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Abstract

Assuming a Constant Elasticity of Variance (CEV) model for the asset price, that is

a defaultable asset showing the so called leverage effect (high volatility when the asset

price is low), a VaR constraint reevaluated over time induces an agent more risk averse

than a logarithmic utility to take more risk than in the unconstrained setting.
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1 Introduction

In this paper we show that assuming a Constant Elasticity of Variance (CEV) model for the

asset price, a VaR constraint reevaluated over time induces an agent to take more risk than

in the unconstrained setting.

This result contributes to the literature on optimal investment and regulation that has

investigated the effect of a VaR constraint on the optimal portfolio. Assuming a defaultable

asset - as in a CEV model - we show that an agent more risk averse than a logarithmic utility

detains a position in the risky asset larger than the one of an uncostrained agent.

The literature on this issue is not conclusive as the effect of a VaR constraint depends on

the model for the asset price and on the definition of the risk constraint. According to [Basak

and Shapiro (2001)], imposing a static VaR constraint, i.e., the loss refers to the difference

between the initial and the terminal wealth, and assuming a constant opportunity set, i.e.,

a lognormal process for the asset price, we have a portfolio riskier than the one obtained

without constraint. Because of the VaR constraint, the agent optimally chooses to insure

against intermediate loss states and to incur losses in the worst states of the world. As a

matter of fact, under a VaR constraint uninsured states are the worst states. This undesired

effect is due to non coherency of VaR, assuming a coherent risk measure, e.g. the Expected

Shortfall, the effect disappears and the agent chooses a less risky portfolio. [Cuoco et al.

(2008), Leippold et al. (2006)] point out that the excess risk taking is also due to the static

nature of the VaR constraint considered in [Basak and Shapiro (2001)]: the VaR constraint

is placed in t = 0 and concerns the final wealth. This approach has two main drawbacks: the

policy is dynamically inconsistent, i.e., the constraint is only placed at the beginning of the

optimization horizon and the trader may have the incentive to change the investment policy

later on; the probability of the portfolio loss is not updated as time goes, and this is different

from what happens in practice, as a matter of fact financial institutions reevaluate the VaR on

a daily or weekly basis. To address these problems they consider a dynamic VaR constraint:

the constraint is posed ∀t ≥ 0 for a short horizon τ > 0, in the interval [t, t + τ ] the portfolio

is kept constant. Assuming that the agent has to satisfy the dynamic VaR constraint, its

effect on the optimal investment is ambiguous. [Cuoco et al. (2008)] consider a lognormal
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process for the asset price and prove that a dynamic VaR constraint leads the agent to take

less risk, i.e., the expected value of losses and the portfolio are lower under a VaR constraint

than without. [Leippold et al. (2006)] consider a more general incomplete market model with

a single risky asset whose dynamics depend on a state variable in such a way that both drift

and volatility are stochastic. The complexity of the model forces the authors to consider a

utility function nearly logarithmic. The effect of a VaR constraint on the portfolio strategy

depends on the opportunity set dynamics. In general they cannot say that the constraint

induces the agent to take less risk, they provide some examples in which it induces banks to

increase their exposure in high volatility states.

In this paper we analyze the optimal investment problem with a dynamic VaR constraint

as in [Cuoco et al. (2008),Leippold et al. (2006)] assuming a CEV model for the asset price.

We consider a CEV model as a good choice looking for a realistic market model. We maintain

market completeness and tractability removing the constant opportunity set assumption and

allowing for a negative correlation between asset price and volatility. Moreover, differently

from the lognormal and stochastic volatility cases, an asset following a CEV model may default

(when the asset price touches the zero barrier). We derive a clear cut analysis on the effect

of a VaR constraint on the investment policy: for a wide set of parameters, a VaR constraint

induces an agent more (less) risk averse than a logarithmic utility to take more (less) risk

than a risk unconstrained agent. As in [Leippold et al. (2006)] we provide an approximation

analysis for a utility function in a neighborhood of a logarithmic utility, as optimal solution

we consider the one obtained when the constraint is not binding, i.e., we evaluate the effect

on the optimal portfolio of the possibility that the VaR might become binding.

The perverse effect of a VaR constraint is strong when the asset is risky or the risk premium

is high. A stronger VaR constraint (low α) induces a stronger perverse effect, the only way

to limit the phenomenon is to increase the constraint on the VaR in terms of the fraction of

wealth, i.e., increase the capital requirement for a bank. The undesired effect disappears (a

VaR constrained agent takes less risk) when the risk of default is very high, i.e., the price is

small enough and the asset return-volatility correlation is strongly negative.

These results contribute to the recent debate on the destabilizing role of VaR and in par-

ticular on its role in generating the recent subprime financial crisis, see [Adrian and Shin
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(2008), Adrian and Shin (2010), Danielsson, et al. (2009), Barucci and Cosso (2010)]. As a

matter of fact, there are theoretical and empirical results showing that a VaR constraint is

procyclical and leads to a positive correlation between asset and leverage of financial inter-

mediaries. These features may contribute to destabilize the financial market. Showing that a

VaR constraint exacerbates risky bets when the asset may default, our analysis contributes to

explain why banks before the crisis detained asset backed securities that looked as catastrophe

bonds, see [Coval et al. (2009),Coval et al. (2009a)].

The paper is organized as follows. In Section 2 we introduce our setting and the optimiza-

tion problem. In Section 3 we derive the optimal solution for the VaR constrained problem.

In Section 4 we provide a comparative statics analysis on the effect of a VaR constraint on

the optimal portfolio. In Appendix A we provide the proofs of the main results.

2 The model

We consider a finite horizon [0, T ] model with two assets: a risk free asset and a risky asset.

The peculiarity of our setting is that the risky asset is defaultable, i.e., the asset price can

attain the point 0.

The risk-free asset is a bond, its price evolves according to an ordinary differential equation:

dB(t) = rB(t), B(0) = 1,

where the risk-free interest rate r is a positive constant. The price of the risky asset evolves

according to a CEV model, see [Cox (1975)]:

dS(t) = (ξ + r)S(t)dt + σS(t)1+βdW (t), S(0) = s, (1)

where the initial price s, the excess return ξ and σ are all positive constants. We assume

β ∈ (−1, 0) which implies that the point 0 is an attainable state for the asset price S. To

guarantee uniqueness we assume that after reaching zero, the asset price remains at zero,

on this point see [Delbaen and Shirakawa (2002)]. The filtered probability space governing

4



the model is (Ω, F , {Ft}t∈[0,T ],P), where {Ft}t∈[0,T ] is the natural filtration generated by a

continuous unidimensional Brownian motion {W (t)}t∈[0,T ].

We remark two important features of the CEV model. First of all, if the asset price evolves

as in (1) then we observe the so called leverage effect, i.e., volatility is negatively correlated

with asset returns and is high when the asset price is low. Indeed assuming β < 0, the diffusion

coefficient σS(t)β is inversely proportional to the price S(t). Furthermore, a process like (1)

is suitable to describe a default event. As a matter of fact, there is a positive probability

that the asset price will reach the zero barrier and therefore that the default event will occur,

see [Campi and Sbuelz (2005)].

The agent chooses the portfolio of financial assets. The portfolio weight at time t is denoted

by π(t) = (1 − π(t), π(t)), where π(t) represents the fraction of wealth invested in the risky

asset. Since the portfolio is self-financing, the wealth V (t) evolves according to the following

stochastic differential equation

dV (t) = (π(t)ξ + r)V (t)dt + π(t)σS(t)βV (t)dW (t), V (0) = v, (2)

where v > 0 is the initial wealth. The process π(t) is admissible if
∫ T

0 |π(s)|ds < ∞ and

the resulting wealth process V (t) is such that V (t) ≥ 0 ∀t ∈ [0, T ]. If the portfolio π(t) is

admissible then we write π ∈ A.

The agent maximizes the expected utility of the final wealth

E[u(V (T ))].

In the sequel we consider a CRRA utility function:

u(x) =





xγ − 1

γ
, γ < 0 and 0 < γ < 1,

ln x, γ = 0.

The agent maximizes the expected utility subject to a dynamic VaR constraint as in [Fusai

and Luciano (2001), Yiu (2004), Cuoco et al. (2008), Leippold et al. (2006)]. Given time
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horizon τ > 0 and a confidence level 1 − α, the VaR at time t with a constant portfolio over

the time interval [t, t + τ ] is defined as

VaRα,τ
t = inf{ℓ ∈ R

+ : P(V (t) − V(t + τ) > ℓ) 6 α}, (3)

where V(t + τ) is the wealth value at time t + τ assuming a constant portfolio π(t) in the

time interval [t, t + τ ]. Indeed, we evaluate the VaR considering the frozen portfolio π(t) for

the interval of time [t, t + τ ].

According to the financial regulation, the VaR should be smaller than a fraction of the

assets (wealth). In our analysis we follow [Cuoco et al. (2008),Leippold et al. (2006)] assuming

that

VaRα,τ
t 6 ζV (t), ∀t ∈ [0, T ], (4)

where ζ ∈ (0, 1). Hence, the maximum loss with probability 1 − α is smaller than a fraction

of the portfolio value.

We now express the constraint (4) as a constraint on π(t). To this end, we follow [Leippold

et al. (2006)] performing an Itô-Taylor expansion of V(t + τ) centered in V (t). The approx-

imation is provided in Appendix A.1 with a discussion of the order of the approximation

error. Thanks to the Itô-Taylor expansion of V(t + τ), the following result holds on the VaR

constraint with respect to π(t).

Proposition 1. Using the Itô-Taylor expansion (23) of V(t + τ), the VaR constraint (4) can

be expressed as

π−(S(t)) 6 π(t) 6 π+(S(t)), t ∈ [0, T ], (5)

where

π±(S(t)) =
ξτ + Φ−1(α)σS(t)β

√
τ

σ2S(t)2βτ
(6)

±
√

(ξτ + Φ−1(α)σS(t)β
√

τ)2 + 2rσ2S(t)2βτ 2 − 2 ln(1 − ζ)σ2S(t)2βτ

σ2S(t)2βτ
,

and Φ is the cumulative distribution function of the standard normal distribution.
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Proof. See Appendix A.1.

Assuming that the agent has to satisfy the VaR constraint (4) ∀t ∈ [0, T ], the set of

viable portfolios in t is provided by Πad(t), i.e., portfolios that are admissible and satisfy the

constraint (5) ∀s ∈ [t, T ].

Let J be the value function:

J(v, s, t) := sup
π∈Πad(t)

E[u(V (T ))|V (t) = v, S(t) = s], (7)

for every (v, s, t) ∈ R
+ × R

+ × [0, T ].

An admissible portfolio π which maximizes the expected value (7) in t = 0 is called the

optimal portfolio and is denoted by π
∗ = (1 − π∗, π∗). The value function and the optimal

portfolio are fully characterized by an Hamilton-Jacobi-Bellman equation.

Theorem 2. The Hamilton-Jacobi-Bellman equation for the value function J is





∂J

∂t
+ sup

π−(s)6π(t)6π+(s)

{
(πξ + r)v

∂J

∂v
+ (ξ + r)s

∂J

∂s
+ 1

2
π2σ2s2βv2 ∂2J

∂v2
+

+πσ2s1+2βv
∂2J

∂v∂s
+ 1

2
σ2s2+2β

∂2J

∂s2

}
= 0, ∀ (v, s, t) ∈ R

+ × R
+ × (0, T ),

J(v, s, T ) = u(v), ∀ (v, s) ∈ R
+ × R

+.

The optimal portfolio of the risky asset has the following expression

π∗(t) =





π−(S(t)), π̃(t) 6 π−(S(t)),

π̃(t), π−(S(t)) < π̃(t) < π+(S(t)),

π+(S(t)), π̃(t) > π+(S(t)),

(8)

where

π̃(t) = −
∂J

∂v

V (t)
∂2J

∂v2

ξ

σ2S(t)2β
−

S(t)
∂2J

∂v∂s

V (t)
∂2J

∂v2

. (9)
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Since u is a CRRA utility function, the value function J can be written as follows

J(v, s, t) =





eγgγ(s,t)vγ − 1

γ
, γ < 0 and 0 < γ < 1,

g0(s, t) + ln v, γ = 0,

(10)

where gγ is a function of γ, s and t, but it doesn’t depend on v and g0 is defined as

g0(s, t) := lim
γ→0

gγ(s, t), ∀ (s, t) ∈ R
+ × [0, T ]. (11)

Proof. The derivation of the Hamilton-Jacobi-Bellman equation from the optimization prob-

lem follows from classical dynamic programming techniques. As far as the optimal portfolio

π∗ is concerned, its expression can be obtained considering the second-degree polynomial in

π of the Hamilton-Jacobi-Bellman equation. As the second derivative of J with respect to v

is negative, the supremum of the polynomial is attained at π∗. Indeed, for a CRRA utility

J is homogeneous and has the expression given in (10). Hence, J is a concave function with

respect to v, therefore the second derivative of J with respect to v is negative.

Substituting the expression of J provided in (10) in (9) we find

π̃(t) =





1

1 − γ

ξ

σ2S(t)2β
+

γS(t)

1 − γ

∂gγ

∂s
, γ < 0 and 0 < γ < 1,

ξ

σ2S(t)2β
, γ = 0.

(12)

Our interest is now to compare this portfolio with that obtained without the VaR constraint

and therefore to analyze the consequences of a VaR constraint on the optimal investment

problem.

3 The portfolio strategy

We compare the optimal portfolio derived in the presence of the VaR constraint with the one

obtained in its absence. In particular we are interested in analyzing the optimal portfolio in

the absence of the VaR constraint and the portfolio π̃, i.e., the optimal portfolio when there
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is a VaR constraint but is not binding.

The optimal portfolio for the optimal investment problem without VaR constraint (πf )

has been computed in [Battauz and Sbuelz (2010)]:

πf (t) =





1

1 − γ

ξ

σ2S(t)2β
+

γS(t)

1 − γ

∂gf
γ

∂s
, γ < 0 and 0 < γ < 1,

ξ

σ2S(t)2β
, γ = 0,

(13)

where the function gf
γ has the following expression

gf
γ (s, t) =

1

1 − γ

ξ2

σ2s2β

1 − e−q(T −t)

2q −
(
q − 2β ξ+r(1−γ)

1−γ

)(
1 − e−q(T −t)

) , ∀ (s, t) ∈ R
+ × [0, T ],

and q given by

q =

√

4β2

(
r2 +

1

1 − γ

(
(r + ξ)2 − r2

))
.

The first component of πf is the myopic demand of the defaultable asset (when the optimiza-

tion horizon shrinks to 0). The second component is the intertemporal non myopic demand.

The portfolio πf is analogous to that of π̃ in (12), the difference is provided by the hedging

demand. Note that considering a log-investor, that is when γ = 0, the two strategies coincide.

As in [Leippold et al. (2006)], we cannot compare π̃ and πf for a generic CRRA utility

function. We restrict our attention to a γ in a neighborhood of 0, i.e., utility in a neighborhood

of a logarithmic utility. Taking the difference between π̃ and πf when γ 6= 0, we get

π̃ − πf =
γS(t)

1 − γ

(
∂gγ

∂s
− ∂gf

γ

∂s

)
, (14)

therefore the difference takes only into account the two hedging demands, namely:

πh =
γS(t)

1 − γ

∂gγ

∂s
and πf

h =
γS(t)

1 − γ

∂gf
γ

∂s
.

Since γ is in a neighborhood of 0, we expand the functions gγ and gf
γ around γ = 0. When
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γ = 0 the functions gγ and gf
γ become g0 and gf

0 , respectively. Hence we have:

gγ = g0 + O(γ) and gf
γ = gf

0 + O(γ), as γ → 0.

Consequently from (14) we get

πh − πf
h =

γS(t)

1 − γ

(
∂g0

∂s
− ∂gf

0

∂s

)
+ O(γ2), as γ → 0. (15)

Therefore, the sign of the difference between πh and πf
h is determined by the difference between

∂g0

∂s
and

∂g
f
0

∂s
: if 0 < γ < 1 then it’s equal to the sign of ∂g0

∂s
− ∂g

f
0

∂s
, otherwise, if γ is negative,

it is the opposite.

To determine the sign of the difference in (15), we have to compute the difference between

g0 and gf
0 , then we can take the derivative with respect to s. g0 and gf

0 appear in the value

functions of the two problems, exploiting the expression of the value function J , we can

compute the difference between g0 and gf
0 , as shown in the following Lemma.

Lemma 3. The difference between the functions g0 and gf
0 is given by

g0(s, t) − gf
0 (s, t) = −1

2

∫ T

t
E

[
1{π̂(S(u))<0}(σS(u)βπ̂(S(u)))2

∣∣∣S(t) = s
]

du, (16)

where

π̂(S(t)) = π+(S(t)) − ξ

σ2S(t)2β
. (17)

Proof. See Appendix A.2.

We can now derive the expression for g0(s, t) − gf
0 (s, t). The difference between the two

portfolios when γ is in a neighborhood of 0 is provided in the following Theorem.

Theorem 4. The difference between the two hedging demands πh and πf
h when γ is in a

neighborhood of 0 is given by

πh − πf
h = − γs

1 − γ

∫ T

t
C(u)

{∫ b(u)

a(u)

(
ξ
√

τσ−1e−β(ξ+r)(u−t)sβη(u)y + Φ−1(α)
)
· (18)
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·
(

Φ−1(α)
√

(ξ
√

τσ−1e−β(ξ+r)(u−t)sβη(u)y + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ)
+

+ σ

)
e− η(u)(1+β)2

2
y2

y2+ 1
2β I 1

2β
(y) dy

}
du + O(γ2), as γ → 0.

where I 1
2β

is the modified Bessel function of the first kind and C(u), a(u), b(u) and η(u) are

positive functions of u, independent of y, which have the following expressions:

C(u) = s1+β(1 + β)4− 1
β η(u)3+ 1

4β
ξ(−β)√

τ
e− (1+β)−2+2s−2β

2η(u) e−β(ξ+r)(u−t) (19)

a(u) =
−Φ−1(α) −

√
Φ−1(α)2 − 2rτ + 2 ln(1 − ζ)

ξ
√

τσ−1η(u)
eβ(ξ+r)(u−t)s−β (20)

b(u) =
−Φ−1(α) +

√
Φ−1(α)2 − 2rτ + 2 ln(1 − ζ)

ξ
√

τσ−1η(u)
eβ(ξ+r)(u−t)s−β (21)

η(u) =
βσ2

2(ξ + r)

(
e2β(ξ+r)(u−t) − 1

)
(22)

Proof. See Appendix A.2.

4 Comparative statics

We are now in the position to analyze the effect of the VaR regulation on the optimal portfolio

comparing the optimal investment policy before the VaR constraint becomes binding (π̃) with

the unconstrained solution (πf ). This exercise allows us to evaluate how the anticipation that

the VaR constraint might become binding in the future affects the optimal investment policy

now.

To this end we determine the sign of the difference πh − πf
h in a neighborhood of γ = 0

evaluating numerically the integral in (18). In our analysis we assume ξ = 0.03, r = 0.02, σ =

0.15, T = 1, τ = 10/250 and a confidence level of the VaR 1 − α at 99% (so that Φ−1(α) =

−2.32635). The time horizon T corresponds to one year and τ to ten days. The fraction ζ of

the portfolio value that appears in the VaR constraint (4) is set equal to 5%.

We can determine numerically the sign of the difference πh − πf
h as a function of the today

price s and the exponent of the CEV model β. Results are reported in Table 1, the magnitude
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H
H

H
H

H
H

β
s

0.1 1 10 100

-0.1 + + + +
-0.2 + + + +
-0.3 + + + +
-0.4 + + + +
-0.5 + + + +
-0.6 + + + +
-0.7 − + + +
-0.8 − + + +
-0.9 − − + +

H
H
H

H
H
H

β
s

0.1 1 10 100

-0.1 − − − −
-0.2 − − − −
-0.3 − − − −
-0.4 − − − −
-0.5 − − − −
-0.6 − − − −
-0.7 + − − −
-0.8 + − − −
-0.9 + + − −

Table 1: Sign of the difference πh − πf
h when 1 − γ > 1 (table in the left) and when

0 < 1 − γ < 1 (table in the right). Parameters: ξ = 0.03, r = 0.02, σ = 0.15, T = 1,
τ = 10/250, α = 0.01 and ζ = 0.05.

is small as we are considering a utility function nearly logarithmic and for the logarithmic case

the difference is 0. From Table 1 we can conclude that in case of an agent more risk averse

than a log-utility investor (table on the left) a VaR constraint leads to increase the holding

of the risky asset, i.e., the VaR constraint induces a riskier portfolio strategy. The opposite

holds true for an agent less risk averse than a log-utility investor (table on the right).

According to these results, the VaR constraint instead of preventing the agent from taking

risk, encourages him. The effect is stronger as the price decreases and the β goes up in

absolute value. This result shows that indeed a VaR constraint has a perverse and strong

effect when the default probability is high (low asset price) and the leverage effect is strong

(low β). However, for very low price and low β the effect is reversed (the effect is confirmed

considering a finer grid). As a consequence, the VaR constraint works against risk only when

the probability of default is very high.

As far as the other parameters are concerned, we observe that the effect of a VaR constraint

goes up with the risk premium and the volatility (ξ and σ go up), as shown in Table 2 and

in Table 3. The effect of a VaR constraint instead decreases with the VaR quantile α (Table

4) and with the regulatory parameter ζ (Table 5). Again, the effect is confirmed considering

a finer grid.

From the above analysis we have two interesting insights:
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H
H
H
H
H
H
HH

β
s

0.1 1 10 100

-0.1 + + + +

-0.2 + + + +

-0.3 − + + +

-0.4 − + + +

-0.5 + − + +

-0.6 − − + +

-0.7 − − + +

-0.8 + − − +

-0.9 − + − −

H
H
H
H
H
H
HH

β
s

0.1 1 10 100

-0.1 − − − −
-0.2 − − − −
-0.3 − − − −
-0.4 − − − −
-0.5 − − − −
-0.6 + − − −
-0.7 + − − −
-0.8 + − − −
-0.9 − + − −

Table 2: On the Table in the left ξ = 0.1, on the Table in the right ξ = 0.005.
The plus (minus) sign represents an increase (decrease) in the difference πh − πf

h (when
1−γ > 1) with respect to the case with ξ = 0.03 (Table 1). The other parameters remain
unchanged.

H
H
H
H
H
H
HH

β
s

0.1 1 10 100

-0.1 + + + +

-0.2 + + + +

-0.3 + + + +

-0.4 + + + +

-0.5 + + + +

-0.6 + + + +

-0.7 + + + +

-0.8 − + + +

-0.9 − + + +

H
H
H
H
H
H

HH
β

s
0.1 1 10 100

-0.1 − − − −
-0.2 − − − −
-0.3 − − − −
-0.4 − − − −
-0.5 − − − −
-0.6 − − − −
-0.7 − − − −
-0.8 + − + −
-0.9 + + − −

Table 3: On the Table in the left σ = 0.3, on the Table in the right σ = 0.01. The plus
(minus) sign represents an increase (decrease) in the difference πh − πf

h (when 1 − γ >
1) with respect to the case with σ = 0.15 (Table 1). The other parameters remain
unchanged.
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H
H
H
H
H
H
HH

β
s

0.1 1 10 100

-0.1 + + + +

-0.2 + + + +

-0.3 + + + +

-0.4 + + + +

-0.5 + + + +

-0.6 + + + +

-0.7 + + + +

-0.8 − + + +

-0.9 − − + +

H
H
H
H
H
H
HH

β
s

0.1 1 10 100

-0.1 − − − −
-0.2 − − − −
-0.3 − − − −
-0.4 − − − −
-0.5 − − − −
-0.6 − − − −
-0.7 − − − −
-0.8 + − + −
-0.9 + + − −

Table 4: On the Table in the left α = 0.005, on the Table in the right α = 0.05.
The plus (minus) sign represents an increase (decrease) in the difference πh − πf

h (when
1 − γ > 1) with respect to the case with α = 0.01 (Table 1). The other parameters
remain unchanged.

H
H
H
H
H
H
HH

β
s

0.1 1 10 100

-0.1 − + + +

-0.2 + + + +

-0.3 + + + +

-0.4 + − + +

-0.5 − + + +

-0.6 + + + +

-0.7 − + − +

-0.8 − + − +

-0.9 − − + +

H
H
H
H
H
H
HH

β
s

0.1 1 10 100

-0.1 − − − −
-0.2 − − − −
-0.3 − − − −
-0.4 − − − −
-0.5 − − − −
-0.6 − − − +

-0.7 − − − −
-0.8 + − + −
-0.9 + + − −

Table 5: On the Table in the left ζ = 0.01, on the Table in the right ζ = 0.2. The plus
(minus) sign represents an increase (decrease) in the difference πh − πf

h (when 1 − γ >
1) with respect to the case with ζ = 0.05 (Table 1). The other parameters remain
unchanged.
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(a) α = 0.01, ζ = 0.01 and 1 − γ = 2
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(b) α = 0.01, ζ = 0.03 and 1 − γ = 2
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(c) α = 0.05, ζ = 0.01 and 1 − γ = 2
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(d) α = 0.05, ζ = 0.03 and 1 − γ = 2
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(e) α = 0.01, ζ = 0.01 and 1 − γ = 4
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(f) α = 0.01, ζ = 0.01 and 1 − γ = 0.5

Figure 1: Plot of π∗ (solid line) and π̃ (dashed line). Parameters: S(t) = 1, β = −0.7,
ξ = 0.03, r = 0.02, T = 1 and τ = 10/250.
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a) the perverse effect of a VaR constraint is strong when the asset is risky or the premium is

high;

b) a stronger VaR constraint (low α) induces a strong perverse effect, the only way to limit

the effect is to strengthen the constraint on the VaR in terms of fraction of wealth (higher

capital requirement).

The above analysis compares the VaR constrained solution when the constraint is not

binding (π̃) with the unconstrained solution. We now compare the optimal strategy π∗ with

the strategy π̃, which coincides with π∗ when the VaR constraint is not binding. We want

to decipher when the VaR constraint becomes binding as the volatility changes for different

values of the parameters. In Figure 1 we plot π∗ and π̃ when α is equal to 0.01 or 0.05, ζ is

equal to 0.01 or 0.03 and 1 − γ is equal to 0.5, 2 or 4. The VaR constraint and risk aversion

allow to invest more in the risky asset when the volatility is low: both π∗ and π̃ are decreasing

functions of σS(t)β. When α = 0.01 and ζ = 0.01 (Figure 1(a)) the VaR constraint is at the

strongest level and the optimal portfolio π∗ is almost always smaller than π̃, i.e., the VaR

constraint is binding. From Figure 1 we note that the constraint becomes less binding as α

goes from 0.01 to 0.05 and ζ from 0.01 to 0.03. Comparing Figure 1(a), Figure 1(e) and Figure

1(f) we see that when risk aversion is high π̃ coincides with π∗ for a larger interval of values of

volatility: risk aversion induces the unconstrained solution to satisfy the VaR constraint when

volatility is high and the interval of volatility with coincidence of the two solutions enlarges as

risk aversion increases. In all figures, the difference between the two strategies is large when

the volatility is low. It seems that a high risk aversion or a high volatility renders the VaR

constraint less binding in a sense that the optimal solution before the VaR constraint becomes

binding turns out to be optimal. The rationale is that a high volatility or a high risk aversion

renders the agent more prudent.

5 Conclusions

The recent subprime financial crisis has shown that VaR limits in banking activity may have

a perverse effect generating feedback effects destabilizing the market. We have shown that
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indeed a VaR constraint when the asset is defaultable may induce the agent to take more risk.

This result contributes to the literature on banking regulation showing a clear cut result

on VaR effects: a constraint reevaluated over time as in [Cuoco et al. (2008), Leippold et

al. (2006)] may induce a risky strategy when the financial asset may default. In a way

we have shown that a VaR constraint induces the agent to take a risky bet. The agent is

conscious that the asset may default, a VaR limit induces him to bet until when default

becomes extremely likely, exactly what happened before the financial crisis. The only way to

limit the phenomenon is to strengthen capital requirements.

17



A Proofs

A.1 Itô-Taylor expansion of V(t + τ) and proof of Proposition 1

The Itô-Taylor expansion of V(t + τ) is equivalent to the Euler discretization of a stochastic

differential equation with time step τ . Since ln V(s) solves the following stochastic differential

equation





d ln V(s) = (π(t)ξ + r)ds − 1
2
π(t)2σ2S(s)2βds + π(t)σS(s)βdW (s), s > t,

ln V(t) = ln V (t),

the Euler discretization with time step τ gives us

ln V(t + τ) ≈ ln V (t) + (π(t)ξ + r)τ − 1

2
π(t)2σ2S(t)2βτ + π(t)σS(t)β(W (t + τ) − W (t)).

Consequently, V(t + τ) is approximated as

V(t + τ) ≈ Ṽ(t + τ) = V (t)e(π(t)ξ+r)τ− 1
2

π(t)2σ2S(t)2βτ+π(t)σS(t)β(W (t+τ)−W (t)). (23)

The Euler discretization has an absolute error of order
√

τ , for a proof see [Kloeden and Platen

(1992)], as a consequence, the absolute error of the Itô-Taylor expansion of V(t + τ) in (23) is

of order
√

τ :

ε(τ) := E[|V(t + τ) − Ṽ(t + τ)|] = O(
√

τ). (24)

Proof of Theorem 1. From the definition of VaR in (3), we have to evaluate P(V (t)−V(t+τ) >

ℓ), where ℓ is a nonnegative real number.

Exploiting the Itô-Taylor expansion (23) of V(t + τ), we have that

P(V (t) − Ṽ(t + τ) > ℓ) = P

(
V (t) − V (t)e(π(t)ξ+r)τ− 1

2
π(t)2σ2S(t)2βτ+π(t)σS(t)β(W (t+τ)−W (t)) > ℓ

)

= P

(
e(π(t)ξ+r)τ− 1

2
π(t)2σ2S(t)2βτ+π(t)σS(t)β(W (t+τ)−W (t)) < 1 − ℓ

V (t)

)

= P

(
(π(t)ξ + r)τ − 1

2
π(t)2σ2S(t)2βτ + π(t)σS(t)β(W (t + τ)
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− W (t)) < ln
(

1 − ℓ

V (t)

))

= P

(
W (t + τ) − W (t) <

ln(1 − ℓ
V (t)

) − (π(t)ξ + r)τ + 1
2
π(t)2σ2S(t)2βτ

π(t)σS(t)β

)
.

Since W (t + τ) − W (t) is distributed as
√

τZ, where Z is a standard normal random variable,

we obtain

P(V (t) − Ṽ(t + τ) > ℓ) = P

(
Z <

ln(1 − ℓ
V (t)

) − (π(t)ξ + r)τ + 1
2
π(t)2σ2S(t)2βτ

π(t)σS(t)β
√

τ

)
.

Set P(V (t) − Ṽ(t + τ) > ℓ) = α, we can find the value of ℓ:

ln(1 − ℓ
V (t)

) − (π(t)ξ + r)τ + 1
2
π(t)2σ2S(t)2βτ

π(t)σS(t)β
√

τ
= Φ−1(α),

and therefore

VaRα,τ
t = V (t)

(
1 − eΦ−1(α)π(t)σS(t)β

√
τ+(π(t)ξ+r)τ− 1

2
π(t)2σ2S(t)2βτ

)
.

As a consequence, the VaR constraint (4) becomes

1 − eΦ−1(α)π(t)σS(t)β
√

τ+(π(t)ξ+r)τ− 1
2

π(t)2σ2S(t)2βτ
6 ζ

which yields

π(t)2σ2S(t)2βτ − 2π(t)(Φ−1(α)σS(t)β
√

τ + ξτ) + 2 ln(1 − ζ) − 2rτ 6 0

and therefore we obtain

π−(S(t)) 6 π(t) 6 π+(S(t)),

where

π±(S(t)) =
ξτ + Φ−1(α)σS(t)β

√
τ

σ2S(t)2βτ
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±
√

(ξτ + Φ−1(α)σS(t)β
√

τ)2 + 2rσ2S(t)2βτ 2 − 2 ln(1 − ζ)σ2S(t)2βτ

σ2S(t)2βτ
.

A.2 Proof of Lemma 3 and of Theorem 4

Proof of Lemma 3. As shown in (10), the value function of the log-investor (γ = 0) is given

by

J(v, s, t) = g0(s, t) + ln v.

We can prove that a similar expression holds true in the absence of the VaR constraint:

Jf (v, s, t) = gf
0 (s, t) + ln v,

where Jf represents the value function for the optimal investment problem without the VaR

constraint.

By definition, we have

J(v, s, t) = E[ln(V ∗(T ))|V ∗(t) = v, S(t) = s]

and

Jf (v, s, t) = E[ln(V f (T ))|V f (t) = v, S(t) = s]

where V ∗(T ) is the wealth at time T in the presence of the VaR constraint, and V f (T ) is the

wealth at time T in the absence of the VaR constraint. From (2) we have that V ∗(T ) and

V f (T ) are given by:

V ∗(T ) = ve
∫ T

t

(
π∗(S(u))ξ+r− 1

2
π∗(S(u))2σ2S2β(u)

)
du+

∫ T

t
π∗(S(u))σSβ(u) dW (u)

and

V f (T ) = ve
∫ T

t

(
πf (S(u))ξ+r− 1

2
πf (S(u))2σ2S2β(u)

)
du+

∫ T

t
πf (S(u))σSβ(u) dW (u)
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where, from (8) and (12), we have

π∗(S(t)) =





ξ

σ2S(t)2β
,

ξ

σ2S(t)2β
< π+(S(t)),

π+(S(t)),
ξ

σ2S(t)2β
> π+(S(t)),

as
ξ

σ2S(t)2β
is always greater than π−(S(t)). From (13), we get

πf (S(t)) =
ξ

σ2S(t)2β
.

By inserting the expression of V ∗(T ) in J , we obtain

J(v, s, t) = E[ln(V ∗(T ))|V ∗(t) = v, S(t) = s] = ln v +

+
∫ T

t
E[π∗(S(u))ξ + r − 1

2
π∗(S(u))2σ2S2β(u)|S(t) = s] du.

From the expression of J given at the beginning of the proof, we deduce that

g0(s, t) =
∫ T

t
E[π∗(S(u))ξ + r − 1

2
π∗(S(u))2σ2S2β(u)|S(t) = s] du. (25)

Analogously it can be proved that gf
0 is given by

gf
0 (s, t) =

∫ T

t
E[πf (S(u))ξ + r − 1

2
πf (S(u))2σ2S2β(u)|S(t) = s] du. (26)

Taking the difference between g0 and gf
0 , we get

g0(s, t) − gf
0 (s, t) =

∫ T

t
E

[(
π∗(S(u)) − πf (S(u))

)
ξ − 1

2

(
π∗(S(u))2 − πf (S(u))2

)
σ2S2β(u)

∣∣∣S(t) = s
]

du =

=
∫ T

t
E

[(
π∗(S(u)) − πf (S(u))

)(
ξ − 1

2

(
π∗(S(u)) + πf (S(u))

)
σ2S2β(u)

)∣∣∣S(t) = s
]

du.
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We define π̂(S(t)) := π+(S(t)) − πf (S(t)). Consequently, we have

π∗(S(t)) − πf (S(t)) = 1{π̂(S(t))<0}π̂(S(t))

and

π∗(S(t)) + πf (S(t)) = 1{π̂(S(t))<0}π̂(S(t)) + 2πf (S(t)) = 1{π̂(S(t))<0}π̂(S(t)) + 2
ξ

σ2S(t)2β
.

Hence, we have

g0(s, t) − gf
0 (s, t) =

∫ T

t
E

[
1{π̂(S(u))<0}π̂(S(u))

(
ξ − 1

2

(
1{π̂(S(u))<0}π̂(S(u)) + 2 ξ

σ2S2β(u)

)
σ2S2β(u)

)∣∣∣S(t) = s
]

du

= −1

2

∫ T

t
E

[
1{π̂(S(u))<0}(σSβ(u)π̂(S(u)))2

∣∣∣S(t) = s
]

du,

as stated in the Lemma.

Proof of Theorem 4. From Lemma 3, we know the expression of the difference g0 − gf
0 . We

begin by taking the derivative of S(u)βπ̂(S(u)) with respect to s. By (17) and (6) we get

∂(S(u)βπ̂(S(u)))

∂s
=

∂
(
S(u)β

(
π+(S(u)) − ξ

σ2S(u)2β

))

∂s

=
∂
(
S(u)β

(
Φ−1(α)

σS(u)β
√

τ

))

∂s
+

+
∂
(
S(u)β

(√
(ξτ+Φ−1(α)σS(u)β

√
τ)2+2rσ2S(u)2βτ2−2 ln(1−ζ)σ2S(u)2βτ

σ2S(u)2βτ

))

∂s

=
∂
(

Φ−1(α)
σ

√
τ

)

∂s
+

+
∂
(√

(ξτ+Φ−1(α)σS(u)β
√

τ)2+2rσ2S(u)2βτ2−2 ln(1−ζ)σ2S(u)2βτ

σS(u)βτ

)

∂s

=
∂
(√

(ξ
√

τσ−1S(u)−β+Φ−1(α))2+2rτ−2 ln(1−ζ)√
τ

)

∂s

=
(ξ

√
τσ−1S(u)−β + Φ−1(α))ξ(−β)σ−1S(u)−β−1

√
(ξ

√
τσ−1S(u)−β + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ)

∂S(u)

∂s
.
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As a consequence, the derivative of (16) with respect to s becomes

∂g0

∂s
− ∂gf

0

∂s
= −

∫ T

t
E

[
1{π̂(S(u))<0}σ

2S(u)βπ̂(S(u))· (27)

· (ξ
√

τσ−1S(u)−β + Φ−1(α))ξ(−β)σ−1S(u)−β−1

√
(ξ

√
τσ−1S(u)−β + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ)

∂S(u)

∂s

∣∣∣∣∣S(t) = s

]
du.

Since

S(u)βπ̂(S(u)) =
Φ−1(α)

σ
√

τ
+

√
(ξ

√
τσ−1S(u)−β + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ)

√
τ

,

we get

∂g0

∂s
− ∂gf

0

∂s
= −

∫ T

t
E

[
1{π̂(S(u))<0}

ξ(−β)√
τ

S(u)−β−1 ∂S(u)

∂s
(ξ

√
τσ−1S(u)−β + Φ−1(α))

(
σ+

(28)

+
Φ−1(α)

√
(ξ

√
τσ−1S(u)−β + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ)

)∣∣∣∣∣S(t) = s

]
du.

Now we have to find the expression of the derivative of S(u) with respect to s and its density

function. We start determining the derivative of S(u) with respect to s. By (1) we know that

S(u) solves the following stochastic integral equation

S(u) = s +
∫ u

t
(ξ + r)S(u) du +

∫ u

t
σS(u)1+β dW (u).

Taking the derivative with respect to s, we get

∂S(u)

∂s
= 1 +

∫ u

t
(ξ + r)

∂S(u)

∂s
du +

∫ u

t
σ(1 + β)S(u)β ∂S(u)

∂s
dW (u),

which in differential form becomes





d
(

∂S(u)

∂s

)
= (ξ + r)

∂S(u)

∂s
du + σ(1 + β)S(u)β

∂S(u)

∂s
dW (u), u > t,

∂S(t)

∂s
= 1.
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Considering the logarithm of the derivative, we get the following stochastic differential equa-

tion





d ln
(

∂S(u)

∂s

)
=
(

ξ + r − 1

2
σ2(1 + β)2S(u)2β

)
du + σ(1 + β)S(u)βdW (u), u > t,

ln
(

∂S(t)

∂s

)
= 0.

As a consequence, the derivative of S(u) with respect to s is given by

∂S(u)

∂s
= e(ξ+r)(u−t)− 1

2
σ2(1+β)2

∫ u

t
S(u)2β du+σ(1+β)

∫ u

t
S(u)β dW (u). (29)

This expression is very similar to that of S(u). We want to prove that ∂S(u)
∂s

is a random

variable with a distribution law related to that of S(u). In particular, from [Delbaen and

Shirakawa (2002)] we know that S(u) can be expressed as

S(u) = e(ξ+r)(u−t)
(

X( 1
β

+2)(η(u))
)− 1

2β

, (30)

where X( 1
β

+2) is a
(

1
β

+ 2
)
-dimensional squared Bessel process and η(u) is given in (22). The

random variable X( 1
β

+2)(η(u)) has the following density function

fX(x) =
1

2

√
se− s−2β+x

2η(u) x
1

4β I 1
2β

(
s−β

√
x

η(u)

)
, (31)

where I 1
2β

is the modified Bessel function of the first kind. As mentioned above, ∂S(u)
∂s

has an

expression very similar to that of S(u), indeed it can be seen as the price of an asset, whose

price today is equal to 1 instead of s and whose volatility is σ(1 + β)S(u)β instead of σS(u)β.

Therefore, we have

∂S(u)

∂s
= e(ξ+r)(u−t)

(
Z( 1

β
+2)(η(u)(1 + β)2)

)− 1
2β

,

where Z( 1
β

+2) is a
(

1
β

+ 2
)
-dimensional squared Bessel process as well. To get the density

function of Z( 1
β

+2)(η(u)(1+β)2) from the density function of X( 1
β

+2)(η(u)) we need only to swap

s for 1 and η(u) for η(u)(1 + β)2 in (31). Hence, the density function of Z( 1
β

+2)(η(u)(1 + β)2)
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is given by

fZ(z) =
1

2
e

− 1+z

2η(u)(1+β)2 z
1

4β I 1
2β

( √
z

2η(u)(1 + β)2

)
.

We can express fZ in terms of fX ; indeed, set x = z(1 + β)−4s2β, we get

fZ(z) =
1

2
e− (1+β)−2+s−2β(1+β)2x

2η(u)

(
s−2β(1 + β)4

) 1
4β x

1
4β I 1

2β

(
s−β

√
x

η(u)

)

=
1

s
(1 + β)

1
β e− (1+β)−2+s−2β

2η(u) e
1−s−2β(1+β)2

2η(u)
xfX(x)

As a consequence, to calculate the expected value of ∂S(u)
∂s

, we can express it in terms of S(u):

E

[
∂S(u)

∂s

∣∣∣∣S(t) = s
]

=
∫ ∞

0
e(ξ+r)(u−t)z− 1

2β fZ(z) dz =
∫ ∞

0
e− (1+β)−2+s−2β

2η(u) ·

· e
1−s−2β(1+β)2

2η(u)
xe(ξ+r)(u−t)x− 1

2β fX(x)s−2β(1 + β)4− 1
β dx

= E

[
e− (1+β)−2+s−2β

2η(u) S(u)e
1−s−2β(1+β)2

2η(u)
S(u)−2βe2β(ξ+r)(u−t) ·

· s−2β(1 + β)4− 1
β

∣∣∣∣S(t) = s
]
.

Hence, the derivative of g0 − gf
0 with respect to s becomes

∂g0

∂s
− ∂gf

0

∂s
= −

∫ T

t
s−2β(1 + β)4− 1

β
ξ(−β)√

τ
e− (1+β)−2+s−2β

2η(u) E

[
1{π̂(S(u))<0}S(u)−β·

· e
1−s−2β(1+β)2

2η(u)
S(u)−2βe2β(ξ+r)(u−t)

(ξ
√

τσ−1S(u)−β + Φ−1(α))

(
σ+ (32)

+
Φ−1(α)

√
(ξ

√
τσ−1S(u)−β + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ)

)∣∣∣∣∣S(t) = s

]
du.

Finally we find the values of S(u) for which π̂(S(u)) < 0:

π̂(S(u)) = π+(S(u)) − ξ

σ2S(u)2β
=

Φ−1(α)

σS(u)β
√

τ
+

+

√
(ξ

√
τσ−1S(u)−β + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ)

σS(u)β
√

τ
< 0,
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which yields

Φ−1(α) +
√

(ξ
√

τσ−1S(u)−β + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ) < 0,

therefore we get

(ξ
√

τσ−1S(u)−β + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ) < Φ−1(α)2,

and

ξ2τσ−2S(u)−2β + 2ξ
√

τΦ−1(α)σ−1S(u)−β + 2rτ − 2 ln(1 − ζ) < 0.

Hence, solving this inequality for the unknown S(u)−β, we find the following pair of inequali-

ties:

A :=
−Φ−1(α) −

√
Φ−1(α)2 − (2rτ − 2 ln(1 − ζ))

ξ
√

τσ−1
< S(u)−β < (33)

<
−Φ−1(α) +

√
Φ−1(α)2 − (2rτ − 2 ln(1 − ζ))

ξ
√

τσ−1
=: B.

Exploiting (30) and (31), (32) can be rewritten in the following way

∂g0

∂s
− ∂gf

0

∂s
= −

∫ T

t
s−2β(1 + β)4− 1

β
ξ(−β)√

τ
e− (1+β)−2+s−2β

2η(u)

{∫ B2e2β(ξ+r)(u−t)

A2e2β(ξ+r)(u−t)

√
x·

·
(

σ +
Φ−1(α)

√
(ξ

√
τσ−1e−β(ξ+r)(u−t)

√
x + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ)

)
· (34)

· e−β(ξ+r)(u−t)e
1−s−2β(1+β)2

2η(u)
x(ξ

√
τσ−1e−β(ξ+r)(u−t)

√
x + Φ−1(α))·

· 1

2

√
se− s−2β+x

2η(u) x
1

4β I 1
2β

(
s−β

√
x

η(u)

)
dx

}
du.

Let y be defined as

y :=
s−β

√
x

η(u)
, (35)
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then we obtain

a(u) := Aeβ(ξ+r)(u−t) s−β

η(u)
< y < Beβ(ξ+r)(u−t) s−β

η(u)
=: b(u),

where a(u) and b(u) are also reported in (20) and (21), respectively.

Now we change variable inside the integral in (34), from x to y, obtaining the following

expression:

∂g0

∂s
− ∂gf

0

∂s
= −

∫ T

t
s1+β(1 + β)4− 1

β η(u)3+ 1
4β

ξ(−β)√
τ

e− (1+β)−2+2s−2β

2η(u) e−β(ξ+r)(u−t)·

·
{∫ b(u)

a(u)

(
σ +

Φ−1(α)
√

(ξ
√

τσ−1e−β(ξ+r)(u−t)sβη(u)y + Φ−1(α))2 + 2rτ − 2 ln(1 − ζ)

)
· (36)

·
(
ξ
√

τσ−1e−β(ξ+r)(u−t)sβη(u)y + Φ−1(α)
)
e− η(u)(1+β)2

2
y2

y2+ 1
2β I 1

2β
(y) dy

}
du.

Introducing C(u), as in (19), we get the thesis.
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