the previous remark.
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Proof. Let us rewrite (4.29) as

X X (a0) (€) = (Tim (0) L) (€) + Tim (60) ( S [@i(€0) — ()] fw?) ©+

ij=1

M=

37 (T (80) Xaw) (&) + (Th (€0)w) () +

b
=

q

+ Z au {zq:( im,k EO Xku) (5)

ij=1 k=1
q

7 s (6o) (T (o) Kur) (€) + (S, (€0) L) (€) +

h,k=1
+5i3, (€0) (Z [@15(60) — @i ()] Xffu) () + (T2, (%) )(5)}
i,j=1
for any & € B (Z, R) . Letting now &y = & we get

q

XX (au) (€) = (Tlm5~u> () + Tim (Z G () — @ ()] XiX; u)

,j=1

3 (i) () + (Th,0) (6 + z {z 7, Fo) €

where all the T are variable operators of type zero over B (E R) , and Sllfn are
variable operators of type 1. Note that

T ([@j(f) - 5ij(')] )?ZXJU) €3]

is exactly the commutator [a;;,T] applied to )?Z-)zju. Hence the theorem is
proved. m

5 Singular integral estimates for operators of
type zero

The proof of a priori estimates on the derivatives )Z-)?ju will follow, as will
be explained in detail in § 6.1 and § 7.1, combining the representation formulas
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proved in § 4.3 with suitable C“ or L? estimates for “operators of type zero”. To

be more precise, the results we need are the C’% (E (E, R)) continuity of a frozen
operator of type zero and the LP (E (E, R)) continuity of a variable operator of

type zero, together with the LP (E (E, 7")) estimate for the commutator of a
variable operator of type zero with the multiplication with a VMO function,
implying that the L? (B (E, r)) norm of the commutator vanishes as r — 0. All

these results will be derived in the present section, as an application of abstract
results proved in [8] in the context of locally homogeneous spaces, which have
been recalled in § 3.3. To apply them, we need to check that our kernels of type
zero satisfy suitable properties. Moreover, to study variable operators of type
zero, we also have to resort to the classical technique of expansion in series of
spherical harmonics, dating back to Calderén-Zygmund [9], and already applied
in the framework of vector fields in [2], [3]. This study will be split in two
subsection, the first devoted to frozen operators on C®, the second to variable
operators on LP.

5.1 (C“ continuity of frozen operators of type 0

The goal of this section is the proof of the following:

Theorem 5.1 Let B (&, R) be as before, & € B (&, R) , and let T (&) be a frozen
operator of type A > 0 over B (a R), Then there exists ¢ > 0 such that for any
r< R andu € C’% 0(B (E,r)),

IT€0)ullca (B(er) < cllulles (B (5.1)
where ¢ depends on R, {)N(l} ,a and p.

Recall that p is the “ellipticity constant” appearing in Assumption (H) (see

§2).
To prove this, we will apply Theorems 3.11 and 3.14 about the C'* continuity
of singular and fractional integrals in spaces of locally homogeneous type, taking

~(— k
Q=B <§, k—f—Rl) for k=1,2,3... (5.2)
By Defition 4.5, our frozen kernel of type zero can be written as:
k(éOa fa 77) = k/(go; fa 77) + k”(go; fa 77)
H
= {Zai(ﬁ)bi(n)DiF(fo; )+ ao(&)bo(n) Dol (&o; )} ©(,8))
i=1

H
+ {Z a;(€)b; () DITT (€0; ) + ag ()b (m) DT (€ ~)} (©(n,8))

i=1
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for some positive integer H, where a;, b;, aj, b; € C§° (E (& R)) (i=0,1,...H),
D; and Dj are differential operators such that: for i =1,...,H, D; and D), are
homogeneous of degree < 2 (so that D;I'(&;-) and D!I'T(£p;-) are homoge-
neous function of degree > —Q), Dy and D] are differential operators such that
DoI'(&;-) and DT (&p; -) have bounded first order (Euclidean) derivatives (we
will briefyy say that DoI'(&y;-) and D{TT (&;+) are regular).

We will prove our Theorem for the operator with kernel k', the proof for k"
being completely analogous. Let us split k&’ as

k' (€05 €,m) = a1(£)b1(n) DiT'(§0; ©(n, €))
+ {Zm: ai(€)bi(n) DT (Eo;-) + ao(€)bo(n) Dol (€o; .)} O, €))

= ks (&,n) + kr (&n)

where D1T'(&p; u) is homogeneous of degree —@Q while all the kernels D;T'(&y; u)
are homogeneous of some degree > 1 — @ and DoI'(£p; ) is regular. Recall that
all these kernels may have also an explicit (smooth) dependence on &, n; we will
write Df’"I‘(fO; O(n,£)) to point out this fact, when it will be important.
We want to apply Theorem 3.11 (about singular integrals) to the kernel kg
and Theorem 3.14 (about fractional integrals) to each term of the kernel kp.
We start with the following result, very similar to [3, Proposition 2.17]:

Proposition 5.2 Let W& (-) be a function defined on the homogeneous group
G, smooth outside the origin and homogeneous of degree £ — Q for some non-
negative integer £, smoothly depending on the parameters £&,m € B (f,R) , and
let

K(&n) =W(0 (n,€))

be defined for &,n € B (E, R). Then K satisfies
(i) the growth condition: there exists a constant ¢ such that

|K(&,m)| <c- sup [Wo(u)| - dg(&n)" %

flufl=1

(#i) the mean value inequality: there exists a constant ¢ > 0, such that for
every gOa 57 n with d}? (507 7]) > 2d}? (507 5)7

|K (&0,m) — K(&,0)] + |K(n,&) — K(n,€)| < Cd~d;?(§0,§)

et 63

where the constant C has the form

c- sup { |VUW5’”(u)| + ’VgWg’"(u)} + |V,]WE”7(u)| }
lull=1.¢neB(E R)

(i) the cancellation property: if ¢ = 0 and W satisfies the vanishing property

/ W (u)du = 0 for every R>r >0, any &,n € B (E,R)  (5.4)
r<||lul|[<R

99



then for any positive integer k, for every ea > €1 > 0 and £ € Qi (see (5.2))
such that B (§,e2) C Qg1

K(&,m) dn| +

K(n,&)dn| <C-(e2 — 1)

/Qk+1,€1<p(§,77)<62 /Qk+1,€1<f7(§,77)<52

(5.5)
where the constant C' has the form

c- sup { (W (u)| + |V5W57”(u)| + ’V,,Wf’"(u)} }
llull=1,6,neB(,R)

Proof. Point (i) is trivial, by the homogeneity of W, and the equivalence be-
tween dg and p (see Lemma 3.9).
In order to prove (ii), fix &, 7, and let 7 = $p(n,&). Condition p(n, &) >

2p(€,&) means that £ is a point ranging in B,.(y). Applying (3.28) to the
function

f(&) =K (&n)

we can write

|f(§) - f(§0)| < Cdj(“ (fafo)'

) (z‘l: sup )‘)?zf(o)—i—d)? (&,&) sup )‘)?of(g)o .

i=1¢€B(0,3dx(€o0sm) ¢eB(&,3dx(€om)
Noting that, for ¢ € B (&, 2d (¢0,7)) ,
[k () Q)] = | X (W © () (O + (X © () (<)
< (VW + RIW) (0 (0. Q)| + | (KW (0 (¢,m) ) (€)]

and recalling that, by Remark 4.6, VW% (u) has the same u homogeneity as
WS (u), we get

c

XiK () (O] < sup VW (0)| ——5=7 +
lull=1,¢neB(E R) p(¢m
C
+ sup ’VCWC’" (v)| ———5=
lul=1.¢.neB(ER) p(¢,m?
C
< sup {|V W ()| + [VW ()|} ——————7
lul=1.¢.neB(E R) dg (&0,m) @
Analogously
~ . y C
XoK (-,n) (¢)] < sup AV ()| + [V W ()|} ———5—75,
lull=1,¢,ne B(E,R) dg (&o,m)
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hence

’ - 5 S Cdsy 5 X
‘ (E 77) (50 77)| X (E 50) (d)? (50,77)@_“_1 d)z— (€O7U)Q_g+2>
dz (&%)

<C——5"77
d}? (50777)62 o

with
C=c sup {|V W ()| + [VeW S ()|}
llull=1,¢,neB(E,R)

To get the analogous bound for |K(n, &) — K(n,£)], it is enough to apply the
previous estimate to the function

K(&,n) = W& (6 (n,€)) with W& (u) = W (u™).

This completes the proof of (ii).

To prove (iii), we first ignore the dependence on the parameters &, 7, and
then we will show how to modify our argument to keep it into account. Let us
write:

/ W(O(n,£))dn =
Qrt1,e1<p(§m)<e2

by the change of variables u = ©(n, &), Theorem 3.3 (b) gives
= c(§) W(u) (14w (& u)) du=
e1<[Jull<e2

by the vanishing property of W,

—dolﬂwQQWww@me

Then

W(©(n,§))dn

/ <[ )l du
Qrt1,e1<p(§,m)<e2 e1<||ul|<e2

<c- sup [W]- | '~ du
lull=1 e1<||ull<e2

<c- sup |[W|-(e2—e1).
flull=1

Analogously one proves the bound on W(0(&,n)). Now, to keep track of the
possible dependence of W on the parameters &, n, let us write:

WE(O(n, €)) dy = / W&E(O(n, €)) dn+

Qrr1,61<p(€,m)<e2
+/ [WE(O(n,€)) = WEE(O(1,€) ] dny
Qpy1,61<p(€,n)<e2

=1+11.

/Qk+1751 <p(&mn)<e2
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The term I can be bounded as above, while
(W () — WEE ()| < I€ =] [7, W4 ()

for some point i’ near £ and 7. Recalling again that the function V,,Wg’"l ()
has the same homogeneity as W47 (-), while

& —n| <ecdg (§,m) <cp(&m),

we have

11| <c¢ sup |V77W5’”(u)| ||u||17Q du
lull=1,¢meB(E R) Qupr.er<llull<ea

and the same reasoning as above applies. This proves the bound on ‘ | K(&n) dn‘
n (5.5). The proof of the bound on UK(U,Q dn| is analogous, since the van-
ishing property (5.4) also implies the same for fr<\|u|\<R We (w1 du. m

The above Proposition implies that D1I'(&p; ©(n, §)) satisfies the standard
estimates, cancellation property and convergence condition stated in § 3.3. Note
that (5.5) implies both the cancellation property and the convergence condition.

In order to apply to the kernel kg (£, 1) Thm. 3.11 we still need to prove that
the singular integral T with kernel kg (£,7n) satisfies the condition 7' (1) € C’}(.
(see condition (3.18) in Theorem 3.11).

This result is more delicate than the previous condition, and is contained in
the following:

Proposition 5.3 Let

h(f)=lim/(5 . K(&,n)dn
p(&m)>e

e—0

with
K(&,1) = a1(€)bi(n) DS T (&0; O(n, €)),

D?"F({og -) homogeneous of degree —Q and satisfying the vanishing property

/ Df’"F(fO;u)du =0 for every R>1 >0, any &,m € B (&, R).
r<||lul|[<R

Then h € C} (E (& R)) for any v € (0,1).

Proof. Since a1, b; are compactly supported in B (Z, R) , we can choose a radial
cutoff function

o (&n) =Ff(p&n),
with
J(lul]) =1 for [Jull < R, f([lul) =0 for ||lul >2R,
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so that IN((é,n) = IN((f,n)(b(f,n). To begin with, let us prove the assertion
without taking into consideration the dependence of Df’"F(ﬁo; w) on &, 7. Then

h(§) = a1(£)by (§) lim ¢ (&, m) D1I'(80; O(n, €))dn+

=0 p(e,m)>e
() / 6 (€.1) DT (60 ©(1,€)) [b1(n) — by (€)] dny
=[O +11(6).
Now,

1(§) = ax(§)br (§) ¢ (§) lim S ([ull) DiT(&os u) (1 + w (§, u)) du

€20 Jjjuf>e
= a1 ()b () ¢ (€) / 7 (ull) DT (Eo: e (6, ) dus

by the vanishing property, with w smoothly depending on & and uniformly
bounded by c|lu||. Hence I (§) is Lipschitz continuous, in particular Holder
continuous of any exponent v € (0,1). Moreover,

I (&) = a1(§) /§(§R) k (€,7m) dn with

K (&,m) = ¢ (&,m) Dil'(§0; O(n,€)) [b1(n) — b1 (£)] -

It is not diffi cult to check that the kernelk (£, n) satisfies the standard estimates
of fractional integrals (3.14) and (3.15) in § 3.3 for any v € (0,1) (actually, for

v = 1). Hence the operator with kernel x is continuous on C? (E (E, R)) ; in

particular, it maps the function 1 into C” (E (E, R)) , which proves that IT (&)

is Holder continuous.
To conclude the proof, we have to show how to take into account the possible
dependence of Dﬁ’"F (&o;u) on &, 7. Let us start with the n dependence.

hO) =@ ©lim [ o6 DIN; 00 9)drs
+ay(e) / & (€.m) DIT (60 0(1,€)) [b() — by (€)] i
=)+ 1),

The term 1’ (§) can be handled as the term IT () above. As to I’ (£),

I'(€) = a1 (€)br (€) ¢ (€) lim £ (lul)) DO I (G ) (1 +w (€, w)) du

€20 jluf>e

= a1(€)by (€) ¢ (€) lim £ (lul)) DO T (o5 w)du+

=0l >e

(@b ©c(©) [ £l DY L s (€ v du
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The second term can be handled as above, while the first requires some care.
By the vanishing property of the kernel DfF(fo; u) for any fixed ¢ we can write

o) Yu
lim [ f () DY T (s w)du
eV ull>e
Ley—1
— lim £ (lul) [DECO I (¢ u) — DET (&5 w) | du.
=0 lul>e

On the other hand,
. -1 u
DY D (o5 u) = DET (€03 u) + DT (o )

where DS is a vector field of local weight < 0, smoothly depending on £. Hence
. 0,6 Hu
i [l DY s = [ # Q) DS )
ul||>e

which can be handled as the term I (§) above.
Dependence on the variable £ can be taken into account as follows. If

h(€) = a1(§)b () lim ¢ (€,1) DY"T(60; ©(1,)) iy
eV (g m>e

= lim / F.(€,£,7) with
Fs (Cv ga 77) =ax (g)bl (5) Xp(€,m)>e (77) ¢ (57 77) D%’nr(go; 9(777 5))d77

then
R(&) = (&) = limy [P (61,60, = P (€2, 6a.m] ot
+g%/[FE (€2,61,1) — Fe (€2, €0,m)] dn
= A(61,8) + B (61,6).
Now,

‘A (51762” S cp (£1a§2)

by the smoothness of £ — Df’"F(fO; u). Asto B (&1,&2), it is enough to apply the
previous reasoning to the kernel Df’”F(fo; ©(n,¢)), for any fixed (, to conclude
that

lim / [F(C60m) — F (C&aum)] dn| < cp (€1, &)

e—0

for some constant uniformly bounded in {, and then apply this inequality taking
¢ = &. This completes the proof. m

We are now ready for the
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Conclusion of the proof of Theorem 5.1. Recall that a frozen operator of
type zero is written as

T = PV- [ Ko fn) dn+ (6.6 1 ©),
where « is a bounded measurable function, smooth in £&. The multiplicative part

[ (&) — a(,€) f(§)

clearly maps C* in C%, since « (&p, ) is smooth, with operator norm bounded
by some constant depending on the vector fields and the ellipticity constant g,
by Theorem 4.3.

Let us now consider the integral part. With the notation introduced at the
beginning of this section, let us consider first

ks (€,1) = a1(€)b1(n) DY 'T(E0; O(n, €)),

with Df’"F (€0; ) homogeneous of degree —(@Q and satisfying the vanishing prop-
erty (5.4). By Proposition 5.2, kg (£, n) satisfies conditions (i), (ii), (iii) in § 3.3,
with constants bounded by

¢ sup {|D’T (&o,u)| + |D°T (&,u)|} (5.6)

flull=1

where the symbols D?, D3 denote standard derivatives of orders 2,3, respec-
tively, with respect to u, and the constant ¢ depends on the vector fields but
not on the point &. By Proposition 5.3, condition (3.18) is also satisfied by
ks (§,m), with C7 norm bounded by a quantity of the kind (5.6). Hence by
Theorem 3.11 and Remark 3.12, the operator with kernel kg (£, 7) satisfies the
assertion of the theorem we are proving, with a constant bounded by a quantity
like (5.6). In turn, by Theorem 4.3 this quantity can be bounded by a con-
stant depending on the vector fields and the ellipticity constant p of the matrix
[£%7] (a:) .
Let us now come to the kernel

H

kp (&) = {Z ai(€)bi() DT (&o; ) + ao(€)bo(m) DG (&o; ->} (©(n,9))

1=2

where each function Df’"F (&o;u) (1 = 2,3,..., H) is homogeneous of some degree
>1-—Q, while DS’"F (&o; 1) is bounded and smooth.
By Proposition 5.2, each kernel

a;(€)bi(n) DS (€0;©(n, €))

satisfies the standard estimates (i) in § 3.3 for some v > 0, hence we can apply
Theorem 3.14 to the integral operators defined by these kernels, and conclude as
above. Finally, the integral operator with regular kernel clearly is C”7 continuous.
So we are done. m
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5.2 LP continuity of variable operators of type 0 and their
commutators

In this subsection we are going to prove the following:
Theorem 5.4 Let T be a variable operator of type 0 (see § 4.2) over the ball
B (E, R) , and p € (1,00).Then:
~ 4
(i) there exists ¢ > 0, depending on p, R, {XZ-}' oM such that

||Tu||Lp(§@,.)) <c ||UHLP(§(E,T'))

for every u € LP (E (E, 7“)) and r < R;
(ii) for every a € VMOx joc (), any € > 0, there exists r < R such that
for every uw € LP (E (E, 7“)) ,

1T (au) =@ Tull o5y < € lull(BEn) (5.7)
~ 4
where a (x,h) = a(x). The number r depends on p, R, {XZ} o M N,

and € (see 3.4.3 for the definition of VMOx joc () and 7]:79/79)2.

A basic difference with the context of the previous section is that here we
are considering variable kernels and operators of type zero. To reduce the study
of these operators to that of constant operators of type zero we will make use of
the classical technique of expansion in series of spherical harmonics, as already
done in [3].

Proof. This proof is similar to that of [3, Thm. 2.11]. Recall that a variable
operator of type zero is written as

PV/ (&6 Fn) dn+ a(6.€) ().

where « (&, ) is a bounded measurable function in &, smooth in £. The mul-
tiplicative part

f(&) — al&8) f(E)

clearly maps LP into LP, with operator norm bounded by some constant de-
pending on the vector fields and the ellipticity constant p, by Theorem 4.3.
Moreover, this part does not affect the commutator of 7.

As to the integral part of T, let us split the variable kernel as

k(&€ n) =K (&Em) + K" (&€ ).

Like in the previous section, it is enough to prove our result for the kernel %'
Let us expand it as

K(&€m) Zal M DT (60 (n,€)) + ao(§)bo () DF'T(&;© (1, €))
= ks (&&m) +kp (66 n)
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where the kernels Df’"]f({“;u) (for ¢ = 1,2,3,..., H) are homogeneous of some
degree > —Q, Df’"F (&;u) satisfies the cancellation property, and Dg’nf(é;u)
is bounded in u and smooth in &, 7. The kernels kg, kp are “singular” and
“bounded”, respectively.

The operator with kernel kg is obviously LP continuous. Moreover, it satis-
fies the commutator estimate (5.7) by Theorem 3.18, since

|k (§;€,m)] < cao(§)bo(n)

and the constant function 1 obviously satisfies the standard estimates (3.14),
(3.15) with v = 1.

To handle the kernel kg we expand each of its terms in series of spherical
harmonics, exactly like in [3, Section 2.4]:

X gm

DT (&) = 3 D it (€) Ko ()
m=0 k=1
where K; ym (1) are homogeneous kernels which on the sphere ||u|| = 1 coincide

&.m

m (*) the corresponding Fourier coeffi -

with the spherical harmonics, and c:
cients.
Let us first prove the assertion without taking into account the dependence

of the coeffi cientsc®’ (&) on 7. Then the operator with kernel kg can be written

as: i,km .
=2 im () Siwmf (€) (5.8)
m=0k=1
with

Simf (€) = ai(€) / bs(0) Ko (© (0, €)) [ (n) iy

B

The number g, in (5.8) is the dimension of the space of spherical harmonics of
degree m in RY; it is known that

gm < c¢(N)-mN=2 for every m =1,2,... (5.9)

For every p € (1,00) we can write:

o0 gm

1S Fll Lo (B(2.)) <ZZ||Czkm‘ (B(e.r)) 1Simm Il (B(er)

m=0 k=1
and
1S(@f) =a-Sfll(Er) <

o Gm

< 3 3 ekt Ol (e 150k @) =@+ Sion Fllo (e -

m=0 k=1
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Now each S; i, is a frozen operator of type A > 0, and the same arguments
of the previous section show that the kernel of S; ,, satisfies the assumptions
(1),(i1),(iii) in § 3.3 with constants bounded by

c- sup |VuKim(u)l,
[lul=1

(with ¢ depending on the vector fields); in turn, by known properties of spherical
harmonics we have

sup |V Kgm(u)| < ¢ (N) mN/27
[lul|=1

so that, by Theorem 3.11 and Theorem 3.13 we conclude as in [3, p. 807],
||S’i,kmf||Lp(§(g,r)) <c-mh/? Hf”LP(E(E)T)) fori=1,2,..., H.

where we have also taken into account Remark 3.19.
Analogously, applying Theorem 3.16 and Theorem 3.17 we have the commu-
tator estimate:

1S, km (af) —a- Sianf”Lp(é(Eﬂ.)) <e-mMN? Hf”Lp(E(Z,r)) fori=1,2,.... H,

for any £ > 0, provided r is small enough, depending on ¢ and n?t',ﬂmz,ﬂma (see
(5.2) and Defmition 3.15 for the meaning of symbols). By Proposition 3.35,
then, the constant r depends on the function a only through the local VMO
modulus 7; o/ q-

Next, again by known properties of spherical harmonics, we can say that for
any positive integer h there exists cp such that

B
(5) Pirw).

By the uniform estimates contained in Theorem 4.3, the last expression is
bounded by Cm~2", for some constant C' depending on h, the vector fields,
and the ellipticity constant p. Taking into account also (5.9) and choosing h
large enough we conclude

—2h
Cf,k‘"b (E)’ S Ch - sup
lull=1,181=2h

195 a((eny) < D Comm™ m™2 | os(e.r)) = I s ((en))

m=0
and
15(@f) —a-Sfllo(sEr)) < <Ml zEn)
for any € > 0, provided r is small enough.
We are left to show how the previous argument needs to be modified to take

into account the possible dependence of Df’"F(f ;u) (and then of cf”,zm (£)) on
1. Let us expand:

o0 gm

DS (€)= 3 S5 (€ Ki 0

m=0 k=1
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so that

o gm

DETE O (1,0) = 30 3 on (€) Kikm (O 01.C) -

m=0 k=1
The kernels Kj 1, are the same as above, hence the estimates on the operators

Si km and their commutators remain unchanged. As to the coeffi cientscf’ em (&) 5

we now have to write, for any positive integer h and some constant cp,,

(&) (e on

@] <anm ™ sup
’ llul|=1,|8|=2h

Now, from the identity

KA (Dﬁ’@("C)fl(“)F(é;U)) _ 9 (D?”F(f;u))

+
Ou; Ou; /m=6(-,0) " (v)

t2 agm (DEr(gw)) zfzj (@60 W)

m

it is easy to see that we can still get a uniform bound of the kind

i,km

o (§)] < C o2

with C' depending on h, the vector fields and the ellipticity constant p. So we
are done. m

6 Schauder estimates

We are now in position to apply all the machinery presented in the previous
sections to prove our main results, that is C“ and L? estimates on X;X;u in
terms of u and Lu. We will prove C® estimates (that is Theorem 2.1) in this
section, and LP estimates (that is Theorem 2.2) in § 7.
We keep assuming ag (x) = 1, which is not restrictive in view of Remark 2.3.
Let us recall the setting described at the end of § 3.3. For a fixed subdomain
Q' € Q C R" and a fixed point T € €, let us consider a lifted ball B (£, R) C

RN (with € = (z,0)) where the lifted vector fields X; are defned and satisfy
Hormander$ condition, the map © is defined and satisfies the properties stated
in § 3.1.

According to the procedure followed in [4, § 5], the proof of C'§ a-priori
estimates for second order derivatives will proceed in three steps: first, in the
space of lifted variables, for test functions supported in a ball B (Z, r) with r

small enough; then for any function in C?(’a (E (E, 7“)) (not necessarily vanishing

at the boundary); then for any function in C¥* (B (%, r)), that is in the original
space. The three steps will be performed in separate subsections. The theory
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of singular integrals in locally homogeneous spaces will play its main role in the
first step, considering the space

CRCANRURD

-~~~ [ kR
Q=B Q=D — | f =1,2,3,..
(§7R)a k (fak_'_l) or k ’ 73a

where

6.1 Schauder estimates for functions with small support

The first step in the proof of Schauder estimates is contained in the following
theorem, which is the main result in this subsection.

Theorem 6.1 Let B (E, R) be as before. There exist Ry < R and ¢ > 0 such
that for every u € C’f{; (E (&, RO)) ,

where ¢ and Ry depend on R, {)?Z} , o, p,and ||'d,~j||0(,(§(g R))-

Proof. This theorem relies on the representation formulas proved in § 4.2 and
Theorem 5.1 about singular integrals on C“, in § 5.1. The proof is similar
to that of [4, Thm. 5.2]. We start from the representation formula (4.29),
choosing r < R such that ET =B (E, r) be contained in the set where a = 1.

Taking C'¢ (E (& 7“)) norm of both sides of (4.29) and applying Theorem 5.1

and (3.31) in Proposition 3.27, we can write, for any u € C’f?’o(“) (E (E, 7“)) and
ml=1,2,..q ’

(B

. <ec Hfu’
ce(B,)
X

q
[ —agj (- XZX ’ _
C%(é,.) + Z-Z H[a i (&0) —ai; ( )] U ca(B,)

=1

q ~

Sl e
> %y 5, * Pollog 5

for some ¢ depending on R, {)?Z} 5 Oy [

To handle the terms involving )?inu in the right-hand side of the last
inequality, we now exploit the fact that, for u € C%OE)(BT), both X;X,;u and

[@ij(€0) — @ij (+)] vanish at a point of B,; then (3.32) in Proposition 3.27 implies

[@ij(€0) — @i ()] XiXju

S CT(X ‘AdiJ"C%(ET) . ‘Xinu

co(B) co(B,)’
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while obviously

H[@j(&)) — a;j ()] XinUH <ecr® \5ij|o%(§r) : HX’L‘XJUH

L>(B,) L>(B,)

This allows, for r small enough, to get

+ 22| o
SRS {2 S >

for some c also depending on [ai;|ca (3, - From the equation (4.1) we also read
(B

szrnjzlu‘

C2(B,) + HUHC(,(B )} (6.1)

q
. *tec Z H)Z'k)?hu‘

| Koo
C2(B,
) k,h=1

<&

(6.2)

C(B,) c2(B,)

ox(5 } (6.3)

5. in the last inequality.

By (6.1) and (6.2) we get, for r small enough,

sy <[] g, + Il + 5 e

Next, we want to get rid of the term

a

j(vv;c’u’

Taking only one derivative in the parametrix formula (4.27) we have

X (u) =S (&) | Lu+ Y [ai;(&) — @i ()] XiXju | +T () u

4,J=1

where S (&), T (&) are frozen operators of type 1, 0, respectively. Taking C% (ET)
norms of both sides and applying Theorem 5.1, we can write

q ~ o~
Z [a;(80) — a5 ()] XiXju +lullea s,

wI=t Ce(B,)

%

S

c2(By) c2(By)

and reasoning as above,

Ca(B,) ce(B,)
X X

Inserting (6.4) in (6.3), for r small enough we get

+ ||“||C§,(§,,)} (6.4)

C2(B,)

lulla.e z,) < c{chHC%) + u||0%<gr)} : (6.5)
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Finally, we want to replace the term ||“Hctz.(§, ) with Hu||Loo(§ ) in the last
X r s

inequality. To do this, we apply (3.30) in Proposition 3.27 and write

et 1)
L>(Br) L>(Br)

substituting this in (6.5), for r small enough the term

q
D e P P
— L=(B,) L=(B,)

can be taken to the left-hand side, to get

q
lullce 5,y < Il s, Loepla (Z HXu
i=1

lellczes,) = C{Hﬁu‘ ca (B ”“”L’”(Er)} ’

so we are done. W

6.2 Schauder estimates for nonvanishing functions

The second step in the proof of Schauder estimates consists in establishing a
priori estimates for functions non necessarily compactly supported:

Theorem 6.2 There exist ro < Ry and ¢, > 0 (with Ry as in Theorem 6.1)
such that, for every u € C’%’a (E(E, 7’0)> ,0<t<s<ro,

HUHC;'Q(E(E,:&)) < G=0F {HEU’ o (B(Ew)) + ||ULoc(§(g,s))} )

~\4q ~ 4
where rq, ¢ depend on R, {Xz} 3 0 iy || @i || (B(E.R)) B depends on {Xi}
i=1 X ;

and .

=0

As in [4], this result relies on interpolation inequalities for C;%’a norms and

the use of suitable cutoff function. The following result can be proved as [4,
Lemma 6.2], by the results in Proposition 3.27.

Lemma 6.3 (cutoff functions) For any 0 <p<r, £ € B (27 R) there exists
peCg® (RN) with the following properties:

i) 0<9<1,9=1o0nB(&p) andsprty C B(&,r);

ii) fori,j=1,2,..,4q,




iii) For any f € C;i( (E (Z, R)), and r — p small enough,

%

&r)) < o )2 £ ll e o (B(€.R))

@n)’ <o) < oy M Nesen)

We will write B B
B, (§) < < B (§)

to indicate that ¢ satisfies all the previous properties.
Next, let us state the following:

Proposition 6.4 (Interpolation inequality for test functions) Let
q ~ ~
H=> X+ X
i=1

and let B (E R) be as before. Then for every o € (0,1), there exist constants
v > 1 and ¢ > 0, depending on a, R and { 1}7 such that for every e € (0,1)

and every f € C§° ( (EaR/Q))a

forl=1,2,---  q; moreover, we have

BER) S © H fllca (5 r2) t 5 1 li=(BERe)  (6:8)

ca(BEr2) o e (5@ Ry (6:9)

IS ey (3(e sy < < [£7]
where D is any vector field of local degree < 1.
To prove Proposition 6.4, we need the following

Lemma 6.5 Let P (&) be a frozen operator of type X > 1 over B (E, R) and
€ (0,1). Then there exist positive constants v > 1 and ¢, depending on a,

and { 1}, such that for every f € C§° (B (§,R)) and e € (0,1)

IPH flloe (5 r)) < € 1H  llox (3(2.r)) + E% £l L (B2 m)) - (6.10)

Remark 6.6 As will be clear from the proof, (6.10) still holds if H is replaced
by any differential operator of weight two, like X; X; or Xo.
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Proof of the Lemma. This proof is adapted from [4, Lemma 7.2]. Let

B(En)

PHf(€) = / K(E ) H f (1) di.

where £ is a frozen kernel of type A > 1, and let ¢ be a cutoff function such that
Be/2(&) < e < B:(§), for € € (0,1). We split PH as follows: for £ € B ({,R)

PHf(E) = / R(E )L — oo () H £(n)dn

B(&,R).p(&:m)>%
+ k(&,n)H -(n)d
/E(&R)’F)(WQ (&;m)H f(n)p<(n)dn
=I1(&) + 11(¢).

Then
1(6) = / i HT (h(&, )1 — 0:()]) () F(n)dn.
B(&,R),p(&m)>

£
2

Let he(&,m) = HT (k(&,-)[1 — ¢-(-)]) (). Since k is a frozen kernel of type
A, there exist ¢ > 0,y > 1, such that

(& m)| + | Kohe (6,m)| + |32 Kb (€m)| < e,
By definition of frozen kernel, the function £ — h®(&, ) is compactly supported
in B (&, R) for any n € B (£, R) , hence by (3.29) in Proposition 3.27, it follows

that
|h=(&1,m) — h°(&2,m)| < crdz(&1,&2)e™” < crp(&r, €)™

for any &1,& € B (E, R) , and therefore
I(62) — 1(62)] < / 11 (62, ) — B (€2, m)] 1 ()]
< cre~Tp(61,€2) | B I 5, -

Also, since

18] < e |f)l dn < e | Ba| 1l (5.0

/E(a,R),p(s,n)>;

we obtain
o - .
Hl(g)”cg‘((g(gﬁ)) <ce Hf”Loo(B(g,R)) for any o € (0, 1)'
Now, let us consider I1(£), and let

ke(€,m) = k(& m)pe(n).
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By the properties of frozen kernels of type 1, keeping into account the support
of k. and applying again (3.29) in Proposition 3.27, we can say that for any
fixed 0 € (0,1), the kernel k.(&,n) satisfies the following standard estimates of
fractional integral kernels (see § 3.3):

ke (&,m)| < ep(&,m)' 79 < eefp(&,m)t 07, (6.11)
ke (E,m) — he(€1,m)] < Z(fj); < e p(€,m) 0 2p(£,£1) (6.12)

for p(&,m) > 2p(€,&1). Therefore, by Theorem 3.14 and Remark 3.19 in § 3.3,
~ g -
1 log (3(2.m)) < =" 1H flles (5(@r))

for any o < 1 —§. We conclude that for every o € (0, 1) there exist 4, v,¢ > 0
such that

L 5 o < _
HPHf||C§(B(57R)) <e ||Hf||C%(B(§7R)) + = ||fHLoc(B(§7R)) )
which implies the lemma. m

Proof of Proposition 6.4. By Theorem 4.18, we can write
af = PHf(§) + 5/,

where P, S are frozen operators of type 2 and 1, respectively, over B (E, R).
More precisely, they should be called “constant kernels of type 2 and 17, since
they satisfy the definition of frozen kernels with the matrix {a;; (§)} replaced
by the identity matrix. N

If we assume a = 1 on B (£, R/2), then, for f € C§°(B (£, R/2)) we obtain

f=PHf(&)+Sf (6.13)
and therefore, by Theorem 4.11,
Xif = SiHf(E) + T, (6.14)

where S7,T are frozen operators of type 1 and 0, respectively. Substituting
(6.13) in (6.14) yields

X.f =S Hf(&)+TPHf +TSf

and therefore, by Theorem 5.1 and Lemma 6.5

Jis

| <ISiHf|, + |ITPHSI|, + TS,

<NS H fllo + cAIIPHS 15713
ScfellHflo+e Ifllo + I15F1lo } (6.15)
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where all the norms are taken over B (a R/ 2). We end the proof by showing
that for an operator S of type 1,

1S flla < el fllze

which by (6.15) will complete the proof of the frst inequality in the proposition.
Indeed, if

SH(E) = / K(Em) £ (n)d.

Br
We have
ISF(E) = SFE)] < 1]l 5, / k(G — k& mldn. (6.16)
A(En)
Moreover,

ﬂ k(1) — k(Eaum)| dn = / , k(&1,m) — B(E2,m)] di
Br B(&R),p(¢1,m)>Mp(€1,€2)

] 1) — k(G| dy
B(&,R),p(&1,m)<Mp(&1,€2)

=1+11.
By (6.12),

/ c P(fhﬁz)dn
p(&1,m)>Mp(é1,€2) p(€1,m9™1 p(&1,m)

o p(&,m)' = p(&r, &)~
) d
p(&1,&2) /p(gl,n)>MP(51752) p&,me p(&,m)t—«

p(&,m)' =
<o) [ P
( ' 2) ER p(flan)Q
S Cp(fla 62)O‘R1_a7
where in the last inequality we have used the following standard computation
(which will be useful also other times):

dn o
————— <crPforany & € B(§,R 6.17
/é(s,R),pm)« p(&1,m)@P 1€ B(&R) (6.17)

I

IN

As to II, by (6.11),

1< / k(1) d + / (€2, )| di
p(§1,m)<Mp(&1,82) p(&1,m)<Mp(&1,82)

since there exists M; > 0 such that if p(&1,1m) < Mp(&1,&2) then p(&,n) <
Mip(&1,€2),

1 1
{ P61 <Mp(er,&2) PELTT P& <Ml &) P(E2, O
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again by (6.17)
<cp(&1,&) <cp(&r,6) RO

Hence for every a € (0,1),

/E k(62 m) — k(€aum)| dn < cap(€r, €2)* R

and, by (6.16),

1Sflo < cllfllp -
Moreover,
SHOI< [ [k m )l dn
Br
c
Wlw [ Sardn <RI

|| ”L (€ <cR p(ﬁ,n)Q’I ” ||L

hence

15 flle < €llfll e -
This completes the proof of (6.8). A similar argument gives (6.9). ®

Theorem 6.7 (Interpolation inequality) There exist positive constants c,~y
and r1 < R such that for any u € Cizja(B (Erl)), 0<p<r,0<d<1/3,

c

Du ce e 5o il (BEn)
[P (5Em) o (m = 1

q
o <515
C2(B(&p)) ;

where

|2

[+ %o

q
5
1=1

q
‘ and HDQuH = Z HXiXiu
i =1

i,j=
The constants ¢,r1,7y depend on «, {)}1} ;7Y is as in Proposition 6.4.

Proof. The proof can be carried out exactly as in [4, Proposition 7.4], exploiting
the properties of cutoff functions (Lemma 6.3), the interpolation inequality for
test functions (Proposition 6.4) and (3.30) in Proposition 3.27. =

We are now in position for the main goal of this subsection:
Proof of Theorem 6.2. This proof can now be carried out exactly like in
[4, Theorem 5.3], exploiting: Schauder estimates for functions with small sup-
port (Theorem 6.1), the properties of Holder continuous functions contained in
(3.30), (3.31), (3.34), the properties of cutoff functions (Lemma 6.3) and the
interpolation inequalities contained in Theorem 6.7 and (6.9). m
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6.3 Schauder estimates in the original variables

Let$ now prove Theorem 2.1. We fmally come back to our original context,

which we are going to recall. We have a bounded domain {2 where our vector
fields and coeffi cients are defined, and a fixed subdomain ' € Q. Fix T € ' and
R such that in B (%, R) C Q all the construction of the previous two subsections
(lifting to B (E, R) and so on) can be performed. Let rg be as in Theorem
6.2. To begin with, we want to prove Schauder estimates for functions u €
C%* (B (%,70)) . By Theorem 3.28 we know that the function @ (z,h) = u (z)
belongs to cx> (B (E, ro)), so we can apply to u Schauder estimates contained
in Theorem 6.2. Combining this fact with the two estimates in Theorem 3.28
and choosing ¢, s such that

ro>s>t>0and s—t=7ry—s,
we get, for some exponent w > 2

(6.18)

< ol (Hza\

C
S oo F (M“HcyB(f,m)) + HUHL‘X’(B(?,TO)))

C ~
“B@s) < T3 “(B(z
lulloz.o (s < e ll e (B ,0))

ca(B(En)) Ia||L°°(§(€wo))>

since £ = (/[_Z\u/)
Next, let us choose a family of balls B (z;,7r9) in £ such that

k k
' c | JB(@i,70/2) € | JB (wi,7m0) € Q.

i=1 i=1

Then by Proposition 3.27 (v) and (6.18), with s = ry/2,
k
lulloze @y < Mullozewproz) < €D 1uloze B, m)
i=1

k
< CZ {||ﬁu||c;(3(zi,r0)) + ||u||Lx(B(zi77,0))}
i=1

< c{lILulleg @ + ullm o }

with ¢ also depending on rg. Finally, let us note that the constant ¢ depends on
the coeffi cientsa;; through the norms

laiillca (B2 ro)) -
which in turn are bounded by the norms

laijllcg 5z ro))
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(by Proposition 3.28), and hence by [|a; || ~a ©) (or more precisely, by [|a;]| 5 @)
X X
for some Q" such that Q' € Q" € Q). This completes the proof of Theorem 2.1.

7 LP estimates

The logical structure of this section, as well as the general setting, is very similar
to that of the previous one. Here, following as close as possible the strategy of
[3], the proof will be still divided into three steps: LP a-priori estimates in the
space of lifted variables, for test functions supported in a ball B (E, 7‘) with r

small enough; then for any function in Si?’p (E (E, r)) (not necessarily vanishing

at the boundary); then for any function in Sg(’p (B (z,r)), that is in the original
space.

Again, it is not restrictive to assume ag = 1.

The basic difference with the setting of Schauder estimates consists in the
fact that here we start with representation formulas where the “frozen” point has
been finally unfrozen; therefore now singular integrals with variable kernels are
involved, together with their commutators with VMO functions. This makes
the singular integral part of the theory more involved.

7.1 L? estimates for functions with small support

Theorem 7.1 Let B (E, R) be as in the previous section, andp € (1,00). There
exists Ry < R such that for every u € C§° (E (E, Ro)> ,

(7.1)

el ae ) < 18] ey * 1Mlsn(5En0)

q

for some constant ¢ depending on {Xl} , D, 1, R; the number Ry also depends
i=0

on the local VMO moduli 1, - o q-

Proof. This theorem relies on the representation formula proved in Theorem
4.21 and on the results about singular integrals and commutators contained in
Theorem 5.4. _

Let u € C§° (B (E, T)) with r < R. Let us write the representation formula

of Theorem 4.21 choosing the cutoff function a such that a = 1 in B (E, 7‘).
Taking LP norms of both sides of the formula we get (see also Remark 4.22), for
p 6 (1’ OO)’ a’ny m7l = ]" 27 "'7q7

. ) q B
HX,,,,Xlu‘ Lr(B(Er)) < Hsz/:u‘ Lo (B(Er)) + zl H[’dz-psz] Xixju‘ e N
! ~
+ ; HTlm”"X’““HLP(g(g,T)) 1Tl o 5.y
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where all the Tjp,, Tim k-, Tl(?)% are variable operators of type 0 over B (E, 2r) .
We now apply Theorem 5.4: there exists ¢ (depending on R) and for every

fixed € > 0 there exists 7 < R such that for every u € C§° (E (E, r)),

(7.2)

ol
1r(B(Er)

<l

q
—

0

)

Lr(B(gr))

+ ol agey) + 3 %o, (E(W} .

Now, let us come back to (4.27) and take only one derivative X; (for | =

1,...,q) of both sides; we find:

)?lu = le(fo) Eou+)~(lS(§o)u (7.3)
=51 (&) Lo+ T (&) u

where S; (§) , T (&g) are frozen operators of type 1 and 0, respectively. By (4.30)
we have

q
Xu= Sl,lﬁu =+ Z [SLl,Ziij] Xin’u, + Tu,
ij—1

where S1,, T are variable operators of type 1 and 0, respectively (in particular,
both can be seen as operators of type 0). By Theorem 5.4,

~ ~ g ~ o~
Hqu‘ Lo(B(er) <c Hﬁu‘ LT’(E(E’T))_FEZ.;l “Xinu"Lp(é(E,r))+CHUHLP(E(E’T)) .
Finally, from the equation we can bound (74
~ g ~ o~ ~
| Zou . Z (poent I | Zul iy ()

Combining (7.2), (7.4) and (7.5) we have, for r small enough,

lullszr (a(er)) < (HE“\ (5@ ”““w(ﬁ(ar») (76)

and the theorem is proved. m

7.2 [L? estimates for nonvanishing functions

The main result in this subsection is the following:

80



Theorem 7.2 Let B (Z, R) be as before. There exists rg < R and for any
r < rg there exists ¢ > 0 such that for any u € S;’p (E (E, 7’)) we have

lullszr (B (er2)) < c{qu) o(BE) T ““”w(é(m))} :

~ 4

The constants c,rg depend on {XZ} D, 1, Roand 772/1_ o .q; € also depends on
0 15,9,

T.

Analogously to what seen in § 6.2, the proof of the above theorem relies on
interpolation inequalities for Sobolev norms and the use of cutoff function.
Regarding cutoff functions, we need the following statement:

Lemma 7.3 (Radial cutoff functions) For any o € (3,1), r > 0 and { €
B (E, r), there exists ¢ € C§° (RN) with the following properties:

i) Bor (€) < @ < Bgrp (&) with o' = (14 0) /2 (this means that ¢ = 1 in
B, (§) and it is supported in By (£));

i) fori,j=1,...,q, we have

~ c ~ ~ o~
’Xﬁﬁ‘ < m; ’Xosﬁ’7 Xz'stO’ < § (7.7)

_ 0')27"2 '

The above lemma, very similar to [3, Lemma 3.3], is actually contained in
Lemma 6.3, but we have preferred to state it explicitly because it is formulated
in a slightly different notation, suitable to our application to LP estimates.

Theorem 7.4 (Interpolation inequality for Sobolev norms) Let B (£, R)
be as before. For every p € (1,00) there exists ¢ > 0 and r1 < R such that for

every 0 < e <4ry, u e C§° (E(Z, 7"1)), then

c
IS e Gt R LG B

for everyi=1,...,q, where H= Y1, X2 + X,.

Proof. The proof of this proposition is adapted from [3, Thm. 3.6].
Let 1 be a small number to be fixed later. Like in the proof of Theorem 6.4

we can write, for any u € C§° (E(E, 7’1)) and £ € E(E, r1),

Xiu (&) = SHu(&) + Tu(£),

where S, T are constant operators of type 1 and 0, respectively, over B (€,2r1),
provided 2r; < R. (See the proof of Proposition 6.4 for the explanation of the
term “constant operators of type A”). Since

17wl Lo (5@ < eltllo(B@m))
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the result will follow if we prove that

C
ISHUll 1o (5 ) < e MH Ul Lo (BE ) + 2 1ullo(BErm)) - (7.9)

Let k(&,n) be the kernel of S and, for any fixed & € E(E, 1), @e a cutoff function
(as in lemma 7.3) with B (§) < ¢e < B: (§). Let us split:

MM@:[? K(E )L — o ()] Hu(n)dn+
B(&,r1),0(6m)>%

- k(e m) Hu(n)oo(n)dn = 1(€) + IT(€).
(&r1),0(&m)

Then

[1(&)] =

I H (K€ )1~ 2.]) ) (o)
B(&,r1),p(&m)>5

S[% {0~ el BTk (6 )] +

B(&,r1),p(6m)>%5
X |l = el Kk ()| + [k (&) BT = 02)] () u() di
= A6+ (5) +C(£)~

Recall that, for i,5 =1,2,...,q,

Cc

k(& n)| < dE )T
oy c
|Xik(£,n) < e
Cc
|H" k(&) ()| < W)Q“’
yzu—wamﬂs;uﬂl—wamngg

and the derivatives of (1 — o) are supported in the annulus § < d(§,n) < e.

Since &, € E(E, r1), we have d(£,n) < 2r;. Hence letting ko be the integer
such that 2F0—1¢ < 27 < 2Kz we have

|A@MSc§;/ C ()] d

|
/2 recpem<are A& d(g,m)@Ft

1 1 /
<c —3 |u ()] dn
;;)Qk e (e 2’“)Q p(m)<2ke
< ‘. sup / n)| dn. (7.10)
€ r<dr 57"‘ B(¢,r)
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We now have to recall the defmition of the local maximal function M (see
§ 3.3). With the notation of Theorem 3.21, we have 4ry = r, = %En, hence

en = 10r; and, for £ € B (E, 7“1), we have B (&,en) C B (E, 11r1). Therefore by
(7.10) we can write

c
A = = Mp(g,r),Bg11m) " ()
and by Theorem 3.21, we have
c c
1A (B(er)) < 2 1l BE0n)) = Z Il BEn)) -

since u € C§° (E(E, 7“1)> , provided 117y < R. Also

1 1
Bel<e = qE e el
spem<e, € d(&n)9

C
e I
e+t p(€,m)<e
c 1
Sf.sup~7/~ lu (n)] dn
€ r<e B(g,r)‘ B(&,r)

< g My () BEa1n) ()

provided € < 4r;. As before we have
c

1Bllo (3gm)) < 2 Iullio(B(Em)) -
Finally,
cel<ef S ()] mdy
s<p(Em<e € &, me*

C
< ° / fu ()] iy
gQ+1 p(§m)<e

as for the term B (), therefore

I <€
|| ||Lp(~(g,7"1)) g ||u||LP(~(E’r1)) ’
Let us bound I1:

[Hu (n)|
11 dn.
1= c/p<g,n><e P&

Then, a computation similar to that of C (&) gives

(L] = eeMpe ) B ) (©)

and
LW Lo (B2 )y = e Il o (BEm)) »

provided € < 4ry. So we are done. m
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Theorem 7.5 For any u € Si?’p(f? (&), p € [1,00), 0 <7 <ry (wherery is
the number in Theorem 7.4), define the following quantities:

®, = sup <(10)krkH5ku‘ _ > fork=0,1,2.
L?(Bro)

1/2<0<1

Then for any 6 > 0 (small enough)
B, < 5Dy + %@0.

Proof. This result follows exactly as in [2, Thm. 21] exploiting the interpola-
tion result for compactly supported functions (Theorem 7.4), cutoff functions
(Lemma 7.3) and Proposition 3.32. =

We can now come to the
Proof of Theorem 7.2. This proof is similar to that of theorem [2, Thm. 3].
Due to the different context, we include a complete proof for convenience of the
reader.

Pick 9 = min (R, 71) where Rg, 7, are the numbers appearing in Theorems

7.1, 7.4, respectively. For r < rg, let u € Si?’p (E (E, r)) Let ¢ be a cutoff
function as in lemma 7.3,

E (E, 07’) <= E (E, J'T) .

By Theorem 7.1, pu € S;’po (E (E, 7’)); then, by density, we can apply Theorem
7.1 to pu: 7

- < r ~ .
loulsenaeey < {20 e,y * Iethinaen
For 1 <i,5 < q, from the above inequality we get
=e{la
LP(B(,T)
1

+

H)N(,)?ju’

By T e,

1
i T o Wl

Bl

=0y | P

<eiled,, gt oo
c u _—
- o(B,,) (1—o)r

+

L?(B,/,)
1
1—0)2r2 HUHL”(EUIT)}

where, as before, we let

q
o] - 3
=1

q
ot 4] = 3° %5 + ]
i,5=1
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Multiplying both sides for (1 — o)?r? we get

(1— 00 | XiXju |l oz, < c{(l 22 chHL Kk (7.11)
= ([l ) o)
Next, we compute (1 — o)?r? Hf(ou‘ _
L7 (Bor)
~ ~ q ~ o~
(1—0)*r? HXou‘ LBy (1—0)*r?||Lu— Z a;i; X Xu (7.12)
7,7=1 LIJ(EMV)
c(1—o0)*r? (HENu‘ - + HXZ)?ju’ ~ ) .
Lr(B LP(Bor)
Combining (7.11) and (7.12), we have
1-0)r? | D%l <eq(1- )| Zul 7.13
(1—-o0)r U LBy S cs(1—o)r U LP(EU/T)+ ( )
R T RTINS
Adding (1 —o)r ||Du||L,, ) to both sides of (7.13),
1= ||Duf (oD 7.14
( O.)T " LP(BO"V‘) +( 0-) " “ LP(BUT) ( )
U e ;
< c{( a)’r® || Lu LBy + (1 —=o)r||Du Lo (Br) +llullpos,, )¢

by Theorem 7.5,

C
iy (592 580) i, o}

< c{(l )2r? Hﬁu‘
Choosing ¢ small enough, we have
ol %
vt <ef|E o Hlul, |
then

r? HDQU‘

Lo (B(Er/2)) +1 | Du B(Er/2) SC{TZHZ“ (B Tl (B ))}’

hence

lells2r (B(e.rr2)) < C{HE“HLP(B(&T)) - ”u””(é(“))} ’

which is the desired result. m
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7.3 L? estimates in the original variables

Let$ now prove Theorem 2.2, which follows from Theorem 7.2 in a way which
is analogous to that followed in § 6.3 to prove Schauder estimates.

Fix T € Q' € Q and R such that in B (%, R) C Q all the construction of the
previous two subsections (lifting to B (Z, R) and so on) can be performed. Let
ro < R as in Theorem 7.2, and let u € Si’p (B (Z,r9)). By Theorem 3.33 we
know that the function @ (z,h) = w(z) belongs to S}’p (B (&m0)), so we can
apply to u the LP estimates contained in Theorem 7.2. Combining this fact with
the two estimates in Theorem 3.33 we get

lull sz (B 60r0/2)) = C”“”sg‘*(é(émo/z))

< (12, 5y + (3
( L»(B(,r0)) 1l (B(&r0))
< ¢ (I£ull ooy + 10l oo

since £ = (/Zu/)
Next, let us choose a family of balls B (z;,r9) in £ such that

k k
Q/ C UB(SCi,é()T'()/Q) C UB(xhrO) c Q.

=1 i=1

Therefore

k
lull sz 0y < NllszrUpes,sore/2)) < > ull 520 (B2 d0ro2))
i=1

k
< CZ {HﬁUHLp(B(m,TO)) + ”uHLT‘(B(mi,To))}
i=1

< c{lLull ooy + il ooy }

with ¢ also depending on rg.
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