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Abstract. This work focuses on the development of a parallel pricing
algorithm for Asian options based on the Discrete Wavelet Transform.
Following the approach proposed in [6], the pricing process requires the
solution of a set of independent Fredholm integral equations of the second
kind. Within this evaluation framework, our aim is to develop a robust
parallel pricing algorithm based on wavelet techniques for the pricing
problem of discrete monitoring arithmetic Asian options. In particular,
the Discrete Wavelet Transform is applied in order to approximate the
kernels of the integral equations. We discuss both the accuracy of the
method and its scalability properties.

Keywords: Asian options, Discrete Wavelet Transform, Parallel Com-
puting

1 Introduction

The backward recursion that arises in option pricing can be con-
verted into a set of independent Fredholm integral equations of the
second kind by means of the z-transform. This approach is described
in [7] for European, Barrier and Lookback options and in [6] for Asian
options. Moreover, the development of a grid-enabled pricing algo-
rithm for plain vanilla options is presented in [5].
In this paper we focus on the pricing procedure for Asian options,
based on the randomization technique described in [6]; as authors
point out, the pricing procedure turns out to be computational de-
manding. Our purpose in this framework is to develop an accurate
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and efficient pricing algorithm based on wavelet techniques. In prob-
abilistic terms, most of a wavelet mass is concentrated in a compact
subset of R, that is, one of the main features of wavelets is “local-
ization”. This property motivates the use of wavelet bases for data
compression: wavelet coefficients contain local information, thus, if
we neglect the coefficient under a fixed threshold, accuracy can be
preserved with a significative gain in efficiency. Even if most ap-
plications of wavelets deal with signal analysis, wavelets have been
applied in the numerical solution of partial differential and integral
equations, and in the approximation and interpolation of data [1].
Much effort has been indeed devoted to the development of routines
that perform the computation of the Discrete Wavelet Transform

(DWT) both on serial and parallel architectures (see, for example,
[2] and [4] and references therein).
We project the linear systems which arise from the discretization of
the integral equations onto wavelet spaces in order to obtain a sparse
representation of the discrete operators, preserving information so to
preserve accuracy. We furthermore discuss the parallelization of the
pricing wavelet-based procedure.

In Section 2 we briefly describe the pricing method, addressing to
existing literature for details. In Section 3 we introduce the DWT op-
erator. In Section 4 we describe the wavelet-based pricing algorithm
we developed, which is tested in Section 5. Finally, Section 6 deals
with the parallel implementation and the performance analysis.

2 The Randomization pricing algorithm

In this section we briefly recall the Asian fixed call randomization
pricing algorithm presented in [6]. Authors show that, under the
assumption that the underlying asset evolves according to a generic
Lévy process, the price of a call option with fixed strikeK,N equidis-
tant monitoring dates (∆ being the time interval between them) and
maturity T is equal to

e−rT

∫ +∞

−∞

(

S0

N + 1
(1 + ex)−K

)+

fB1
(x) dx (1)
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The density fB1
is the key variable: it can be computed exploiting

the recursion

u (x, k) =

∫

R

K (x, y) u (y, k − 1) dy, k = 1, . . . , N − 1 (2)

with initial condition u (x, 0) = f (x), where u (x, k) = fBN−k
(x)

andK (x, y) = f(x− log (ey + 1)), being f the transition probability
density function from time t to time t + ∆, of the considered Lévy
process.
The randomization technique consists in making the expiry date T to
be random according to a geometric distribution of the parameter q
and then computing the value of U (x, q) := (1− q)

∑+∞

k=0 q
ku (x, k).

With some manipulations on (2), we get that the function U (x, q)
satisfies the integral equation:

U (x, q) = q

∫

R

K (x, y)U (y, q) dy + (1− q)f (x) (3)

Therefore a recursive integral equation for u (x, k) is transformed
into an integral equation for U (x, q). If we approximate the integral
equation (3) with a quadrature rule with nodes xi, i = 1, · · · ,m, we
obtain the linear system

u− qKDu = f (4)

with (u)i = U(xi), (K)ij = K(xi, xj), (f)i = (1−q)f(xi) andD being
the diagonal matrix of the quadrature weights. The system (4) is the
main computational kernel in the procedure. The unknown function
u (x,N − 1), i.e., fB1

(x), can be then obtained by de-randomizing
the option maturity exploiting the complex inversion integral

u (x,N − 1) =
1

2πρN−1

∫ 2π

0

U (x, ρeis)

1− ρeis
e−i(N−1)sds (5)

Approximating (5) with a trapezoidal formula, and applying the Eu-
ler summation, a convergence-acceleration technique well suited for
evaluating alternating series, we obtain

fB1
(x) = u (x,N − 1) ≈

1

2meρN−1

me
∑

j=0

(

me

j

)

bne+j(x)
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where bk(x) =
∑k

j=0(−1)jajU (x, qj) with qj = ρeijπ/(N−1), a0 =

(2(N − 1)(1 − q0))
−1, aj = ((N − 1)(1 − qj))

−1, j ≥ 1, assuming
N > ne +me. A sketch of the pricing algorithm is reported in Fig.
1.

Procedure

• compute K, D and f

• for j = 0, · · · , ne +me, solve the integral equations (I− qjKD)u = f

• reconstruct fB1
(x) by means of the solutions of the integral equation

• compute the integral (1)
End Procedure

Fig. 1. Asian fixed call randomization pricing algorithm.

3 The Discrete Wavelet Transform

A wavelet ψ(t) is defined as a function belonging to L1(R) ∩ L2(R)
such that

∫

R
ψ(t)dt = 0. Wavelets have either compact support or the

most of information contained in them is concentrated in a compact
subset of R [3]. Each wavelet basis is derived by a mother wavelet by
means of dilation and translation; in particular, the dilation factor
corresponds to a scale within the Multiresolution Analysis (MRA).
Projecting a function onto a space of a MRA allows one to obtain
information about it, depending on the resolution of the space. The
mapping that leads from the l-th level resolution to the (l − 1)-th
level, retaining the information that is lost in this process, is the
Discrete Wavelet Transform. The aforementioned properties justify
the use of DWT for data compression [9]: wavelet coefficients contain
the detail information, thus, if we neglect the coefficients under a
fixed threshold, accuracy can be preserved with a significative gain
in efficiency.

Given a MRA, two sequences (hk)k∈Z and (gk)k∈Z, the low-pass

and the high-pass filters of the MRA, respectively, define a change of
level within the MRA. More precisely, let cl = (cln)n∈Z be the vector
of the coefficients of the projection of a function f(t) onto the l-th
resolution subspace of the MRA; the DWT operator W is defined as



Wavelet techniques for option pricing on advanced architectures 5

follows:

W : cl ∈ l2(Z) −→ (cl−1,dl−1) ∈ l2(Z)× l2(Z)

where l2(Z) = {(ck)k∈Z : ck ∈ C,
∑

k |ck|
2 <∞}, and

{

cl−1
n =

∑

k∈Z hk−2nc
l
k

dl−1
n =

∑

k∈Z gk−2nc
l
k.

In matrix form, if L = (h̃i,j = hj−2i) is the low-pass operator and
H = (g̃i,j = gj−2i) is the high-pass operator, the above relation can
be written in the following way:

(

cl−1

dl−1

)

=

(

L

H

)

· cl ⇐⇒

{

cl−1 = Lcl

dl−1 = Hcl

The vector cl−1 retains the information about the low frequencies,
while the filters gk “detect” the high frequencies: so the vector dl−1

contains the details, that is, the information that is lost passing from
the resolution l to the resolution l − 1. From a computational point
of view, it is worth emphasizing that, if s is the length of the two
sequences hk and gk, then the number of floating-point operations
required for the computation of the DWT of a vector of length m is
O(sm).
If Q := (L, H)⊤, then the DWT of a matrix A is defined as QAQ⊤.
In practice, the bidimensional DWT is computed in two stages: the
product QA actually requires to transform the columns of the ma-
trix; then, the DWT is applied to the rows of the intermediate matrix
QA. Note that if the wavelet basis is orthonormal, then the matrix
Q is orthogonal, thus QQ⊤ = I.

4 The wavelet-based pricing algorithm

In this work, we consider the Daubechies Wavelets [3], a family of or-
thonormal compactly supported wavelets. Each family of Daubechies
wavelets is characterized by a fixed number of vanishing moments,
from which the amplitude of the support depends. Our idea is to
increase the sparsity of the coefficient matrices of the linear systems
to be solved, so to improve efficiency, by means of a hard threshold
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[9] applied to the projection of the discrete operators onto wavelet
spaces, which allows one to better preserve information for the sake
of accuracy.
Let us discretize the (3) by means of a quadrature rule on a trun-
cated integration domain [l, u]. The bounds are chosen in such a way
that the tails of the density outside of it are less than 10−8 [6]. More-
over, since f is the transition probability density of the log-price of
the underlying asset, it is reasonable to expect a decay of the values
of f moving towards l or u. For this reason, we expect the most sig-
nificant elements of the matrix KD to be localized in a region near
its diagonal, and smoothness away from this region. Let us refer to
the pricing algorithm reported in Fig. 1: in the solution of the lin-
ear systems in step 2, we apply to both sides the DWT operator Q,
so for each value of q we obtain the linear system, equivalent to (4),
(I−qQ(KD)Q⊤)Qu = Qf . Therefore, if we denote byKDW ,uW , fW
the DWT of KD,u, f respectively, we have:

(I− qKDW )uW = fW (6)

We then apply a hard threshold to the coefficient matrix of (6), thus
we actually solve the linear system:

(I− qKDǫ
W )y = fW (7)

where KDǫ
W is the hard threshold of KD with threshold ǫ. Finally,

the inverse DWT is applied to the solution y of (7), thus an approx-
imation of u, Q⊤y, is obtained.

5 Numerical results

In this section we price an Asian fixed option with 100 monitoring
dates, maturity T = 1 and strike K = 100. The Market data are
S0 = 100, r = 3.67% and the underlying asset is assumed to follow a
Jump Diffusion Merton Lévy process with parameters σ = 0.126349,
α = −0.390078, λ = 0.174814 and δ = 0.338796. All the computa-
tions have been performed in Matlab using an Intel Personal Com-
puter equipped with 6GB of RAM and Intel Core i7 Q720-1600MHz
processor.
We consider a Gauss-Legendre quadrature rule withm = 2048 nodes
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and three methods to solve the integral equations: the “standard”
quadrature method with Gauss-Legendre nodes, the wavelet trans-
form method, and the Reichel algorithm, which is a fast solution
method for integral equations based on a low-rank representation of
the kernel of the equation. The quadrature rule considered for the
wavelet transform method is the Gauss-Legendre one. We fix ne = 12
and me = 10.
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Fig. 2. Level 2 Daubechies wavelets. Top-left: approximation error; top-right: percent-
age of neglected elements in the hard threshold following the DWT; bottom-left: exe-
cution time.

In Fig. 2 (3) we report the results concerning a simulation in
which two (four) steps of DWT, based on Daubechies wavelets with
four vanishing moments, have been performed, for different threshold
values ranging between 10−14 and 10−6. In the top-left picture the
absolute error is represented for different threshold levels, consider-
ing the results in [6] as exact solution, the corresponding execution
time being represented in the bottom-left graphic. In both Figures
2-3, we see that the DWT-based approach is almost always the most
efficient and the approximation error has the same order of mag-
nitude up to 10−10 threshold level. On the other hand, when the
threshold is in the range 10−10 − 10−6 more than the 80% of the
elements are set to zero, as it can be seen in the top-right graphic,
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Fig. 3. Level 4 Daubechies wavelets. Top-left: approximation error; top-right: percent-
age of neglected elements in the hard threshold following the DWT; bottom-left: exe-
cution time.

where the percentage of elements which are neglected in the thresh-
old procedure are reported, for different threshold values. Finally,
going from level 2 (Fig.2) to level 4 (Fig.3) we notice an increase of
the computational efficiency of the wavelet-based approach.

6 Parallel implementation

The performances of our method can be improved using High Perfor-
mance Computing methodologies. Parallelism has been introduced
both in the linear systems solution process and in the DWT com-
putation. In this section we describe the parallel algorithm and we
present numerical results from the implementation of the developed
software.
As already pointed out, the computation of the bidimensional DWT
is performed in two stages; we distribute the matrix KD in a row-
block fashion. In the first stage, processors concurrently compute the
DWT of rows; then, communication is required for globally trans-
posing the matrix, so, processors can concurrently transform the
columns of the intermediate matrix. Finally, the matrix is globally
transposed again.
While to apply the DWT the matrix KD has to be distribute among
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processor, to solve the linear system each processor can build in-
dependently from the others the coefficients matrix. We have then
Nsys = ne + me linear systems to be solved. We distribute them
among processors, so that each one solves ⌊Nsys/nprocs⌋ systems;
in this phase, processors work concurrently. In Fig. 4 a sketch of the
algorithm is reported.

Procedure

• apply the DWT operator to KD and to f in parallel

- distribute the matrix KD in row-block fashion

- each processor computes the DWT of a row block

- global transposition

- each processor computes the DWT of a column block

- global transposition

• collect the matrix so that each processor stores the whole matrix

• neglect the elements of KDW below the fixed threshold ǫ;
• for j = 0, · · · , Nsys, solve in parallel (I− qjKDǫ

W )y = fW
- distribute the values of q among processors;

- each processor solves the linear systems distributed to it;

- each processor applies the inverse transform to y.
• processor 0 collects local solutions

End Procedure

Fig. 4. Sketch of the parallel pricing algorithm for Asian options based on the DWT.

We carried out our experiments on an IBM Bladecenter installed
at University of Naples Parthenope. It consists of 6 Blade LS 21, each
one of which is equipped with 2 AMD Opteron 2210 and with 4 GB of
RAM. The implemented software is written in C language, using the
Message Passing Interface (MPI) communication system. We use the
freely available GSL Library [8] to perform the wavelet transform,
while for the global matrix transposition we use the routine pdtrans
of the PUMMA library [10].
The matrix arising from the threshold applied to the projection of
the discrete operators onto wavelet spaces is strongly sparse. We
solve the sparse linear systems by means of the GMRES solver, with
Incomplete Factorization ILU(0) preconditioner, implemented in the
SPARSKIT library [12].

To evaluate the parallel performance of the algorithm, in Fig. 5
we report the speed-up for m = 210, m = 211 and m = 212, consid-
ering the same pricing problem presented in Section 5. We use the
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Daubechies wavelets of length 4 and with 4 level of resolution. The
graph reveals a decrease in terms of performance with four proces-
sors. This is due to the communication overhead of the global trans-
position. Better results could be obtained if the transposed matrices
were built, so to avoid one transposition, as we plan to do in the
next future.
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Fig. 5. Speed-up

7 Conclusion

In this paper we focus on the use of wavelet techniques in a pricing
procedure for Asian options based on randomization. Preliminary ex-
periments reveal that wavelet bases allow one to improve efficiency
without loss in accuracy. Moreover, we discuss the parallelization of
the proposed algorithm; parallelism is introduced at two levels, both
in the wavelet transform and in the solution of the linear systems
arising from the discretization of the involved integral operators.
Parallel performance results reveal that the parallel algorithm needs
some revisions which we are planning to implement in the next fu-
ture.
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