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Abstract

We analyze utility functions when they depend both on the quantity of the

goods consumed by the agent and on the prices of the goods. This approach

allows us to model price effects on agents’ preferences (e.g. the so-called Veblen

effect and the Patinkin formulation). We provide sufficient conditions to observe

demand monotonicity and substitution among goods. Power utility functions

are investigated: we provide examples of price dependent utility functions that

cannot be written as an increasing transformation of a classical utility function

dependent only upon quantities.
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1 Introduction

Standard consumer theory assumes that the utility only depends on the quantity of the

goods consumed by the agent, e.g. see [23]. This hypothesis, that has been motivated

during the XX century through an axiomatic microfoundation, allows to fully develop

demand theory when agents’ preferences are not affected by money or prices. As a

consequence, in a general equilibrium framework, prices coordinate agents’ decisions

signaling the scarcity of the goods, but they don’t enter agents’ preferences.

This assumption is widely accepted in the literature but there isn’t a complete

agreement among researchers. Several arguments have been put forward to insert

prices in the utility function. First of all, classical Keynesian macroeconomic theory

points out the limits of standard behavioral assumptions to derive money demand,

see [26, 27]. Moreover, it is known that price independent utility functions are not

a suitable framework to analyze agents’ demand for luxury or conspicuous goods, a

classical reference being Veblen, see [33]: individuals consume highly conspicuous goods

to display their wealth achieving a greater social status, they crave status and the status

is enhanced by material display of wealth (“Veblen effect”), for models providing a

microfoundation of this behavior see [2, 17, 18]. In these papers, the Veblen effect

is the outcome of a signaling model among agents with different status/wealth, in

equilibrium the ultimate effect is that wealth and prices enter the utility function.

Moreover, as discussed in [25], there are empirical studies on the market demand that

reject the main implications derived by a price independent utility (symmetry and

negative semidefinitess of the Slutzky matrix), see [34] for applications to collective

household models. Finally, as shown in [29, 19], there is a line of research on marketing

with prices affecting consumer preferences (reference price effect) with applications

also in the operations research direction, see [11, 20]. Following these insights, several

authors have suggested to consider utility functions that depend both on prices and on

the quantities of goods consumed by the agent, e.g. see [21, 14, 1]. The literature on

this topic has investigated two different perspectives.

The first line of research looks for a characterization of price dependent utility func-

tions satisfying certain properties. In this spirit, [14, 16] analyze the demand function
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when the utility depends upon prices and characterize price dependent utility func-

tions with some given features. [3, 28, 9, 10, 6, 5, 12, 13] characterize price dependent

utility functions with no money illusion in a neoclassical monetary model à la Patinkin

(homogeneity of degree zero of the demand in money and prices).

[4, 30, 25] instead derive empirically verifiable hypotheses on the demand assuming a

price dependent utility. The goal is slightly different: authors derive comparative statics

results that are alternative to those of the standard optimal consumption problem.

The new set of comparative statics results may provide a route to address the empirical

rejection of the classical model. For an application of price dependent utility to demand

of luxury goods see [24, 8, 22] and [32, 15] for an analysis of the saving-consumption

problem.

Our analysis belongs to the first strand of literature. Assuming price dependent

utility functions, we investigate the agent’s demand addressing three main issues: con-

ditions ensuring monotonicity of the demand of a good with respect to its price, con-

ditions ensuring substitution or complementarity among goods and zero price homo-

geneity of the demand. We characterize utility functions satisfying these properties.

As far as the no money illusion property is concerned, we provide a counterexample to

the characterization of utility functions established in the previous literature. We fully

analyze power utility functions satisfying the above properties. Our analysis applies to

a two goods setting as well as to a multiple goods environment.

The paper is organized as follows. In Section 2 we introduce utility functions that

also depend on prices. In Section 3 we analyze the two goods setting deriving sufficient

conditions to have monotonicity of the demand of a good (the quantity demanded of a

good decreases as its price goes up) and for good substitution (the quantity demanded

of a good increases as the price of another good increases). In Section 4 we investigate

the geometric interpretation of these two demand effects. In Section 5 we characterize

two goods utility functions such that the demand functions satisfy the above conditions.

In Section 6 we discuss the no money illusion property (demand homogeneity) and we

provide a counterexample to the existing results. In Section 7 we analyze power utility

functions requiring the above conditions and imposing the homogeneity property. In

Section 8 we extend the analysis to more than two goods.

3



2 Consumer choices with a price dependent utility

function

We consider the standard optimal consumption problem when the utility function

depends on the quantities of the goods consumed by the agent and also on their prices.

The consumer maximizes the utility function u subject to the budget constraint.

The utility function depends on the quantity consumed of the N goods (x) and on their

prices (p): u = u(x; p) where x ∈ RN
+ and p ∈ RN

+ . Here and in the sequel, RN
+ denotes

the open sector of RN of vectors with positive components so that R2N
+ represents the

domain of u. We assume that the agent acts as a price taker so that p ∈ RN
+ are taken

as given and he only chooses the quantities x ∈ RN
+ .

Given the endowment of the goods e ∈ RN
+ , the consumer addresses the following

maximization problem

max
x∈B

u(x; p) (2.1)

where B denotes the consumption bundles that satisfy the budget constraint given the

price vector observed in the market:

B = {x ∈ RN
+ ; (x, p) = (e, p)} (2.2)

where (·, ·) denotes the scalar product in RN . We follow classical consumer theory

assuming that u ∈ C2(R2N
+ ) is increasing and strictly concave in each good (diminishing

marginal utility):

uxi
> 0 , uxixi

< 0 for all i = 1, ..., N. (2.3)

As a consequence, there exists a unique solution x∗ ∈ B of the optimization problem

(2.1). The solution can be derived via the Lagrange multiplier method: the interior

solution x∗ ∈ B satisfies

uxi
(x∗; p) = λpi for all i = 1, ..., N. (2.4)

for some Lagrange multiplier λ > 0. Note that the diminishing marginal utility hy-

pothesis is stronger than it is needed to obtain a solution of the optimization problem,
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the assumption is required in our analysis of power utility, see Section 7, but can be

relaxed in the rest of the paper.

Given the market prices p ∈ RN
+ , the (excess) demand function is z(p) = x∗(p)− e.

The demand function obtained when the utility function also depends on prices differs

from the classical one. Two main points have been noticed in [14]. If the utility only

depends on the quantity of the goods, then the demand function is homogeneous of

degree zero in prices, i.e., the solution of the optimization problem (2.1) does not

change if the price vector is multiplied by a positive constant. This is not necessarily

the case if the utility function also depends on prices: as a matter of fact, prices affect

the utility and a homothety of the price vector and wealth does not change the budget

constraint but it may affect preferences and the utility function.

When the utility function only depends on the quantity of the goods consumed by

the agent, comparative static results can be developed through the classical Slutzky

equation which is made up of two components: the income and the substitution effect.

When the utility function also depends on prices, [14] has shown that the effect of the

change of the price of a good on the quantity demanded of another good is provided by

three components: the income and substitution effects and the price effect that reflects

the direct effect of the price change on preferences and on the demand.

3 The two goods case

The unique interior solution x∗ ∈ B to the optimization problem (2.1) may be found

via the Lagrange multiplier method. When N = 2, x∗ ∈ B satisfies

ux1
(x∗; p) = λp1 ux2

(x∗; p) = λp2

for some Lagrange multiplier λ > 0. The two conditions yield

p2ux1
(x∗; p) − p1ux2

(x∗; p) = 0 . (3.1)

The optimal consumption x∗ is a function of the price vector and of the wealth ω =

(p, e): x∗ = x∗(p, ω). [14] has shown that a generalized Slutsky equation holds:

∂x∗i
∂pj

= Sij − x∗j
∂x∗i
∂ω

+
upj

λ

∂x∗i
∂ω

. (3.2)
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The effect of a change of the price of good j on the quantity demanded of good i is

made up of three components: Sij (the effect of a change of the price j on the quantity

demanded of good i along the indifference curve) is the substitution effect, the second

is the income effect, the third component is denominated the price offsetting income

component. Only the first two components are detected when the utility function

merely depends on the quantities of the goods.

Without loss of generality, in what follows we assume that the endowment is fixed

in terms of wealth (ω > 0) and we characterize utility functions u that imply one of

the two following behaviors as p1 varies:

(C)
∂x∗1
∂p1

≤ 0, (S)
∂x∗2
∂p1

≥ 0. (3.3)

Symmetric conditions are required as p2 varies. If we differentiate totally with respect

to p1 the budget constraint (x∗(p), p) = ω we obtain

x∗1 + p1
∂x∗1
∂p1

+ p2
∂x∗2
∂p1

= 0 for all p ∈ R2
+. (3.4)

This readily shows that

(S) =⇒ (C). (3.5)

In case (C) we observe that the quantity demanded of a good decreases as its price goes

up. We do not make any assumption on the demand of the other good. Also in case

(S) the quantity demanded of a good decreases with respect to its price (due to (3.5))

but now there is substitution between goods: as the price of the first good increases,

the quantity demanded of the first good decreases and the quantity demanded of the

second good increases, i.e., the sign of (3.2) is positive. In case (C) instead we allow

for complementarity between the two goods, i.e., the quantity demanded of both goods

may decrease as the price of the first good increases and therefore we refer to this

demand behavior as the complementarity case. Note that we address complementarity

and substitution between goods considering the total effect on the demand of a good

associated with the change of the price of the good or the price of another good1.

1[14, 16] instead refer to demand changes along the indifference curve (Slutsky effect) providing

comparative statics results and conditions ensuring symmetry and negative semidefiniteness of the

Slutsky matrix.
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We now want to characterize utility functions in case (C) and (S). Let us start with

case (S). Omitting wealth, which is fixed, we have that x∗ = x∗(p). Let us differentiate

(3.1) totally with respect to p1, we obtain

p2ux1x1
(x∗(p); p)

∂x∗1
∂p1

+ p2ux1x2
(x∗(p); p)

∂x∗2
∂p1

+ p2ux1p1
(x∗(p); p) − ux2

(x∗(p); p)+

−p1ux1x2
(x∗(p); p)

∂x∗1
∂p1

−p1ux2x2
(x∗(p); p)

∂x∗2
∂p1

−p1ux2p1
(x∗(p); p) = 0 for all p ∈ R2

+.

(3.6)

By combining (3.4) with (3.6), at the point (x∗(p); p) we have

p2ux1p1
− p1ux2p1

− ux2
+ x∗1ux1x2

−
p2x

∗
1

p1

ux1x1
=

=
1

p1

(
p2

2ux1x1
− 2p1p2ux1x2

+ p2
1ux2x2

)∂x∗2
∂p1

for all p ∈ R2
+. (3.7)

In the (x1, x2)-plane the budget constraint (x, p) = ω is a segment containing the vector

Q = (−p2, p1). Using this vector we may rewrite (3.7) as

p2ux1p1
− p1ux2p1

− ux2
+ x∗1ux1x2

−
p2x

∗
1

p1

ux1x1
=

1

p1

∂2u

∂Q2

∂x∗2
∂p1

for all p ∈ R2
+.

Note that ∂2u
∂Q2 represents the second derivative of u in the direction of the constraint

evaluated at the maximum point x∗ of u subject to the constraint, it coincides with

bordered Hessian matrix of the utility maximization problem evaluated at x∗ and

therefore is non positive. Hence, in view of assumption (S), at the point (x∗(p); p) we

find

−
p2x

∗
1

p1

ux1x1
+ p2ux1p1

− ux2
+ x∗1ux1x2

− p1ux2p1
≤ 0 for all p ∈ R2

+. (3.8)

Not only it appears difficult to provide necessary and sufficient conditions for (3.8)

to hold but also it is not straightforward how to check (3.8) even in simple cases. We

are so led to find sufficient conditions which imply (3.8), the simplest one being the one

which requires (3.8) to be satisfied at any point (x; p) ∈ R4
+ and not just at (x∗(p); p)

for all p ∈ R2
+. Therefore, we get

−
p2x1

p1

ux1x1
+ p2ux1p1

− ux2
+ x1ux1x2

− p1ux2p1
≤ 0 for all (x; p) ∈ R4

+. (3.9)
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The differential inequality (3.9) gives a sufficient condition for the substitution effect (S)

to hold and it will be called strong substitution (SS). As it will become clear in Section

7, this stronger condition maintains some form of linearity and makes it simpler to

verify the condition.

In case (C), by combining (3.4) and (3.6), at the point (x∗(p); p) we have

p2ux1p1
− p1ux2p1

− ux2
− x∗1ux1x2

+
p1x

∗
1

p2

ux2x2
=

= −
1

p2

(
p2

2ux1x1
− 2p1p2ux1x2

+ p2
1ux2x2

)∂x∗1
∂p1

for all p ∈ R2
+. (3.10)

As for (3.7), we may rewrite (3.10) as

p2ux1p1
− p1ux2p1

− ux2
− x∗1ux1x2

+
p1x

∗
1

p2

ux2x2
= −

1

p2

∂2u

∂Q2

∂x∗1
∂p1

for all p ∈ R2
+.

By combining this with the assumption (C), at the point (x∗(p); p) we find

− x∗1ux1x2
+ p2ux1p1

− ux2
+
p1x

∗
1

p2

ux2x2
− p1ux2p1

≤ 0 for all p ∈ R2
+. (3.11)

Again, a sufficient condition may be obtained by requiring (3.11) to be satisfied at any

point (x; p) ∈ R4
+ and not just at (x∗(p); p) for all p ∈ R2

+. Such a condition reads

− x1ux1x2
(x; p) + p2ux1p1

(x; p)− ux2
(x; p) +

p1x1

p2

ux2x2
(x; p)− p1ux2p1

(x; p) ≤ 0 (3.12)

for all (x; p) ∈ R4
+. This condition will be called strong complementarity (SC).

4 A geometric interpretation

In this section we obtain the results of the previous one from a geometric point of view.

The reason for this analysis is that a geometric interpretation of the conditions (SS)

and (SC) will be useful in Section 8 to extend our results to the case of many goods

(N ≥ 2).

Fixed p ∈ R2
+, consider the level line of the utility function for the optimum x∗:

` = {x ∈ R2
+; u(x; p) = u(x∗; p)}.

For all x ∈ ` we may determine the sign of p2ux1
(x; p) − p1ux2

(x; p). We prove the

following result.
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Lemma 4.1 Let x ∈ `:

(i) if x2 > x∗2 then p2ux1
(x; p) − p1ux2

(x; p) > 0,

(ii) if x2 < x∗2 then p2ux1
(x; p) − p1ux2

(x; p) < 0.

Proof. For a fixed p ∈ R
2
+, the utility function can be interpreted as a function de-

pending only on x ∈ R2
+, u = u(x). We embed R2 into R3 in such a way that x1 is the

horizontal axis, x2 is the vertical axis and x3 is the axis orthogonal to the plane so that

(x1, x2, x3) is a direct triple. In R3 we can compute the vector product ∇u(x)∧ p. The

triple of vectors (∇u(x), p,∇u(x) ∧ p) also forms a direct triple. Its component along

the x3-axis is precisely p2ux1
(x) − p1ux2

(x).

Assume first that x2 > x∗2 and consider the straight line R containing x ∈ ` and

being parallel to B. The vector p is orthogonal to R. The level line ` crosses R at x.

Moreover, ` is above R in the strip {y ∈ R
2
+; y1 < x1} whereas R is above ` in the

region {y ∈ R2
+; y1 > x1}. Therefore, since ∇u(x) is orthogonal to ` at x, the vector

p is above the vector ∇u(x). This shows that ∇u(x) ∧ p has a positive x3-component.

The case x2 < x∗2 is similar, one just has to change all the signs. 2

Let us evaluate the demand function as p1 and the relative price p1

p2
change. If the

price p1 increases to p1 + ε for some ε > 0, then the new budget constraint reads

Bε = {x ∈ R2
+; (p1 + ε)x1 + p2x2 = ω}.

Let x∗ = (x∗1, x
∗
2) ∈ B denote the solution to (2.1) and xε = (xε

1, x
ε
2) ∈ Bε be the

solution to the optimization problem

max
x∈Bε

u(x; p1 + ε, p2). (4.1)

Complementarity and substitution, as defined in (3.3), read

(C) xε
1 ≤ x∗1, (S) xε

2 ≥ x∗2.

In the more restricted situation (S), where xε
2 ≥ x∗2, consider the point x ∈ Bε having

the same ordinate as x∗, so that

x1 =
p1

p1 + ε
x∗1 , x2 = x∗2 . (4.2)
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Then, from Lemma 4.1 applied to x we obtain

p2ux1
(x; p1 + ε, p2) − (p1 + ε)ux2

(x; p1 + ε, p2) ≤ 0.

Taking into account (4.2), this yields (for all ε > 0)

p2ux1

(
p1

p1 + ε
x∗1, x

∗
2; p1 + ε, p2

)
− (p1 + ε)ux2

(
p1

p1 + ε
x∗1, x

∗
2; p1 + ε, p2

)
≤ 0. (4.3)

Inequality (4.3) is equivalent to (S). (SS) requires (4.3) to be satisfied at any point

(x; p) ∈ R
4
+ and not just at (x∗(p); p) for all p ∈ R

2
+. So, for any (x; p) ∈ R

4
+ we

consider the function

ϕ(ε) := p2ux1

(
p1

p1 + ε
x1, x2; p1 + ε, p2

)
− (p1 + ε)ux2

(
p1

p1 + ε
x1, x2; p1 + ε, p2

)

defined for all ε ≥ 0. Notice that if x = x∗(p) we have ϕ(0) = 0. Therefore, the

extension of (4.3) to any point (x; p) ∈ R
4
+ reads ϕ(ε) ≤ ϕ(0) for all ε > 0. In

turn, this happens if and only if ϕ′(0) ≤ 0, namely if (3.9) holds. We point out that

the two conditions ϕ(ε) ≤ ϕ(0) for all ε > 0 and ϕ′(0) ≤ 0 are not equivalent as a

characterization of (S), they are equivalent in our situation because (3.9) must hold

true for any x ∈ R2
+.

In case (C) we consider the point x̃ ∈ Bε having the same abscissa as x∗, so that

x̃1 = x∗1 , x̃2 = x∗2 −
ε

p2

x∗1 .

According to Lemma 4.1 applied to x̃, we have that (C) is characterized by

p2ux1
(x̃; p1 + ε, p2) − (p1 + ε)ux2

(x̃; p1 + ε, p2) ≤ 0 for all ε > 0.

In order to obtain (SC) we require that this inequality holds for any (x; p) ∈ R4
+ and

we obtain

ψ(ε) := p2ux1

(
x1, x2 −

ε

p2

x1; p1 + ε, p2

)
− (p1 + ε)ux2

(
x1, x2 −

ε

p2

x1; p1 + ε, p2

)
≤ 0

for all ε > 0. In turn, this occurs (independently of x1 and x2) if and only if ψ′(0) ≤ 0,

namely if and only if (3.12) holds.
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Conditions ensuring strong substitution or strong complementarity of the demand

function strictly depend on the assumption that the utility function depends upon

prices. If this is not the case, then (SS) becomes

ϕ(ε) := p2ux1

(
p1

p1 + ε
x1, x2

)
− (p1 + ε)ux2

(
p1

p1 + ε
x1, x2

)
≤ 0 for all ε > 0.

This occurs if and only if ϕ′(0) ≤ 0, namely

−
p2x1

p1

ux1x1
(x1, x2)− ux2

(x1, x2) + x1ux1x2
(x1, x2) ≤ 0 for all (x1, x2) ∈ R

2
+. (4.4)

In view of (2.3), it is clear that (4.4) does not hold under the extreme condition where

p2

p1
is very large (either p2 very large or p1 very small). As a consequence, there is no

utility function that satisfies (SS) for all vectors (x; p) ∈ R4
+. Instead, when the utility

function also depends upon prices we may find utility functions that satisfy (SS) in the

full space.

We conclude this section by comparing the two differential inequalities which char-

acterize (SC) and (SS). For all (x; p) ∈ R4
+ we define

Φ(x, p) := p2ux1p1
(x; p) − p1ux2p1

(x; p) − ux2
(x; p) + x1ux1x2

(x; p) −
p2x1

p1

ux1x1
(x; p)

and

Ψ(x, p) := p2ux1p1
(x; p) − p1ux2p1

(x; p) − ux2
(x; p) − x1ux1x2

(x; p) +
p1x1

p2

ux2x2
(x; p).

According to (3.9) and (3.12), we have

strong substitution (SS) ⇐⇒ Φ(x, p) ≤ 0 in R4
+, (4.5)

strong complementarity (SC) ⇐⇒ Ψ(x, p) ≤ 0 in R4
+. (4.6)

We only interpret the difference between Φ and Ψ, conditions on p2 are similar see (5.2)

and (5.4) below. Consider the restriction of u, Φ and Ψ to the (x1, x2)-plane where

the budget constraint (x, p) = ω is a segment containing the vector Q = (−p2, p1), it

is easy to show that

Ψ(x, p) − Φ(x, p) =
x1

p1p2

∂2u

∂Q2
(x; p). (4.7)
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Let us recall that (S) and (C) require to satisfy (3.9) and (3.12) only at the couple

(x∗(p); p). At the optimum x∗ = x∗(p) which maximizes u over B (recall that p is

fixed), the second derivative in the direction of the vector constraint Q is non positive:

∂2u

∂Q2
(x∗) ≤ 0. (4.8)

Our sufficient conditions require (4.8) to hold on R2 and therefore (SS) implies (CC)

providing a generalization of (3.5).

5 Characterization of the utility function

In this section we characterize utility functions for the two goods setting satisfying

conditions (SS) or (SC). The first step consists in rewriting inequality (3.9) as

p2

(
p1up1

− x1ux1
+ u
)

x1

− p1

(
p1up1

− x1ux1
+ u
)

x2

≤ 0 (5.1)

and, in a dual way (if p2 increases), we obtain the differential inequality

p1

(
p2up2

− x2ux2
+ u
)

x2

− p2

(
p2up2

− x2ux2
+ u
)

x1

≤ 0. (5.2)

Inequalities (5.1)-(5.2) characterize case (SS).

Similarly, we may rewrite inequality (3.12) as

p2

(
p2up1

− x1ux2

)
x1

− p1

(
p2up1

− x1ux2

)
x2

≤ 0 (5.3)

and, in a dual way (if p2 increases), we obtain the differential inequality

p1

(
p1up2

− x2ux1

)
x2

− p2

(
p1up2

− x2ux1

)
x1

≤ 0. (5.4)

Inequalities (5.3)-(5.4) characterize case (SC).

Before stating our results, we point out that we have no boundary conditions (such

as Cauchy conditions or Dirichlet conditions) for the utility function u and this leaves

many degrees of freedom. We do not even have other kinds of constraints, such as

assumptions on the behavior of u in extremal conditions, for instance as (p1, p2) →

(0, 0); in this case, it could happen that u blows up at infinity. As a consequence,
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integration in a neighborhood of (p1, p2) = (0, 0) is extremely delicate. This suggests

to fix a boundary condition for p1 = 1 and p2 = 1. This is the reason of the appearance

of the integral
∫ pi

1
in formulas (5.6)-(5.7) and (5.12)-(5.13) below.

In the strong substitution case (SS) the following Theorem is obtained.

Theorem 5.1 Assume that u ∈ C2(R4
+) satisfies (5.1). Then there exists a function

h ∈ C1(R4
+) such that h = h(ξ) satisfies

∂h

∂ξ1
≤ 0, (5.5)

and a function g ∈ C2(R3
+) such that u has the form

u(x; p) =
1

p1

∫ p1

1

h
(p1x1

t2
, p1x1 + p2x2, t, p2

)
dt+

g(p1x1, x2, p2)

p1

. (5.6)

Similarly, if u ∈ C2(R4
+) satisfies (5.2), then u has the form

u(x; p) =
1

p2

∫ p2

1

h̃
(p2x2

t2
, p1x1 + p2x2, t, p1

)
dt+

g̃(p2x2, x1, p1)

p2

, (5.7)

where h̃ satisfies (5.5) and g̃ ∈ C2(R3
+). Therefore, in case of strong substitution (SS),

u is necessarily written in both the two forms (5.6) and (5.7).

Proof. Setting w := p1up1
− x1ux1

+ u, (5.1) reads

p2wx1
− p1wx2

≤ 0. (5.8)

This is a (first order) transport partial differential inequality. In order to solve (5.8),

we make the change of variables




ξ1 = x1

p2

ξ2 = p1x1 + p2x2

ξ3 = p1

ξ4 = p2





x1 = ξ1ξ4

x2 = ξ2
ξ4
− ξ1ξ3

p1 = ξ3

p2 = ξ4

(5.9)

and we put h(ξ1, ξ2, ξ3, ξ4) = w(ξ1ξ4,
ξ2
ξ4
− ξ1ξ3, ξ3, ξ4). Note that the change of variables

(5.9) is legitime since it defines a one-to-one map between {(x; p) ∈ R4
+} and A = {ξ ∈

R
4
+; ξ2 > ξ1ξ3ξ4} so that the function h is defined in A. With this change of variables,

(5.8) becomes

hξ1(ξ1, ξ2, ξ3, ξ4) ≤ 0 .

13



We have so shown that if w solves (5.8) then there exists a function h satisfying (5.5)

such that

w(x1, x2, p1, p2) = h

(
x1

p1

, p1x1 + p2x2, p1, p2

)
.

Hence, we are led to solve

p1up1
(x; p) − x1ux1

(x; p) + u(x; p) = h

(
x1

p1

, p1x1 + p2x2, p1, p2

)
. (5.10)

In order to solve (5.10) we freeze x2 and p2 and consider them as constant parameters.

In the (x1, p1)-plane, the characteristic curves of the linear hyperbolic equation (5.10)

are the hyperbolas x1p1 = γ > 0. This suggests to perform the change of variables




y = p1

z = p1x1





p1 = y

x1 = z
y

and to put u(x1, p1) = f(y, z) = f(p1, p1x1), the variables x2 and p2 being frozen.

Then, (5.10) becomes

(
yf(y, z)

)
y

= h

(
z

y2
, z + p2x2, y, p2

)
. (5.11)

Integrating (5.11) over [1, y] (for any y > 0) we obtain

f(y, z) =
1

y

∫ y

1

h
( z
t2
, z + p2x2, t, p2

)
dt+

g(z, x2, p2)

y
,

where g(z, x2, p2) = f(1, z) (recall the frozen variables x2 and p2). In turn, back to the

original variables, the latter expression yields (5.6).

In a dual way, if we freeze x1 and p1, we find that u has the form (5.7). 2

In the strong complementarity case (SC) the following Theorem is obtained.

Theorem 5.2 Assume that u ∈ C2(R4
+) satisfies (5.3). There exists a function h ∈

C1(R4
+) satisfying (5.5) and a function g ∈ C2(R3

+) such that u has the form

u(x; p) =
1

p2

∫ p1

1

h
(x1

t
, p1x1 + p2x2, t, p2

)
dt+ g(x1, p1x1 + p2x2, p2) . (5.12)

Similarly, if u ∈ C2(R4
+) satisfies (5.4), then u has the form

u(x; p) =
1

p1

∫ p2

1

h̃
(x2

t
, p1x1 + p2x2, t, p1

)
dt+ g̃(x2, p1x1 + p2x2, p1) (5.13)
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where h̃ ∈ C2(R4
+) and g̃ ∈ C2(R3

+) enjoy the same properties as h and g in (5.12).

Therefore, in case of strong complementarity (SC), u is necessarily written in both the

two forms (5.12) and (5.13).

Proof. We first put w = p2up1
− x1ux2

so that (5.3) becomes again (5.8). Therefore,

there exists a function h satisfying (5.5) such that

w(x1, x2, p1, p2) = h

(
x1

p1

, p1x1 + p2x2, p1, p2

)
.

Hence, any solution u = u(x; p) to the differential inequality (5.3) satisfies

p2up1
(x1, x2, p1, p2) − x1ux2

(x1, x2, p1, p2) = h

(
x1

p1

, p1x1 + p2x2, p1, p2

)
(5.14)

for some function h as in (5.5). We now make another change of variables, namely





ξ1 = x1

ξ2 = p1x1 + p2x2

ξ3 = p1

p2

ξ4 = p2





x1 = ξ1

x2 = ξ2
ξ4
− ξ1ξ3

p1 = ξ3ξ4

p2 = ξ4

(5.15)

and we put f(ξ1, ξ2, ξ3, ξ4) = u(ξ1,
ξ2
ξ4

− ξ1ξ3, ξ3ξ4, ξ4). Again, the change of variables

(5.15) is legitime since it defines a one-to-one map between {(x; p) ∈ R
4
+} and A =

{ξ ∈ R4
+; ξ2 > ξ1ξ3ξ4} and the function f is defined in A. With this change of variables

(5.14) becomes

fξ3(ξ1, ξ2, ξ3, ξ4) = h

(
ξ1
ξ3ξ4

, ξ2, ξ3ξ4, ξ4

)
.

By integrating over [ξ−1
4 , ξ3] (for any ξ3 > 0) we obtain

f(ξ1, ξ2, ξ3, ξ4) =

∫ ξ3

1/ξ4

h

(
ξ1
ξ4t

, ξ2, ξ4t, ξ4

)
dt+ g(ξ1, ξ2, ξ4) ,

where g(ξ1, ξ2, ξ4) = f(ξ1, ξ2, ξ
−1
4 , ξ4). Returning to the (x; p)-variables, the latter be-

comes

u(x; p) =

∫ p1/p2

1/p2

h

(
x1

p2t
, p1x1 + p2x2, p2t, p2

)
dt+ g(x1, p1x1 + p2x2, p2)

and (5.12) follows after the change of variable t 7→ p2t in the integral. 2
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The set of utility functions satisfying condition (SC) or (SS) is quite large. There

are utility functions that satisfy both and therefore as the price of a good increases the

quantity demanded decreases and the quantity demanded of the other good goes up.

An interesting example is the following: consider a function U ∈ C2(R+) such that

U ′ > 0 and U ′′ < 0 in R+, take

u(x; p) = U

(
x1

p2

+
x2

p1

)
. (5.16)

For this function u, (4.5) and (4.6) are equivalent to the dual ones. It is easy to show

that

Ψ(x, p) = Φ(x, p) = −
1

p1

U ′

(
x1

p2

+
x2

p1

)
< 0,

and therefore u satisfies both (SC) and (SS): if the utility is an increasing function of

the sum of the quantities consumed of the different goods divided by their prices then

there is good substitution.

6 Some remarks on the no money illusion property

Let us first translate the no money illusion property mathematically. Imagine that

prices and income are all multiplied by a factor k > 0. The new budget constraint reads

(x, kp) = (e, kp) and is therefore equivalent to x ∈ B, see (2.2). If the maximization

of the utility function (x; p) 7→ u(x; kp) under the constraint x ∈ B gives the same

optimum x∗, then it should have the same level lines (with possibly different levels) as

the function (x; p) 7→ u(x; p). Therefore,

for any k > 0 there exists an increasing fk ∈ C2(R) such that u(x; kp) = fk(u(x; p)).

(6.1)

This homogeneity condition, which is straightforward in case of a utility function that

depends only the quantity of the goods, calls for an interpretation in case of a utility

function that depends both on quantities and prices: agents’ preferences are affected

by relative prices but not by their level. In Section 7 we characterize power utility

functions with demand monotonicity, with the previously discussed comparative statics

properties, and with price homogeneity of degree zero of the demand.
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A large literature has discussed the no money illusion condition when the utility

depends upon prices, see [14, 3, 28, 9, 10, 6, 5, 12, 13]. [14, Theorem 2.1] characterizes

price dependent utility functions whose corresponding demand function is homogeneous

of degree zero in prices and wealth. According to [14, p.503], when N = 2 these are

the functions u which satisfy the differential equation

p1p2ux1p1
− p2

1ux2p1
+ p2

2ux1p2
− p1p2ux2p2

= 0 . (6.2)

Namely u(x1, x2; p1, p2) = f(x1p1 + x2p2) + h(p1/p2, x1, x2). Unfortunately, this char-

acterization appears incorrect. First of all, (6.2) admits as a possible solution

u(x; p) = f(
p1x1 + p2x2

p1p2

),

a case which is not covered by Kalman’s general solution. Second thing, (6.2) does not

allow utility functions such as

u(x; p) =

√
x1

p1

+

√
x2

p2

which, for e = (1, 1), induces the following homogeneous of degree zero optimal con-

sumption bundle

x∗1(p) =
p1p

2
2 + p3

2

p3
1 + p1p2

2

, x∗2(p) =
p2p

2
1 + p3

1

p3
2 + p2p2

1

.

Therefore, his characterization is not reliable and we stick to (6.1)2.

Replying to [9, 10], [12, 13, 5] argue that price dependent utility functions u with

no money illusion can be written as a monotonic (price dependent) transformation φp

(consumer’s index of cardinal utility) of a classical quantity dependent utility function

v with no effects on the demand:

u(x; p) = φp(v(x)) (6.3)

and that price dependent utility functions of the form

u(x; p) = f(p)v(x) + g(p) (6.4)

2Notice that this problem in Kalman’s analysis has not been detected in the papers discussing

Kalman’s results showing several flaws, see [5, 12, 13].
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satisfy sufficient conditions for the symmetry and negative semidefiniteness of the Slut-

sky matrix. However, [3] provides an example of a price dependent utility function free

of money illusion with a symmetric and negative semidefinite Slutsky matrix that

cannot be written as in (6.4). In the next Section we characterize price dependent

power utility functions with no money illusion that generate and a demand function

monotonic with respect to prices, some of our examples cannot be written as in (6.3)

providing a further counterexample to results established in the literature.

7 Power utility functions

In this section we provide examples of utility functions of power type such that the

demand function satisfies conditions (5.1)-(5.2) or (5.3)-(5.4) as well as the homogeneity

assumption (6.1). We take advantage of (4.5) and (4.6) and of Theorems 5.1 and 5.2.

We also assume that the derivative of the utility with respect to the quantities of the

goods is positive and decreasing, see (2.3).

Conditions (SS) and (SC) are satisfied in case of a power utility function under

some parametric restrictions. Note that, with the exception of Example 7.3, our ex-

amples provided below of price dependent utility functions satisfy condition (6.1) un-

der suitable constraints and therefore they are money illusion free (see the demand

function of Example 7.2 and 7.3) but cannot be written as an increasing transfor-

mation of a classical utility function (u(x; p) = φp(v(x))), as claimed in [12], or as

u(x; p) = f(p)v(x) + g(p) see [3].

Example 7.1 According to (5.16), a first simple example is given by

u(x; p) =

(
x1

p2

+
x2

p1

)d

for some d ∈ (0, 1). This function satisfies both (SS) and (SC). Moreover, (2.3) and

the zero-homogeneity condition (6.1) are satisfied. 2

Example 7.2 Additive power utility

Given α, β > 0, consider the function

u(x; p) = α
xa

1

pc
1

+ β
xb

2

pd
2

a, b, c, d ≥ 0. (7.1)
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Notice that u satisfies the homogeneity assumption (6.1) if and only if c = d: prices

enter utility in the power form with the same exponent. It is easy to show that

Ψ(x, p) = −α ac
p2x

a−1
1

pc+1
1

− β b
xb−1

2

pd
2

+ β b (b− 1)
p1x1x

b−2
2

pd+1
2

.

The function Ψ is non positive for all (x, p) ∈ R4
+ provided that

0 < a, b < 1 ; c, d ≥ 0.

Notice that these conditions also ensure that the dual inequality Ψ̃ ≤ 0 holds true and

that (2.3) is satisfied. Hence, these are necessary and sufficient conditions for the utility

function in (7.1) to satisfy (5.3)-(5.4) and (2.3). Therefore, strong complementarity

requires the classical concavity in goods (0 < a, b < 1) and that prices enter in the

power form with a negative exponent.

We now compute

Φ(x, p) = α a(1 − a− c)
p2x

a−1
1

pc+1
1

− β b
xb−1

2

pd
2

so that u in (7.1) satisfies (5.1)-(5.2) and (2.3) if and only if

0 < a, b < 1 ; 1 − a ≤ c ; 1 − b ≤ d .

Therefore, strong substitution requires the classical condition of concavity in goods and

that the exponents of the prices be large enough. These conditions imply the previous

ones. Note that if c = d = 0, i.e., u does not depend on prices, then the function u may

satisfy the strong complementarity condition but not the strong substitution condition.

After some computations, one sees that the equations defining the demand functions

read

(
βb

αa

) 1

1−b

p
1+c
1−b

1 p
b+d
b−1

2 [x∗1]
1−a
1−b + p1x

∗
1 = ω ,

(
αa

βb

) 1

1−a

p
1+d
1−a

2 p
a+c
a−1

1 [x∗2]
1−b
1−a + p2x

∗
2 = ω .

Although x∗1 and x∗2 may not be easily explicitly determined (except for particular

values of the parameters), it is clear from the above equations that

∂x∗i
∂pi

< 0 ,
∂x∗i
∂pj

> 0 (i, j ∈ {1, 2}, i 6= j)
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regardless of the values of c and d provided that 0 < a, b < 1. Therefore, the utility

function (7.1) satisfies both (C) and (S) for any value of c and d, also negative ones,

provided that it is concave in the quantities of the goods. 2

Example 7.3 Cobb Douglas utility

Consider the function

u(x; p) =
xa

1 x
b
2

pc
1 p

d
2

a, b, c, d ≥ 0. (7.2)

For this function no parameter constraint is needed to ensure (6.1). It is easy to show

that

Ψ(x, p) = b(c− a− 1)
xa

1 x
b−1
2

pc
1 p

d
2

− ac
xa−1

1 xb
2

pc+1
1 pd−1

2

+ b(b− 1)
xa+1

1 xb−2
2

pc−1
1 pd+1

2

.

The utility function u in (7.2) satisfies (2.3) and (SC) (that is, both (5.3)-(5.4)) if and

only if

0 < a, b < 1 ; 0 ≤ c ≤ a+ 1 ; 0 ≤ d ≤ b+ 1 .

On the other hand,

Φ(x, p) = a(1 − a− c)
xa−1

1 xb
2

pc+1
1 pd−1

2

+ b(a+ c− 1)
xa

1 x
b−1
2

pc
1 p

d
2

so that u in (7.2) satisfies (2.3) and (SS) (that is, both (5.1)-(5.2)) if and only if

0 < a, b < 1 ; 0 ≤ c, d < 1 ; a+ c = 1 ; b+ d = 1.

In this case we have Φ = 0. Again, these conditions imply the previous ones.

For the utility function (7.2) one can compute explicitly the demand function and

obtain

x∗1(p) =
aω

a+ b

1

p1

, x∗2(p) =
bω

a+ b

1

p2

.

Therefore, (7.2) satisfies both (C) and (S) for any value of c and d provided that

0 < a, b < 1. 2

Example 7.4 Since the differential inequalities (5.1)-(5.2), (5.3)-(5.4) are all linear,

it is clear that further examples can be obtained by combining linearly (with positive
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coefficients) the above examples. Only condition (6.1) should be carefully checked. Of

particular interest appears the function

u(x; p) = α
xa

1

pd
1

+ β
xb

2

pd
2

+ γ
xa

1 x
b
2

p
d/2
1 p

d/2
2

+ δ

(
x1

p2

+
x2

p1

)d

(7.3)

for some α, β, γ, δ ≥ 0. This function generalizes both (7.1) and (7.2) allowing us to

model agents’ behavior involving a strong interaction among quantities and prices. The

terms with coefficients α and β emphasize the independence between the two goods

and their prices: a modification of a price does not directly affect the consumption of

the other good. The term with coefficient γ measures the dependence between the two

goods: the modification of both prices is weighted in the same way. As we have seen

in (5.16), the term with coefficient δ plays in favor of both inequalities (4.5) and (4.6).

It is of particular importance since, due to the budget constraint (2.2), it reduces to

δ( ω
p1p2

)d and therefore represents the relative wealth, namely the wealth normalized by

prices.

For utility functions (7.3) it appears almost impossible to verify directly (C) or (S)

in (3.3). On the other hand, conditions (SS) and (SC) are simply verified by taking

into account the computations in the previous examples (Φ and Ψ depend linearly on

u). More precisely, (5.3)-(5.4)-(2.3)-(6.1) are satisfied if and only if

0 < a, b, d < 1 ,

whereas (5.1)-(5.2)-(2.3)-(6.1) are satisfied if and only if

0 < a, b, d < 1 ; a = b = 1 −
d

2
. 2

Example 7.5 Asymmetric utility

[8, 24] consider the case of diamonds and other goods (such as bread). The two goods

enter the utility function in completely different manners. This suggests to provide an

“asymmetric” example where the two goods have different features for the consumer.

For simplicity, given α, β > 0 we consider the function

u(x; p) = α
xa

1

pc
1

+ βpd
2x

b
2 a, b, c, d ≥ 0. (7.4)
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Notice that u cannot satisfy the homogeneity assumption (6.1) whereas (2.3) is ensured

provided that 0 < a, b < 1. Then,

Φ(x; p) = −βbpd
2x

b−1
2 + αa(1 − c− a)

p2x
a−1
1

pc+1
1

so that (5.1) is satisfied if and only if a+ c ≥ 1. On the other hand,

Ψ(x; p) = −αac p2
xa−1

1

pc+1
1

− βb pd
2x

b−1
2 − βb(1 − b) p1x1p

d−1
2 xb−2

2

so that (5.3) is always satisfied. One can also verify that no choice of the parameters

allows to obtain the dual inequalities (5.2) and (5.4) to hold for any (x; p) ∈ R4
+. The

asymmetry consists precisely in not requiring these two inequalities. This means that

only an increase of the price of the second good (diamonds) may significantly affect

the behavior of the consumer. Finally, notice that (7.4) is increasing with respect to

p2. This is the so-called Veblen effect. 2

Example 7.6 Veblen effect

Theorems 5.1 and 5.2 are obtained under the crucial assumption that the quantity

demanded is a decreasing function of price. As we have shown in the introduction, this

is not always the case. According to Veblen [33], see also [21, 31], sometimes people

judge quality by price, especially for luxury goods. In this case, the monotonicity

assumption must be reversed and it should be assumed that the demand function is

increasing with respect to the price. In this situation, the above arguments remain

valid provided that all the inequalities are reversed. In particular, Theorems 5.1 and

5.2 hold if (5.5) is replaced by the following

h ∈ C1(R4
+) is such that h = h(ξ) satisfies

∂h

∂ξ1
≥ 0.

Once this is clarified, we note that for the additive utility function in (7.1) or the Cobb

Douglas utility in (7.2), the Veblen effect is not obtained regardless of the values of c

and d. Not only the inequalities opposite to (5.3)-(5.4) and to (5.1)-(5.2) cannot be

verified but also the quantity demanded of a good is always decreasing with respect to

its price. 2
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In most of the above examples the utility function satisfies the following “boundary

conditions”:




lim
(x1,x2)→(0,0)

u(x1, x2; p1, p2) = 0 for all p1, p2 > 0

lim
(p1,p2)→(∞,∞)

u(x1, x2; p1, p2) = 0 for all x1, x2 > 0.

Although these conditions are not necessary, they appear quite natural since for a zero

consumption bundle or for very high prices the utility function tends to vanish.

8 Multiple goods

The arguments developed in the previous sections give a hint on how to determine

utility functions for N ≥ 2 goods in case (SC) and (SS). Note that in this setting it is

almost impossible to establish conditions for (S) and (C) to hold. We use a projection

method which enables us to reduce our study to the case of two goods (N = 2).

Our purpose is still to solve (2.1) under the budget constraint (2.2). If we maintain

assumptions (2.3), the Lagrange multiplier method implies that the unique optimum

x∗ ∈ B satisfies (2.4) for some λ > 0. In particular, this yields

piuxj
(x∗; p) − pjuxi

(x∗; p) = 0 for all i 6= j. (8.1)

Let us focus our attention on the case where i = 1 and j = 2 so that we are back to

(3.1). For any x ∈ RN
+ consider its projections Px onto R2

+ and Qx onto RN−2
+ so that

Px = (x1, x2, 0, ..., 0) and Qx = (0, 0, x3, ..., xN). We now argue as if Qx and Qp were

constant. Consider the level hypersurface Γ ⊂ R
N
+ containing the optimum x∗:

Γ = {x ∈ RN
+ ; u(x; p) = u(x∗; p)}

and its projection PΓ onto R2
+. Let also PB be the projection of B onto R2

+; it may

be rewritten as

PB = {Px ∈ R2
+; (Px, p) = (e−Qx, p)} (8.2)

Then, PΓ is tangent to PB at the point Px∗. We are so reduced to consider again the

case N = 2. Lemma 4.1 continues to hold and, if we assume (SS), the same arguments
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of the previous sections lead to (5.1)-(5.2). Similarly, if we assume (SC), we obtain

again (5.3)-(5.4).

Therefore, one should view N ≥ 2 goods as N(N − 1)/2 couples of goods and each

couple of variables (xi, xj) should satisfy either (5.1)-(5.2) in case (SS) or (5.3)-(5.4) in

case (SC). In turn, Theorem 5.1 (case (SS)) or Theorem 5.2 (case (SC)) hold for any

couple of variables. We point out that there may be both couples of type (SS) and

of type (SC) at the same time: for instance, (x1, x2) may satisfy (5.1)-(5.2) whereas

(x1, x3) may satisfy (5.3)-(5.4).

We now give some examples of power utility functions for N ≥ 2 goods.

Example 8.1 Consider the function

u(x; p) =

(
(x, p)
∏N

i=1 pi

)d

=
(x, p)d

∏N
i=1 p

d
i

for some d ∈ (0, 1). We find that for any couple we have Φ = 0. Therefore, this

function satisfies both (SS) and (SC). Moreover, (2.3) and the homogeneity condition

(6.1) are satisfied. 2

Example 8.2 For given αi ≥ 0, consider the function

u(x; p) =
N∑

i=1

αi
xai

i

pci

i

ai, ci > 0. (8.3)

Then, Ψ(x, p) ≤ 0 for all (x; p) ∈ R2N
+ provided that 0 < ai < 1 and ci > 0 which also

ensure that (2.3) is satisfied. Hence, these are necessary and sufficient conditions for

the utility function in (8.3) to satisfy (SC) and (2.3).

On the other hand, Φ(x, p) ≤ 0 for all (x; p) ∈ R2N
+ provided that 0 < ai < 1 and

1−ai ≤ ci for all i = 1, ..., N . This is a necessary and sufficient condition for u in (8.3)

to satisfy (SS) and (2.3).

Finally, u in (8.3) satisfies the homogeneity assumption (6.1) provided all the ci are

equal. 2

Example 8.3 Take the function

u(x; p) =
∑

1≤i<j≤N

αij

xai

i x
aj

j

pci

i p
cj

j

αij, ai, ci ≥ 0. (8.4)
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In this case, (6.1) is satisfied if and only if ci + cj is the same for all i, j. In turn, this

means that all the ci’s are equal. Therefore, (8.4) reduces to

u(x; p) =
∑

1≤i<j≤N

αij

xai

i x
aj

j

pc
i p

c
j

αij, ai, c ≥ 0. (8.5)

Then, Ψ ≤ 0 (for any couple i, j) if and only if 0 < ai < 1 and c ≤ ai + 1 for all i; this

is equivalent to (SC). Moreover, we have Φ ≤ 0 for all i, j if and only if also all the ai

are equal to some a ∈ (0, 1) which is linked to c by the relation a + c = 1. Therefore,

(8.5) satisfies (SS) if and only if it is of the kind

u(x; p) =
∑

1≤i<j≤N

αij

x1−c
i x1−c

j

pc
i p

c
j

αij ≥ 0, 0 < c < 1.

In this situation, the coefficients αij become more important: the larger they are, more

strict is the link between the two goods xi and xj.

In the spirit of (8.4) one can also consider more goods at the same time, with terms

of the kind
k∏

i=1

xai

i

pci

i

for some k ≤ N . In this case, the conditions Ψ ≤ 0 and Φ ≤ 0 become more complicated

but they are still possible to be verified. 2

9 Conclusions

Utility function dependence on good prices is an old theme. Two points have attracted

attention of economists in the ’70s: no money illusion (zero homogeneity of the demand

in money and price) and price demand effects.

In this paper we have provided sufficient conditions to observe a monotonic demand

function and we have shown that under some conditions power utility functions allow us

to rule out money illusion, however in these cases price dependent utility functions are

not simply an increasing transformation of a classical utility function as claimed in [5,

12, 13], doing this we go further on the analysis provided by [3]. It is rather difficult to

evaluate the effect of a price increase on the quantity demanded of a good, in particular
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the analysis is difficult in a multiple good setting. In the literature no conditions have

been provided. In our analysis we have provided sufficient conditions establishing that

a differential condition should be satisfied for all points in the quantity-price space.

These conditions allow us to provide a characterization of utility functions with a

monotonic demand function or substitution among goods.
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