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Remainder terms in a higher order Sobolev inequality

Filippo GAZZOLA∗ – Tobias WETH†

Abstract

For higher order Hilbertian Sobolev spaces, we improve the embedding inequality for
the critical Lp-space by adding a remainder term with a suitable weak norm.
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1 Introduction

Let Ω ⊂ R
N be any domain and for an integer m consider the space Dm,2(Ω), namely the

completion of the space of real-valued C∞-functions with compact support in Ω with respect
to the norm

‖u‖ =

(
∫

Ω
(−∆)mu · u

)1/2

=

{

|∆m/2u|2 if m is even,

|∇∆(m−1)/2u|2 if m is odd,
(1.1)

where |u|p denotes the Lp-norm of a function u ∈ Lp(Ω). We assume that m < N
2 , then

the so-called critical Sobolev exponent 2∗ = 2N/(N − 2m) is well-defined and the following
inequality holds

S |u|22∗ ≤ ‖u‖2 for all u ∈ Dm,2(Ω). (1.2)

It is known [12,14] that the best constant

S = inf
u∈Dm,2(Ω)

u 6=0

‖u‖2

|u|22∗

in inequality (1.2) does not depend on the domain Ω, and that S is attained if and only if
Ω = R

N and
u ∈ M := {cUλ,y : c ∈ R \ {0}, y ∈ R

N , λ > 0} (1.3)

where
Uλ,y ∈ Dm,2(RN ), Uλ,y(x) := λU(λ

2
N−2m (x− y)),

and U ∈ Dm,2 is given by U(x) = (1 + |x|2)−
N−2m

2 . In the sequel we will also write Uλ in
place of Uλ,0. The minimization property of the functions Uλ,y implies that they satisfy the
equation

(−∆)mUλ,y = τm|Uλ,y|
2∗−2Uλ,y with τm =

‖Uλ,y‖
2

|Uλ,y|
2∗
2∗

= 22m Γ(N
2 +m)

Γ(N
2 −m)

. (1.4)
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In the present paper, we are interested in bounded domains Ω ⊂ R
N . In this case, the space

Dm,2(Ω) is usually denoted by Hm
0 (Ω) and we stick to this notation. Since S is not attained

when Ω is bounded, it is natural to wonder if some lower bounds exist for the remainder term
‖u‖2−S|u|22∗ whenever u ∈ Hm

0 (Ω). Generalizing a result of Brezis-Lieb [4] for the first order
case m = 1, Gazzola-Grunau [7] proved that for any bounded domain Ω ⊂ R

N there exists
C = C(Ω,m) > 0 such that

‖u‖2 − S|u|22∗ ≥ C|u|2w for all u ∈ Hm
0 (Ω) (1.5)

where |u|w denotes the weak L2∗/2-norm (see [11]) defined by

|u|w = sup
A⊂Ω

|A|>0

|A|−
2m
N

∫

A
|u|.

The spaceHm
0 (Ω) is of interest for the study of boundary value problems for the polyharmonic

operator (−∆)m complemented with Dirichlet boundary conditions u = uν = · · · = ∂m−1

∂νm−1u =
0 on ∂Ω. If these boundary conditions are replaced by Navier boundary conditions u = ∆u =
∆2u = . . .∆m−1u = 0 on ∂Ω, one is led to consider the space

Hm
θ (Ω) =

{

u ∈ Hm(Ω) : ∆ju = 0 for 0 ≤ j <
m

2

}

which may also be endowed with the norm (1.1). Clearly, whenever m ≥ 2, the space Hm
θ (Ω)

is strictly larger than Hm
0 (Ω). Nevertheless, it has been shown in [8] (see also previous work

in [9, 15]) that the Sobolev inequality (1.2) holds with the same optimal constant S also
for functions in Hm

θ (Ω). Whenever m ≥ 2, this fact does not follow by a trivial extension
argument, as is most easily seen in the special case m = 2. Indeed, in this case any extension
of a function in H2

θ (Ω) with nontrivial outer normal derivative uν on ∂Ω to a function in
D2,2(RN ) increases the norm ‖ · ‖ if R

N \ Ω 6= ∅. We also point out that the optimal
constant changes for subcritical embeddings, namely embeddings in Lp with p < 2∗, see [5].
In this paper we prove a remainder term estimate of type (1.5) for functions u ∈ Hm

θ (Ω).
We note that the proof of (1.5) in [7] does not carry over to functions in this larger space
since one cannot trivially extend functions in Hm

θ (Ω) to functions in Hm
θ (B) where B is a

ball containing Ω; moreover, a further nontrivial radial extension outside this larger ball B
was needed in [7] and this extension seems not to be possible in Hm

θ (Ω) even if Ω is itself a
ball. The following is the main result of the present paper.

Theorem 1.1. Let Ω ⊂ R
N a bounded domain with ∂Ω of class Cm. Then there exists a

constant C = C(Ω,m) > 0 such that

‖u‖2 − S|u|22∗ ≥ C|u|w for all u ∈ Hm
θ (Ω).

The exponent of the weak norm is sharp. Indeed, using functions of the form ψUλ as test
functions with 0 ∈ Ω, large λ and a cut off function ψ, it is easily seen that an estimate of
this type cannot hold for q > 2 ∗ /2. For expansions of different norms of ψUλ as λ → ∞,
see [6, 9, 10]. On the other hand, Theorem 1.1 implies that for all q ∈ [1, 2∗/2) there exists a
constant Cq = Cq(n,Ω) > 0 such that

‖u‖2 ≥ S|u|22∗ + Cq|u|
2
q for all u ∈ Hm

θ (Ω).

Our proof of Theorem 1.1 is based on the following tools. First, we use Talenti’s comparison
principle [13] to reduce the problem to radial positive functions in a ball. Second, we apply
the extension map constructed in the recent paper [8] in order to pass to radial functions in
Dm,2(RN ). Finally, we use a remainder term estimate proved in [2]. In Section 2 below we
collect and discuss these tools, and in Section 3 we complete the proof of Theorem 1.1.
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2 Preliminaries

In the following, for the sake of clarity we will sometimes specify the domain of integration in
the norms we use, that is, we write | · |p,Ω, ‖ · ‖Ω and | · |w,Ω. We denote by B the unit ball in
R

N , by eN = |B| its measure and by f∗ ∈ L2(B) the spherical rearrangement of f ∈ L2(Ω)
when |Ω| = |B|. Here we use the definition of f∗ given in [13, p. 701], so the superlevel
sets {x ∈ B : f∗(x) > t} are concentric balls centered at zero with the same measure as
{x ∈ Ω : |f(x)| > t}. With this definition, f∗ = |f |∗ is always a nonnegative and radially
decreasing function - even if f is sign changing.
The first crucial tool for the proof of Theorem 1.1 is the following comparison principle due
to Talenti [13, Theorem 1].

Proposition 2.1. Let Ω ⊂ R
N (N ≥ 2) be a Cm-smooth bounded domain such that |Ω| =

|B| = eN . Let m = 2k be an even number. Let g ∈ L2(Ω) and let u ∈ Hm
θ (Ω) be the unique

strong solution to
{

(−∆)ku = g in Ω,
∆ju = 0 on ∂Ω, j = 0, . . . , k − 1.

Let g∗ ∈ L2(B) and u∗ ∈ H1
0 (B) denote respectively the spherical rearrangements of g and u,

and let v ∈ Hm
θ (B) be the unique strong solution to

{

(−∆)kv = g∗ in B,
∆jv = 0 on ∂B, j = 0, . . . , k − 1.

(2.1)

Then, v ≥ u∗ a.e. in B.

As we shall see, Proposition 2.1 enables us to reduce the proof of Theorem 1.1 to the case
where Ω = B and to the subspace of Hm

θ of radially symmetric and decreasing functions,
which we denote by Rm

θ (B).

The second tool needed in the proof of Theorem 1.1 ia an extension argument taken from [8]
which we now explain in some detail. Consider first the case where m is even, namely m = 2k
for some k ≥ 1. For any g : [0,∞)→ R with appropriate integrability conditions, we define

(Gg) (r) :=

∫ ∞

r

∫ ρ

0

(

s

ρ

)N−1

g(s)dsdρ.

If g goes to 0 fast enough for r → ∞ (e.g. like r−γ with γ > 2), then an integration by parts
gives

(Gg) (r) =
1

N − 2
r2−N

∫ r

0
sN−1g(s)ds+

1

N − 2

∫ ∞

r
sg(s)ds, (2.2)

and
−∆ (Gg) (|x|) = g (|x|) for x ∈ R

N .

Moreover, we denote by Gk the k-th iteration of the operator G. With these notations we
recall a result by Gazzola-Grunau-Sweers [8]:

Proposition 2.2. Let m = 2k and let u ∈ Rm
θ (B) \ {0}. Let w(r) =

(

Gkf
)

(r) for

f(r) =

{

(−∆)k u(r) if r ≤ 1,
0 if r > 1,

then w ∈ Dm,2(RN ), ‖w‖
RN = ‖u‖B, and |w|2∗,RN > |u|2∗,B.
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In particular, if m = 2 the extension of a radial function u = u(r) in R2
θ(B) is given by

w(r) =















u(r) +
1

N − 2
|u′(1)| if r ∈ (0, 1),

rN−2

N − 2
|u′(1)| if r ∈ [1,∞).

Proposition 2.2 also enables us to treat the case of odd m, namely m = 2k+1 for some k ≥ 1.
Since H2k+1

θ (B) ⊂ H2k
θ (B), by Proposition 2.2 we know that any u ∈ R2k+1

θ (B) \ {0} allows
to define an entire function w such that

w > u in B , ∆k(w − u) = 0 in B , ∆kw = 0 in R
N \B.

In particular, this implies that also

∇(∆k(w − u)) = 0 in B , ∇(∆kw) = 0 in R
N \B. (2.3)

The construction for the 2k-case also enables us to conclude that w ∈ C2k−1(RN ), a regularity
which is not enough to obtain w ∈ D2k+1,2(Rn), here we need one more degree of regularity.
This is obtained by recalling the extra boundary condition that appears by going fromH2k

θ (B)
to H2k+1

θ (B), namely ∆ku = 0 on ∂B, and that ∆kw = 0 in R
N \B.

Next, we recall a result by Bartsch, Weth and Willem [2]:

Proposition 2.3. There exists a constant α > 0 such that

‖u‖2 − S|u|22∗ ≥ αdist(u,M)2 for all u ∈ Dm,2(RN ).

Here dist(u,M) = inf{‖u− v‖ : v ∈ M} is the distance of u from M in Dm,2(RN ).

For m = 1 this result is due to Bianchi and Egnell [3], solving a problem posed by Brezis and
Lieb [4].
We finally note that if u ∈ Dm,2(RN ) is a function with dist(u,M) < ‖u‖, then there exists
v ∈ M with dist(u,M) = ‖u − v‖ since M is relatively closed in Dm,2(RN ) \ {0}. If, in
addition, u is a radial positive function, then the distance minimizing v ∈ M can be chosen
as a positive and radial function, i.e. v = cUλ with c, λ > 0. To see this, we note that every
positive function v ∈ M is a translation of a radially decreasing function. Therefore v ∈ M
implies v∗ ∈M , whereas by (1.4) and [1, Theorem 2.2] we have

∫

RN

(−∆mv)u = τm

∫

RN

v2∗−1u ≤ τm

∫

RN

(v∗)2
∗−1u =

∫

RN

(−∆mv∗)u

and therefore

‖u− v‖2 = ‖u‖2 +S2|v|22∗ − 2

∫

RN

(−∆mv)u ≥ ‖u‖2 +S2|v∗|22∗ − 2

∫

RN

(−∆mv∗)u = ‖u− v∗‖2

3 Proof of Theorem 1.1

With no loss of generality we may assume that |Ω| = |B| = eN .
Assume first that m is even, m = 2k for some k ≥ 1. Take any function u ∈ Hm

θ (Ω), put
g := (−∆)ku, and let v ∈ Hm

θ (B) the unique solution to (2.1). Then by the properties of
symmetrization, see [1], we obtain both that

‖v‖2
B = |∆kv|22,B = |g∗|22,B = |g|22,Ω = |∆ku|22,Ω = ‖u‖2

Ω (3.1)
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and
‖u‖2

2∗,Ω = |u∗|22∗,B ≤ |v|22∗,B (3.2)

where, for the last inequality, we used Proposition 2.1. Moreover, for any A ⊂ Ω such that
|A| > 0 we have

|A|−
2m
N

∫

A
|u| = |A|−

2m
N

∫

Ω
χA|u|

where χA denotes the characteristic function of A. Since by [1, Theorem 2.2] we know that
∫

Ω
χA|u| ≤

∫

B
χ∗

Au
∗,

for any such A we have

|A|−
2m
N

∫

A
|u| ≤ |A∗|−

2m
N

∫

A∗

u∗

and therefore, by taking the supremum over all such A, we deduce that |u|w,Ω ≤ |u∗|w,B. In
turn, by Proposition 2.1, we infer that

|u|w,Ω ≤ |v|w,B. (3.3)

Putting together (3.1), (3.2), and (3.3) shows that if we can prove Theorem 1.1 in the sym-
metric framework where Ω = B and u ∈ Rm

θ (B), then we are done.
A similar conclusion is reached if m is odd, m = 2k+1 for some k ≥ 0. In this case, invoking
again [1], (3.1) becomes an inequality:

‖v‖2
B = |∇∆kv|22,B = |∇g∗|22,B ≤ |∇g|22,Ω = |∇∆ku|22,Ω = ‖u‖2

Ω,

which also allows to consider just the case where Ω = B and u ∈ Rm
θ (B).

We now proceed by contradiction. If the assertion of Theorem 1.1 is false, then there exists
a sequence of functions un ∈ Rm

θ (B) (n ∈ N) such that ‖un‖B = 1 for all n and

1 − S|un|
2
2∗,B

|un|w,B
→ 0 as n→ ∞. (3.4)

We denote by wn the extension of un as given by Proposition 2.2 (if m is odd, also the remarks
following Proposition 2.2 are needed). Then we know that

‖wn‖RN = ‖un‖B = 1 , |wn|2∗,RN > |un|2∗,B.

Moreover, recalling that wn > un in B, we also have

|wn|w,RN > |un|w,B.

Consequently,
0 ≤ 1 − S|wn|

2
2∗,RN ≤ 1 − S|un|

2
2∗,B → 0

and therefore, by Proposition 2.3,

dist(wn,M) → 0 as n→ ∞.

Since ‖wn‖RN = 1 for all n ∈ N, it follows by the remarks below Proposition 2.3 that there
exists cn, λn > 0 with ‖wn − cnUλn

‖RN = dist(wn,M), and that

0 < inf
n∈N

cn ≤ sup
n∈N

cn <∞.
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In case that m = 2k is even, we have

dist(wn,M)2 = ‖wn − cnUλn
‖2

RN = |∆k(wn − cnUλn
)|22,RN

≥ |∆k(wn − cnUλn
)|22,RN\B = cn|∆

kUλn
|22,RN\B ≥ S cn|Uλn

|22∗,RN\B

since ∆kwn = 0 a.e. in R
N \ B for n ∈ N. In case m = 2k + 1 is odd, we get the same

conclusion using (2.3). In both cases necessarily λn → ∞ and therefore λn ≥ 1 for all n after
passing to a subsequence. This yields that

|Uλn
|2

∗

2∗,RN\B

NeN
= λ2∗

n

∫ ∞

1

rN−1

[

1 + (λ
2

N−2m
n r)2

]N
dr =

∫ ∞

λ
2

N−2m
n

rN−1

(1 + r2)N
dr

≥ 2−N

∫ ∞

λ
2

N−2m
n

dr

rN+1
=

1

N 2N λ2∗
n

.

We conclude that

dist(wn,M) ≥
C1

λn
with C1 > 0 independent of n ∈ N.

On the other hand, a scaling argument shows that |cnUλn
|w,B ≤ cn

λn
|U |w,RN ; we point out

that scaling gives this nice estimate precisely because we deal with the weak L2∗/2-norm.
Therefore, we have

|un|w,B ≤ |wn|w,B ≤ |cnUλn
|w,B + |wn − cnUλn

|w,B

≤
cn
λn

|U |w,RN + C2‖wn − cnUλn
‖RN ≤ C3dist(wn,M).

with constants C2, C3 > 0 independent of n. Hence, (3.4) implies that

‖wn‖
2
RN − S|wn|

2
2∗,RN

dist(wn,M)2
→ 0 as n→ ∞.

contrary to Proposition 2.3. This contradiction shows the claim.
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