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Abstract

We study global solutions to a fourth order semilinear ordinary differential equation. We determine

sufficient conditions on the nonlinearity that ensure global continuation of the solutions. Furthermore,

we discuss their qualitative behaviors such as oscillations and boundedness.

Mathematics Subject Classification: 34C11, 34A12.

1 Introduction

In this paper we study the equation

w′′′′(s) + kw′′(s) + f(w(s)) = 0 (s ∈ R) (1)

where k ∈ R and f is a locally Lipschitz function.

This equation arises in several contexts. With no hope of being exhaustive, let us mention some models

which lead to (1). When k is negative (1) is known as the extended Fisher-Kolmogorov equation, whereas

when k is positive it is referred to as Swift-Hohenberg equation, see [23]. For f(t) = t − t2, (1) arises in

the dynamic phase-space analogy of a nonlinearly supported elastic strut [17]. In [1] the existence of even

homoclinics to w ≡ 0 was proved whenever k ≤ 0. When f(t) = t3 − t, (1) serves as a model of pattern

formation in many physical, chemical or biological systems, see [7, 8] and references therein. The slightly

different nonlinearity f(t) = t − t3 + t5 was used by Peletier [24] in order to investigate localization and

spreading of deformation of a strut confined by an elastic foundation.

When k ∈ (0, 2) and f(t) = (t + 1)+ − 1 equation (1) describes traveling waves in a suspension bridge

according to the model suggested by McKenna-Walter [21]. Later, Chen-McKenna [11] use the smoothed

nonlinearity f(t) = et − 1 instead of (t+1)+ − 1, see also [19] for the existence of ground states for fourth

order wave equations with other nonlinearities. When k = −4, equation (1) with the very same nonlinearity

f(t) = et − 1 arises from a suitable transformation of the biharmonic pde

∆2u+ eu =
1

|x|4 in R
4 \ {0}, (2)

namely a fourth order coercive nonautonomous version of the celebrated Gelfand problem [15, 18] which

reads −∆u = eu. The noncoercive equation ∆2u = eu has recently attracted much interest both in R
4 (see

[5, 10, 20]) and in R
n for n ≥ 5 (see [2, 3, 4, 5, 6, 12, 13]). Here, we deal with the coercive case (2) in the

largest space dimension (n = 4) for which the nonlinearity u 7→ eu is subcritical. Then not only the singular
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function x 7→ −4 log |x| is a fundamental solution of ∆2, but it is also a solution to (2). For other values of

n and k further biharmonic equations arise, see Section 2.5 for the details.

All the just mentioned nonlinearities were considered in [25] in order to study the existence of homoclinics.

Last but not least, we mention the important book by Peletier-Troy [23] where one can find many other

physical models, a survey of existing results, and further references. It is clear that the parameter k plays a

crucial role in the behavior of solutions to (1). Different cases are analyzed in [23].

The purpose of the present paper is to contribute to a better understanding of the qualitative properties of

solutions to (1) when the nonlinearity f satisfies

f ∈ Liploc(R) , f(t) t > 0 for every t ∈ R \ {0}. (3)

Further assumptions on f will be needed in the sequel.

We first show that, under a fairly weak additional assumption on f , local solutions to (1) are global (The-

orem 1) and that, if this assumption is violated, finite time blow up may occur only with wide oscillations

(Theorem 2). Then we study the qualitative behavior of global solutions, namely their oscillations and

boundedness, see Sections 2.2 and 2.3. In view of (3), the only stationary solution to (1) is w ≡ 0. Its

stability properties are studied in Section 3.2. The stability analysis appears very delicate and is still unclear

for large values of k. Homoclinic solutions to w ≡ 0 may exist only if the stable and unstable manifold at 0
are nonempty; we give the state of art and a couple of new results in Section 2.4.

This paper is organized as follows. In next section we state our main results which are divided in three

groups; we first discuss whether local solutions to (1) are global, then we study their asymptotic behavior,

finally we discuss the existence of homoclinics. In Section 2.5 we show that some nonlinear biharmonic

pde’s may be studied by means of (1). In Section 3 we define several energy functions which will be used

throughout the paper and we discuss the stability of a 4×4 system of nonlinear first order equations equivalent

to (1). The remaining part of the paper is devoted to the proofs of the results.

2 Main results

2.1 Existence of global solutions

In this section we establish whether any solution to (1) is global. To this end, we need a further assumption

on f . We will require one of the following conditions

lim sup
t→+∞

f(t)

t
< +∞ or lim sup

t→−∞

f(t)

t
< +∞. (4)

Under (3) and one of the two above assumptions we will show that local solutions to (1) may be continued

to the whole real line. Before stating the precise result, let us make a few comments on (4).

Roughly speaking, (4) states that f is “one-sided at most linear”. Of course, (4) does not cover functions

f (satisfying (3)) with uncontrolled behaviors at both ±∞ such as

f(t) = t3 , f(t) =
t

1 + t2
+ t3(1 + sin t). (5)

Nevertheless, if we exclude these cases, assumption (4) appears general enough to include all the interesting

models satisfying (3). In particular, (4) is satisfied if f is either concave or convex.

Let us now turn to assumption (3). The next examples show that if it is violated global continuation may

fail.

Examples. If f(t) = −24t5 − 2kt3 then w(s) = 1
s is a local solution to (1) which blows up in finite time.

While (4) certainly holds at both ±∞, if k ≥ 0 this function f has the “wrong” sign when compared to (3).

If k < 0, then (3) holds locally, namely f(t)t > 0 for all t 6= 0 only in a neighborhood of 0. This example,
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however, has a nonlinearity f satisfying f ′(0) = 0, a case which is often excluded in our statements below,

see (15) and Remark 22. In order to have a positive derivative at t = 0, take f(t) = 24(t − t5) which

also satisfies (3) locally; for this nonlinearity, the finite time blow up function w(s) = tan s solves (1) for

k = −20.

We now state our global continuation result

Theorem 1. Let k ∈ R and assume that f satisfies (3) and (4). Then, any local solution to (1) exists for all

s ∈ R.

As a by-product of our proof (see Lemma 23 below) we infer that, under the sole assumption (3), the only

way that finite time blow up can occur is with wide oscillations of the solution.

Theorem 2. Let k ∈ R and assume that f satisfies (3). If a local solution w to (1) blows up at some finite

R ∈ R, then

lim inf
s→R

w(s) = −∞ and lim sup
s→R

w(s) = +∞ .

These wide oscillations are somehow related to uncontrolled behaviors of f such as (5). At this point, we

suggest

Problem 3. Prove or disprove Theorem 1 under the sole assumption (3).

Finally, as an immediate consequence of Theorem 1, we may exclude the existence of large solutions in

bounded intervals. More precisely, for any R > 0 the (autonomous) problem





w′′′′(s) + kw′′(s) + f(w(s)) = 0 s ∈ (−R,R)

lim
s→±R

w(s) = ∞

admits no solution if f satisfies (3) and (4). Clearly, we also have nonexistence of solutions on intervals

(−∞, R) or (R,+∞) which blow up at some finite R. This will be used when dealing with radial solutions

to biharmonic equations, see Corollary 16 below.

2.2 Qualitative behavior of global solutions

We study here the behavior of global solutions to (1) as s → ±∞. If k ≥ 0, then solutions to (1) have

oscillations.

Theorem 4. Let k ≥ 0 and f satisfy (3). If w is a global solution to (1), then

lim inf
s→+∞

w(s) ≤ 0 ≤ lim sup
s→+∞

w(s) , (6)

so that if lim
s→+∞

w(s) exists then

lim
s→+∞

w(s) = 0 . (7)

Furthermore, if w 6≡ 0 then w(s) changes sign infinitely many times as s → +∞. Similar statements hold

for s → −∞.

The next result shows that a similar phenomenon may not occur when k < 0.

Theorem 5. Let k < 0 and assume that f satisfies (3) and

sup
t∈R

f(t) = M < +∞. (8)
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Then there exists a global solution w of (1) which is eventually positive, increasing, and convex as s → +∞;

in particular,

lim
s→+∞

w(s) = +∞ . (9)

If, instead of (8), f satisfies

inf
t∈R

f(t) = −M > −∞, (10)

then there exists a global solution w of (1) which is eventually negative, decreasing, and concave as s →
+∞; in particular,

lim
s→+∞

w(s) = −∞ .

Similarly, there exist solutions having the above mentioned behaviors as s → −∞.

We point out that (8) (respectively (10)) implies the first (respectively the second) condition in (4) so that

Theorem 1 states that all the solutions are global. We also emphasize that assumption (8) is essential in the

previous statement. The next statement shows that if it is violated, then the solution is bounded from above.

Theorem 6. Let k < 0 and f satisfy (3), (10) and

lim
t→+∞

f(t)

t
= +∞ . (11)

Then any solution w of (1) is global and

sup
s∈R

w(s) < +∞ and inf
s∈R

w(s) = −∞ . (12)

On the contrary, suppose that (10) is replaced by (8) and (11) holds as t → −∞. Then any solution w of

(1) is global and

sup
s∈R

w(s) = +∞ and inf
s∈R

w(s) > −∞ .

Remark 7. Conditions (10)-(11) are somehow necessary since if we drop them it may happen that there

exists a solution w of (1) which does not satisfy (12). For example, we may consider the linear problem (1)

with k = −2 and f(t) = t, i.e.

w′′′′ − 2w′′ + w = 0 . (13)

Then w(s) = es is a solution of (13) which does not satisfy (12).

2.3 Further properties of global solutions when k ≤ 0

We first state a criterion to recognize the behavior at infinity of global solutions.

Theorem 8. Suppose k < 0 and that f satisfies (3). Let w(s) be a global solution to (1) and let

H(s) = w′(s)w′′(s)− w(s)w′′′(s)− kw(s)w′(s). (14)

Then H(s) is nondecreasing and the following alternative holds.

(i) If H(s) is bounded as s → +∞, then H(s) ≤ 0 for all s and

lim
s→+∞

H(s) = lim
s→+∞

w(s) = 0.

(ii) If H(s0) > 0 at some point s0, then both H(s) and w(s) are unbounded as s → +∞.

Moreover, a similar alternative holds with +∞ replaced by −∞ and all inequalities reversed.
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As far as only the sign of k is concerned, the properties of (1) do not depend on the particular function

f considered, provided (3) holds. But if also the value of k is concerned, then we need to normalize f in a

suitable sense. We will assume the further condition

f is differentiable at t = 0 and f ′(0) = 1. (15)

Condition (15) is not restrictive. If f is a function such that f ′(0) = A > 0 and w is a solution of (1) then

z(s) = w(s/ 4
√
A) solves the new equation

z′′′′(s) +
k√
A

z′′(s) + f̃(z(s)) = 0

where f̃(t) = 1
A f(t) and f̃ ′(0) = 1. Of course, if f ′(0) = 0 this trick is no longer available and we refer to

Remark 22 for some comments on this case.

Next, we study possible oscillations of global solutions.

Theorem 9. Assume that f satisfies (3).

(i) If k ≤ −2 and f also satisfies one of the following

f(t) ≥ t near t = 0 or f(t) ≤ t near t = 0 (16)

then any global solution w to (1) such that lim
s→+∞

w(s) = 0 is of one sign as s → +∞. Moreover, a

similar statement holds with +∞ replaced by −∞.

(ii) If −2 < k < 0 and f also satisfies (15) and

lim inf
|t|→+∞

f(t)

t
> k2 , (17)

then any global nontrivial solution w to (1) changes sign infinitely many times both as s → ±∞.

Then we study the behavior of the solution between two local extrema.

Theorem 10. Let k ≤ 0 and f satisfy (3). Assume that w is a nontrivial solution to equation (1) having a

local maximum at some s1, a local minimum at some s2 > s1 and w′(s) ≤ 0 for s ∈ [s1, s2]. Then at least

one of the two following facts occurs:

(i) there exists τ2 > s2 such that w(τ2) = w(s1) and

w′(s) > 0, w′′(s) > 0, w′′′(s) ≥ 0 ∀s ∈ (s2, τ2]; (18)

(ii) there exists τ1 < s1 such that w(τ1) = w(s2) and

w′(s) > 0, w′′(s) < 0, w′′′(s) ≥ 0 ∀s ∈ [τ1, s1). (19)

By modifying slightly the proof, one sees that the statement of Theorem 10 may be reversed by assuming

that s2 < s1. In particular, Theorem 10 shows that if k ≤ 0 then one of the following facts occurs:

1) w has at most one local extremum (which is then a global extremum);

2) w has at least two local extrema and for every couple of consecutive extrema at least one of them is

overcome in the subsequent monotone branch of the solution.
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2.4 Homoclinics

Important global solutions are the so-called homoclinics. These are nontrivial solutions w such that

lim
s→±∞

w(s) = 0.

In literature, one may find different definitions which also involve the derivatives of the solutions, see e.g.

Section 5.2 in [23]. In fact, these definitions are equivalent, see for example the general statement [14,

Proposition 1], where Sobolev embedding and classical Schauder estimates are exploited. In the Appendix

we give an elementary proof of

Proposition 11. Let k ∈ R and let f : R → R be a continuous function such that f(0) = 0. Let w be a

global solution to (1) such that

lim
s→+∞

w(s) = 0 .

Then

lim
s→+∞

w′(s) = lim
s→+∞

w′′(s) = lim
s→+∞

w′′′(s) = lim
s→+∞

w′′′′(s) = 0 .

The same result also holds with −∞ in place of +∞.

The following statement is known, see [23, Section 3.2 and Theorem 10.1.1]:

Proposition 12. Let k ≤ 0 and f satisfy (3). Then, equation (1) has no nontrivial bounded solutions. In

particular, equation (1) has no homoclinic solutions.

In Remark 19 of Section 3.1 we give a simple proof of the second statement in Proposition 12. In fact,

under an additional assumption on f , we may exclude the existence of homoclinics also for some positive

values of k.

Theorem 13. Let k > 0, the following statements hold.

(i) If k ≤ 2 and f satisfies
f(t)

t
≥ 1 ∀t 6= 0 , (20)

then equation (1) has no homoclinic solutions.

(ii) If f satisfies (3) and (15), if w is a homoclinic solution to (1), and if {sm}m≥1 denotes the increasing

sequence of zeroes of w as s → +∞, then

lim inf
m→+∞

(sm+1 − sm) ≥ π
√

k +
√
k2 + 12√
6

. (21)

A similar statement holds as s → −∞.

(iii) If k < 2 and f satisfies (3) and (15), then any homoclinic solution w to (1) satisfies w ∈ H2(R).

Existence of homoclinics to (1) is a tricky problem (see [22, Problem 6.2]) which goes somehow beyond

our scopes. For completeness, we recall which are the known results putting them in the framework of the

present paper. Here and in the sequel we denote

F (t) :=

∫ t

0
f(τ) dτ .

In particular, by (3) we see that F (t) > 0 for all t 6= 0. In [25], by using a mountain-pass procedure, the

authors prove
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Proposition 14. Assume that f satisfies (3), (15) and

lim
t→−∞

F (t)

t2
= 0 . (22)

Then there exists a homoclinic solution to (1) for almost every k ∈ (0, 2).

An alternative approach consists in studying a suitable constrained minimization problem. In [24] the

author proves

Proposition 15. Let f be three times differentiable at 0 and satisfy (3) and (15). Assume furthermore that

f ′′(0) = 0 , f ′′′(0) < 0 , and lim inf
|t|→+∞

F (t)

t2
> 0 .

Then, for every λ > 0 there exists kλ ∈ (0, 2) and wλ ∈ H2(R) such that
∫
R
|w′

λ(s)|2 ds = λ and wλ is a

homoclinic solution to (1) with k = kλ.

The proof in [24, Sections 2 and 7] is performed when f has the form

f(t) = t− t3 + α t5, α ≥ 3

16

but it extends to more general f as stated in Proposition 15. Note that if α > 1/4 this f satisfies (3). See

[24, Figure 1.3] for a plot of kλ as function of λ and for related numerical experiments.

Finally we mention that, when f(t) = et − 1, a multiplicity result for homoclinics is obtained in [9] by

means of a computer-assisted proof.

2.5 Biharmonic Gelfand-type problems

In this section, we give an interpretation of our results in terms of suitable biharmonic pde’s. Let k ∈ R and

consider the equation

∆2u− 2(n− 4)
x · ∇∆u

|x|2 + (n2 − 6n+ 12 + k)
∆u

|x|2 − (n− 2)
[
(n− 2)2 + k

] x · ∇u

|x|4 + eu =
1

|x|4 (23)

where x ∈ R
n \ {0} (n ≥ 2). For any k ∈ R, (23) admits an explicit global radial solution which is given

by u(x) = −4 log |x|. To see this, one may write (23) in its radial form, that is

u′′′′(r) + 6
u′′′(r)

r
+ (7 + k)

u′′(r)
r2

+ (1 + k)
u′(r)
r3

+ eu(r) =
1

r4
,

where r = |x| ∈ (0,+∞). Then, with the change of variables

s = log r w(s) := u(es) + 4s s ∈ R ,

one finds that w = w(s) solves (1) with f(t) = et − 1 and the singular solution u(x) = −4 log |x| to (23)

corresponds to the trivial solution w ≡ 0.

For problem (23), Theorem 1 reads

Corollary 16. Let k ∈ R and BR be the ball in R
n (n ≥ 2) with radius 0 < R < +∞ and center the origin.

Then, any radial solution to (23) in BR \ {0} admits a radial extension to R
n \ {0}. In particular, equation

(23) in BR \ {0} subject to the boundary condition

lim
|x|→R

u(x) = ∞ ,

admits no radial solution.
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On the other hand, Propositions 11 and 12 read

Corollary 17. Let k ≤ 0 and let u be a radial solution to (23). If

lim
|x|→0

(u(x) + 4 log |x|) = 0 = lim
|x|→+∞

(u(x) + 4 log |x|) ,

then u(x) ≡ −4 log |x|.

Let us consider some meaningful values of n and k in (23).

If n = 4, (23) becomes

∆2u+ (4 + k)

(
∆u

|x|2 − 2
x · ∇u

|x|4
)
+ eu =

1

|x|4 , x ∈ R
4 \ {0}.

Hence, if furthermore k = −4 we get equation (2).

If n = 2, (23) corresponds to the equation

∆2u+ 4
x · ∇∆u

|x|2 + (4 + k)
∆u

|x|2 + eu =
1

|x|4 , x ∈ R
2 \ {0}.

Thus, by taking k = −4, the equation reduces to

∆2u+ 4
x · ∇∆u

|x|2 + eu =
1

|x|4 , x ∈ R
2 \ {0}.

Finally, for any n ≥ 2, taking k = −(n2 − 6n+ 12) ∈ (−∞,−3] we have

∆2u− 2(n− 4)

[
x · ∇∆u

|x|2 + (n− 2)
x · ∇u

|x|4
]
+ eu =

1

|x|4 , x ∈ R
n \ {0},

while taking k = −(n− 2)2 ∈ (−∞, 0] leads to

∆2u− 2(n− 4)

[
x · ∇∆u

|x|2 +
∆u

|x|2
]
+ eu =

1

|x|4 , x ∈ R
n \ {0}.

3 Two useful tools

3.1 Energy functions

To equation (1) we associate the energy function

E(s) :=
1

2
w′′(s)2 − k

2
w′(s)2 − F (w(s)), (24)

for any s ∈ R. Then we prove

Lemma 18. Let w = w(s) be a solution to (1) and let s1 and s2 be two critical points for w, namely

w′(s1) = w′(s2) = 0. Then E(s1) = E(s2).

Proof. By differentiating we obtain

E′(s) = w′′′(s)w′′(s)− kw′′(s)w′(s)− f(w(s))w′(s). (25)
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Hence, if s2 > s1, an integration by parts yields

E(s2)− E(s1) =

∫ s2

s1

E′(s) ds

=

∫ s2

s1

(
w′′′(s)w′′(s)− kw′′(s)w′(s)− f(w(s))w′(s)

)
ds

= −
∫ s2

s1

(
w′′′′(s) + kw′′(s) + f(w(s))

)
w′(s) ds = 0,

where we used w′(s1) = w′(s2) = 0 and (1). 2

More generally, by using (1) we may rewrite (25) as

E′(s) = w′′′(s)w′′(s) + w′′′′(s)w′(s),

so that, for any s1 < s2 we obtain

E(s2)− E(s1) = w′′′(s2)w
′(s2)− w′′′(s1)w

′(s1). (26)

To equation (1) we may also associate a different energy function

E(s) := 1

2
w′′(s)2 − k

2
w′(s)2 − w′(s)w′′′(s)− F (w(s)) = E(s)− w′(s)w′′′(s). (27)

Then, if w solves (1), there holds

E ′(s) = w′′′(s)w′′(s) + w′′′′(s)w′(s)− (w′(s)w′′′(s))′ = 0 =⇒ E(s) = C , (28)

for some C ∈ R. Therefore, if one is interested in homoclinics, then E(s) = 0 for all s ∈ R.

Finally, a third useful energy function is available. Define

H(s) := w′(s)w′′(s)− w(s)w′′′(s)− kw(s)w′(s) (29)

and its antiderivative

G(s) := w′(s)2 − w(s)w′′(s)− k

2
w(s)2. (30)

A short computation gives

H ′(s) = w′′(s)2 − kw′(s)2 + w(s)f(w(s)). (31)

Also this energy function will be used in the sequel. Here, we just make the following

Remark 19. If k ≤ 0 and (3) holds, by (31) we infer that H ′(s) ≥ 0 so that H is nondecreasing and G is

convex. If w is a homoclinic solution then lims→±∞H(s) = 0, see Proposition 11. Hence, H = H ′ ≡ 0
and we have a simple proof of the fact that no homoclinic solution exists for (1).

3.2 A corresponding system

In some situations, it may be useful to transform the fourth order ode (1) into a first order system of four

equations. Let w = w(s) be a solution to (1) and put

Y (s) = (y1(s), y2(s), y3(s), y4(s)) = (w(s), w′(s), w′′(s), w′′′(s))

9



so that (1) may be rewritten as a system





y′1 = y2

y′2 = y3

y′3 = y4

y′4 = −ky3 − f(y1).

(32)

If we define Φ : R4 → R
4 by

Φ(y1, y2, y3, y4) = (y2, y3, y4,−ky3 − f(y1))

then any solution Y (s) = (y1(s), y2(s), y3(s), y4(s)) of (32) may be rewritten as

Y ′(s) = Φ(Y (s)). (33)

In view of (3), f(s) admits a unique zero at s = 0. Therefore, the dynamical system (32) admits a unique

stationary point which is O = (0, 0, 0, 0). This point corresponds to the solution w ≡ 0 to (1). We now study

the stability of O.

If we assume (15), then the linearized problem at O for (32) reads

Y ′(s) = AY (s) , A =




0 1 0 0

0 0 1 0

0 0 0 1

−1 0 −k 0




.

The eigenvalues λ of A satisfy the equation λ4 + kλ2 + 1 = 0 and therefore also

λ2 =
−k ±

√
k2 − 4

2
.

Hence, if k < −2 the eigenvalues of A are all real and are given by

λ ∈



±

√
|k|+

√
k2 − 4

2
,±

√
|k| −

√
k2 − 4

2



 . (34)

If −2 < k < 2, the eigenvalues of A are

λ ∈
{
±
√
2− k

2
± i

√
2 + k

2
,±

√
2− k

2
∓ i

√
2 + k

2

}
. (35)

If k > 2, the eigenvalues of A are given by

λ ∈



±i

√
k +

√
k2 − 4

2
,±i

√
k −

√
k2 − 4

2



 .

If k = −2 the eigenvalues of A are λ ∈ {±1}, they both have multiplicity 2, and the corresponding

eigenvectors are v+ = (1, 1, 1, 1) and v− = (1,−1, 1,−1).
If k = 2 the eigenvalues of A are λ ∈ {±i} (with multiplicity 2) and the corresponding eigenvectors are

v = (1, i,−1,−i) and v = (1,−i,−1, i).
Summarizing, we have
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Proposition 20. Assume (3) and (15). For any k ∈ R, (32) has a unique stationary point O = (0, 0, 0, 0)
which satisfies

(i) if k < −2, O has a 2-dimensional stable manifold and a 2-dimensional unstable manifold, both not

oscillating near O;

(ii) if k = −2, O has a 2-dimensional stable manifold (tangent to v− near O) and a 2-dimensional

unstable manifold (tangent to v+ near O);

(iii) if −2 < k < 2, O has a 2-dimensional stable manifold and a 2-dimensional unstable manifold, both

having locally the form of a spiral near O;

(iv) if k = 2, the linearized problem at O has 2 (opposite) double purely imaginary eigenvalues;

(v) if k > 2, the linearized problem at O has 4 purely imaginary eigenvalues.

As shown in [16, Exercise 3.1 p.216], when the linearized problem admits purely imaginary eigenvalues

there is no direct way to deduce the stability properties of a stationary point. A possible way to proceed is to

evaluate the sign of

1

2

d

ds
‖Y (s)‖2 = y1(s)y2(s) + y2(s)y3(s) + (1− k)y3(s)y4(s)− y4(s)f(y1(s)).

But this seems a task out of reach.

Problem 21. Study the stability of the origin O for the dynamical system (32) in the case k ≥ 2. Note that

if k > 0 and w solves (1), then the function z(s) = w(s/
√
k) solves

z′′′′(s) + z′′(s) +
1

k2
f(z(s)) = 0 (s ∈ R).

Therefore, as k → +∞ equation (1) may be seen as a perturbation of the equation z′′′′(s) + z′′(s) = 0.

Similarly, if k → −∞ equation (1) may be seen as a perturbation of the equation z′′′′(s)− z′′(s) = 0.

A slightly different way to tackle the problem is to use a first integral, related to the energy function E in

(27), defined by

J : R4 → R , J(y) =
y23
2

− k
y22
2

− y2y4 − F (y1).

In order to prove that J is indeed a first integral, one needs to show that ∇J(y) ⊥ Φ(y) for all y ∈ R
4 and

this follows by noticing that ∇J(y) · Φ(y) = 0. Therefore, any orbit of (32) is contained in a surface level

of J . In particular, for the stability of O, we are interested in the behavior of the surface at level 0:

S0 = {y ∈ R
4 : J(y) = 0}.

Since O ∈ S0 we need to compute

∇J(O) = 0 , D2J(O) =




−1 0 0 0

0 −k 0 −1

0 0 1 0

0 −1 0 0




,

where D2J(O) denotes the Hessian matrix of J at O (recall (15)). The eigenvalues µ of this (symmetric)

matrix are all real and

µ ∈
{
±1,

−k ±
√
k2 + 4

2

}
.

So, for any k ∈ R the Hessian matrix D2J(O) admits 2 positive and 2 negative eigenvalues and if k 6= 0
they all have multiplicity 1.

11



Remark 22. If instead of (15), we assume that f ′(0) = 0, then the eigenvalues of the linearized matrix A
become λ = 0 (double) and λ = ±

√
−k. Therefore, the stability analysis of O only depends on the sign of

k and appears more delicate. Moreover, the eigenvalues of the Hessian matrix D2J(0) are 0, 1, −k±
√
k2+4

2 .

4 Proof of Theorem 1

Let w be a local solution to (1) and let (ρ,R) be the maximal interval of continuation for w with −∞ ≤ ρ <
R ≤ +∞. We claim that ρ = −∞ and R = +∞. Since the function t 7→ w(−t) is also a solution of (1) it

is sufficient to prove that R = +∞. Since (1) is an autonomous equation, up to a translation we may assume

that R > 0.

The next lemma states that a one-sided boundedness is enough to ensure global continuation.

Lemma 23. Assume that f satisfies (3) and let w be a solution to (1) in a maximal interval of continuation

(0, R). The following implications hold

∃C ∈ R , w(s) ≤ C ∀s ∈ (0, R) =⇒ R = +∞,

∃C ∈ R , w(s) ≥ C ∀s ∈ (0, R) =⇒ R = +∞.

Proof. It is enough to prove that

w and w′′ are bounded in (0, R). (36)

Indeed, from (1) and (36) we deduce that w′′′′ is also bounded in (0, R) and, if R < +∞, all the derivatives

of w remain bounded so that the solution can be continued beyond R. But (36) can be further simplified. If

we know that

w is bounded in (0, R) , (37)

then by setting v(s) := w′′(s) + kw(s) we see that v′′ is bounded in (0, R). Hence, if R < +∞, also v is

bounded and since we assume (37), we obtain (36). Therefore, the proof is complete if we show (37).

In what follows we denote by Ci ∈ R suitable constants. Assume that w(s) ≤ C for all s ∈ (0, R) and,

for contradiction, that R < +∞. Then, by (3), we have

v′′(s) = w′′′′(s) + kw′′(s) = −f(w(s)) ≥ C1 ∀s ∈ (0, R).

By integrating twice we get v(s) ≥ C2 in (0, R).
If k ≥ 0, this gives

w′′(s) = v(s)− kw(s) ≥ C2 − kC

so that w(s) is also bounded from below and (37) follows.

If k < 0, the lower bound on v yields

w(s) = w(0) cosh(
√
−ks) +

w′(0)√
−k

sinh(
√
−ks) +

1√
−k

∫ s

0
sinh[

√
−k(s− t)]v(t) dt

≥ w(0) cosh(
√
−ks) +

w′(0)√
−k

sinh(
√
−ks) +

C2√
−k

∫ s

0
sinh[

√
−k(s− t)] dt

so that w(s) is also bounded from below and (37) follows for any k ∈ R.

Assume now that w(s) ≥ C for all s ∈ (0, R). Then, by repeating the above argument and reversing all

the inequalities, we obtain an upper bound for w(s). The proof is so complete. 2

We now recall some well-known Poincaré inequalities. If a < b (both finite!), then

‖u‖2 ≤ (b− a)‖u′‖2 ≤ (b− a)2‖u′′‖2 , max
s∈[a,b]

|u(s)| ≤
√
b− a‖u′‖2 ∀u ∈ H2 ∩H1

0 (a, b) (38)
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where ‖ · ‖2 denotes the L2(a, b)-norm.

Proof when (4) holds at +∞. In this case, we know that

∃M > 0 such that tf(t) + F (t) ≤ 1 +Mt2 ∀t ≥ 0. (39)

Assume for contradiction that R < +∞. Then Lemma 23 states that there exists an increasing sequence

{σm} such that

lim
m→+∞

σm = R, w(s) ≥ 0 for s ∈
∞⋃

ℓ=0

[σ2ℓ, σ2ℓ+1], w(s) ≤ 0 for s ∈
∞⋃

ℓ=0

[σ2ℓ+1, σ2ℓ+2].

Clearly, we may choose σ0 sufficiently close to R in such a way that

1− |k|(R− σ0)
2 − 2M(R− σ0)

4 ≥ 1

2
. (40)

Multiply (1) by w(s) and integrate by parts over (σ2ℓ, σ2ℓ+1) for some ℓ ∈ N to obtain

∫ σ2ℓ+1

σ2ℓ

w′(s)w′′′(s) ds+ k

∫ σ2ℓ+1

σ2ℓ

w′(s)2 ds =
∫ σ2ℓ+1

σ2ℓ

f(w(s))w(s) ds. (41)

By (27)-(28) we know that there exists C ∈ R (independent of ℓ!) such that

w′(s)w′′′(s) =
1

2
w′′(s)2 − k

2
w′(s)2 − F (w(s))− C ∀s ∈ (σ0, R).

Inserting this into (41), we infer that

∫ σ2ℓ+1

σ2ℓ

[f(w(s))w(s) + F (w(s))] ds+ C(σ2ℓ+1 − σ2ℓ) =
1

2

∫ σ2ℓ+1

σ2ℓ

w′′(s)2 ds+
k

2

∫ σ2ℓ+1

σ2ℓ

w′(s)2 ds.

We estimate both sides of this identity by means of (38) and (39) and obtain

(C + 1)(σ2ℓ+1 − σ2ℓ) +M‖w‖22 ≥
1

2

(
1

(σ2ℓ+1 − σ2ℓ)2
− |k|

)
‖w′‖22

where the L2-norms are over the interval (σ2ℓ, σ2ℓ+1). Using again (38) we then get

(C + 1)(σ2ℓ+1 − σ2ℓ) ≥
1

2

(
1

(σ2ℓ+1 − σ2ℓ)2
− |k| − 2M(σ2ℓ+1 − σ2ℓ)

2

)
‖w′‖22.

Since σ2ℓ+1 − σ2ℓ < R− σ0, by (40) and the last estimate we obtain

‖w′‖22 ≤ 4(C + 1)(σ2ℓ+1 − σ2ℓ)
3 ≤ 4(C + 1)(R− σ0)

3.

By applying once more (38) we finally obtain

max
s∈[σ2ℓ,σ2ℓ+1]

|w(s)| = max
s∈[σ2ℓ,σ2ℓ+1]

w(s) ≤ γ

for a suitable γ > 0 independent of ℓ. Therefore, w(s) is bounded from above on its region of positivity in

(σ0, R). Hence, by Lemma 23 it remains bounded and R = +∞.

Proof when (4) holds at −∞. It follows exactly the same steps as the previous case, we just have to consider

the intervals (σ2ℓ+1, σ2ℓ+2) instead of (σ2ℓ, σ2ℓ+1). On these intervals we have w(s) ≤ 0 and this can be

managed as above, provided we replace (39) with

∃M > 0 such that tf(t) + F (t) ≤ 1 +Mt2 ∀t ≤ 0.
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5 Proof of Theorem 4

It suffices to prove the statement for s → +∞. Indeed, once this is done, to obtain the same statement for

s → −∞ it is enough to remark that the equation (1) is invariant under the change of variables s 7→ −s.

We first prove the weaker statement (6).

Lemma 24. Let k ≥ 0 and f satisfy (3). If w is a global solution to (1), then (6) holds.

Proof. Assume for contradiction that

lim inf
s→+∞

w(s) ∈ (0,+∞] . (42)

Then there exist σ ∈ R and γ > 0 such that f(w(s)) ≥ γ for all s ≥ σ. Hence,

[w′′(s) + kw(s)]′′ = w′′′′(s) + kw′′(s) ≤ −γ ∀s ≥ σ .

This negative upper bound for the second derivative of the map s 7→ w′′(s) + kw(s) shows that

lim
s→+∞

(
w′′(s) + kw(s)

)
= −∞ .

By (42), this readily implies that w′′(s) → −∞ as s → +∞, which contradicts (42).

If we assume now that

lim sup
s→+∞

w(s) ∈ [−∞, 0) ,

in a similar way we conclude that w′′(s) → +∞ as s → +∞, thereby reaching a contradiction. 2

Next we show that, if k ≥ 0, then global solutions to (1) cannot maintain the same sign. First we deal with

the case k > 0:

Lemma 25. Let k > 0 and f satisfy (3). If w is a global nontrivial solution to (1), then w(s) changes sign

infinitely many times as s → +∞.

Proof. Assume for contradiction that w(s) is eventually nonnegative. Since (1) is autonomous, up to a

translation, this corresponds to say that

w(s) ≥ 0 ∀s ≥ 0 . (43)

If (43) occurs, then by (1) we deduce

[w′′′(s) + kw′(s)]′ = w′′′′(s) + kw′′(s) = −f(w(s)) ≤ 0 ∀s ≥ 0

so that s 7→ w′′′(s)+kw′(s) is nonincreasing and two cases may occur: either its limit for s → +∞ is strictly

negative or it is nonnegative. Recalling again that (1) is autonomous, this gives the following alternatives:

(i) w′′′(s) + kw′(s) < 0 ∀s ≥ 0 , (ii) w′′′(s) + kw′(s) ≥ 0 ∀s ≥ 0 .

The proof will be complete if we show that both cases (i) and (ii) lead to a contradiction.

Case (i) cannot occur. Indeed, if it occurs then

[w′′(s) + kw(s)]′ = w′′′(s) + kw′(s) → −K ∈ [−∞, 0)

proving that w′′(s) + kw(s) → −∞. In turn, by (43), this shows that w′′(s) → −∞ and contradicts (43).

Case (ii) cannot occur. This case is more delicate. If it occurs, then

[w′′(s) + kw(s)]′ = w′′′(s) + kw′(s) ≥ 0
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so that

s 7→ w′′(s) + kw(s) is nondecreasing (44)

and the following limit exists

lim
s→+∞

[w′′(s) + kw(s)] = ℓ ∈ (−∞,+∞] . (45)

We first rule out the case where

ℓ ≤ 0 . (46)

Indeed, if (46) holds, then from (44) we infer that w′′(s) + kw(s) ≤ 0 for s ≥ 0 so that, by (43), also

w′′(s) ≤ 0 for s ≥ 0. Since w(s) is nonnegative and concave (but not identically zero), it attains a strictly

positive limit. By (45)-(46), this shows that s 7→ w′′(s) has a strictly negative limit, contradicting (43).

Next, we rule out the case where

ℓ ∈ (0,+∞) . (47)

For contradiction, assume (47). According to (43) and Lemma 24, two subcases may occur:

either lim
s→+∞

w(s) = 0 or 0 = lim inf
s→+∞

w(s) < lim sup
s→+∞

w(s). (48)

The first situation in (48) may be excluded by noticing that, together with (45) and (47), it yields w′′(s) →
ℓ > 0 which implies w(s) → +∞ and contradicts w(s) → 0. The second situation in (48) implies that there

exist two divergent sequences {sjm}j∈N and {sjM}j∈N of local minima and local maxima for w such that

w′(s) ≥ 0 ∀s ∈ [sjm, sjM ] , w′(s) ≤ 0 ∀s ∈ [sjM , sj+1
m ] (49)

for all j ∈ N. Multiplying (45) by w′(s) gives

w′′(s)w′(s) + kw′(s)w(s) = (ℓ+ o(1))w′(s) as s → +∞

which, integrated over [sjm, sjM ], yields

k

2
[w(sjM )2 − w(sjm)2] = (ℓ+ o(1))[w(sjM )− w(sjm)] as j → +∞

and, finally,
k

2
[w(sjM ) + w(sjm)] = ℓ+ o(1) as j → +∞ . (50)

By (43) and Lemma 24, we infer that

lim inf
j→+∞

w(sjm) = lim inf
s→+∞

w(s) = 0.

From now on, we consider a subsequence of {sjm}j∈N (which we still denote in the same fashion) such that

lim
j→+∞

w(sjm) = 0. (51)

Consider also the corresponding sequence {sjM}j∈N defined by (49). Inserting these sequences into (50)

proves that

lim
j→+∞

w(sjM ) =
2ℓ

k
. (52)

By inserting (51) and (52) into (45) we deduce that

lim
j→+∞

w′′(sjm) = ℓ , lim
j→+∞

w′′(sjM ) = −ℓ . (53)
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Using the energy function defined in (24) and applying Lemma 18, we obtain

w′′(sjm)2

2
− F (w(sjm)) = E(sjm) = E(sjM ) =

w′′(sjM )2

2
− F (w(sjM ))

which, by letting j → +∞ and taking into account (51)-(52)-(53), yields

ℓ2

2
− F (0) =

ℓ2

2
− F

(
2ℓ

k

)
.

Recalling that F (t) = F (0) = 0 if and only if t = 0, this implies that ℓ = 0 and contradicts (47). Therefore,

also the second situation in (48) leads to a contradiction. This rules out (47).

Since both (46) and (47) are ruled out, it remains to consider the case where

ℓ = +∞. (54)

Again, we have the two subcases (48). If w(s) → 0, then (45) and (54) give a contradiction. If we have

oscillations, then we still have (51)-(52) and the first of (53) (with ℓ = +∞) so that E(sjm) → +∞ as

j → +∞. But since j 7→ E(sjm) is constant in view of Lemma 18, this gives again a contradiction.

We have so shown that (43) cannot occur since in any case (and subcase) we reach a contradiction. In a

completely similar way (by changing all the signs involved) one can show that also

w(s) ≤ 0 ∀s ≥ 0

cannot occur. This completes the proof. 2

We conclude with the case k = 0 :

Lemma 26. Let k = 0 and f satisfy (3). If w is a global nontrivial solution to (1), then w(s) changes sign

infinitely many times as s → +∞.

Proof. Assume for contradiction that (43) holds. According to Lemma 24, the two subcases in (48) may

occur. Assume first that lim
s→+∞

w(s) = 0. By Proposition 11 we know that

lim
s→+∞

w′(s) = lim
s→+∞

w′′(s) = lim
s→+∞

w′′′(s) = 0 . (55)

On the other hand, by (43) and (3), we get that

w′′′′(s) = −f(w(s)) ≤ 0 ∀s ≥ 0.

This implies that s 7→ w′′′(s) is nonincreasing and, in turn, by (55) that

w′′′(s) ≥ 0 ∀s ≥ 0.

The same argument iterated leads to

w′′(s) ≤ 0 and w′(s) ≥ 0 ∀s ≥ 0

and finally to

w(s) ≤ 0 ∀s ≥ 0.

Together with (43), this gives the contradiction w ≡ 0.

Now we consider the second situation in (48). Let {sjM}j∈N (resp. {sjm}j∈N) denote the increasing

divergent sequence of local maxima (resp. minima) of w. By what observed above and by (43), we know
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that the map s 7→ w′′(s) is concave and, in turn that lims→+∞w′′(s) exists. Since w′′(sjm) ≥ 0 and

w′′(siM ) ≤ 0 we infer that

lim
s→+∞

w′′(s) = 0. (56)

On the other hand, by Lemma 24 and (48) we infer that, up to a subsequence,

lim
j→+∞

w(sjm) = 0 and lim
i→+∞

w(siM ) = δ ∈ (0,+∞].

Using the energy function defined in (24) and applying Lemma 18, we obtain

w′′(sjm)2

2
− F (w(sjm)) = E(sjm) = E(siM ) =

w′′(siM )2

2
− F (w(siM ))

which, by letting i, j → +∞, and using (56) yields F (δ) = F (0). Since δ > 0, this gives a contradiction.

By reversing all signs, one obtains that it cannot eventually be w(s) ≤ 0. 2

6 Proof of Theorem 5

Assume first that (8) holds and consider a solution w of (1) satisfying the following initial conditions

w(0) = 0, w′(0) = 0, w′′(0) >
M

|k| > 0, w′′′(0) = 0 (57)

where M is as in (8). Since k < 0, (1) and (57) imply that w′′′′(0) = −kw′′(0) > M . Define

s := sup{s > 0 : w′′′′(σ) > 0 for all σ ∈ (0, s)} ∈ (0,+∞] .

By (8) and Theorem 1 we know that w is defined on the whole real line and we claim that s = +∞. Assume

by contradiction that s < +∞, then

w′′′′(s) = 0 . (58)

Since w′′′ is increasing in (0, s] and w′′′(0) = 0, then w′′′ is positive in (0, s]. Hence w′′ is increasing in (0, s]
and since w′′(0) > 0, also w′′ is positive in (0, s]. In turn, w′ is increasing in (0, s] and since w′(0) = 0, we

infer that w′ is positive in (0, s]. This finally shows that w is increasing in (0, s] and since w(0) = 0 we infer

that w is positive in (0, s]. Therefore, by (1) and (57)

w′′′′(s) = |k|w′′(s)− f(w(s)) ≥ |k|w′′(0)−M > 0

in contradiction with (58). This proves that s = +∞. In particular by the above iterative scheme, we have

that w is positive, increasing, and convex in (0,+∞). This shows that (9) holds and completes the proof of

the first part of the theorem.

When (10) holds, the same proof can be repeated by assuming in (57) that w′′(0) < −M/|k| < 0 and

reversing all signs.

7 Proof of Theorem 6

We first mention that the statement about the infimum follows by Proposition 12 once we prove the state-

ment about the supremum. Hence, thanks to the change of variables s 7→ −s, it is sufficient to prove that

lim sup
s→+∞

w(s) < +∞. To this end, we prove the next lemma and then we proceed in several steps.
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Lemma 27. Suppose k < 0 and that f satisfies (3). Let w be a global, eventually of one sign solution of (1).

Then the limit

Lw = lim
s→+∞

w(s) (59)

exists and Lw ∈ {0,±∞}. A similar statement holds true as s → −∞.

Proof. We prove the lemma as s → +∞, (1) being invariant under the change of variables s 7→ −s. Assume

w(s) ≥ 0 eventually, the other case being similar. We claim that also w′′ has eventually the same sign. If

not, consider an interval (a, b) where w(s) ≥ 0, w′′(s) < 0 and w′′(a) = w′′(b) = 0. Then by multiplying

(1) by w′′ and integrating we obtain

−
∫ b

a
w′′′(s)2 ds+ k

∫ b

a
w′′(s)2 ds = −

∫ b

a
w′′(s)f(w(s)) ds ≥ 0. (60)

Since the left hand side is the sum of non-positive terms, we get w′′′ ≡ 0 in (a, b); this makes w′′ constant in

(a, b) and hence w′′ ≡ 0 in (a, b), being w′′(a) = w′′(b) = 0, a contradiction.

Since w′′ is eventually of one sign, the limit Lw defined by (59) exists. Suppose Lw is nonzero and finite

for the sake of contradiction. Then by (1) we have

lim
s→+∞

[w′′(s) + kw(s)]′′ = − lim
s→+∞

f(w(s)) = −f(Lw) < 0,

so w′′(s) + kw(s) → −∞ as s → +∞. On the other hand, w(s) has a finite limit by assumption, so also

w′′(s) → −∞ as s → +∞, a contradiction. 2

Step 1. We prove that if

lim
s→+∞

w(s) = +∞ (61)

holds then, up to a translation, we have

w(s) > 0 w′(s) > 0 v(s) < 0 v′(s) < 0 for all s > 0 , (62)

where v(s) = w′′(s) + kw(s).
Assume that there exists a global solution w of (1) such that (61) holds. Since equation (1) is autonomous,

it suffices to prove that the four inequalities in (62) hold eventually. The first one is trivial in view of (61).

Since v′′(s) = −f(w(s)), then by (61), (11) and two integrations, it follows that

lim
s→+∞

v′(s) = −∞ and lim
s→+∞

[w′′(s) + kw(s)] = lim
s→+∞

v(s) = −∞

so that the last two inequalities in (62) are proved.

Proceeding as in the proof of Lemma 27 one can show that w′′ has eventually the same sign and hence w′

is eventually monotonic. Since lim
s→+∞

w(s) = +∞, w′ is eventually positive.

Step 2. We prove that if

there exists C > 0 such that for any s > 0 there exists s0 > s such that w′(s0) ≤ Cw(s0) (63)

then (61) does not hold.

By contradiction, assume (63) and let (61) hold. In view of (61), (11), we may take s > 0 such that

f(w(s)) > θw(s) for any s > s , (64)

where θ > k2 + C|k|3/2 is fixed. Let s0 be as in (63), we can write for any s > s0

w(s) = w(s0) cosh
[√

|k|(s− s0)
]
+

w′(s0)√
|k|

sinh
[√

|k|(s− s0)
]
+

1√
|k|

∫ s

s0

sinh[
√
|k|(s− t)]v(t) dt

(65)
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and after two integrations by parts, using (62), (63) and (64), we obtain

0 ≤ w(s) =w(s0) cosh
[√

|k|(s− s0)
]
+

w′(s0)√
|k|

sinh
[√

|k|(s− s0)
]
+

|v(s)|
|k|

− |v(s0)|
|k| cosh

[√
|k|(s− s0)

]
− |v′(s0)|

|k|3/2 sinh
[
(
√

|k|(s− s0)
]

− 1

|k|3/2
∫ s

s0

sinh
[√

|k|(s− t)
]
f(w(t)) dt

≤w(s0) cosh
[√

|k|(s− s0)
]
+

w′(s0)√
|k|

sinh
[√

|k|(s− s0)
]
+

|v(s)|
|k|

− θ

k2
w(s0)

{
cosh

[√
|k|(s− s0)

]
− 1
}

≤|v(s)|
|k| +

e−
√

|k|s0w(s0)
2k2

(
k2 + C|k|3/2 − θ

)
e
√

|k|s + o
(
e
√

|k|s) as s → +∞.

Since θ > k2 + C|k|3/2, this yields

∃C̃(θ, s0) > 0 such that
v(s)√
|k|

≤ −C̃(θ, s0)e
√

|k|s for all s > s0.

By using this into (65) we obtain for all s > s0

w(s) ≤ w(s0) cosh
[√

|k|(s− s0)
]
+

w′(s0)√
|k|

sinh
[√

|k|(s− s0)
]

− C̃(θ, s0)

2
se
√

|k|s +

(
s0C̃(θ, s0)

2
+

C̃(θ, s0)

4
√
|k|

)
e
√

|k|s − C̃(θ, s0)e
2
√

|k|s0

4
√
|k|

e−
√

|k|s

= − C̃(θ, s0)

2
se
√

|k|s + o
(
se
√

|k|s
)

as s → +∞ .

This contradiction proves that (61) does not occur whenever (63) holds.

Step 3. We prove that if

for any C > 0 there exists s > 0 such that for any s > s, w′(s) > Cw(s) (66)

then (61) does not hold.

Fix C =
√

|k| and consider the corresponding s for which (66) holds true. Then, an integration yields

w(s) ≥ w(s)e
√

|k|(s−s) for all s > s .

By (11), possibly choosing a larger s, we may suppose that for some θ > 0 we have

v′′(s) = −f(w(s)) < −θw(s) ≤ −θw(s)e
√

|k|(s−s) for any s > s.

After two integrations of this inequality we obtain v(s) < −C(θ)e
√

|k|s for all s > s. Inserting this into

(65) and proceeding as in the previous case we reach a contradiction with (61). This contradiction proves

that (61) does not occur even if (66) holds.

Step 4. We infer that (61) does not occur.

Indeed, assumptions (63) and (66) exhaust all possible situations.
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Step 5. We prove that w is bounded from above at +∞.

Suppose by contradiction that w is not bounded from above at +∞. Since in Step 4, we ruled out (61),

this means that

−∞ ≤ lim inf
s→+∞

w(s) < lim sup
s→+∞

w(s) = +∞ . (67)

Hence, there exists an increasing divergent sequence {sm}m∈N of local maxima of w such that

lim
m→+∞

w(sm) = +∞ . (68)

By (67) and Theorem 8 (whose proof is independent of Theorem 6!) we have

L := lim
s→+∞

[w′(s)w′′(s)− w(s)w′′′(s)− kw(s)w′(s)] = +∞ . (69)

By Lemma 27, if w were eventually nonnegative then w would admit a limit as s → +∞ in contradiction

with (67). Therefore, w changes sign infinitely many times and hence for any m ∈ N we may define

zm = sup{s > sm : w > 0 in (sm, s)} < +∞ .

By Lemma 18 there exists C ∈ R such that

1

2
w′′(sm)2 − F (w(sm)) = C

so that by (68) and (11) it follows that

lim
m→+∞

w′′(sm) = −∞ and w(sm) = o(w′′(sm)) as m → +∞ .

This shows that

lim
m→+∞

v(sm) = −∞ (70)

where, again v := w′′ + kw. By (69) we infer that

lim
m→+∞

w(sm)w′′′(sm) = − lim
m→+∞

[w′(sm)w′′(sm)− w(sm)w′′′(sm)− kw(sm)w′(sm)] = −∞ .

This proves that w′′′(sm) is eventually negative. Hence, since sm is a stationary point for w and v′(sm) =
w′′′(sm) + kw′(sm) = w′′′(sm), we infer that there exists m ∈ N such that

v′(sm) < 0 for any m > m . (71)

Since w > 0 in (sm, zm), by (1) and (3) we deduce that v′′ < 0 in (sm, zm). Inequality (71) then yields

v′(zm) < 0 for any m > m . (72)

Actually v′ < 0 in (sm, zm) and hence by (70)

lim
m→+∞

v(zm) ≤ lim
m→+∞

v(sm) = −∞ . (73)

By (1), (10) and (72) we have for any m > m

v′(s) = v′(zm)−
∫ s

zm

f(w(t)) dt ≤ M(s− zm) for any s > zm .

By integrating the latter inequality over the interval (zm, s) we obtain

v(s) ≤ v(zm) +M

∫ s

zm

(t− zm) dt = v(zm) +
M

2
(s− zm)2 for any s > zm . (74)
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By (73) we may fix m > m large enough such that v(zm) < −M
|k| . Since w(zm) = 0 and w′(zm) ≤ 0, by

(1), (74) and integration we obtain

w(s) =
w′(zm)√

|k|
sinh[

√
|k|(s− zm)] +

1√
|k|

∫ s

zm

sinh[
√
|k|(s− t)]v(t) dt

≤ v(zm)√
|k|

∫ s

zm

sinh[
√
|k|(s− t)] dt+

M

2
√

|k|

∫ s

zm

(t− zm)2 sinh[
√
|k|(s− t)] dt

=

(
v(zm)

|k| +
M

k2

){
cosh[

√
|k|(s− zm)]− 1

}
− M

2|k|(s− zm)2 ≤ 0 for any s > zm .

This shows that w is eventually negative, in contradiction with (67).

The second part of the statement can be achieved by reversing all signs in the above proof.

8 Proof of Theorem 8

We first prove the following statement which has its own independent interest.

Lemma 28. Let k ≤ 0 and f satisfy (3). Assume that w is a solution to equation (1) such that w has

two local extrema. Then on any closed interval whose bounds are two consecutive local extrema of w, the

maximum of s 7→ |w′′(s)| is attained in one of the extrema.

Proof. Assume that s1 < s2 are two consecutive local extrema of w and let s ∈ [s1, s2] be the global

maximum of s 7→ |w′′(s)|. For contradiction, assume that s ∈ (s1, s2). Then w(s) ∈ (w(s1), w(s2)) (or the

converse if w(s2) < w(s1)) and, by (3),

max{F (w(s1)), F (w(s2))} > F (w(s)) .

Let s∗ ∈ {s1, s2} be such that F (w(s∗)) = max{F (w(s1)), F (w(s2))} so that

F (w(s∗)) > F (w(s)). (75)

Since s 7→ w′′(s)2 attains its maximum at s we have

w′′′(s) = 0 and |w′′(s)| ≥ |w′′(s∗)|. (76)

Using the fact that the energy function E defined in (27) is constant, we obtain

w′′(s∗)2

2
− F (w(s∗)) = E(s∗) = E(s) = w′′(s)2

2
− k

2
w′(s)2 − F (w(s))

which, recalling k ≤ 0, contradicts (75)-(76). 2

Let k < 0 and consider the functions H(s) and G(s), defined in (14) and (30). Since H(s) is increasing

by (31), both G(s) and H(s) must attain a limit as s → +∞.

Proof of (i). Suppose H(s) is bounded as s → +∞, in which case

∫ s

0
[w′′(t)2 − kw′(t)2 + w(t)f(w(t))] dt = H(s)−H(0) < ∞.

Letting s → +∞, we deduce that w′, w′′ ∈ L2(0,∞) so that w′ ∈ H1(0,∞) and

lim
s→+∞

w′(s) = 0. (77)
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Case 1. Suppose w(s) changes sign infinitely many times as s → +∞. Then there exists a divergent

sequence {sj}j∈N of roots of w(s) such that w(s) has one sign on [sj , sj+1] for each j ∈ N. Let tj be any of

the global extrema of w(s) on [sj , sj+1]. Since G admits a limit, by (77) we know that

lim
s→+∞

G(s) = lim
j→+∞

G(sj) = lim
j→+∞

w′(sj)
2 = 0.

Therefore,

lim
j→+∞

G(tj) = lim
j→+∞

[
w(tj)w

′′(tj) +
k

2
w(tj)

2

]
= 0.

Since w(tj)w
′′(tj) ≤ 0 and k < 0, this proves that w(tj) → 0 as j → ∞, hence w(s) → 0 as s → +∞. In

view of Proposition 11, this also implies

lim
s→+∞

H(s) = lim
s→+∞

[w′(s)w′′(s)− w(s)w′′′(s)− kw(s)w′(s)] = 0, (78)

so H(s) is increasing towards zero and the result follows.

Case 2. Suppose w(s) is eventually of one sign. In what follows, we assume w(s) ≥ 0 eventually, the other

case being similar. In this case, the map s 7→ w′′′(s)+ kw′(s) is eventually decreasing because its derivative

equals −f(w(s)) ≤ 0. Recalling (77), we deduce that the limit

lim
s→+∞

[w′′′(s) + kw′(s)] = lim
s→+∞

w′′′(s)

exists and it is equal to zero. Being eventually decreasing to zero, w′′′(s)+kw′(s) is eventually nonnegative,

so the limit

ℓ1 = lim
s→+∞

[w′′(s) + kw(s)] ∈ (−∞,+∞]

exists as well. Since w(s) ≥ 0 eventually by assumption, Lemma 27 also ensures the existence of

ℓ2 = lim
s→+∞

[−kw(s)] ∈ {0,+∞}.

Were ℓ2 = +∞, we would have lims→+∞w′′(s) = ℓ1 + ℓ2 = +∞, contrary to (77). Hence, ℓ2 = 0 and the

result follows as in Case 1.

Proof of (ii). If H(s0) > 0 at some point s0, then H(s) is unbounded as s → +∞ by part (i). Suppose

w(s) is bounded as s → +∞ for the sake of contradiction. Were w(s) eventually of one sign, we would

have w(s) → 0 as s → +∞ by Lemma 27 and also (78) by Proposition 11, a contradiction. Thus, w(s) has

a divergent sequence {tj}j∈N of local extrema. According to Lemma 18, there exists a constant C ∈ R such

that

w′′(tj)
2 = C + 2F (w(tj))

for all j ∈ N. Since w(s) is assumed to be bounded as s → +∞, the sequence {w′′(tj)}j∈N is bounded, so

Lemma 28 ensures that w′′(s) is itself bounded. Using the inequality

sup
s≥0

w′(s)2 ≤ 4 sup
s≥0

|w(s)| · sup
s≥0

|w′′(s)|,

we conclude that w′(s) is uniformly bounded as well. On the other hand, we have

lim
s→+∞

G′(s) = lim
s→+∞

H(s) = +∞.

Hence,

lim
s→+∞

[w′(s)2 − w(s)w′′(s)− k

2
w(s)2] = lim

s→+∞
G(s) = +∞.

This is absurd since w, w′ and w′′ are all uniformly bounded as s → +∞.
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9 Proof of Theorem 9

Proof of statement (i). Assume the first in (16) holds. It suffices to prove the statement as s → +∞ since

the statement as s → −∞ may be obtained by observing that (1) is invariant under the change of variables

s 7→ −s. Let w be a global solution to (1) such that

lim
s→+∞

w(s) = 0.

By Proposition 11 we know that

lim
s→+∞

(w(s), w′(s), w′′(s), w′′′(s)) = (0, 0, 0, 0) . (79)

By Proposition 20 the linear problem v′′′′ + kv′′ + v = 0 has four real eigenvalues ±λ, ±µ with λ ≥ µ > 0;

write

u(s) = (∂s + λ)(∂s + µ)w(s), (∂s − λ)(∂s − µ)u(s) = w(s)− f(w(s)).

Since w ≤ f(w) near w = 0 by (16), we have (∂s−λ)(∂s−µ)u(s) ≤ 0 for all large enough s. In particular,

s 7→ e−λs(u′(s)− µu(s)) is decreasing to zero, so s 7→ e−µsu(s) is increasing to zero and

(∂s + λ)(∂s + µ)w(s) = u(s) ≤ 0

eventually. This makes s 7→ eλs(w′(s) + µw(s)) decreasing and we consider two cases.

Case 1. If w′ + µw is negative at some s0, then it is negative for all s ≥ s0. In this case, s 7→ eµsw(s) is

decreasing and attains a limit as s → +∞. If this limit is positive (or negative), then w has eventually the

same sign and we are done. If this limit is zero, then s 7→ eµsw(s) is decreasing to zero, so w is eventually

positive.

Case 2. If w′ + µw is nonnegative at all points, then s 7→ eµsw(s) is increasing and admits a limit as

s → +∞. As in the previous case, one sees that w is eventually of one sign.

The proof when the other inequality holds true in (16) works similarly by reversing all inequalities.

Proof of statement (ii). Suppose by contradiction that there exists s1 such that w is of one sign in (s1,+∞).
We start supposing that w is nonnegative in (s1,+∞). Then by Lemma 27 we infer that w admits a limit ℓ
satisfying ℓ ∈ {0,+∞}.

The case ℓ = 0. If ℓ = 0 we may apply Proposition 11 to obtain (79), namely the solution

Y (s) = (y1(s), y2(s), y3(s), y4(s)) = (w(s), w′(s), w′′(s), w′′′(s))

of the corresponding dynamical system (32) converges to (0, 0, 0, 0) as s → +∞. But if −2 < k < 0, the

linearized system at the origin has four complex eigenvalues with a nontrivial real part, see Proposition 20.

Moreover the stable manifold at the origin is two dimensional and it is tangent to the plane

Π := {ax1 + bx2 : a, b ∈ R}

where

x1 :=

(
1,−

√
2− k

2
,−k

2
,
(k + 1)

√
2− k

2

)
, x2 :=

(
0,

√
2 + k

2
,−

√
4− k2

2
,−(k − 1)

√
2 + k

2

)
.

This means that the hyperplane in R
4

H := {(y1, y2, y3, y4) ∈ R
4 : y1 = 0}

and the plane Π intersect transversally. We may conclude that any trajectory of (32) which converges to

the origin as s → +∞, intersects the hyperplane H infinitely many times or equivalently the corresponding

solution w of (1) changes sign infinitely many times as s → +∞.
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The case ℓ = +∞. By (3) and (17), we obtain

lim
s→+∞

v′′(s) = − lim
s→+∞

f(w(s)) = −∞ ,

where v = w′′ + kw. After integration we then have

lim
s→+∞

[w′′(s) + kw(s)] = lim
s→+∞

v(s) = −∞ . (80)

On the other hand, (17) implies that there exists t > 0 such that

f(t) > k2t ∀t > t .

By (80) and the fact that k < 0, we obtain

lim
s→+∞

w′′′′(s) = lim
s→+∞

[|k|w′′(s)− f(w(s))] ≤ lim
s→+∞

[|k|w′′(s)− k2w(s)]

= lim
s→+∞

|k|
[
w′′(s) + kw(s)

]
= −∞ .

After integration, this yields

lim
s→+∞

w(s) = −∞

in contradiction with ℓ = +∞.

If w is nonpositive in (s1,+∞) we proceed similarly by using the fact that

lim inf
t→−∞

f(t)

t
> k2

in view of (17).

10 Proof of Theorem 10

Denote by s ∈ [s1, s2] the maximum of s 7→ |w′′(s)| in [s1, s2]. By Lemma 28 we know that s ∈ {s1, s2}
and we distinguish three cases.

Case w(s1) ≤ 0. Since w(s2) < w(s1) ≤ 0, by (3) we know that F (w(s1)) < F (w(s2)). On the other

hand, since the energy function E defined in (27) is constant, we obtain

w′′(s1)2

2
− F (w(s1)) = E(s1) = E(s2) =

w′′(s2)2

2
− F (w(s2)).

These two facts show that w′′(s2)2 > w′′(s1)2 and, together with Lemma 28, prove that s = s2. In turn, this

shows that w′′′(s2) ≥ 0 because s 7→ w′′(s) is increasing in a left neighborhood of s2. Since w(s2) < 0, by

(1) we see that w′′′′(s2) = −kw′′(s2) − f(w(s2)) > 0 showing that s 7→ w′′′(s) is strictly increasing, and

hence positive, in a right neighborhood of s2. This implies that s 7→ w′′(s) is strictly increasing, and hence

positive (recall w′′(s2) ≥ 0), in a right neighborhood of s2. This finally implies that s 7→ w′(s) is strictly

increasing, and hence positive (recall w′(s2) = 0), in a right neighborhood of s2. All these monotonicities

continue to hold as long as w′′′′(s) > 0 and, by (1), they certainly hold as long as w(s) < 0. Since we

assumed w(s1) ≤ 0, case (i) in Theorem 10 occurs.

Case w(s2) ≥ 0. By (3) we know that F (w(s1)) > F (w(s2)) and since E is constant, we infer that

w′′(s1)2 > w′′(s2)2 and s = s1. Since s 7→ w′′(s)2 is decreasing in a right neighborhood of s1 and

w′′(s1) ≤ 0, this shows that w′′′(s1) ≥ 0. Since w(s1) > 0, by (1) we see that w′′′′(s1) < 0 and w′′′′(s)
is negative in a left neighborhood of s1 as long as w(s) > 0. Since we assumed w(s2) ≥ 0, case (ii) in

Theorem 10 occurs.
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Case w(s2) < 0 < w(s1). In this case, we cannot establish if s = s1 or s = s2, this depends on the sign

of F (w(s1))− F (w(s2)). So, assume that

F (w(s1)) ≤ F (w(s2)), (81)

the other case being similar. By the same energy argument as above, we infer that s = s2. Then we take

τ2 > s2 (to be fixed later) and enlarge the interval. With an abuse of notation, we denote once more by

s ∈ [s1, τ2] the maximum of s 7→ |w′′(s)| in [s1, τ2]. So far, we know that s ∈ {s1} ∪ [s2, τ2]. In fact, it can

be s = s1 only if equality holds in (81); however, this case will be ruled out. Since w(s2) < 0, by (1) we

see that w′′′′(s2) > 0 showing that s 7→ w′′′(s) is strictly increasing and s 7→ w′′(s) is strictly convex in a

neighborhood of s = s2. In turn, also s 7→ |w′′(s)| = w′′(s) is strictly convex in the same neighborhood so

that it cannot attain its absolute maximum at s = s2 which is in the interior of such neighborhood. We have

so proved that s ∈ (s2, τ2] and that there exists a right neighborhood of s2 where w′′′(s) > 0, w′′(s) > 0,

w′(s) > 0. In particular, we may drop the absolute value and consider the map s 7→ w′′(s). We now fix

τ2 > s2 to be the first local maximum of s 7→ w′′(s) on the interval (s2,+∞). If there is no such maximum,

we put τ2 = +∞ and s 7→ w′′(s) is increasing on the interval (s2,+∞) so that w is convex and increasing

and w(s) → +∞ as s → +∞; then we are done because case (i) in Theorem 10 occurs. If τ2 < +∞, then

s = τ2, w′′′(τ2) = 0, and w′′(s) > 0 and w′(s) > 0 over (s2, τ2]. In this case, we are done provided we

show that w(τ2) ≥ w(s1). For contradiction, assume that w(s2) < w(τ2) < w(s1). By (3) and (81) this

shows that F (w(s2)) > F (w(τ2)). Summarizing, we have

F (w(s2)) > F (w(τ2)), w′′′(τ2) = 0, w′′(s2) < w′′(τ2).

Since k ≤ 0, this contradicts the fact that the energy function E defined in (27) is constant:

w′′(s2)2

2
− F (w(s2)) = E(s2) = E(τ2) =

w′′(τ2)2

2
− k

2
w′(τ2)

2 − F (w(τ2)).

11 Proof of Theorem 13

First, we prove (i). Assume for contradiction that w is a homoclinic solution to (1). Since 0 < k ≤ 2, w
changes sign infinitely many times by Theorem 4. Given any two of its roots s1 < s2, we have

2

∫ s2

s1

w′(s)2 ds = −2

∫ s2

s1

w(s)w′′(s) ds

=

∫ s2

s1

[w(s)2 + w′′(s)2] ds−
∫ s2

s1

[w(s) + w′′(s)]2 ds ≤
∫ s2

s1

[w(s)2 + w′′(s)2] ds. (82)

Let H be as in (29), then (20) and (82) ensure that

H(s2)−H(s1) =

∫ s2

s1

[w′′(s)2 − kw′(s)2 + w(s)f(w(s))] ds

≥
∫ s2

s1

[w′′(s)2 − kw′(s)2 + w(s)2] ds

(•) ≥ (2− k)

∫ s2

s1

w′(s)2 ds ≥ 0.

Hence, H is nondecreasing on the sequence of zeroes of w. In fact, there exist two roots s1 < s2 such

that the inequality in (82) is strict since otherwise w′′(s) + w(s) = 0 for all s ∈ R, contradicting the fact

that w is a homoclinic solution. In turn, if s1 ≤ s1 < s2 ≤ s2, then the inequality (•) becomes strict and

H(s2) > H(s1) whenever s1 ≤ s1 < s2 ≤ s2. But, since w is a homoclinic, H(s) → 0 as s → ±∞ by

Proposition 11. This contradiction shows that there exist no homoclinics.
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For statement (ii), we denote by 0 < sm < sm+1 two consecutive roots of w. Since w is a homoclinic we

have E(s) ≡ 0, see (28). Hence, by using (1), we get

∫ sm+1

sm

[w′′(s)2 + kw′(s)2] ds =
∫ sm+1

sm

[2F (w(s)) + 2w(s)f(w(s))] ds. (83)

We estimate the left hand side of (83) by solving the associated eigenvalue problem, namely

min
H2∩H1

0
(sm,sm+1)

∫ sm+1

sm
[w′′(s)2 + kw′(s)2] ds
∫ sm+1

sm
w(s)2 ds

=

(
π

sm+1 − sm

)4

+ k

(
π

sm+1 − sm

)2

.

On the other hand, by (15) we know that

∫ sm+1

sm

[2F (w(s)) + 2w(s)f(w(s))] ds = (3 + o(1))

∫ sm+1

sm

w(s)2 ds as m → +∞.

Summarizing, by (83) we deduce that

lim sup
m→+∞

[(
π

sm+1 − sm

)4

+ k

(
π

sm+1 − sm

)2
]
≤ 3 ,

by which (21) readily follows.

In order to prove statement (iii) we fix 0 < ε < 1− k/2 and let δ > 0 be such that

|t| ≤ δ =⇒ f(t)

t
≥ 1− ε.

If w is a homoclinic, then there exists s0 > 0 such that

|s| ≥ s0 =⇒ |w(s)| ≤ δ.

Since 0 < k < 2, we know that w changes sign infinitely many times by Theorem 4. Using again the energy

function H defined in (29) and (31) we then get

H(s2)−H(s1) =

∫ s2

s1

[w′′(s)2 − kw′(s)2 + w(s)f(w(s))] ds

≥
∫ s2

s1

[w′′(s)2 − kw′(s)2 + (1− ε)w(s)2] ds (84)

≥ (1− ε)

∫ s2

s1

[(w′′(s) + w(s))2 − 2w′′(s)w(s)] ds− k

∫ s2

s1

w′(s)2 ds

≥ (2(1− ε)− k)

∫ s2

s1

w′(s)2 ds (85)

for any two roots s1 < s2 of w(s), both being in (−∞,−s0) or in (s0,+∞). Since w is a homoclinic, H
is bounded by Proposition 11. Thus, the inequality in (85) implies that w′ ∈ L2(R). Using this fact and the

inequality in (84), we conclude that w ∈ H2(R).

12 Appendix: proof of Proposition 11

It is sufficient to prove the statement for s → +∞. We denote by C general constants which may vary from

line to line. We also denote by δi(s) (for i = 1, ..., 5) continuous functions such that δi(s) → 0 as s → +∞.

Assuming that w(s) → 0 as s → +∞, let us rewrite (1) as

(
es[w′′′(s)− w′′(s) + (k + 1)w′(s)− (k + 1)w(s)]

)′
= δ1(s)e

s (86)
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where δ1(s) = −f(w(s))− (k + 1)w(s). We know that

∀ε > 0 ∃σ > 0 s.t. |δ1(s)| < ε ∀s > σ.

Fix ε > 0 and integrate (86) over (0, s) for any s > σ to obtain

es[w′′′(s)− w′′(s) + (k + 1)w′(s)− (k + 1)w(s)] = C +

∫ σ

0
δ1(t)e

t dt+

∫ s

σ
δ1(t)e

t dt

and, subsequently,

|w′′′(s)− w′′(s) + (k + 1)w′(s)− (k + 1)w(s)| ≤ Ce−s + εe−s

∫ s

σ
et dt = Ce−s + ε ∀s > σ.

By letting s → +∞ and by arbitrariness of ε, this proves that

w′′′(s)− w′′(s) + (k + 1)w′(s)− (k + 1)w(s) = δ2(s) (87)

for some continuous function δ2 vanishing as s → +∞. Let us rewrite this equation as

(
es[w′′(s)− 2w′(s) + (k + 3)w(s)]

)′
= δ3(s)e

s

where δ3(s) = δ2(s) + (2k + 4)w(s). Arguing as for (86), we arrive at

w′′(s)− 2w′(s) + (k + 3)w(s) = δ4(s) (88)

for some continuous function δ4 vanishing as s → +∞. We rewrite this equation as

(
es[w′(s)− 3w(s)]

)′
= δ5(s)e

s

where δ5(s) = δ4(s) − (k + 6)w(s). By applying once more the previous scheme, this finally yields that

w′(s) − 3w(s) → 0 as s → +∞. Since w(s) → 0, this implies w′(s) → 0. In turn, these two limits and

(88) imply that w′′(s) → 0 as s → +∞. Similarly, from (87) we obtain that w′′′(s) → 0, whereas from (1)

we obtain w′′′′(s) → 0 as s → +∞.
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