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Preface

Linear elliptic equations arise in several models describing various phenomena in

the applied sciences, the most famous being the second order stationary heat equa-

tion or, equivalently, the membrane equation. For this intensively well-studied linear

problem there are two main lines of results. The first line consists of existence and

regularity results. Usually the solution exists and “gains two orders of differenti-

ation” with respect to the source term. The second line contains comparison type

results, namely the property that a positive source term implies that the solution

is positive under suitable side constraints such as homogeneous Dirichlet bound-

ary conditions. This property is often also called positivity preserving or, simply,

maximum principle. These kinds of results hold for general second order elliptic

problems, see the books by Gilbarg-Trudinger [197] and Protter-Weinberger [346].

For linear higher order elliptic problems the existence and regularity type results re-

main, as one may say, in their full generality whereas comparison type results may

fail. Here and in the sequel “higher order” means order at least four.

Most interesting models, however, are nonlinear. By now, the theory of second

order elliptic problems is quite well developed for semilinear, quasilinear and even

for some fully nonlinear problems. If one looks closely at the tools being used in

the proofs, then one finds that many results benefit in some way from the positivity

preserving property. Techniques based on Harnack’s inequality, De Giorgi-Nash-

Moser’s iteration, viscosity solutions etc., all use suitable versions of a maximum

principle. This is a crucial distinction from higher order problems for which there is

no obvious positivity preserving property. A further crucial tool related to the max-

imum principle and intensively used for second order problems is the truncation

method, introduced by Stampacchia. This method is helpful in regularity theory, in

properties of first order Sobolev spaces and in several geometric arguments, such

as the moving planes technique which proves symmetry of solutions by reflection.

Also the truncation (or reflection) method fails for higher order problems. For in-

stance, the modulus of a function belonging to a second order Sobolev space may

not belong to the same space. The failure of maximum principles and of truncation

methods, one could say, are the main reasons why the theory of nonlinear higher

order elliptic equations is by far less developed than the theory of analogous second

v
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order equations. On the other hand, in view of many applications and increasing in-

terest especially in the last twenty years, one should try to develop new tools suitable

for higher order problems involving polyharmonic operators.

The simple example of the two functions x 7→±|x|2 shows that already for the bi-

harmonic operator the standard maximum principle fails. Nevertheless, taking also

boundary conditions into account could yield comparison or positivity preserving

properties and indeed, in certain special situations, such behaviour can be observed.

It is one goal of the present exposition to describe situations where positivity pre-

serving properties hold true or fail, respectively, and to explain how we have tackled

the main difficulties related to the lack of a general comparison principle. In the

present book we also show that in many higher order problems positivity preserving

“almost” occurs. By this we mean that the solution to a problem inherits the sign

of the data, except for some small contribution. By the experience from the present

work, we hope that suitable techniques may be developed in order to obtain results

quite analogous to the second order situation. Many recent higher order results give

support to this hope.

A further goal of the present book is to collect some of those problems, where the

authors were particularly involved, and to explain by which new methods one can

replace second order techniques. In particular, to overcome the failure of the maxi-

mum principle and of the truncation method several ad hoc ideas will be introduced.

Let us now explain in some detail the subjects we address within this book.

Linear higher order elliptic problems

The polyharmonic operator (−∆)m is the prototype of an elliptic operator L of order

2m, but with respect to linear questions, much more general operators can be con-

sidered. A general theory for boundary value problems for linear elliptic operators

L of order 2m was developed by Agmon-Douglis-Nirenberg [4, 5, 6, 148]. Although

the material is quite technical, it turns out that the Schauder theory as well as the

Lp-theory can be developed to a large extent analogously to second order equations.

The only exception are maximum modulus estimates which, for linear higher order

problems, are much more restrictive than for second order problems. We provide a

summary of the main results which hopefully will prove to be sufficiently wide to

be useful for anybody who needs to refer to linear estimates or existence results.

The main properties of higher – at least second – order Sobolev spaces will be

recalled. Since more orders of differentiation are involved, several different equiv-

alent norms are available in these spaces. A crucial role in the choice of the norm

is played by the regularity of the boundary. For the second order Dirichlet problem

for the Poisson equation a nonsmooth boundary leads to technical difficulties but,

due to the maximum principle, there is an inherent stability so that, when approxi-

mating nonsmooth domains by smooth domains, one recovers most of the features

for domains with smooth boundary, see [46]. For Neumann boundary conditions

the situation is more complicated in domains with rather wild boundaries, although
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even for polygonal boundaries they do not show spectacular changes. For higher

order boundary value problems some peculiar phenomena occur. For instance, the

so-called Babuška and Sapondžyan paradoxes [28, 357] forces one to be very care-

ful in the choice of the norm in second order Sobolev spaces since some boundary

value problems strongly depend on the regularity of the boundary. This phenomenon

and its consequences will be studied in some detail.

Positivity in higher order elliptic problems

As long as existence and regularity results are concerned, the theory of linear higher

order problems is already quite well developed as explained above. This is no longer

true as soon as qualitative properties of the solution related to the source term are

investigated. For instance, if we consider the clamped plate equation

{
∆ 2u = f in Ω ,

u = ∂u
∂ν = 0 on ∂Ω ,

(0.1)

the “simplest question” seems to find out whether the positivity of the datum implies

the positivity of the solution, Or, physically speaking,

does upwards pushing of a clamped plate yield upwards bending?

Equivalently, one may ask whether the corresponding Green function G is positive.

In some special cases, the answer is “yes”, while it is “no” in general. However,

in numerical experiments, it appears very difficult to display the negative part and

heuristically, one feels that the negative part of G – if present at all – is small in a

suitable sense compared with the “dominating” positive part. We discuss not only

the cases where one has positive Green functions and develop a perturbation theory

of positivity, but we shall also discuss systematically under which conditions one

may expect the negative part of the Green function to be small. We expect such

smallness results to have some impact on future developments in the theory of non-

linear higher order elliptic boundary value problems.

Boundary conditions

For second order elliptic equations one usually extensively studies the case of

Dirichlet boundary conditions because other boundary conditions do not exhibit

too different behaviours. For the biharmonic equation ∆ 2u = f in a bounded do-

main of Rn it is not at all obvious which boundary condition would serve as a role

model. Then a good approach is to focus on some boundary conditions that describe

physically relevant situations. We consider a simplified energy functional and de-

rive its Euler-Lagrange equation including the corresponding natural boundary con-

ditions. We start with the linearised model for the beam. From a physical point of
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view, as long as the fourth order planar equation is considered, the most interest-

ing seem to be not only the Dirichlet boundary conditions but also the Navier or

Steklov boundary conditions. The Dirichlet conditions correspond to the clamped

plate model whereas Navier and Steklov conditions correspond to the hinged plate

model, either by neglecting or considering the contribution of the curvature of the

boundary. Each one of these boundary conditions requires the unknown function

to vanish on the boundary, the difference being on the second boundary condition.

These three boundary conditions have their own features and none of them may be

thought to play the model role. We discuss all of them and emphasise their own pe-

culiarities with respect to the comparison principles, to their variational formulation

and to solvability of related nonlinear problems.

Eigenvalue problems

For second order problems, such as the Dirichlet problem for the Laplace operator,

one has not only the existence of infinitely many eigenvalues but also the simplicity

and the one sign property of the first eigenfunction. For the biharmonic Dirichlet

problem, this property is true in a ball but it is false in general. Again, a crucial role

is played by the sign of the corresponding Green function. Concerning the isoperi-

metric properties of the first eigenvalue of the Dirichlet-Laplacian, the Faber-Krahn

[162, 253, 254] result states that, among domains having the same finite volume it

attains its minimum when the domain is a ball. A similar result was conjectured to

hold for the biharmonic operator under homogeneous Dirichlet boundary conditions

by Lord Rayleigh [350] in 1894. Although this statement has been proved only in

domains of dimensions n = 2,3, it is the common feeling that it should be true in

any dimension. The minimisation of the first Steklov eigenvalue appears to be less

obvious. And, indeed, we will see that a Faber-Krahn type result does not hold in

this case.

Semilinear equations

Among nonlinear problems for higher order elliptic equations one may just mention

models for thin elastic plates, stationary surface diffusion flow, the Paneitz-Branson

equation and the Willmore equation as frequently studied. In membrane biophysics

the Willmore equation is also known as Helfrich model [227]. Moreover, several

results concerning semilinear equations with power type nonlinear sources are also

extremely useful in order to understand interesting phenomena in functional analysis

such as the failure of compactness in the critical Sobolev embedding and in related

inequalities.

One further motivation to study nonlinear higher order elliptic reaction-diffusion

type equations like
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(−∆)mu = f (u) (∗)
in bounded domains is to understand whether the results available in the simplest

case m = 1 can also be proved for any m, or whether the results for m = 1 are special,

in particular as far as positivity and the use of maximum principles are concerned.

The differential equation (∗) is complemented with suitable boundary conditions. As

already mentioned above, if m = n = 2, equation (∗) may be considered as a non-

linear plate equation for plates subject to nonlinear feedback forces, one may think

e.g. of suspension bridges. In this case, (∗) may also be interpreted as a reaction-

diffusion equation, where the diffusion operator ∆ 2 refers to (linearised) surface

diffusion.

The first part of Chapter 7 is devoted to the proof of symmetry results for pos-

itive solutions to (∗) in the ball under Dirichlet boundary conditions. As already

mentioned, truncation and reflection methods do not apply to higher order problems

so that a suitable generalisation of the moving planes technique is needed here.

Equation (∗) deserves a particular attention when f (u) has a power-type be-

haviour. In this case, a crucial role is played by the critical power s = (n+2m)/(n−
2m) which corresponds to the critical (Sobolev) exponent which appears whenever

n > 2m. Indeed, subcritical problems in bounded domains enjoy compactness prop-

erties as a consequence of the Rellich-Kondrachov embedding theorem. But com-

pactness is lacking when the critical growth is attained and by means of Pohožaev-

type identities, this gives rise to many interesting phenomena. The existence theory

can be developed similarly to the second order case m = 1 while it becomes im-

mediately quite difficult to prove positivity or nonexistence of certain solutions.

Nonexistence phenomena are related to so-called critical dimensions introduced by

Pucci-Serrin [347, 348]. They formulated an interesting conjecture concerning these

critical dimensions. We give a proof of a relaxed form of it in Chapter 7. We also

give a functional analytic interpretation of these nonexistence results, which is re-

flected in the possibility of adding L2–remainder terms in Sobolev inequalities with

critical exponent and optimal constants. Moreover, the influence of topological and

geometrical properties of Ω on the solvability of the equation is investigated. Also

applications to conformal geometry, such as the Paneitz-Branson equation, involve

the critical Sobolev exponent since the corresponding semilinear equation enjoys

a conformal covariance property. In this context a key role is played by a fourth

order curvature invariant, the so-called Q-curvature. Our book does not aim at giv-

ing an overview of this rapidly developing subject. For this purpose we refer to the

monographs of Chang [89] and Druet-Hebey-Robert [149]. We want to put a spot

on some special aspects of such kind of equations. First, we consider the question

whether in suitable domains in euclidean space it is possible to change the euclidean

background metric conformally into a metric which has strictly positive constant Q-

curvature, while at the same time, certain geometric quantities vanish on the bound-

ary. Secondly, we study a phenomenon of nonuniqueness of complete metrics in hy-

perbolic space, all being conformal to the Poincaré-metric and all having the same

constant Q-curvature. This result is in strict contrast with the corresponding problem

involving constant negative scalar curvature.
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We conclude the discussion of semilinear elliptic problems with some obser-

vations on fourth order problems with supercritical growth. Corresponding second

order results heavily rely on the use of maximum principles and constructions of

many refined auxiliary functions having some sub- or supersolution property. Such

techniques are not available at all for the fourth order problems. In symmetric situa-

tions, however, they could be replaced by different tools so that many of the results

being well established for second order equations do indeed carry over to the fourth

order ones.

A Dirichlet problem for Willmore surfaces of revolution

A frame invariant modeling of elastic deformations of surfaces like thin plates or

biological membranes gives rise to variational integrals involving curvature and area

terms. A special case is the Willmore functional

∫

Γ
H

2 dω,

which up to a boundary term is conformally invariant. Here H denotes the mean

curvature of the surface Γ in R3. Critical points of this functional are called

Willmore surfaces, the corresponding Euler-Lagrange equation is the so-called

Willmore equation. It is quasilinear, of fourth order and elliptic. While a num-

ber of beautiful results have been recently found for closed surfaces, see e.g.

[35, 156, 262, 263, 264, 371], only little is known so far about boundary value prob-

lems since the difficulties mentioned earlier being typical for fourth order problems

due to a lack of maximum principles add here to the difficulty that the ellipticity

of the equation is not uniform. The latter reflects the geometric nature of the equa-

tion and gives rise e.g. to the problem that minimising sequences for the Willmore

functional are in general not bounded in the Sobolev space H2. In this book we

confine ourselves to a very special situation, namely the Dirichlet problem for sym-

metric Willmore surfaces of revolution. Here, by means of some refined geometric

constructions, we succeed in considering minimising sequences of the Willmore

functional subject to Dirichlet boundary conditions and with suitable additional C1-

properties thereby gaining weak H2- and strong C1-compactness. We expect the

theory of boundary value problems for Willmore surfaces to develop rapidly and

consider this chapter as one contribution to outline directions of possible future re-

search in quasilinear geometric fourth order equations.
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6.3 Regions of positivity in arbitrary domains in higher dimensions . . . . 204

6.3.1 The biharmonic operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.3.2 Extensions to polyharmonic operators . . . . . . . . . . . . . . . . . . . 210

6.4 Small negative part of biharmonic Green’s functions in higher

dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.4.1 Bounds for the negative part . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.4.2 A blow-up procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.5 Domain perturbations in higher dimensions . . . . . . . . . . . . . . . . . . . . . 219

6.6 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7 Semilinear problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.1 A Gidas-Ni-Nirenberg type symmetry result . . . . . . . . . . . . . . . . . . . . 225

7.1.1 Green function inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.1.2 The moving plane argument . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.2 A brief overview of subcritical problems . . . . . . . . . . . . . . . . . . . . . . . 234

7.2.1 Regularity for at most critical growth problems . . . . . . . . . . . 234

7.2.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

7.2.3 Positivity and symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

7.3 The Hilbertian critical embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
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Chapter 1

Models of higher order

The goal of this chapter is to explain in some detail which models and equations

are considered in this book and to provide some background information and com-

ments on the interplay between the various problems. Our motivation arises on the

one hand from equations in continuum mechanics, biophysics or differential geom-

etry and on the other hand from basic questions in the theory of partial differential

equations.

In Section 1.1, after providing a few historical and bibliographical facts, we recall

the derivation of several linear boundary value problems for the plate equation. In

Section 1.8 we come back to this issue of modeling thin elastic plates where the full

nonlinear differential geometric expressions are taken into account. As a particular

case we concentrate on the Willmore functional, which models the pure bending en-

ergy in terms of the squared mean curvature of the elastic surface. The other sections

are mainly devoted to outlining the contents of the present book. In Sections 1.2-

1.4 we introduce some basic and still partially open questions concerning qualitative

properties of solutions of various linear boundary value problems for the linear plate

equation and related eigenvalue problems. Particular emphasis is laid on positivity

and – more generally – “almost positivity” issues. A significant part of the present

book is devoted to semilinear problems involving the biharmonic or polyharmonic

operator as principal part. Section 1.5 gives some geometric background and moti-

vation, while in Sections 1.6 and 1.7 semilinear problems are put into a context of

contributing to a theory of nonlinear higher order problems.

1.1 Classical problems from elasticity

Around 1800 the physicist Chladni was touring Europe and showing, among other

things, the nodal line patterns of vibrating plates. Jacob Bernoulli II tried to model

these vibrations by the fourth order operator ∂ 4

∂x4 + ∂ 4

∂y4 [54]. His model was not

accepted, since it is not rotationally symmetric and it failed to reproduce the nodal

line patterns of Chladni. The first use of ∆ 2 for the modeling of an elastic plate

1



2 1 Models of higher order

is attributed to a correction of Lagrange of a manuscript by Sophie Germain from

1811.

For historical details we refer to [79, 249, 324, 397]. For a more elaborate history

of the biharmonic problem and the relation with elasticity from an engineering point

of view one may consult a survey of Meleshko [299]. This last paper also contains a

large bibliography so far as the mechanical engineers are interested. Mathematically

interesting questions came up around 1900 when Almansi [8, 9], Boggio [62, 63]

and Hadamard [221, 222] addressed existence and positivity questions.

In order to have physically meaningful and mathematically well-posed problems

the plate equation ∆ 2u = f has to be complemented with prescribing a suitable set

of boundary data. The most commonly studied boundary value problems for second

order elliptic equations are named Dirichlet, Neumann and Robin. These three types

appear since they have a physical meaning. For fourth order differential equations

such as the plate equation the variety of possible boundary conditions is much larger.

We will shortly address some of those that are physically relevant. Most of this book

will be focussed on the so-called clamped case which is again referred to by the

name of Dirichlet. An early derivation of appropriate boundary conditions can be

found in a paper by Friedrichs [173]. See also [58, 141]. The following derivation is

taken from [387].

1.1.1 The static loading of a slender beam

If u(x) denotes the deviation from the equilibrium of the idealised one-dimensional

beam at the point x and p(x) is the density of the lateral load at x, then the elastic

energy stored in the bending beam due to the deformation consists of terms that

can be described by bending and by stretching. This stretching occurs when the

horizontal position of the beam is fixed at both endpoints. Assuming that the elastic

force is proportional to the increase of length, the potential energy density for the

beam fixed at height 0 at the endpoints a and b would be

Jst(u) =
∫ b

a

(√
1+u′(x)2 −1

)
dx.

For a string one neglects the bending and, by adding a force density p, one finds

J(u) =
∫ b

a

(√
1+u′(x)2 −1− p(x)u(x)

)
dx.

For a thin beam one assumes that the energy density stored by bending the beam is

proportional to the square of the curvature:

Jsb(u) =
∫ b

a

u′′(x)2

(1+u′(x)2)3

√
1+u′(x)2 dx. (1.1)
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Formula (1.1) for Jsb highlights the curvature and the arclength. A two-dimensional

analogue of this functional is the Willmore functional, which is discussed below in

Section 1.8. Note that the functional Jsb does not include a term that corresponds to

an increase in the length of the beam which would occur if the ends are fixed and

the beam would bend. That is, the function in H2 ∩H1
0 (a,b) minimising Jsb(u)−∫ b

a pu dx should be an approximation for the so-called supported beam which is

free to move in horizontal directions at its endpoints.

For small deformations of a beam an approximation that takes care of stretching,

bending and a force density would be

J(u) =
∫ b

a

(
1
2
u′′(x)2 + c

2
u′(x)2 − p(x)u(x)

)
dx,

where c > 0 represents the initial tension of the beam which is also fixed horizontally

at the endpoints.

The linear Euler-Lagrange equation that arises from this situation contains both

second and fourth order terms:

u′′′′− cu′′ = p. (1.2)

If one lets the beam move freely at the boundary points (and in the case of zero initial

tension), one arrives at the simplest fourth order equation u′′′′ = p. This differential

equation may be complemented with several boundary conditions.

Fig. 1.1 The depicted boundary condition for the left endpoints of these four beams is “clamped”.

The boundary conditions for the right endpoints are respectively “hinged” and “simply supported”

on the left; on the right one finds “free” and one that allows vertical displacement but fixes the

derivative by a sliding mechanism.

The mathematical formulation that corresponds to the boundary conditions in

Figure 1.1 are as follows:

• Clamped: u(a) = 0 = u′(a), also known as homogeneous Dirichlet boundary con-

ditions.

• Hinged: u(b) = 0 = u′′(b), also known as homogeneous Navier boundary condi-

tions. This is not a real hinged situation since the vertical position is fixed but the

beam is allowed to slide in the hinge itself.

• Simply supported: max(u(b),0)u′′′(b) = 0 = u′′(b). In applications, when the

force is directed downwards, this boundary condition simplifies to the hinged

one u(b) = 0 = u′′(b). However, when upward forces are present it might happen

that u(b) > 0 and then the natural boundary condition u′′′(b) = 0 appears.
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• Free: u′′′(b) = 0 = u′′(b).
• Free vertical sliding but with fixed derivative: u′(b) = u′′′(b) = 0.

The second and third order derivatives appear as natural boundary conditions by

the derivation of the strong Euler-Lagrange equations.

If the beam would be moving in an elastic medium, then, again for small devia-

tions one adds a further term to J and finds

J(u) =
∫ b

a

(
1
2
(u′′)2 + γ

2
u2 − pu

)
dx.

This leads to the Euler-Lagrange equation u′′′′ + γu = p.

Also a suspension bridge may be seen as a beam of given length L, with hinged

ends and whose downward deflection is measured by a function u(x, t) subject to

three forces. These forces can be summarised as the stays holding the bridge up as

nonlinear springs with spring constant k, the constant weight per unit length of the

bridge W pushing it down, and the external forcing term f (x, t). This leads to the

equation {
utt + γuxxxx = −ku+ +W + f (x, t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,
(1.3)

where γ is a physical constant depending on the beam, Young’s modulus, and the

second moment of inertia. The model leading to (1.3) is taken from the survey papers

[270, 295].

The famous collapse of the Tacoma Narrows Bridge, see [16, 61], was the con-

sequence of a torsional oscillation. McKenna [295, p. 106] explains this fact as fol-

lows.

A large vertical motion had built up, there was a small push in the torsional direction to

break symmetry, the instability occurred, and small aerodynamic torsional periodic forces

were sufficient to maintain the large periodic torsional motions.

For this reason, a major role is played by travelling waves. If one neglects the

effect of external forces and normalises all the constants, then (1.3) becomes

utt +uxxxx = −u+ +1 . (1.4)

In order to find travelling waves, one seeks solutions of (1.4) for (x, t) ∈ R2 of the

kind u(x, t) = 1 + y(x− ct) where c > 0 denotes the speed of propagation. Hence,

the function y satisfies the fourth order ordinary differential equation

y′′′′ + c2y′′ +(y+1)+ −1 = 0 in R .

This is a nonlinear version of (1.2). We refer to the papers [270, 271, 295, 297, 298]

and references therein for variants of these equations and for a number of results

and open problems related to suspension bridges.
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1.1.2 The Kirchhoff-Love model for a thin plate

As for the beam we assume that the plate, the vertical projection of which is the

planar region Ω ⊂ R2, is free to move horizontally at the boundary. Then a simple

model for the elastic energy is

J(u) =
∫

Ω

(
1
2
(∆u)2 +(1−σ)

(
u2

xy −uxxuyy

)
− f u

)
dxdy, (1.5)

where f is the external vertical load. Again u is the deflection of the plate in ver-

tical direction and, as above for the beam, first order derivatives are left out which

indicates that the plate is free to move horizontally.

This modern variational formulation appears already in [173], while a discussion

for a boundary value problem for a thin elastic plate in a somehow old fashioned

notation is made already by Kirchhoff [249]. See also the two papers of Birman

[57, 58], the books by Mikhlin [303, §30], Destuynder-Salaun [141], Ciarlet [102],

or the article [103] for the clamped case.

In (1.5) σ is the Poisson ratio, which is defined by σ = λ
2(λ+µ) with the so-called

Lamé constants λ ,µ that depend on the material. For physical reasons it holds that

µ > 0 and usually λ ≥ 0 so that 0 ≤ σ < 1
2
. Moreover, it always holds true that

σ > −1 although some exotic materials have a negative Poisson ratio, see [265].

For metals the value σ lies around 0.3 (see [280, p. 105]). One should observe that

for σ > −1, the quadratic part of the functional (1.5) is always positive.

For small deformations the terms in (1.5) are taken as approximations being

purely quadratic with respect to the second derivatives of u of respectively twice

the squared mean curvature and the Gaussian curvature supplied with the factor

σ −1. For those small deformations one finds

1
2
(∆u)2 +(1−σ)

(
u2

xy −uxxuyy

)
≈ 1

2
(κ1 +κ2)

2 − (1−σ)κ1κ2

= 1
2
κ2

1 +σκ1κ2 + 1
2
κ2

2 ,

where κ1, κ2 are the principal curvatures of the graph of u. Variational integrals

avoiding such approximations and involving the original expressions for the mean

and the Gaussian curvature are considered in Section 1.8 and lead as a special case

to the Willmore functional.

Which are the appropriate boundary conditions? For the clamped and hinged

boundary condition the natural settings, that is the Hilbert spaces for these two sit-

uations, are respectively H = H2
0 (Ω) and H = H2 ∩H1

0 (Ω). Minimising the energy

functional leads to the weak Euler-Lagrange equation 〈dJ(u),v〉 = 0, that is

∫

Ω
(∆u∆v+(1−σ)(2uxyvxy −uxxvyy −uyyvxx)− f v) dxdy = 0 (1.6)

for all v∈H. Let us assume both that minimisers u lie in H4(Ω) and that the exterior

normal ν = (ν1,ν2) and the corresponding tangential τ = (τ1,τ2) = (−ν2,ν1) are

well-defined. Then an integration by parts of (1.6) leads to
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0 =
∫

Ω

(
∆ 2u− f

)
v dxdy +

∫

∂Ω

(
∂

∂ν
∆u

)
v ds

+ (1−σ)
∫

∂Ω

((
ν2

1 −ν2
2

)
uxy −ν1ν2 (uxx −uyy)

) ∂

∂τ
v ds

+
∫

∂Ω

(
∆u+(1−σ)

(
2ν1ν2uxy −ν2

2 uxx −ν2
1 uyy

)) ∂

∂ν
v ds. (1.7)

• Following [141] let us split the boundary ∂Ω in a clamped part Γ0, a hinged

part Γ1 and a free part Γ2 = ∂Ω\(Γ0 ∪Γ1), which are all assumed to be smooth.

Moreover, to keep our derivation simple, we assume that Γ2 has empty relative

boundary in ∂Ω , i.e. it is a union of connected components of ∂Ω .

On Γ0 one has u = uν = 0. The type of boundary conditions on Γ0 are generally

referred to as homogeneous Dirichlet.

On Γ1 one has u = 0 and may rewrite the second boundary condition that appears

from (1.7) as

∆u+(1−σ)
(
2uxyν1ν2 −uxxν2

2 −uyyν2
1

)

= σ∆u+(1−σ)
(
2uxyν1ν2 +uxxν2

1 +uyyν2
2

)

= σ∆u+(1−σ)uνν = σ (uνν +κuν)+(1−σ)uνν

= uνν +σκuν = ∆u− (1−σ)κuν . (1.8)

Here κ is the curvature of the boundary. We use the sign convention that κ ≥ 0

for convex boundary parts and κ ≤ 0 for concave boundary parts.

On Γ2, which we recall to have empty relative boundary in ∂Ω , an integration by

parts along the boundary shows

∫

Γ2

(
∂

∂ν
∆u

)
v ds+(1−σ)

∫

Γ2

((
ν2

1 −ν2
2

)
uxy −ν1ν2 (uxx −uyy)

) ∂

∂τ
v ds

= −
∫

Γ2

(1−σ)

(
uττν +

∂

∂ν
∆u

)
v ds.

Summarising, on domains with smooth Γ0,Γ1,Γ2 one finds the following bound-

ary value problem:





∆ 2u = f in Ω ,

u = ∂u
∂ν = 0 on Γ0,

u = ∆u− (1−σ)κ ∂u
∂ν = 0 on Γ1,

σ∆u+(1−σ)uνν = (1−σ)uττν + ∂
∂ν ∆u = 0 on Γ2.

The differential equation ∆ 2u = f is called the Kirchhoff-Love model for the

vertical deflection of a thin elastic plate.

• The clamped plate equation, i.e. the pure Dirichlet case when ∂Ω = Γ0, is as

follows: {
∆ 2u = f in Ω ,

u = ∂u
∂ν = 0 on ∂Ω .

(1.9)
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Notice that σ does not play any role for clamped boundary conditions. In this

case, after an integration by parts like in (1.7), the elastic energy (1.5) becomes

J(u) =
∫

Ω

(
1
2
(∆u)2 − f u

)
dx

and this functional has to be minimised over the space H2
0 (Ω).

• The physically relevant boundary value problem for the pure hinged case when

∂Ω = Γ1 reads as

{
∆ 2u = f in Ω ,

u = ∆u− (1−σ)κ ∂u
∂ν = 0 on ∂Ω .

(1.10)

See [141, II.18 on p. 42]. These boundary conditions are named after Steklov due

the first appearance in [379]. In this case, with an integration by parts like in (1.7)

and arguing as in (1.8), the elastic energy (1.5) becomes

J(u) =
∫

Ω

(
1
2
(∆u)2 − f u

)
dx− 1−σ

2

∫

∂Ω
κ u2

ν dω; (1.11)

for details see the proof of Corollary 5.23. This functional has to be minimised

over the space H2 ∩H1
0 (Ω).

• On straight boundary parts κ = 0 holds and the second boundary condition in

(1.10) simplifies to ∆u = 0 on ∂Ω . The corresponding boundary value problem

{
∆ 2u = f in Ω ,
u = ∆u = 0 on ∂Ω ,

(1.12)

is in general referred to as the one with homogeneous Navier boundary condi-

tions, see [141, II.15 on p. 41]. On polygonal domains one might naively expect

that (1.10) simplifies to (1.12). Unless σ = 1 this is an erroneous conclusion and

instead of κ ∂u
∂ν one should introduce a Dirac-δ -type contribution at the corners.

See Section 2.7 and [293].

1.1.3 Decomposition into second order systems

Note that the combination of the boundary conditions in (1.12) or (1.10) allows for

rewriting these fourth order problems as a second order system

{
−∆u = w and −∆w = f in Ω ,

u = 0 and w = 0 on ∂Ω ,
(1.13)

respectively {−∆u = w and −∆w = f in Ω ,

u = 0 and w = −(1−σ)κ ∂u
∂ν on ∂Ω .

(1.14)
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The boundary value problems in (1.13) can be solved consecutively. Indeed, for

smooth domains the solution u coincides with the minimiser in H2 ∩H1
0 (Ω) of

J(u) =
∫

Ω

(
1
2
(∆u)2 − f u

)
dx. (1.15)

For domains with corners this is not necessarily true. For a reentrant corner a phe-

nomenon may occur that was first noticed by Sapondžyan, see Section 1.4.1 and

Example 2.33.

A splitting into a system of two consecutively solvable second order boundary

value problems is not possible for (1.14). Nevertheless, for convex domains we have

κ ≥ 0 and this fact turns (1.14) into a cooperative second order system for which

some of the techniques for second order equations apply. “Cooperative” means that

the coupling supports the sign properties of the single equations. Cooperative sys-

tems of second order boundary value problems are well-studied in the literature and

will not be addressed in this monograph.

A more intricate situation occurs for the clamped case where a similar approach

to split the fourth order problem into a system of second order equations results in

{ −∆u = w and −∆w = f in Ω ,

u = ∂
∂ν u = 0 and — on ∂Ω .

(1.16)

For most questions such a splitting has not yet appeared to be very helpful. The first

boundary value problem has too many boundary conditions, the second one none at

all. Techniques for second order equations, however, can be used e.g. in numerical

approximations, when the problem is put as follows. Find stationary points (u,w) ∈
H1

0 (Ω)×H1 (Ω) of

F (u,w) =
∫

Ω

(
∇u ·∇w− f u− 1

2
w2

)
dx. (1.17)

The weak Euler-Lagrange equation becomes

〈dF(u,w),(ϕ,ψ)〉 =
∫

Ω
(∇u ·∇ψ +∇ϕ ·∇w− f ϕ −w ψ) dx = 0 (1.18)

for all (ϕ,ψ) ∈ H1
0 (Ω)×H1 (Ω). Assuming u,w ∈ H2 (Ω), an integration by parts

gives

∫

∂Ω

∂

∂ν
u ψ dω +

∫

Ω
(−∆u−w) ψ dx+

∫

Ω
(−∆w− f ) ϕ dx = 0.

Testing with (ϕ,ψ) ∈ H1
0 (Ω)×H1 (Ω) we find u ∈ H2

0 (Ω), −∆u = w and −∆w =
f , thereby recovering (1.16) as Euler-Lagrange-equation for the functional F in

(1.17).

The formulation in (1.18) can be used to construct approximate solutions using

piecewise linear finite elements instead of the C1,1 elements that are necessary for
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functionals containing second order derivatives. For smooth domains one may show

that the stationary points of (1.15) and (1.17) coincide. For nonsmooth domains sim-

ilar phenomena like the Babuška paradox might appear, which is described below

in Section 1.4.2, see also Section 2.7.

1.2 The Boggio-Hadamard conjecture for a clamped plate

Since maximum principles do not only allow for proving nice results on geometric

properties of solutions of second order elliptic problems but are also extremely im-

portant technical tools in this field, one might wonder in how far such results still

hold in higher order boundary value problems. First of all it is an obvious remark

that a general maximum principle can no longer be true. The biharmonic functions

x 7→ ±|x|2 have a strict global minimum or maximum respectively in any domain

containing the origin. On the other hand, it may be reasonable to ask for positivity

preserving properties of boundary value problems, i.e. whether positive data yield

positive solutions. In physical terms this question may be rephrased as follows:

Does upwards pushing of a plate yield upwards bending?

The answer, of course, depends on the model considered and on the imposed

boundary conditions. For instance, in the Dirichlet problem for the plate equation





∆ 2u = f in Ω ,

u =
∂u

∂ν
= 0 on ∂Ω ,

(1.19)

there is – at least no obvious way – to take advantage of second order comparison

principles and in this sense, it may be considered as the prototype of a “real” fourth

order boundary value problem. On the other hand, the plate equation complemented

with Navier boundary conditions (1.12) can be written as a system of two second

order boundary value problems and enjoys a sort of comparison principle. In par-

ticular, under these conditions it is obvious that f ≥ 0 implies that u ≥ 0. However,

when adding lower order perturbations, the case of a so-called noncooperative cou-

pling may occur and this simple argument breaks down. In this case, the positivity

issue becomes quite involved also under Navier boundary conditions, see e.g. [309].

A significant part of the present book will be devoted to discussing the following

mathematical question.

What remains true of: “ f ≥ 0 in the clamped plate boundary value problem (1.19) implies

positivity of the solution u ≥ 0”?

In view of the representation formula

u(x) =
∫

B
G∆ 2,Ω (x,y) f (y)dy,
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one equivalently may wonder whether the corresponding Green function is positive

or even strictly positive, i.e. G∆ 2,Ω > 0? Lauricella ([268], 1896) found an explicit

formula for G∆ 2,Ω in the special case of the unit disk Ω = B := B1(0) ⊂ R2. Bog-

gio ([63, p. 126], 1905) generalised this formula to the Dirichlet problem for any

polyharmonic operator (−∆)m in any ball in any Rn and found a particularly ele-

gant expression for the Green function, see Lemma 2.27. In case of the biharmonic

operator in the two-dimensional disk B ⊂ R2, this formula reads:

G∆ 2,B(x,y) =
1

8π
|x− y|2

∣∣∣|x|y− x
|x|

∣∣∣
/
|x−y|∫

1

(v2 −1)

v
dv > 0. (1.20)

Positivity is here quite obvious since

∣∣∣∣|x|y−
x

|x|

∣∣∣∣
2

−|x− y|2 = (1−|x|2)(1−|y|2) > 0.

Almansi ([8], 1899) found an explicit construction for solving ∆ 2u = 0 with pre-

scribed boundary data for u and uν on domains Ω ⊂ R2 with Ω = p(B) and

p : B → Ω being a conformal polynomial mapping. Probably inspired by Almansi’s

result and supported by physically plausible behaviour of plates, Boggio conjec-

tured (see [221, 222]) that for the clamped plate boundary value problem (1.19), the

Green function is always positive.

In 1908, Hadamard [222] already knew that this conjecture fails e.g. in annuli

with small inner radius (see also [316]). He writes that Boggio had mentioned to

him that the conjecture was meant for simply connected domains. In [222] he also

writes:

Malgré l’absence de démonstration rigoureuse, l’exactitude de cette proposition ne paraı̂t

pas douteuse pour les aires convexes.

Accordingly the conjecture of Boggio and Hadamard may be formulated as fol-

lows:

The Green function G∆ 2,Ω for the clamped plate boundary value problem on convex do-

mains is positive.

Using the explicit formula from [8] for the “limaçons de Pascal”, see Figure 1.2,

Hadamard in [222] even claimed to have proven positivity of the Green function

G∆ 2,Ω when Ω is such a limaçon.

However, after 1949 numerous counterexamples ([107, 108, 150, 176, 252, 278,

326, 367, 370, 389]) disproved the positivity conjecture of Boggio and Hadamard.

The first result in this direction came by Duffin ([150, 152]), who showed that the

Green function changes sign on a long rectangle. A most striking example was found

by Garabedian. He could show change of sign of the Green function in ellipses with

ratio of half axes ≈ 1.6 ([176], [177, p. 275]). For an elementary proof of a slightly

weaker result see [370]. Hedenmalm, Jakobsson and Shimorin [226] mention that
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sign change occurs already in ellipses with ratio of half axes ≈ 1.2. Nakai and Sario

[317] give a construction how to extend Garabedian’s example also to higher dimen-

sions. Sign change is also proven by Coffman-Duffin [108] in any bounded domain

containing a corner, the angle of which is not too large. Their arguments are based

on previous results by Osher and Seif [326, 367] and cover, in particular, squares.

This means that neither in arbitrarily smooth uniformly convex nor in rather sym-

metric domains the Green function needs to be positive. Moreover, in [120] it has

been proved that Hadamard’s claim for the limaçons is not correct. Limaçons are a

one-parameter family with circle and cardioid as extreme cases. For domains close

enough to the cardioid, the Green function is no longer positive. Surprisingly, the

extreme case for positivity is not convex. Hence convexity is neither sufficient nor

necessary for a positive Green function. One should observe that in one dimension

any bounded interval is a ball and so, one always has positivity there thanks to Bog-

gio’s formula.

For the history of the Boggio-Hadamard conjecture one may also see Maz’ya’s

and Shaposhnikova’s biography [294] of Hadamard.

Fig. 1.2 Limaçons vary from circle to cardioid. The fifth limaçon from the left is critical for a

positive Green function.

Despite the fact that the Green function is usually sign changing, it is very hard

to find real world experiments where loss of positivity preserving can be observed.

Moreover, in all numerical experiments in smooth domains, it is very difficult to

display the negative part and heuristically, one feels that the negative part of G∆ 2,Ω

– if present at all – is small in a suitable sense compared with the “dominating”

positive part. We refine the Boggio-Hadamard conjecture as follows:

In arbitrary domains Ω ⊂ Rn, the negative part of the biharmonic Green’s function G∆ 2,Ω
is small relative to the singular positive part. In the investigation of nonlinear problems,

the negative part is technically disturbing but it does not give rise to any substantial addi-

tional assumption in order to have existence, regularity, etc. when compared with analogous

second order problems.

The present book may be considered as a first contribution to the discussion

of this conjecture and Chapters 5 and 6 are devoted to it. Chapter 4 provides the

necessary kernel estimates. Let us mention some of those results which we have

obtained so far to give support to this conjecture. For any smooth domain Ω ⊂ Rn

(n ≥ 2) we show that there exists a constant C = C(Ω) such that for the biharmonic

Green’s function G∆ 2,Ω under Dirichlet boundary conditions one has the following

estimate from below:

G∆ 2,Ω (x,y) ≥−C dist(x,∂Ω)2 dist(y,∂Ω)2.
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This means that although in general, G∆ 2,Ω has a nontrivial negative part, this be-

haves completely regular and is in this respect not affected by the singularity of the

Green’s function. Qualitatively, only its positive part is affected by its singularity.

See Theorem 6.24 and the subsequent remarks. Moreover, in Theorems 6.3 and 6.29

we show that positivity in the Dirichlet problem for the biharmonic operator does

hold true not only in balls but also in smooth domains which are close to balls in

a suitably strong sense. Although being a perturbation result it is not just a conse-

quence of continuous dependence on data. The problem in proving positivity for

Green’s functions consists in gaining uniformity when their singularities approach

the boundaries.

Finally, in Section 5.4 positivity issues for the biharmonic operator under Steklov

boundary conditions are addressed. With respect to positivity it may be considered,

at least in some cases, to be intermediate between Dirichlet conditions on the one

hand and Navier boundary conditions on the other hand, see Theorems 5.26 and

5.27.

1.3 The first eigenvalue

It is well-known that for general second order elliptic Dirichlet problems the eigen-

function ϕ1 that corresponds to the first eigenvalue is of one sign. In case of the

Laplacian such a result can be proven directly sticking to the variational characteri-

sation of the first eigenvalue

Λ1,1 := min
v∈H1

0 \{0}

∫ |∇v|2 dx∫ |v|2 dx
=

∫ |∇ϕ1|2 dx∫ |ϕ1|2 dx

by comparing |ϕ1| with ϕ1. For quite general and even non-selfadjoint second order

Dirichlet problems the same result is proven by using more abstract results such as

the Kreı̆n-Rutman theorem. The first approach uses the truncation method and so,

a version of the maximum principle, while the Kreı̆n-Rutman theorem requires the

presence of a comparison principle. A simple alternative is provided by the dual

cone method of Moreau [311]. This approach, which is explained in Section 3.1.2,

is on one hand restricted to a symmetric setting in a Hilbert space but on the other

hand, can also be applied in semilinear problems.

Considering Ω 7→ Λ1,1(Ω) in dependence of the domains Ω being subject to

having all the same volume as the unit ball B ⊂ Rn one may wonder whether this

map is minimised for Ω = B. Indeed, this was proved by Faber-Krahn [162, 253,

254] and, moreover, balls of radius 1 are the only minimisers.
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1.3.1 The Dirichlet eigenvalue problem

Whenever the biharmonic operator under Dirichlet boundary conditions has a

strictly positive Green’s function, the first eigenvalue Λ2,1 is simple and the cor-

responding first eigenfunction is of fixed sign, see Section 3.1.3. Related to the first

eigenvalue is a question posed by Lord Rayleigh in 1894 in his celebrated mono-

graph [350]. He studied the vibration of (planar) plates and conjectured that among

domains of given area, when the edges are clamped, the form of gravest pitch is

doubtless the circle, see [350, p. 382]. This corresponds to saying that

Λ2,1(B) ≤ Λ2,1(Ω) whenever |Ω | = π (1.21)

for planar domains (n = 2). Szegö [388] assumed that in any domain the first eigen-

function for the clamped plate has always a fixed sign and proved that this hypoth-

esis would imply the isoperimetric inequality (1.21). The assumption that the first

eigenfunction is of fixed sign, however, is not true as Duffin pointed out. In [152],

where he explains some counterexamples, he referred to this assumption as Szegö’s

conjecture on the clamped plate. Details of these counterexamples can be found in

[153, 154, 155].

Subsequently, concerning Rayleigh’s conjecture, Mohr [310] showed in 1975

that if among all domains of given area there exists a smooth minimiser for Λ2,1

then the domain is a disk. However, he left open the question of existence. In 1981,

Talenti [392] extended Szegö’s result in two directions. He showed that the state-

ment remains true under the weaker assumption that the nodal set of the first eigen-

function ϕ1 of (3.1) is empty or is included in {x ∈ Ω ; ∇ϕ1 = 0}. This result holds

in any space dimension n ≥ 2. Moreover, for general domains, instead of (1.21) he

showed that

CnΛ2,1(B) ≤ Λ2,1(Ω) whenever |Ω | = en

where 0.5 < Cn < 1 is a constant depending on the dimension n. These constants

were increased by Ashbaugh-Laugesen [24] who also showed that Cn → 1 as n→∞.

A complete proof of Rayleigh’s conjecture was finally obtained one century later

than the conjecture itself in a celebrated paper by Nadirashvili [315]. This result was

immediately extended by Ashbaugh-Benguria [22] to the case of domains in R3.

More results about the positivity of the first eigenfunction in general domains

and a proof of Rayleigh’s conjecture can be found in Chapter 3.

1.3.2 An eigenvalue problem for a buckled plate

In 1910, Th. von Kármán [403] described the large deflections and stresses produced

in a thin elastic plate subject to compressive forces along its edge by means of a sys-

tem of two fourth order elliptic quasilinear equations. For a derivation of this model

from three dimensional elasticity one may also see [174] and references therein. An
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interesting phenomenon associated with this nonlinear model is the appearance of

“buckling”, namely the plate may deflect out of its plane when these forces reach a

certain magnitude. We also refer to more recent work in [48, 101].

The linearisation of the von Kármán equations for an elastic plate over planar

domains Ω ⊂ R2 under pressure leads to the following eigenvalue problem

{
∆ 2u = −µ∆u in Ω ,
u = ∆u− (1−σ)κuν = 0 on ∂Ω .

(1.22)

Miersemann [301] studied this eigenvalue problem and he was one of the first to ap-

ply the dual cone setting of Moreau [311] to a fourth order boundary value problem.

He could show that on convex C2,γ -domains the first eigenvalue for (1.22) is simple

and that the corresponding eigenfunction is of fixed sign. The setting introduced by

Moreau will be also most convenient for a number of nonlinear problems as we shall

outline in Chapters 3 and 7, see in particular Sections 7.2.3 and 7.3.

We also consider the Dirichlet eigenvalue problem

{
∆ 2u = −µ∆u in Ω ,
u = uν = 0 on ∂Ω ,

(1.23)

related to (1.22) and where the least eigenvalue µ1(Ω) represents the buckling load

of a clamped plate. Inspired by Rayleigh’s conjecture (1.21), Pólya-Szegö [343,

Note F] conjectured that

µ1(B) ≤ µ1(Ω) whenever |Ω | = π (1.24)

for any bounded planar domain Ω ⊂R2. And again, using rearrangement techniques

they proved (1.24) under the assumption that the solution u to (1.23) is positive, see

[343, 388]. Unfortunately, as for the clamped plate eigenvalue, this property fails

in general, for instance in the square (0,1)2, see Wieners [412]. Without imposing

this sign assumption on the first eigenfunction, Ashbaugh-Laugesen [24] proved the

bound γµ1(B)≤ µ1(Ω) whenever |Ω |= π for γ = 0.78 . . . which is, of course, much

weaker than (1.24).

A complete proof of (1.24) is not yet known. A quite well established strategy

which could be used to prove (1.24) involves shape derivatives, see e.g. [228]. It

mainly consists in three steps.

1. In a suitable class of domains, prove the existence of a minimiser Ωo for the map

Ω 7→ µ1(Ω).
2. Prove that ∂Ωo is smooth, for instance ∂Ωo ∈C2,γ , in order to be able to compute

the derivative of Ω 7→ µ1(Ω) and to impose that it vanishes when Ω = Ωo.

3. Exploit the just obtained stationarity condition, which usually gives an overde-

termined condition on ∂Ωo, to prove that Ωo is a ball.

In Section 3.2 we show how Item 1 has been successfully settled by Ashbaugh-

Bucur [23] and how Item 3 has been achieved by Weinberger-Willms [415], see
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also [244, Proposition 4.4]. Therefore, for a complete proof of (1.24), “only” Item

2 is missing!

1.3.3 A Steklov eigenvalue problem

Usually, eigenvalue problems arise when one studies oscillation modes in the re-

spective time dependent problem in order to have a physically well motivated theory

and representation of solutions.

However, in what follows, a most natural motivation for considering a further

eigenvalue problem comes from a seemingly quite different mathematical question.

We explain how L2-estimates for the Dirichlet problem for harmonic functions link

with the Steklov eigenvalue problem for biharmonic functions.

Let Ω ⊂ Rn be a bounded smooth domain and consider the problem

{
∆u = 0 in Ω ,
u = g on ∂Ω ,

(1.25)

where g ∈ L2(∂Ω). It is well-known that (1.25) admits a unique solution u ∈
H1/2(Ω) ⊂ L2(Ω), see e.g. [275, Remarque 7.2, p. 202] and also [237, 238] for

an extension to nonsmooth domains. One is then interested in a priori estimates,

namely in determining the sharp constant CΩ such that

‖u‖L2(Ω) ≤CΩ‖g‖L2(∂Ω).

By Fichera’s principle of duality [170] (see also Section 3.3.2) one sees that CΩ

coincides with the inverse of the first Steklov eigenvalue δ1 = δ1(Ω), namely the

smallest constant a such that the problem

{
∆ 2u = 0 in Ω ,
u = ∆u−auν = 0 on ∂Ω ,

(1.26)

admits a nontrivial solution. Notice that the “true” eigenvalue problem for the hinged

plate equation should include the curvature in the second boundary condition, see

(1.8). The map Ω 7→ δ1(Ω) has several surprising properties which we establish

in Section 3.3.2. By rescaling, one sees that δ1(kΩ) = k−1δ1(Ω) for any bounded

domain Ω and any k > 0 so that δ1(kΩ) → 0 as k → ∞. One is then led to seek

domains which minimise δ1 under suitable constraints, the most natural one being

the volume constraint. Smith [373] stated that, analogously to the Faber-Krahn result

[162, 253, 254], the minimiser for δ1 should exist and be a ball, at least for planar

domains. But, as noticed by Kuttler and Sigillito, the argument in [373] contains a

gap. In the “Note added in proof” in [374, p. 111], Smith writes:

Although the result is probably true, a correct proof has not yet been found.
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A few years later, Kuttler [258] proved that a (planar) square has a first Steklov

eigenvalue δ1(Ω) which is strictly smaller than the one of the disk having the same

measure. The estimate by Kuttler was subsequently improved in [165]. Therefore,

it is not true that δ1(Ω
∗) ≤ δ1(Ω) where Ω ∗ denotes the spherical rearrangement

of Ω . For this reason, Kuttler [258] suggested a different minimisation problem

with a perimeter constraint; in [258, Formula (11)] he conjectures that a planar disk

minimises δ1 among all domains having fixed perimeter. He provides numerical ev-

idence that on rectangles his conjecture seems true, see also [259, 261]. In Theorem

3.24 we show that also this conjecture is false and that an optimal shape for δ1 does

not exist under a perimeter constraint in any space dimension n ≥ 2. In fact, under

such a constraint, the infimum of δ1 is zero.

The spectrum of (1.26) has a nice application in functional analysis. In Section

3.3.1 we show that the closure of the space spanned by the Steklov eigenfunctions

is the orthogonal complement of H2
0 (Ω) in H2 ∩H1

0 (Ω).

1.4 Paradoxes for the hinged plate

The most common domains for plate problems that appear in engineering are poly-

gonal ones. On the straight boundary parts of a polygonal domain the hinged bound-

ary conditions (1.10) lead to Navier boundary conditions (1.12). Without taking care

of a possible singularity due to “κ = ∞” in the corners it would mean that the so-

lution no longer depends on the Poisson ratio σ . Sapondžyan [357] noticed that

the solution one obtains by solving (1.12) iteratively does not necessarily have a

bounded energy. Babuška noticed in [28] that the difference between (1.10) and

(1.12) would mean that by approximating a curvilinear domain by polygons, as is

done in most finite elements methods, the approximating solutions would not con-

verge to the solution on the curvilinear domain.

Although both paradoxes are usually referred to by the name Babuška, they do

cover different phenomena as we will explain in more detail.

1.4.1 Sapondžyan’s paradox by concave corners

One might expect that the problem that appeared in these paradoxes is due to a

boundary condition not being well-defined in corners. Indeed, the curvature that

appears in the boundary condition is singular and apparently leads to a δ -distribution

type contribution. By adding appropriate extra terms in the corners there is some

hope to find the real solution. The situation for reentrant corners can be ‘worse’.

Due to Kondratiev [65, 251], Maz’ya et al. [288, 289], Grisvard [199] and many

others, it is well-known that corners may lead to a loss of regularity. It is less known

that a corner may lead to multiple solutions, that is, the solution depends crucially

on the space that one chooses.
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An example where two different solutions appear naturally from two straightfor-

ward settings goes as follows. Both fourth order boundary value problems, hinged or

Steklov (1.10) as well as Navier (1.12) boundary conditions, allow a reformulation

as a coupled system, see (1.14) and (1.13), respectively. In the latter case, one tends

to solve by an iteration of the Green operator for the second order Poisson problem.

This approach works fine for bounded smooth domains, but whenever the domain

has a nonconvex corner, one does not necessarily get the solution one is looking for.

Indeed, for the fourth order problem the natural setting for a weak solution to the

Navier boundary value problem would be H2 ∩H1
0 (Ω). The second Navier bound-

ary condition ∆u = 0 would follow naturally on smooth boundary parts from the

weak formulation where u satisfies
∫

Ω
(∆u∆ϕ − f ϕ) dx = 0 for all ϕ ∈ H2 ∩H1

0 (Ω). (1.27)

However, for the system in (1.13) the natural setting is that one looks for function

pairs (u,v)∈ H1
0 (Ω)×H1

0 (Ω). In [320] it is shown that for domains with a reentrant

corner both problems have a unique solution but the solutions u1 to (1.13) and u2

to (1.27) are different. Indeed, there exist a constant c f and a nontrivial biharmonic

function b that satisfies (1.13) with zero Navier boundary condition except in the

corner such that u1 = u2 + c f b. The related problem for domains with edges is con-

sidered in [319]. We refer to Section 2.7 for more details and an explicit example.

1.4.2 The Babuška paradox

In the original Babuška or polygon-circle paradox one considers problem (1.10) for

f = 1 and when Ω = Pm ⊂ B (m ≥ 3) is the interior of the regular polygon with

corners e2kπi/m for k ∈ N, namely

{
∆ 2u = 1 in Pm,

u = ∆u = 0 on ∂Pm.

If um denotes the solution of this problem extended by 0 in B\Pm, it can be shown

that the sequence (um) converges uniformly to

u∞(x) :=
3

64
− 1

16
|x|2 +

1

64
|x|4

which is not the solution to the “limit problem” (where κ = 1), namely

{
∆ 2u = 1 in B,

u = ∆u− (1−σ)κ ∂u
∂ν = 0 on ∂B

unless σ = 1, see Figure 1.3.

For more details on this Babuška paradox see Section 2.7.
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...

Fig. 1.3 The Babuška or polygon-circle paradox. On polygonal domains (1.10)=(1.12); on curvi-

linear domains (1.10)6=(1.12). Approximating curvilinear domains by polygonal ones does not give

the correct limit solution to the hinged plate problem.

1.5 Paneitz-Branson type equations

Let (M ,g) be an n–dimensional Riemannian manifold with n > 4. The conformal

Laplacian is frequently studied and well understood and one may be interested in

higher order analogues. Again, the biharmonic case is particularly interesting. The

metric g is subject to a conformal change gu := u
4

n−4 g, u > 0, and one wonders about

the existence of a fourth order differential operator enjoying a conformal covariance

property such that for all ϕ ∈C∞(M ) one has

(Pn
4 )u(ϕ) = u−

n+4
n−4 (Pn

4 )(uϕ).

Here, Pn
4 denotes the desired operator with respect to the background metric g, while

(Pn
4 )u refers to the conformal metric gu. Indeed, Paneitz [329, 330] and Branson

[66, 67] found the following conformal covariant fourth order elliptic operator

Pn
4 := ∆ 2 −

n

∑
i, j=1

∇i

(
(n−2)2 +4

2(n−1)(n−2)
Rgi j −

4

n−2
Ri j

)
∇ j +

n−4

2
Qn

4

on M , where ∆ = 1√
g
∂i

(√
ggi j∂ j

)
denotes the Laplace-Beltrami operator with re-

spect to g in local coordinates, Ri j the Ricci-tensor and R the scalar curvature. More-

over, ∇ jϕ = ∑
n
k=1 g jk∂kϕ gives the gradient of a function and

n

∑
i=1

∇iZi =
n

∑
i, j=1

1√
g

∂i

(√
ggi jZ j

)

the divergence of a covector field. A key role is played by the following fourth order

curvature invariant

Qn
4 := − 2

(n−2)2
|(Ri j)|2 +

n3 −4n2 +16n−16

8(n−1)2(n−2)2
R2 − 1

2(n−1)
∆R,

the so-called Q-curvature. Here |(Ri j)|2 = ∑
n
i, j,k,` gi jgk`RikR j`. The transformation of

the corresponding Qn
4-curvature under this conformal change of metrics is governed

by the Paneitz equation

Pn
4 u =

n−4

2
(Qn

4)uu
n+4
n−4 . (1.28)
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In analogy to the second order Yamabe problem (for an overview see [381, Section

III.4]), obvious questions here concern the existence of conformal metrics with con-

stant or prescribed Q-curvature. Huge work has so far been done by research groups

around Chang-Yang-Gursky and Hebey, as well as many others. For a survey and

references see the books by Chang [89] and by Druet-Hebey-Robert [149]. Diffi-

cult problems arise from ensuring the positivity requirement of the conformal factor

u > 0 and from the necessity to know about the kernel of the Paneitz operator. These

problems have only been solved partly yet.

In order to explain the geometrical importance of the Q-curvature, we assume

now for a moment that the manifold (M ,g) is four-dimensional. Then, the Paneitz

operator is defined by

P4
4 := ∆ 2 −

4

∑
i, j=1

∇i

(
2

3
Rgi j −2Ri j

)
∇ j

in such a way that under the conformal change of metrics gu = e2ug one has

(P4
4 )u(ϕ) = e−4uP4

4 (ϕ).

In order to achieve a prescribed Q-curvature on the four-dimensional manifold

(M ,gu), one has to find u solving

P4
4 u+2Q4

4 = 2Qe4u,

where Q4
4 is the curvature invariant

12Q4
4 = −∆R+R2 −3|(Ri j)|2.

In this situation, one has the following Gauss-Bonnet-formula

∫

M

(
Q+

1

8
|W |2

)
dS = 4π2χ(M ),

where W is the Weyl tensor and χ(M ) is the Euler characteristic. Since χ(M ) is a

topological and |W |2dS is a pointwise conformal invariant, this shows that
∫
M

QdS

is a conformal invariant, which governs e.g. the existence of conformal Ricci pos-

itive metrics (see e.g. Chang-Gursky-Yang [90, 91]) and eigenvalue estimates for

Dirac operators (see Guofang Wang [407]). All these facts show that the Q-curvature

in the context of fourth order conformally covariant operators takes a role quite anal-

ogous to the scalar curvature with respect to second order operators.

Getting back to the general case n > 4, let us outline what we are going to prove

in the present book. We do not aim at giving an overview – not even of parts – of

the theory of Paneitz operators but at giving a spot on some aspects of this issue.

Namely, in Section 7.9 we address the question whether in specific bounded smooth

domains Ω ⊂ Rn (n > 4) there exists a metric gu = u4/(n−4)(δi j) being conformal

to the flat euclidean metric and subject to certain homogeneous boundary condi-
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tions such that it has strictly positive constant Q-curvature. In view of the nonexis-

tence results in Section 7.5.1 one expects that for generic domains the corresponding

boundary value problems do not have a positive solution. Hence, in geometrically

or topologically simple domains, such a conformal metric does in general not ex-

ist. Nevertheless, the boundary value problems have nontrivial solutions in topo-

logically or specific geometrically complicated domains (see Section 7.9). For the

Navier problem, i.e. u = ∆u = 0 on ∂Ω , one can also show positivity of u so that

it may be considered as a conformal factor and one has such a nontrivial conformal

metric as described above. Under Dirichlet boundary conditions, which could be

interpreted as vanishing of length and normal curvature of the conformal metric on

∂Ω , the positivity question has so far to be left open. The same difficulty prevents

Esposito and Robert [161] from solving the Q-curvature analogue of the Yamabe

problem.

In Section 7.10 the starting point is the hyperbolic ball B = B1(0) ⊂ Rn which is

equipped with the Poincaré metric gi j = 4δi j/(1−|x|2)2. This metric has constant

Q-curvature Q ≡ 1
8
n(n2 − 4) and we address the question, whether there are fur-

ther conformal metrics gu = u4/(n−4)g having the same constant Q-curvature such

that the resulting manifold is complete. Somehow surprisingly there exists infinitely

many such metrics and even infinitely many among them have negative scalar curva-

ture. This high degree of nonuniqueness is in sharp contrast with the corresponding

question for the scalar curvature. There is no further conformal complete metric

having the same constant negative curvature as g, see [279].

1.6 Critical growth polyharmonic model problems

The prototype to be studied is the semilinear polyharmonic eigenvalue problem

{
(−∆)mu = λu+ |u|s−1u, u 6≡ 0 in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1.
(1.29)

Here Ω ⊂ Rn is a bounded smooth domain, n > 2m, λ ∈ R; s = (n+2m)/(n−2m)
is the critical Sobolev exponent. If m = 2 and λ = 0 we are back in the situation dis-

cussed in the previous section with a euclidean background metric. The existence

theory for (1.29) can be developed similarly to the second order case m = 1 while it

becomes immediately quite difficult or even impossible to prove positivity or nonex-

istence of certain solutions. In particular, thanks to a Pohožaev identity [339, 340]

one can exclude the existence of solutions to (1.29) in starshaped domains whenever

λ < 0 but as far as the limit case λ = 0 is considered, things change dramatically

in the two situations where m = 1 and m ≥ 2. With a suitable application of the

unique continuation principle (see e.g. [247, 345]), one can exclude when m = 1 the

existence of any solution to (1.29) in starshaped domains even for λ = 0. In order to

apply the same principle to (1.29) when m≥ 2 one would need to know the boundary

behaviour of more derivatives than those already included in the Dirichlet boundary
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conditions and provided by the Pohožaev identity. Therefore, when m ≥ 2 one can

try to prove nonexistence of positive solutions in strictly starshaped domains, see

Theorem 7.33 for the case m = 2. Unfortunately, this result is not satisfactory since

positivity is not ensured in general domains, see also the discussion in the next sec-

tion. So far, only in balls a more satisfactory discussion can be given. We refer to

Section 7.5.1 for an up-to-date state of the art.

A first natural question is then to find out whether the nonexistence result for

λ = 0 really depends on the geometry of the domain and starshapedness is not

just a technical assumption. The answer is positive. For instance, problem (1.29)

with m = 2 and λ = 0 admits a solution in domains with small holes and in some

contractible non-starshaped domains, see Section 7.9. A second natural question

then arises. Do the nonexistence results also depend on the boundary conditions

considered? It is known that (1.29) admits no positive solution if m = 2, λ = 0,

Ω is starshaped and Navier boundary conditions are considered, see [307, 398]

and also Section 7.6. Moreover, in Section 7.7 we address the same problem under

Steklov boundary conditions when m = 2 and Ω is a ball. We find all the values of

the boundary parameter a in (1.26) for which the critical growth equation in (1.29)

admits a positive solution.

Problem (1.29) in the case m = 1 has been studied extensively by Brezis-

Nirenberg [72] who also discovered an interesting phenomenon when Ω is the unit

ball. There exists a positive radial solution to (1.29) for every λ ∈ (0,Λ1,1) if n ≥ 4

and for every λ ∈ ( 1
4
Λ1,1,Λ1,1) if n = 3. Moreover, they could show that in the

latter case problem (1.29) has no nontrivial radial solution if λ ≤ 1
4
Λ1,1. Here and

in the sequel Λm,1 denotes the first eigenvalue of (−∆)m in B under homogeneous

Dirichlet boundary conditions.

Pucci and Serrin [348] raised the question in which way this critical behaviour of

certain dimensions depends on the order 2m of the semilinear polyharmonic eigen-

value problem (1.29). They introduced the name critical dimensions.

Definition 1.1. Let Ω ⊂ Rn be a ball. The dimension n is called critical if there is a

positive bound Λ > 0 such that a necessary condition for the existence of a nontrivial

radial solution to (1.29) is λ > Λ .

Pucci and Serrin [348] showed that for any m the dimension n = 2m+1 is critical

and, moreover, that n = 5,6,7 are critical in the fourth order problem, m = 2. They

suggested

Conjecture 1.2 (Pucci–Serrin).

The critical dimensions are precisely n = 2m+1, . . . ,4m−1.

In Section 7.5.2 we prove a weakened version of this conjecture. This nonex-

istence phenomenon has a functional analytic interpretation, which is reflected in

the possibility of adding L2–remainder terms in Sobolev inequalities with critical

exponent and optimal constants in any bounded domain Ω , see Section 7.8.
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1.7 Qualitative properties of solutions to semilinear problems

Radial symmetry of positive solutions to suitable semilinear higher order Dirichlet

problems in the ball is obtained thanks to a suitable implementation of the moving

planes procedure, see Section 7.1.2. One of the crucial steps in the moving planes

procedure consists in comparing the solution u in a segment of the ball with its

reflection ur across the hyperplane which bounds the segment, see e.g. [195, Lemma

2.2]. For second order problems the comparison follows from suitable versions of

the maximum principle since ur ≥ u holds a priori on the boundary of this segment.

This information however is not enough for higher order problems, and therefore the

classical moving planes method fails. We employ a different technique to carry out

the moving planes mechanism, using the integral representation of u in terms of the

Green function of the polyharmonic operator (−∆)m in B under Dirichlet boundary

conditions.

As repeatedly emphasised, linear higher order boundary value problems in gen-

eral do not enjoy a positivity preserving property. This feature may also be observed

in nonlinear problems. Let us illustrate this situation for the subcritical model prob-

lem corresponding to (1.29), namely

{
(−∆)mu = λu+ |u|p−1u, u 6≡ 0 in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,
(1.30)

where 1 < p < s. Thanks to some compactness, which is not available for (1.29),

one may find a nontrivial solution to (1.30) as a suitable constrained minimum pro-

vided that λ < Λm,1. If m = 1 one can easily prove that such a minimum is positive

just by replacing it with its modulus and by applying the maximum principle. This

procedure fails in general if m ≥ 2, even if Ω is a ball. This problem is discussed in

detail in Section 7.2.

Bifurcation branches of solutions to nonlinear problems depending on some pa-

rameter λ are often quite complicated to be figured out. The case where only pos-

itive solutions are considered is much simpler. This situation is well illustrated by

the so-called (second order) Gelfand problem [194, 239] where the nonlinearity is

of exponential type, namely λeu. A similar behaviour can be observed for the “ap-

proximate problem” where the nonlinearity is λ (1 + u)p. For this power-type non-

linearity, the bifurcation branch for the second order problem appears particularly

interesting in the supercritical case p > n+2
n−2

. In order to find out whether a similar

behaviour can also be observed in higher order problems, one has to face the pos-

sible lack of positivity of the solution. As already discussed in Section 1.2 this can

be overcome so far only in some particular situations, such as the case where Ω is

a ball. In Section 7.11 we carefully study the branch of solutions to this biharmonic

supercritical growth problem with the help of a suitable Lyapunov functional. Our

study also takes advantage of the radial symmetry of positive solutions in the ball.
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1.8 Willmore surfaces

At the beginning of this chapter the modeling of thin elastic plates was explained

in some detail. There, curvature expressions were somehow “linearised” in order

to have a purely quadratic behaviour of the leading terms of the energy functionals.

This simplification results in linear Euler-Lagrange equations, which are justified for

small deviations from a horizontal equilibrium shape. As soon as large deflections

occur or a coordinate system is chosen in such a way that the equilibrium shape is

not the x-y-plane, one has to stick to the frame invariant modeling of the bending

energy in terms of differential geometric curvature expressions. When compared

with the “linearised” energy integral (1.5) in Section 1.1, the integral

∫

Γ

(
α +β (H−H0)

2 − γK
)

dω (1.31)

with suitable constants α,β ,γ,H0 may serve as a more realistic model for the bend-

ing and stretching energy of a thin elastic plate, which is described by a two-

dimensional manifold Γ ⊂ R3. Here, H denotes its mean and K its Gaussian cur-

vature. According to [324], α is related to the surface tension, β and γ are elastic

moduli, while one may think of H0 as some preferred “intrinsic” curvature due to

particular properties of the material under consideration. Physically reasonable as-

sumptions on the coefficients are α ≥ 0, 0 ≤ γ ≤ β , βγH2
0 ≤ α(β −γ), which ensure

the functional to be positive definite. For modeling aspects and a thorough expla-

nation of the meaning of each term we refer again to the survey article [324] by

Nitsche. A discussion of the full model (1.31), however, seems to be out of reach at

the moment, and for this reason one usually confines the investigation to the most

important and dominant term, i.e. the contribution of H2.

Given a smooth immersed surface Γ , the Willmore functional is defined by

W (Γ ) :=
∫

Γ
H

2dω.

Apart from its meaning as a model for the elastic energy of thin shells or biological

membranes, it is also of great geometric interest, see e.g [413, 414]. Furthermore,

it is used in image processing for problems of surface restoration and image in-

painting, see e.g. [105] and references therein. In these applications one is usually

concerned with minima, or more generally with critical points of the Willmore func-

tional. It is well-known that the corresponding surface Γ has to satisfy the Willmore

equation

∆ΓH+2H(H2 −K) = 0 on Γ , (1.32)

where ∆Γ denotes the Laplace-Beltrami operator on Γ with respect to the induced

metric. A solution of (1.32) is called a Willmore surface. An additional difficulty

here arises from the fact that ∆Γ depends on the unknown surface so that the equa-

tion is quasilinear. Moreover, the ellipticity is not uniform which, in the variational

framework, is reflected by the fact that minimising sequences may in general be un-
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bounded in H2. A difficult step is to pass to suitable minimising sequences enjoying

sufficient compactness in H2 and C1.

In the past years a lot of very interesting work has been done, mainly on closed

Willmore surfaces, see e.g. [35, 60, 156, 262, 263, 264, 287, 355, 361, 371, 372]. For

instance, one knows about minimisers of the Willmore energy of prescribed genus

and about global existence and convergence of the Willmore flow to the sphere

under explicit smallness assumptions which, by means of counterexamples, have

been proved to be sharp.

The situation changes if one considers boundary value problems. Except for

small data results, our knowledge is still somehow limited, see e.g. [50, 115, 116,

138, 360] and references therein.

Possible boundary value problems for the linear plate equation were discussed in

Section 1.1 above to some extent. In the nonlinear context here, one could discuss

the same issue, but now considering the geometric terms instead of their linearisa-

tions. For details again we refer to [324]. Here we will be concerned with a Dirich-

let problem for Willmore surfaces where, in some particularly symmetric situations,

results are available. These are not just small data results or application of linear

theory combined with the implicit function theorem. Let us mention an important

recent contribution by Schätzle [360]. He proved a general result concerning exis-

tence of branched Willmore immersions in Sn with boundary which satisfy Dirichlet

boundary conditions. Assuming the boundary data to obey some explicit geomet-

rically motivated smallness condition these immersions can even be shown to be

embedded. By working in Sn, some compactness problems could be overcome; on

the other hand, when pulling pack these immersions to Rn it cannot be excluded that

they contain the point ∞. Moreover, in general, the existence of branch points cannot

be ruled out, and due to the generality of the approach, it seems to us that only lit-

tle topological information about the solutions can be extracted from the existence

proof. We think that it is quite interesting to identify situations where it is possi-

ble to work with a priori bounded minimising sequences or where solutions with

additional properties like e.g. being a graph or enjoying certain symmetry proper-

ties can be found. In view of the lack of general comparison principles and of the

highly nonlinear character of (1.32) this is a rather difficult task. In order to outline

directions of future research we think that it is a good strategy to investigate first

relatively special situations which e.g. enjoy some symmetry.

This is exactly the subject of Section 8. We restrict ourselves to surfaces of revo-

lution satisfying Dirichlet boundary conditions. In this class we can find minimising

sequences enjoying sufficient compactness properties thereby constructing a classi-

cal solution where a number of additional qualitative properties are obtained. While

the underlying differential equation is one-dimensional the geometry is already two-

dimensional. The interplay between mean and Gaussian curvature in (1.32) already

causes great difficulties.



Chapter 2

Linear problems

Linear polyharmonic problems and their features are essential in order to achieve the

main tasks of this monograph, namely the study of positivity and nonlinear prob-

lems. With no hope of being exhaustive, in this chapter we outline the main tools

and results, which will be needed subsequently. We start by introducing higher order

Sobolev spaces and relevant boundary conditions for polyharmonic problems. Then

using a suitable Hilbert space, we show solvability of a wide class of boundary value

problems. The subsequent part of the chapter is devoted to regularity results and a

priori estimates both in Schauder and Lp setting, including also maximum modulus

estimates. These regularity results are particularly meaningful when writing explic-

itly the solution of the boundary value problem in terms of the data by means of a

suitable kernel. Focusing on the Dirichlet problem for the polyharmonic operator,

we introduce Green’s functions and the fundamental formula by Boggio in balls.

We conclude with a study of a biharmonic problem in nonsmooth domains explain-

ing two paradoxes which are important in particular when approximating solutions

numerically.

2.1 Polyharmonic operators

Unless otherwise specified, throughout this monograph Ω denotes a bounded do-

main (open and connected) of Rn (n ≥ 2). The smoothness assumptions on the

boundary ∂Ω will be made precise in each situation considered. However, we shall

always assume that ∂Ω is Lipschitzian so that the tangent hyperplane and the unit

outward normal ν = ν(x) are well-defined for a.e. x ∈ ∂Ω , where a.e. means here

with respect to the (n− 1)-dimensional Hausdorff measure. When it is clear from

the context, in the sequel we omit writing “a.e.”

The Laplacian ∆u of a smooth function u : Ω → R is the trace of its Hessian

matrix, namely

∆u :=
n

∑
i=1

∂ 2u

∂x2
i

.

25
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We are interested in iterations of the Laplace operator, namely polyharmonic oper-

ators defined inductively by

∆ mu = ∆(∆ m−1u) for m = 2,3, ... .

Arguing by induction on m, it is straightforward to verify that

∆ mu = ∑
`1+...+`n=m

m!

`1! ...`n!

∂ 2mu

∂x
2`1
1 ...∂x

2`n
n

.

The polyharmonic operator ∆ m may also be seen in an abstract way through the

polynomial Lm : Rn → R defined by

Lm(ξ ) = ∑
`1+...+`n=m

m!

`1! ...`n!

(
n

∏
i=1

ξ 2`i
i

)
= |ξ |2m for ξ ∈ Rn.

Formally, ∆ m = Lm(∇). In particular, this shows that Lm(ξ ) > 0 for all ξ 6= 0 so that

∆ m is an elliptic operator, see [5, p. 625] or [275, p. 121]. Ellipticity is a property of

the principal part (containing the highest order partial derivatives) of the differential

operator.

In this chapter, we study linear differential elliptic operators of the kind

u 7→ Au = (−∆)mu+A (x;D)u, (2.1)

where

A : Ω ×Rn ×Rn2 × ...×Rn2m−1 → R

is a linear operator containing all the lower order partial derivatives of the function

u. The coefficients of the derivatives are measurable functions of x in Ω . For elliptic

differential operators A of the form (2.1) and under suitable assumptions on f , we

shall consider solutions u = u(x) to the equation

(−∆)mu+A (x;D)u = f in Ω , (2.2)

which satisfy some boundary conditions on ∂Ω . We discuss the class of “admissi-

ble” boundary conditions in Section 2.3. What we mean by solution to (2.2) will be

made clear in each situation considered.

Finally, let us mention that our statements also hold if we replace (−∆)m with

the m-th power of any other second order elliptic operator L; for instance, in Section

6.1 we consider powers of

Lu = −
2

∑
i, j=1

ãi j(x)
∂ 2u

∂xi∂x j

with the matrix {ãi j} being positive definite,

or

Lu = − 2

|∇h|2 ∆u with∇h 6= 0.
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2.2 Higher order Sobolev spaces

Before introducing the boundary conditions to be associated to (2.2), we briefly

recall the definition and basic properties of higher order Sobolev spaces and of their

embedding into Lq spaces. In particular, we need to define the traces in order to

give some meaning to the boundary conditions. We restrict our attention to those

statements which will be frequently used in this book. Except in this section, Ω is

assumed to be bounded throughout the whole Chapter 2.

2.2.1 Definitions and basic properties

Given a domain Ω ⊂ Rn, ‖ .‖Lp denotes the standard Lp(Ω)-norm for 1 ≤ p ≤ ∞.

For all m ∈ N+ let us define the norm

u 7→ N(u) :=

(
m

∑
k=0

‖Dku‖p
Lp

)1/p

, (2.3)

where D0u = u,

Dku ·Dkv =
n

∑
i1,...,ik=1

∂ ku

∂xi1 . . .∂xik

∂ kv

∂xi1 . . .∂xik

and |Dku| =
(

Dku ·Dku
)1/2

.

Note that we will specify the domain Ω in ‖ .‖Lp only when it is not clear from the

context. Next, we define the space

W m,p(Ω) := {u ∈Cm(Ω); N(u) < ∞}N
,

that is, the completion with respect to the norm (2.3). Alternatively, W m,p(Ω) may

be defined as the subspace of Lp(Ω) of functions having generalised derivatives up

to order m in Lp(Ω), see [300].

If Ω 6= Rn and its boundary ∂Ω is smooth, then a function u ∈W m,p(Ω) admits

some traces on ∂Ω where, for our purposes, it is enough to restrict the attention to

the case p ∈ (1,∞). More precisely, if ν denotes the unit outer normal to ∂Ω , then

for any u ∈Cm(Ω) and any j = 0, . . . ,m we define the traces

γ ju :=
∂ ju

∂ν j

∣∣∣
∂Ω

. (2.4)

By [275, Théorème 8.3], these linear operators may be extended continuously to the

larger space W m,p(Ω). We set

W m− j−1/p,p(∂Ω) := γ j[W
m,p(Ω)] for j = 0, ...,m−1. (2.5)
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In particular, W 1/p′,p(∂Ω) = γm−1[W
m,p(Ω)], where p′ is the conjugate of p (that

is, p+ p′ = pp′). We also put

γm[W m,p(Ω)] = W−1/p,p(∂Ω) := [W 1/p,p′(∂Ω)]′

= the dual space of W 1/p,p′(∂Ω), (2.6)

so that (2.5) makes sense for all j = 0, . . . ,m. With an abuse of notation, in the sequel

we simply write u (respectively ∂ ju
∂ν j ) instead of γ0u (respectively γ ju for j = 1, ...,m).

When p = 2, we put Hm(Ω) := W m,2(Ω). Moreover, when p = 2 and m ≥ 1 we

write Hm−1/2(∂Ω) = W m−1/2,2(∂Ω) and

H−m+ 1
2 (∂Ω) = [Hm− 1

2 (∂Ω)]′ = the dual space of Hm− 1
2 (∂Ω). (2.7)

The space Hm(Ω) becomes a Hilbert space when endowed with the scalar product

(u,v) 7→
m

∑
k=0

∫

Ω
Dku ·Dkvdx for all u,v ∈ Hm(Ω).

In some cases one may simplify the just defined norms and scalar products. As a

first step, we mention that thanks to interpolation theory, see [1, Theorem 4.14], one

can neglect intermediate derivatives in (2.3). More precisely, W m,p(Ω) is a Banach

space also when endowed with the following norm, which is equivalent to (2.3):

‖u‖W m,p =
(
‖u‖p

Lp +‖Dmu‖p
Lp

)1/p
for all u ∈W m,p(Ω), (2.8)

whereas Hm(Ω) is a Hilbert space also with the scalar product

(u,v)Hm :=
∫

Ω
(uv+Dmu ·Dmv)dx for all u,v ∈ Hm(Ω).

Of particular interest is the closed subspace of W m,p defined as the intersection

of the kernels of the trace operators in (2.4), that is for any bounded domain Ω we

consider

W
m,p
0 (Ω) :=

m−1⋂

j=0

kerγ j .

Moreover, for bounded domains Ω and for 1 < p < ∞, if p′ is the conjugate of p we

write

W−m,p′(Ω) := [W m,p
0 (Ω)]′ = the dual space of W

m,p
0 (Ω) (2.9)

and, for p = 2,

H−m(Ω) := [Hm
0 (Ω)]′ = [W m,2

0 (Ω)]′.

Consider the bilinear form
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(u,v)Hm
0

:=





∫

Ω
∆ ku ∆ kvdx if m = 2k,

∫

Ω
∇(∆ ku) ·∇(∆ kv)dx if m = 2k +1,

(2.10)

and the corresponding norm

‖u‖Hm
0

:=





‖∆ ku‖L2 if m = 2k,

‖∇(∆ ku)‖L2 if m = 2k +1.
(2.11)

For general p ∈ (1,∞), one has the choice of taking the Lp-version of (2.11) or the

equivalent norm

‖u‖W
m,p
0

:= ‖Dmu‖Lp .

Thanks to these norms, one may define the above spaces in a different way.

Theorem 2.1. If Ω ⊂ Rn is a bounded domain, then

W
m,p
0 (Ω) = the closure of C∞

c (Ω) with respect to the norm ‖ .‖W m,p

= the closure of C∞
c (Ω) with respect to the norm ‖ .‖W

m,p
0

.

Theorem 2.1 follows by combining interpolation inequalities (see [1, Theorem

4.14]) with the classical Poincaré inequality ‖∇u‖Lp ≥ c‖u‖Lp for all u ∈W
1,p
0 (Ω).

If Ω is unbounded, including the case where Ω = Rn, we define

‖u‖Dm,p(Ω) := ‖Dmu‖Lp(Ω),

D
m,p(Ω) := the closure of C∞

c (Ω) with respect to the norm ‖ .‖Dm,p ,

and, again, let W
m,p
0 (Ω) denote the closure of C∞

c (Ω) with respect to the norm

‖ .‖W m,p . In this unbounded case, a similar result as in Theorem 2.1 is no longer true

since although W
m,p
0 (Ω) ⊂ Dm,p(Ω), the converse inclusion fails. For instance, if

Ω = Rn, then W
m,p
0 (Rn) = W m,p(Rn), whereas the function u(x) = (1+ |x|2)(1−n)/4

belongs to D1,2(Rn) but not to H1
0 (Rn) = H1(Rn).

Theorem 2.1 states that, when Ω is bounded, the space Hm
0 (Ω) is a Hilbert space

when endowed with the scalar product (2.10). The striking fact is that not only

all lower order derivatives (including the derivative of order 0!) are neglected but

also that some of the highest order derivatives are dropped. This fact has a simple

explanation since

(u,v)Hm
0

=
∫

Ω
Dmu ·Dmvdx for all u,v ∈ Hm

0 (Ω). (2.12)

One can verify (2.12) by using a density argument, namely for all u,v ∈ C∞
c (Ω).

And with this restriction, one can integrate by parts several times in order to obtain

(2.12). The bilinear form (2.10) also defines a scalar product on the space Dm,2(Ω)
whenever Ω is an unbounded domain. We summarise all these facts in
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Theorem 2.2. Let Ω ⊂ Rn be a smooth domain. Then the bilinear form

(u,v) 7→





∫

Ω
∆ ku ∆ kvdx if m = 2k,

∫

Ω
∇(∆ ku) ·∇(∆ kv)dx if m = 2k +1,

(2.13)

defines a scalar product on Hm
0 (Ω) (respectively Dm,2(Ω)) if Ω is bounded (re-

spectively unbounded). If Ω is bounded, then this scalar product induces a norm

equivalent to (2.3).

2.2.2 Embedding theorems

Consider first the case of unbounded domains.

Theorem 2.3. Let m ∈ N+, 1 ≤ p < ∞, with n > mp. Assume that Ω ⊂ Rn is an

unbounded domain with uniformly Lipschitzian boundary ∂Ω , then:

1. Dm,p(Ω) ⊂ Lnp/(n−mp)(Ω);

2. W m,p(Ω) ⊂ Lq(Ω) for all p ≤ q ≤ np
n−mp

.

On the other hand, in bounded domains subcritical embeddings become compact.

Theorem 2.4 (Rellich-Kondrachov). Let m ∈N+, 1 ≤ p < ∞. Assume that Ω ⊂Rn

is a bounded Lipschitzian domain, then for any 1 ≤ q < np
n−mp

there exists a compact

embedding W m,p(Ω) ⊂ Lq(Ω). Here we make the convention that
np

n−mp
= +∞ if

n ≤ mp.

Remark 2.5. The optimal constants of the compact embeddings in Theorem 2.4 are

attained on functions solving corresponding Euler-Lagrange equations. We refer to

Section 7.2 for a discussion of these problems where, for simplicity, we restrict

again our attention to the case m = 2.

In fact, if n < mp, Theorem 2.4 may be improved by the following statement.

Theorem 2.6. Let m ∈ N+ and let Ω ⊂ Rn be a bounded domain with Lipschitzian

boundary. Assume that there exists k ∈ N such that n < (m− k)p. Then

W m,p(Ω) ⊂Ck,γ(Ω) for all γ ∈
(

0,m− k− n

p

]
∩ (0,1)

with compact embedding if γ < m− k− n
p
.

The statements of Theorems 2.4 and 2.6 also hold if we replace W m,p(Ω) with its

proper subspace W
m,p
0 (Ω). In this case, no regularity assumption on the boundary
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∂Ω is needed. Let us also mention that there is a simple way to remember the em-

beddings in Theorem 2.6. It is based on the so-called regularity index, see [11, Sec-

tion 8.7]. In n-dimensional bounded domains Ω , the regularity index for W m,p(Ω)
is m− n/p whereas for Ck,γ(Ω) it is k + γ . A Sobolev space is embedded into any

other space with a smaller regularity index. For instance, W m,p(Ω) ⊂ W µ,q(Ω)
provided m − n/p ≥ µ − n/q (and m ≥ µ). Also W m,p(Ω) ⊂ Ck,γ(Ω) whenever

m−n/p ≥ k + γ and γ ∈ (0,1), which is precisely the statement in Theorem 2.6. A

similar rule is also available for trace operators, namely if m−n/p ≥ µ − (n−1)/q

(and m > µ) then the trace operator on W m,p(Ω) is continuous into W µ,q(∂Ω).

We conclude this section with the multiplicative properties of functions in

Sobolev spaces.

Theorem 2.7. Assume that Ω ⊂ Rn is a Lipschitzian domain. Let m ∈ N+ and p ∈
[1,∞) be such that mp > n. Then W m,p(Ω) is a commutative Banach algebra.

Remark 2.8. Theorem 2.7 can be generalised by considering multiplications of

functions in possibly different Sobolev spaces. For instance, if m1,m2 ∈ N+ and

µ = min{m1,m2,m1 +m2 − [ n
2
]−1}, then Hm1(Ω)Hm2(Ω) ⊂ Hµ(Ω).

We postpone further properties of the Hilbertian critical embedding, that is, Hm ⊂
L2n/(n−2m) with n > 2m, to Sections 7.3 and 7.8. The reasons are both that we need

further tools and that these properties have a natural application to nonexistence

results for semilinear polyharmonic equations at critical growth.

2.3 Boundary conditions

For the rest of Chapter 2, we assume the domain Ω to be bounded. Under suitable

assumptions on ∂Ω , to equation (2.2) we may associate m boundary conditions.

These conditions will be expressed by linear differential operators B j(x;D), namely

B j(x;D)u = h j for j = 1, ...,m on ∂Ω , (2.14)

where the functions h j belong to suitable functional spaces. Each B j has a maximal

order of derivatives m j ∈ N and the coefficients of the derivatives are sufficiently

smooth functions on ∂Ω . The regularity assumptions on these coefficients and on

∂Ω will be made precise in each statement.

For the problems considered in this monograph, it always appears that

m j ≤ 2m−1 for all j = 1, ...,m. (2.15)

Therefore, we shall always assume that (2.15) holds, although some of our state-

ments remain true under less restrictive assumptions. The meaning of (2.14) will

remain unclear until the precise definition of solution to (2.2) will be given; in most

cases, they should be seen as traces, namely satisfied in a generalised sense given

by the operators (2.4).
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The choice of the B j’s is not completely free, we need to impose a certain al-

gebraic constraint, the so-called complementing condition. For any j, let B′
j denote

the highest order part of B j which is precisely of order m j, then for equations (2.2)

which have the polyharmonic operator as principal part, we have the following

Definition 2.9. For every point x ∈ ∂Ω , let ν(x) denote the normal unit vector. We

say that the complementing condition holds for (2.14) if, for any nontrivial tangential

vector τ(x), the polynomials in t B′
j(x;τ + tν) are linearly independent modulo the

polynomial (t − i|τ|)m.

As explained in [5, Section 10], the complementing condition is crucial in order

to obtain a priori estimates for solutions to (2.2)-(2.14) and, in turn, existence and

uniqueness results.

Clearly, the solvability of (2.2)-(2.14) depends on the assumptions made on A ,

f , B j and h j. We are here interested in structural assumptions, namely properties of

the problem and not of its data.

Assumptions on the homogeneous problem. If we assume that f = 0 in Ω and that

h j = 0 on ∂Ω for all j = 1, ...,m, then (2.2)-(2.14) admits the trivial solution u = 0,

in whatever sense this is intended. The natural question is then to find out whether

this is the only solution. The answer depends on the structure of the problem. In

fact, for any “reasonable” A and B j’s there exists a discrete set Σ ⊂ R such that, if

σ 6∈ Σ , then the problem

{
(−∆)mu+σA (x;D)u = 0 in Ω ,

B j(x;D)u = 0 with j = 1, ...,m on ∂Ω ,
(2.16)

only admits the trivial solution. If σ ∈ Σ , then the solutions of (2.16) form a nontriv-

ial linear space; if A and the B j’s are well-behaved (in the sense specified below)

this space has finite dimension. Therefore, we shall assume that

the associated homogeneous problem only admits the trivial solution u = 0.
(2.17)

Assumption (2.17) is a structural assumption which only depends on A and the B j’s.

Thanks to the Fredholm alternative (see e.g. [69, Theorem VI.6]), we know that if

(2.17) fails, then for any possible choice of the data f and h j problem (2.2)-(2.14)

fails to have either existence or uniqueness of the solution.

Assumptions on A . Assume that A has the following form

A (x;D)u = ∑
|β |≤2m−1

aβ (x)Dβ u , aβ ∈C|β |(Ω). (2.18)

Actually, for some of our results, less regularity is needed on the coefficients aβ but

we will not go deep into this. We just mention that, for instance, if n ≥ 5 then in

order to obtain existence of a weak solution (according to Theorem 2.16 below) it

is enough to assume a0 ∈ Ln/4(Ω).



2.3 Boundary conditions 33

Assumptions on the boundary conditions. Assume that, according to Definition

2.9,

the linear boundary operators B j’s satisfy the complementing condition. (2.19)

We now discuss the main boundary conditions considered in this monograph.

Dirichlet boundary conditions. In this case, B j(x,D)u = B′
j(x,D)u = ∂ j−1u

∂ν j−1 for

j = 1, . . . ,m so that m j = j−1 and (2.14) become

u = h1, . . . ,
∂ m−1u

∂νm−1
= hm on ∂Ω . (2.20)

Hence, B′
j(x;τ + tν) = t j−1 and, as mentioned in [5, p. 627], the complementing

condition is satisfied for (2.20).

Navier boundary conditions. In this case, B j(x,D)u = B′
j(x,D)u = ∆ j−1u for

j = 1, ...,m so that m j = 2( j−1) and (2.14) become

u = h1, . . . , ∆ m−1u = hm on ∂Ω . (2.21)

Under these conditions, if A has a suitable form then (2.2) may be written as a sys-

tem of m Poisson equations, each one of the unknown functions satisfying Dirichlet

boundary conditions. Therefore, the complementing condition follows by the theory

of elliptic systems [6].

Mixed Dirichlet-Navier boundary conditions. We make use of these conditions

in Section 5.2. They are a suitable combination of (2.20)-(2.21). For instance, if m

is odd, they read B j(x,D)u = ∂ j−1u
∂ν j−1 for j = 1, ...,m−1 and Bm(x,D)u = ∆ (m−1)/2u.

Again, the complementing condition is satisfied.

Steklov boundary conditions. We consider these conditions only for the bihar-

monic operator. Let a ∈C0(∂Ω) and to the equation ∆ 2u = f in Ω we associate the

boundary operators B1(x,D)u = u and B2(x,D)u = ∆u−a ∂u
∂ν . Then (2.14) become

u = h1 and ∆u−a
∂u

∂ν
= h2 on ∂Ω . (2.22)

Since B′
j (for j = 1,2) is the same as for (2.21), also (2.22) satisfy the complement-

ing condition.

More generally, Hörmander [230] characterises all the sets of boundary operators

B j which satisfy the complementing condition.

We conclude this section by giving an example of boundary conditions which do

not satisfy the complementing condition. Consider the fourth order problem
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∆ 2u = 0 in Ω ,

∆u = 0 on ∂Ω ,

∂ (∆u)
∂ν = 0 on ∂Ω .

(2.23)

For any unit vector τ tangential to ∂Ω we have B1(τ +tν) = B′
1(τ +tν) = t2 +1 and

B2(τ + tν) = B′
2(τ + tν) = t3 + t. These polynomials are not linearly independent

modulo (t − i)2 so that the complementing condition is not satisfied. Note also that

any harmonic function solves (2.23) so that the space of solutions does not have

finite dimension. In particular, if we take any point x0 ∈ Rn \Ω , the fundamental

solution u0 of −∆ having pole in x0 (namely, u0(x) = log |x−x0| if n = 2 and u0(x) =
|x−x0|2−n if n≥ 3) solves (2.23). This shows that it is not possible to obtain uniform

a priori bounds in any norm. Indeed, as x0 approaches the boundary ∂Ω it is clear

that (for instance!) the H1-norm of the solution cannot be bounded uniformly in

terms of its L2-norm.

2.4 Hilbert space theory

2.4.1 Normal boundary conditions and Green’s formula

In this section we study the solvability of the polyharmonic equation

(−∆)mu+∑
◦

Dβ
[
aβ ,µ(x)Dµ u

]
= f in Ω (2.24)

complemented with the linear boundary conditions

∑
|α|≤m j

b j,α(x)Dα u = h j on ∂Ω with j = 1, ...,m, (2.25)

where m j ≤ 2m− 1, see (2.15), and ∑
◦

means summation over all multi-indices β

and µ such that

|β | ≤ m, |µ| ≤ m, |β |+ |µ| ≤ 2m−1. (2.26)

With the notations of (2.2) and (2.14), we have

A (x;D)u = ∑
◦

Dβ [aβ ,µ(x)Dµ u], B j(x;D)u = ∑
|α|≤m j

b j,α(x)Dα u.

Assume that

aβ ,µ ∈C|β |(Ω) for all β and µ satisfying (2.26). (2.27)
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To the linear differential operator A defined by

Au := (−∆)mu+∑
◦

Dβ [aβ ,µ(x)Dµ u] (2.28)

we associate the bilinear form

Ψ(u,v) = (u,v)+∑
◦

(−1)|β |
∫

Ω
aβ ,µ(x)Dµ uDβ vdx for all u,v ∈ Hm(Ω), (2.29)

where ( . , .) is defined in (2.13). Formally, Ψ is obtained by integrating by parts∫
Auv and by neglecting the boundary integrals. We point out that, in view of (2.27),

Ψ(u,v) is well-defined for all u,v ∈ Hm(Ω).
Let us recall that m j denotes the highest order derivatives of u appearing in B j.

With no loss of generality, we may assume that the boundary conditions (2.25) are

ordered for increasing m j’s so that

m j ≤ m j+1 for all j = 1, ...,m−1. (2.30)

Moreover, we assume that the coefficients in (2.25) satisfy

b j,α ∈C2m−m j(Ω) for all j = 1, ...,m and |α| ≤ m j; (2.31)

by this, we mean that the functions b j,α are restrictions to the boundary ∂Ω of

functions in C2m−m j(Ω).
We also need to define well-behaved systems of boundary operators.

Definition 2.10. Let k∈N+. We say that the boundary value operators {Fj(x;D)}k
j=1

satisfying (2.30) form a normal system on ∂Ω if mi < m j whenever i < j and if

Fj(x;D) contains the term ∂ m j/∂νm j with a coefficient different from 0 on ∂Ω .

Moreover, we say that {Fj(x;D)}k
j=1 is a Dirichlet system if, in addition to the

above conditions, we have m j = j − 1 for j = 1, ...,k; the number k is then called

the order of the Dirichlet system.

Remark 2.11. The assumption “Fj contains the term ∂ m j/∂νm j with a coefficient

different from 0 on ∂Ω” requires some explanations since it may happen that the

term ∂ m j/∂νm j does not appear explicitly in Fj. One should then rewrite the bound-

ary conditions on ∂Ω in local coordinates; the system of coordinates should contain

the n− 1 tangential directions and the normal direction ν . Then the assumption is

that in this new system of coordinates the term ∂ m j/∂νm j indeed appears with a

coefficient different from 0. For instance, imagine that m j = 2 and that ∆u repre-

sents the terms of order 2 in Fj; it is known that if ∂Ω and u are smooth, then

∆u = ∂ 2u
∂ν2 +(n−1)H ∂u

∂ν +∆τ u on ∂Ω , where H denotes the mean curvature at the

boundary and ∆τ u denotes the tangential Laplacian of u. Therefore, any boundary

operator which contains ∆ as principal part satisfies this condition.

It is clear that if a normal system of boundary value operators {Fj(x;D)}k
j=1 is

such that mk = k−1, then it is a Dirichlet system.
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Proposition 2.12. Let Ω ⊂ Rn be a bounded smooth domain. Let k ∈ N+ and as-

sume that the boundary value operators {B j(x;D)}k
j=1 form a normal system on

∂Ω . If m ≥ mk, then there exists a (non-unique) system {S j(x;D)}m
j=k+1 such that

{B1, ...,Bk,Sk+1, ...,Sm} forms a Dirichlet system of order m. Here, all the boundary

operators are supposed to have smooth coefficients.

We can now give a suitable version of Green’s formula.

Theorem 2.13. Let

∂Ω ∈C2m,1 (2.32)

and suppose that the differential operator A in (2.28) has coefficients satisfying

(2.27). Assume also that {Fj(x;D)}m
j=1 forms a Dirichlet system of order m (so that

m j = j−1) with coefficients satisfying (2.31). Then there exists a normal system of

boundary operators {Φ j(x;D)}m
j=1 with coefficients satisfying (2.31) (and with Φ j

of order 2m− j) such that

Ψ(u,v) =
∫

Ω
Auvdx+

m

∑
j=1

∫

∂Ω
Φ j(x;D)uFj(x;D)vdω for all u,v ∈ H2m(Ω).

The operators {Φ j(x;D)}m
j=1 given by Theorem 2.13 are called Green adjoint

boundary operators of {Fj(x;D)}m
j=1.

2.4.2 Homogeneous boundary value problems

In this section we study the solvability of (2.24) in the case of vanishing boundary

data h j in conditions (2.25), namely

{
(−∆)mw+∑◦ Dβ

(
aβ ,µ(x)Dµ w

)
= g in Ω ,

B j(x;D)w = 0 for j = 1, ...,m on ∂Ω .
(2.33)

The solvability of (2.33) is studied in the framework of Hilbertian Sobolev

spaces. To this end, let us explain what is meant by a Hilbert triple.

Definition 2.14. Let V and H be Hilbert spaces such that V ⊂ H with injective,

dense and continuous embedding. Let V ′ denote the dual space of V ; a scheme of

this type (namely V ⊂ H ⊂V ′) is called a Hilbert triple.

For a Hilbert triple V ⊂ H ⊂ V ′ also the embedding H ⊂ V ′ is necessarily in-

jective, dense and continuous, see [416, Theorem 17.1]. Notice also that, although

there exists the Riesz isomorphism between V and V ′ (see [69, Theorem V.5]), we

will represent functionals from V ′ with the scalar product in H and not with the

scalar product in V .

We proceed in several steps in order to simplify problem (2.33) and to give the

correct assumptions for its solvability.
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Introduction of a suitable Hilbert triple. Divide the boundary operators in (2.33)

into two classes. If m j < m we say that the boundary operator B j(x;D) is stable

while if m j ≥ m we say that it is natural. Assume that there are p stable boundary

operators, with p being an integer between 0 and m. If p = 0 all the boundary op-

erators are natural, whereas if p = m all boundary operators are stable. In view of

(2.30) the stable operators correspond to indices j ≤ p. Then we define the space

V := {v ∈ Hm(Ω); B j(x,D)v = 0 on ∂Ω for j = 1, ..., p}. (2.34)

Clearly, if p = 0 we have V = Hm(Ω) while if p = m we have V = Hm
0 (Ω) (provided

the assumption (2.36) below holds). In particular, in the case of Dirichlet boundary

conditions (2.20) we have

V = Hm
0 (Ω),

in the case of Navier boundary conditions (2.21) we have

V = Hm
ϑ (Ω) :=

{
v ∈ Hm(Ω); ∆ jv = 0 on ∂Ω for j <

m

2

}
, (2.35)

in the case of Steklov boundary conditions (2.22) we have

V = H2 ∩H1
0 (Ω) = H2

ϑ (Ω).

In any case, the space V is well-defined since each B j contains trace operators of

maximal order m j < m. Moreover, V is a closed subspace of Hm(Ω) which satisfies

Hm
0 (Ω)⊂V ⊂ Hm(Ω) with continuous embedding. Therefore, V inherits the scalar

product and the Hilbert space structure from Hm(Ω). If we put H = L2(Ω), then

V ⊂ H ⊂V ′ forms a Hilbert triple with compact embeddings.

Assumptions on the boundary operators. Assume that

{B j(x;D)}m
j=1 forms a normal system (2.36)

and that the orders of the B j’s satisfy

mi +m j 6= 2m−1 for all i, j = 1, ...,m . (2.37)

This assumption is needed since we are not free to choose the orders of the B j’s. For

every k = 0, ...,m−1 there must be exactly one m j in the set {k,2m− k−1}.

Let p denote the number of stable boundary operators. In view of (2.30) we know

that these operators are precisely {B j}p
j=1 and, of course, they also form a normal

system of boundary operators. By Proposition 2.12, there exists a family of normal

operators {S j}m
j=p+1 such that {B1, ...,Bp,Sp+1, ...,Sm} forms a Dirichlet system of

order m. We relabel this system and define

{Fj}m
j=1 ≡ {B1, ...,Bp,Sp+1, ...,Sm} (2.38)
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the re-ordered system in such a way that the order of Fj equals j− 1. The indices

j = 1, ...,m are so divided into two subsets J1 and J2 according to the following rule:

j ∈ J1 if Fj ∈ {B j}p
j=1 whereas j ∈ J2 if Fj ∈ {S j}m

j=p+1.

Let {Φ j}m
j=1 denote the Green adjoint boundary operators of {Fj}m

j=1 according

to Theorem 2.13. We finally assume that the S j’s and the Φ j’s may be chosen in a

such a way that

{B j}m
j=p+1 ⊂ {Φ j}m

j=1 . (2.39)

The condition in (2.39) is quite delicate since it requires the construction of the

S j’s and the Φ j’s before being checked. Note that if p = m (Dirichlet boundary

conditions) or p = 0, then (2.37) and (2.39) are automatically fulfilled.

Assumption on g. Assume that

g ∈V ′ . (2.40)

If V = Hm
0 (Ω), then V ′ = H−m(Ω) and V ′ has a fairly simple representation, see

[416, Theorem 17.6]. If V = Hm(Ω), then elements of V ′ have a more difficult

characterisation, see [416, Theorem 17.5]. In all the other cases, V ′ has even more

complicated forms but we always have [Hm(Ω)]′ ⊂V ′ ⊂ H−m(Ω) with continuous

embeddings.

Coercivity of the bilinear form. In order to ensure solvability of (2.42) we need

a crucial assumption on the bilinear form Ψ . By (2.27) we know that there exists

c1 > 0 such that Ψ(u,v) ≤ c1‖u‖Hm(Ω)‖v‖Hm(Ω) for all u,v ∈ Hm(Ω). Assume that

there exists c2 ∈ (0,c1) such that

Ψ(u,u) ≥ c2‖u‖2
Hm(Ω) for all u ∈V. (2.41)

In fact, (2.41) is nothing else but a strengthened ellipticity assumption for the op-

erator A; it gives a quadratic lower bound behaviour for Ψ (in terms of the Hm

norm) but only on the subspace V . One is then interested in finding sufficient con-

ditions which ensure that (2.41) holds. The most general such condition is due to

Agmon [3] and is quite technical to state; since it is beyond the scope of this book,

we will not discuss it here. We just limit ourselves to verify (2.41) in some simple

cases. If Au = (−∆)mu for some m ≥ 2 then Ψ(u,v) = (u,v)Hm
0

and (2.41) holds

with c1 = c2 = 1 and V = Hm
0 (Ω); hence, Dirichlet boundary conditions (2.20) are

allowed with Au = (−∆)mu. If Au = ∆ 2u then Ψ(u,v) = (u,v)H2
0

and (2.41) holds

again with c1 = c2 = 1 but now for both the cases V = H2
0 (Ω) and V = H2∩H1

0 (Ω)
so that Dirichlet (2.20) and Navier (2.21) boundary conditions are allowed, see also

Theorem 2.31 below. As we shall see in Section 3.3.1 and in Theorem 5.22, if

Au = ∆ 2u and V = H2 ∩H1
0 (Ω), also Steklov boundary conditions (2.22) are al-

lowed but now with the bilinear form Ψ(u,v) = (u,v)H2
0
− ∫∂Ω auν vν dω provided a

satisfies suitable assumptions which ensure (2.17).

Finally, we say that w ∈V is a weak solution to (2.33) if

Ψ(w,ϕ) = 〈g,ϕ〉 for all ϕ ∈V. (2.42)
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Thanks to the Lax-Milgram theorem we may now state the existence and uniqueness

result for weak solutions to the homogeneous problem (2.33).

Theorem 2.15. Let Ω ⊂ Rn be a bounded domain satisfying (2.32). Assume that:

• the operator A in (2.28) and the bilinear form Ψ in (2.29) satisfy (2.27) and

(2.41);

• the operators B j satisfy (2.30), (2.31), (2.36), (2.37), (2.39);

• g satisfies (2.40).

Then problem (2.42) admits a unique weak solution w ∈V ; moreover, there exists a

constant C = C(Ω ,m,A ,B j) > 0 independent of g, such that

‖w‖Hm(Ω) ≤C‖g‖V ′ .

To conclude, let us highlight the existing connection between (2.42) and (2.33).

It is clear that any solution w ∈ H2m(Ω) to (2.33) is also a solution to (2.42). On

the other hand, any w ∈V satisfying (2.42) automatically satisfies the stable bound-

ary conditions since these are contained in the definition of V . We show that if g

and w are smooth then w also satisfies the natural boundary conditions and solves

(2.33). To see this, let {Fj} be as in (2.38) and let {Φ j} denote the normal system

of boundary operators associated to {Fj} through Theorem 2.13. Then if we assume

that g ∈ L2(Ω) and w ∈V ∩H2m(Ω), Theorem 2.13 combined with (2.42) gives

∫

Ω
Awϕ dx+

m

∑
j=1

∫

∂Ω
Φ j(x;D)wFj(x;D)ϕ dω =

∫

Ω
gϕ dx (2.43)

for all ϕ ∈V . Taking arbitrary ϕ ∈C∞
c (Ω) in (2.43) shows that Aw = g a.e. in Ω so

that the equation in (2.33) is satisfied (recall the definition of A in (2.28)). Once this

is established, (2.43) yields

∑
j∈J2

∫

∂Ω
Φ j(x;D)wFj(x;D)ϕ dω =

m

∑
j=1

∫

∂Ω
Φ j(x;D)wFj(x;D)ϕ dω = 0 (2.44)

for all ϕ ∈V, where the first equality is a consequence of the fact that ϕ ∈V , namely

Fjϕ = 0 on ∂Ω for all j ∈ J1. Again by arbitrariness of ϕ ∈V , (2.44) shows that

Φ j(x;D)w = 0 on ∂Ω for all j ∈ J2.

By assumptions (2.37) and (2.39) we know that Φ j = B2m−m j−1 for all j ∈ J2, there-

fore the latter is equivalent to

B j(x;D)w = 0 on ∂Ω for all j = p+1, ...,m

and w also satisfies the natural boundary conditions in (2.33).
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2.4.3 Inhomogeneous boundary value problems

In this section we study weak solvability of (2.24)-(2.25) without assuming that

the boundary data h j vanish. After requiring suitable regularity on the data h j, we

explain what is meant by weak solution and we reduce the inhomogeneous problem

to an homogeneous one.

Regularity assumptions on the data. Let V be as in (2.34) and assume that

f ∈V ′ . (2.45)

Weak solutions to (2.24)-(2.25) will be sought in a suitable convex subset of

Hm(Ω). According to Theorem 8.3 in Chapter 1 in [275], it is then necessary to

assume that

h j ∈ Hm−m j− 1
2 (∂Ω) for all j = 1, ...,m. (2.46)

We have m−m j − 1
2

> 0 for all m j < m, namely for all j = 1, ..., p where p is the

number of stable boundary operators. If j = p + 1, ...,m, we have m−m j − 1
2

< 0

and we recall the definition in (2.7).

If we assume (2.31), (2.32), (2.36) and (2.46), we may apply [416, Theorem 14.1]

to infer that

there exists v ∈ Hm(Ω) such that B j(x;D)v = h j on ∂Ω (2.47)

for all j = 1, ..., p. Then consider the set

K := {w ∈ Hm(Ω); w− v ∈V} ;

it is straightforward to verify that K is a closed convex nonempty subset of Hm(Ω).
If p = 0, then no v needs to be determined by (2.47) and K becomes the whole space

V = Hm(Ω). Let us define the (ordered) family of boundary operators {Fj}m
j=1 as

in (2.38) and let J1 and J2 denote the subsets defined there. We say that u ∈ K is a

weak solution to (2.24)-(2.25) if

Ψ(u,ϕ) = 〈 f ,ϕ〉+ ∑
j∈J2

〈h2m−m j−1,Fj(x;D)ϕ〉∂Ω , j for all ϕ ∈V, (2.48)

where Ψ is defined in (2.29), 〈 . , .〉 denotes the duality between V ′ and V and

〈 . , .〉∂Ω , j denotes the duality between Hm−m j− 1
2 (∂Ω) and H−m+m j+

1
2 (∂Ω).

Reduction to an homogeneous boundary value problem. Let v ∈ Hm(Ω) be de-

fined by (2.47) and let u∈K be a weak solution to (2.24)-(2.25), according to (2.48).

Subtract Ψ(v,ϕ) from the equations in (2.48) to obtain

Ψ(u− v,ϕ) = 〈 f ,ϕ〉+ ∑
j∈J2

〈h2m−m j−1,Fj(x;D)ϕ〉∂Ω , j −Ψ(v,ϕ)

for all ϕ ∈V . By (2.45), the linear functional g defined by
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g : ϕ 7→ 〈 f ,ϕ〉+ ∑
j∈J2

〈h2m−m j−1,Fj(x;D)ϕ〉∂Ω , j −Ψ(v,ϕ) for ϕ ∈V

is continuous on V so that (2.40) holds. Now put w := u− v; then w ∈ V satisfies

(2.42). Therefore, we shall proceed as follows. We first determine a function v as in

(2.47), then we solve problem (2.33) (whose variational formulation is (2.42)) and

find w ∈ V . Putting u = v + w we obtain a solution u ∈ K to (2.24)-(2.25) (whose

variational formulation is (2.48)).

With these arguments, Theorem 2.15 immediately gives

Theorem 2.16. Let Ω ⊂ Rn be a bounded domain satisfying (2.32). Assume that:

• the operator A in (2.28) and the bilinear form Ψ in (2.29) satisfy (2.27) and

(2.41);

• the operators B j satisfy (2.30), (2.31), (2.36), (2.37), (2.39);

• f satisfies (2.45) and the h j’s satisfy (2.46).

Then problem (2.48) admits a unique weak solution u ∈ K; moreover, there exists a

constant C = C(Ω ,m,A ,B j) > 0 independent of f and of the h j’s, such that

‖u‖Hm(Ω) ≤C

(
‖ f‖V ′ +

p

∑
j=1

‖h j‖
H

m−m j− 1
2 (∂Ω)

)
.

As for the homogeneous problem, let us explain the link between weak and strong

solutions. Again, any strong solution u ∈ H2m(Ω) to (2.24)-(2.25) certainly satisfies

(2.48); note that a strong solution may exist only if

h j ∈ H2m−m j− 1
2 (∂Ω) for j = 1, ...,m and f ∈ L2(Ω). (2.49)

Conversely, assume that (2.49) holds and let u∈K∩H2m(Ω) be a solution to (2.48).

Let {Fj} be as in (2.38) and let {Φ j} denote the normal system of boundary opera-

tors associated to {Fj} through Theorem 2.13. Then (2.48) gives

∫

Ω
Auϕ dx+

m

∑
j=1

∫

∂Ω
Φ j(x;D)uFj(x;D)ϕ dω

=
∫

Ω
f ϕ dx+ ∑

j∈J2

∫

∂Ω
h2m−m j−1Fj(x;D)ϕ dω for all ϕ ∈V. (2.50)

Taking arbitrary ϕ ∈C∞
c (Ω) in (2.50) shows that Au = f a.e. in Ω so that (2.24) is

satisfied. Once this is established, (2.50) yields

∑
j∈J2

∫

∂Ω
Φ j(x;D)uFj(x;D)ϕ dω = ∑

j∈J2

∫

∂Ω
h2m−m j−1 Fj(x;D)ϕ dω

for all ϕ ∈V . Then the same arguments used after (2.44) show that

B j(x;D)u = h j on ∂Ω for all j = p+1, ...,m,
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which proves that u also satisfies the natural boundary conditions in (2.25).

Remark 2.17. Although (2.17) and the complementing condition (see Definition 2.9)

do not explicitly appear in Theorem 2.16, they are hidden in the assumptions. The

coercivity assumption (2.41) ensures that (2.17) is satisfied, see Theorem 2.15. On

the other hand, assumptions (2.36) and (2.39) ensure that the complementing con-

dition holds, see [275, Section 2.4].

If the boundary ∂Ω and the data f and h j are more regular, elliptic theory applies

and also the solution u given in Theorem 2.16 is more regular, see the next section.

2.5 Regularity results and a priori estimates

2.5.1 Schauder theory

Here we consider classical solutions to (2.2)-(2.14). To do so, we need the Schauder

theory and a good knowledge of Hölder continuity.

First fix an integer ` such that max{m j} ≤ ` ≤ 2m. Then slightly modify the

problem and consider the equation

(−∆)mu+∑
∗

Dβ
[
aβ ,µ(x)Dµ u

]
= ∑

|β |≤2m−`

Dβ fβ in Ω , (2.51)

complemented with the boundary conditions

∑
|α|≤m j

b j,α(x)Dα u = h j on ∂Ω with j = 1, ...,m, (2.52)

where ∑
∗

means summation over all multi-indices β and µ such that

|β | ≤ 2m− ` , |µ| ≤ ` , |β |+ |µ| ≤ 2m−1 . (2.53)

With the notations of (2.2) and (2.14), we have now

A (x;D)u = ∑
∗

Dβ
[
aβ ,µ(x)Dµ u

]
, B j(x;D)u = ∑

|α|≤m j

b j,α(x)Dα u . (2.54)

Fix a second integer k ≥ ` and put ` = max{2m,k}. Then assume that for some

0 < γ < 1 we have
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aβ ,µ ∈Ck−`,γ(Ω) for all β ,µ satisfying (2.53),

fβ ∈Ck−`,γ(Ω) for all |β | ≤ 2m− `,

b j,α ∈Ck−m j ,γ(∂Ω) for all j = 1, ...,m and |α| ≤ m j,

h j ∈Ck−m j ,γ(∂Ω) for all j = 1, ...,m.

(2.55)

Note that under assumptions (2.55), problem (2.51)-(2.52) needs not to make

sense in a classical way. Therefore, we first need to introduce a different kind of

solution.

Definition 2.18. We say that u ∈Ck,γ(Ω) is a mild solution to (2.51)-(2.52) if

∫

Ω
u(−∆)mϕ dx + ∑

∗
(−1)|β |

∫

Ω
aβ ,µ(x)Dµ uDβ ϕ dx

= ∑
|β |≤2m−`

(−1)|β |
∫

Ω
fβ (x)Dβ ϕ dx

for all ϕ ∈C∞
c (Ω) and if u satisfies pointwise the boundary conditions in (2.52).

Hence, for any mild solution the boundary conditions (2.52) are well-defined

since k ≥ ` ≥ m j for all j.

We are now ready to state

Theorem 2.19. Let k ≥ ` ∈ [max{m j},2m]∩N and ` = max{2m,k}. Assume that

(2.55) holds and that A and the B j’s satisfy (2.54)-(2.19). Assume (2.15) and (2.17).

Assume moreover that ∂Ω ∈C`,γ . Then (2.51)-(2.52) admits a unique mild solution

u ∈Ck,γ(Ω). Moreover, there exists a constant C = C(Ω ,k,m,aβ ,µ ,b j,α) > 0 inde-

pendent of the fβ ’s and of the h j’s, such that the following a priori estimate holds

‖u‖Ck,γ (Ω) ≤C

(

∑
|β |≤2m−`

‖ fβ‖Ck−`,γ (Ω) +
m

∑
j=1

‖h j‖C
k−m j ,γ (∂Ω)

)
.

The constant C depends on Ω only through its measure |Ω | and the C`,γ -norms

of the local maps which define the boundary ∂Ω . If k ≥ 2m then the solution u is

classical.

Finally, if (2.17) is dropped, then for any solution u to (2.51)-(2.52) one has the

following local variant of the estimate

‖u‖Ck,γ (Ω∩BR(x0)) ≤ C

(

∑
|β |≤2m−`

‖ fβ‖Ck−`,γ (Ω∩B2R(x0))

+
m

∑
j=1

‖h j‖C
k−m j ,γ (∂Ω∩B2R(x0))

+‖u‖L1(Ω∩B2R(x0))

)

for any R > 0 and any x0 ∈ Ω . Here, C also depends on R.
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Roughly speaking, equation (2.51) says that 2m derivatives of the solution u be-

long to Ck−2m,γ(Ω); if k ≥ 2m this has an obvious meaning while if k < 2m this

should be intended in a generalised sense. In any case, Theorem 2.19 states that the

solution gains 2m derivatives on the datum ∑β Dβ fβ .

2.5.2 Lp-theory

In this section we give an existence result for (2.2)-(2.14) in the framework of Lp

spaces. Under suitable assumptions on the parameters involved in the problem, we

show that the solution has at least 2m derivatives in Lp(Ω). In this case, the equation

(2.2) is satisfied a.e. in Ω and we say that u is a strong solution.

The following statement should also be seen as a regularity complement to The-

orem 2.16.

Theorem 2.20. Let 1 < p < ∞ and take an integer k ≥ 2m. Assume that ∂Ω ∈ Ck

and that {
aβ ∈Ck−2m(Ω) for all |β | ≤ 2m−1,

b j,α ∈Ck−m j(∂Ω) for all j = 1, ...,m, |α| ≤ m j.
(2.56)

Assume also that (2.15), (2.17) hold and that A and the B j’s satisfy (2.18)-(2.19).

Then for all f ∈ W k−2m,p(Ω) and all h j ∈ W
k−m j− 1

p ,p(∂Ω) with j = 1, ...,m, the

problem (2.2)-(2.25) admits a unique strong solution u ∈W k,p(Ω). Moreover, there

exists a constant C = C(Ω ,k,m,A ,B j) > 0 independent of f and of the h j’s, such

that the following a priori estimate holds

‖u‖W k,p(Ω) ≤C

(
‖ f‖W k−2m,p(Ω) +

m

∑
j=1

‖h j‖
W

k−m j− 1
p ,p

(∂Ω)

)
.

The constant C depends on Ω only through its measure |Ω | and the Ck-norms of

the local maps which define the boundary ∂Ω . If k > 2m + n
p

then u is a classical

solution.

Finally, if (2.17) is dropped, then for any solution u to (2.2)-(2.25) one has the

following local variant of the estimate

‖u‖W k,p(Ω∩BR(x0)) ≤ C

(
‖ f‖W k−2m,p(Ω∩B2R(x0))

+
m

∑
j=1

‖h j‖
W

k−m j− 1
p ,p

(∂Ω∩B2R(x0))
+‖u‖L1(Ω∩B2R(x0))

)

for any R > 0 and any x0 ∈ Ω . Here, C also depends on R.

The proof of this general result is quite involved, especially if p 6= 2. It requires

the representation of the solution u in terms of the fundamental solution and the

Calderon-Zygmund theory [83] on singular integrals in Lp.
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In the case of Dirichlet boundary conditions Theorem 2.20 reads

Corollary 2.21. Let 1 < p < ∞ and take an integer k ≥ 2m. Assume that ∂Ω ∈ Ck

and that (2.56) holds. Assume moreover that (2.17) holds and that A satisfies

(2.18). Then for all f ∈ W k−2m,p(Ω) equation (2.2) admits a unique strong solu-

tion u ∈W k,p ∩W
m,p
0 (Ω); moreover, there exists a constant C = C(Ω ,k,m,A ) > 0

independent of f , such that

‖u‖W k,p(Ω) ≤C‖ f‖W k−2m,p(Ω).

For equations in variational form such as (2.51), Lp-estimates are available under

weaker regularity assumptions. For our purposes we just consider the following

special situation.

Theorem 2.22. For ∂Ω ∈ C2, p ∈ (1,∞), and f ∈ Lp(Ω) there exists a unique so-

lution u ∈W
2,p
0 (Ω) of {

∆ 2u = ∇2 f in Ω ,
u = uν = 0 on ∂Ω ,

where ∇2 means any second derivative. Moreover, the following Lp-estimate holds

‖u‖W 2,p(Ω) ≤C‖ f‖Lp(Ω)

with C = C(p,Ω) > 0.

For Steklov boundary conditions (2.22) associated to the biharmonic operator,

Theorem 2.20 reads as follows.

Corollary 2.23. Let 1 < p < ∞ and take an integer k ≥ 4. Assume that ∂Ω ∈Ck and

a ∈Ck−2(∂Ω), then there exists C = C(k, p,α,Ω) > 0 such that

‖u‖W k,p(Ω) ≤

≤C

(
‖u‖Lp(Ω) +

∥∥∆ 2u
∥∥

W k−4,p(Ω)
+‖u‖

W
k− 1

p ,p
(∂Ω)

+‖∆u−auν‖
W

k−2− 1
p ,p

(∂Ω)

)

for all u ∈W k,p(Ω). The same statement holds for any k ≥ 2, provided the norms in

the right hand side are suitably interpreted, see (2.5), (2.6), and (2.9).

Remark 2.24. In the estimates of Theorems 2.19 and 2.20 and of Corollaries 2.21

and 2.23, the constants depend in an indirect and nonconstructive way on the par-

ticular differential and boundary operators. As soon as one puts (for instance) the

L1-norm of the solution on the right hand side, the constants become explicit and

depend only on bounds for the data (k,m, domain, and coefficients) of the prob-

lem. This kind of uniformity will be needed in the proof of positivity for Green’s

functions in perturbed domains, see Section 6.5. There we have uniformly coercive

problems which yield an explicit estimate for some lower order norms, so that Lp or

Schauder estimates depending on the specific operator would be useless.
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2.5.3 The Miranda-Agmon maximum modulus estimates

We start by recalling that it is in general false that ∆u ∈ C0 implies u ∈ C2 even

if u satisfies homogeneous Dirichlet boundary conditions. Therefore, this lack of

regularity is a local problem, irrespective of how smooth the boundary data are. To

see why the implication fails, consider the function

u(x1,x2) =

{
x1x2 log | log(x2

1 + x2
2)| if (x1,x2) 6= (0,0),

0 if (x1,x2) = (0,0) ,

which is well-defined for |x|< 1. Some computations show that u solves the problem

{
−∆u = f in Br(0),
u = 0 on ∂Br(0),

where r = 1/
√

e and

f (x1,x2) =

{
4x1x2(1−2log(x2

1+x2
2))

(x2
1+x2

2) log2(x2
1+x2

2)
if (x1,x2) 6= (0,0),

0 if (x1,x2) = (0,0), .

One can check that f ∈C0(Br(0)). On the other hand, for (x1,x2) 6= (0,0) we have

ux1x2
(x1,x2)

= log | log(x2
1 + x2

2)|+
2(x4

1 + x4
2)

(x2
1 + x2

2)
2 log(x2

1 + x2
2)

− 4x2
1x2

2

(x2
1 + x2

2)
2 log2(x2

1 + x2
2)

which is unbounded for (x1,x2) → (0,0). Therefore, u 6∈C2(Br(0)).
This example shows that a version of Theorem 2.19 in the framework of spaces

Ck of continuously differentiable functions is not available. On the other hand, the

well-known Poisson integral formula shows that for continuous Dirichlet boundary

data any harmonic function in the ball B is of class C0(B), see [197, Theorem 2.6]. In

other words, the solution inherits continuity properties from its trace. We state below

the corresponding result for polyharmonic equations in a particular situation which

is, however, general enough for our purposes. We consider boundary conditions

(2.14) with constant coefficients and the problem





(−∆)mu+A (x;D)u = f in Ω

B j(D)u = ∑
|α|≤m j

b j,α Dα u = h j on ∂Ω with j = 1, ...,m
(2.57)

for some constants b j,α ∈R\{0}. Then we have the following a priori estimates for

the maximum modulus of solutions and some of their derivatives.

Theorem 2.25. Assume (2.15), (2.17) and that A and the B j’s satisfy (2.18)-(2.19).

Assume also that ∂Ω ∈C2m and let µ = max j m j. Finally, assume that f ∈C0(Ω)
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and that h j ∈ Cµ−m j(∂Ω) for any j = 1, ...,m. Then (2.57) admits a unique strong

solution u ∈ Cµ(Ω)∩W
2m,p
loc (Ω) for any p ∈ (1,∞). Moreover, there exists C > 0

independent of f ,h j such that

max
0≤k≤µ

‖Dku‖L∞ ≤C

(
m

∑
j=1

‖h j‖C
µ−m j (∂Ω)

+‖ f‖L∞ +‖u‖L1

)
.

Proof. We split problem (2.57) into the two subproblems

{
(−∆)mv+A (x;D)v = f in Ω ,
B j(D)v = 0 on ∂Ω , j = 1, ...,m,

(2.58)

{
(−∆)mw+A (x;D)w = 0 in Ω ,
B j(D)w = h j on ∂Ω , j = 1, ...,m.

(2.59)

Since f ∈ C0(Ω) ⊂ Lp(Ω) for any p ≥ 1, by Theorem 2.20 (with k = 2m) we

know that there exists a unique solution v∈W 2m,p(Ω) to (2.58). By Theorem 2.6 we

infer that v∈C2m−1,γ(Ω) for all γ ∈ (0,1). Moreover, there exist constants c1,c2 > 0

such that

‖v‖C2m−1,γ (Ω) ≤ c1‖ f‖L∞ + c2‖v‖L1 ,

see again Theorem 2.20.

On the other hand, by generalising the Miranda-Agmon procedure [4, 304, 305]

one shows that (2.59) admits a unique solution w ∈Cµ(Ω) satisfying

max
0≤k≤µ

‖Dkw‖L∞ ≤ c3

m

∑
j=1

‖h j‖C
m j (∂Ω) + c4‖w‖L1 (2.60)

for some c3,c4 > 0. This procedure consists in constructing a suitable approximate

solution w0 to (2.59). To this end one uses the explicit Poisson kernels which solve

a related boundary value problem in the half space. These Poisson kernels are deter-

mined in [5] and, since (2.19) holds, it makes no difference to consider the Dirichlet

problem as in [4, 304, 305] or the general boundary value problem in (2.59). Once

this approximate solution w0 is constructed, one shows that it satisfies (2.60) with

c4 = 0. Then one uses again Lp elliptic estimates from Theorem 2.20 and embedding

arguments in order to show that the solution w to (2.59) satisfies (2.60).

Once the solutions v and w to (2.58) and (2.59) are obtained, the solution u of

(2.57) is determined by adding, u = v+w, so that also the estimate of the Cµ -norm

follows. �

2.6 Green’s function and Boggio’s formula

The regularity results of the previous sections are somehow directly visible when

writing explicitly the solution of the boundary value problem in terms of the data
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by means of a suitable kernel. Let us focus on the polyharmonic analogue of the

clamped plate boundary value problem

{
(−∆)mu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1.
(2.61)

Here Ω ⊂ Rn is a bounded smooth domain, f a datum in a suitable functional space

and u denotes the unknown solution.

In order to give an explicit formula for solving (2.61), the first step is to define

the fundamental solution of the polyharmonic operator (−∆)m in Rn. We put

Fm,n (x) =





2Γ (n/2−m)
nen4mΓ (n/2)(m−1)! |x|

2m−n
if n > 2m or n is odd,

(−1)m−n/2

nen4m−1Γ (n/2)(m−n/2)!(m−1)!
|x|2m−n (− log |x|) if n ≤ 2m is even,

so that, in distributional sense

(−∆)mFm,n = δ0, (2.62)

where δ0 is the Dirac mass at the origin. Of course, one may add any m-polyharmonic

function to Fm,n and still find (2.62). For n > 2m there is a unique fundamental so-

lution when one adds the “boundary condition”

lim
|x|→∞

Fm,n(x) = 0. (2.63)

For n ≤ 2m no fundamental solution satisfies (2.63) and there does not seem to be a

natural restriction to fix a unique fundamental solution.

Thanks to the fundamental solution, we may introduce the notion of Green func-

tion.

Definition 2.26. A Green function for (2.61) is a function (x,y) 7→ G(x,y) : Ω ×
Ω → R∪{∞} satisfying:

1. x 7→ G(x,y)−Fm,n(x− y) ∈C2m(Ω)∩Cm−1(Ω) for all y ∈ Ω if defined suitably

for x = y;

2. (−∆x)
m (G(x,y)−Fm,n(x− y))= 0 for all (x,y)∈Ω 2 if defined suitably for x = y;

3. Dα
x G(x,y) = 0 for all (x,y) ∈ ∂Ω ×Ω and |α| ≤ m−1.

Formally, the Green function enables one to write the unique solution to (2.61)

as

u(x) =
∫

Ω
G(x,y) f (y)dy. (2.64)

Provided f belongs to a suitable functional space, this formula makes sense and

gives the solution u.

Clearly, the exact form of the Green function G is not easily determined. How-

ever, as we already mentioned in Section 1.2, Boggio [63, p. 126] could explicitly
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calculate the Green function Gm,n := G(−∆)m,B for problem (2.61) when Ω is the

unit ball in Rn.

Lemma 2.27. The Green function for the Dirichlet problem (2.61) with Ω = B is

positive and given by

Gm,n(x,y) = km,n |x− y|2m−n

∣∣∣|x|y− x
|x|

∣∣∣
/
|x−y|∫

1

(v2 −1)m−1v1−n dv. (2.65)

The positive constants km,n are defined by

km,n =
1

nen4m−1 ((m−1)!)2
, en =

πn/2

Γ (1+n/2)
.

Remark 2.28. If n > 2m, then by applying the Cayley transform one finds for the

half space Rn
+ = {x ∈ Rn : x1 > 0}

G(−∆)m,Rn
+
(x,y) = km,n |x− y|2m−n

|x∗−y|/|x−y|∫

1

(v2 −1)m−1v1−n dv, (2.66)

where x,y ∈ Rn
+, x∗ = (−x1,x2, . . . ,xn). We also emphasise that the assumption

n > 2m is required in this half space Rn
+ in order to have uniqueness of the corre-

sponding Green function. When n ≤ 2m one may achieve uniqueness in some cases

by adding restrictions such as upper bounds for its growth at infinity (see Remark

6.28 for the case m = 2 and n = 3,4) . Alternatively, one may just impose that the

Green function in the half space is the Cayley transform of its counterpart in the ball

and hence given by (2.66).

2.7 The space H2 ∩H1
0 and the Sapondžyan-Babuška paradoxes

In this section, we consider in some detail the space H2∩H1
0 which is in some sense

“intermediate” between H2 and H2
0 . This space is also related to both the homo-

geneous Navier (2.21) and Steklov (2.22) boundary conditions, see the discussion

following (2.34). The norm to be used in this space strongly depends on the smooth-

ness of ∂Ω . It was assumed in Theorem 2.20 that ∂Ω ∈C4. We first show that this

assumption may be relaxed in some cases. On the other hand, if it is “too relaxed”

then uniqueness, regularity or continuous dependence may fail, leading to some ap-

parent paradoxes. We also point out that the regularity of the boundary plays an

important role in the definition of the first Steklov eigenvalue, see Section 3.3.2.

Let us first remark that in the case m = 2, Theorem 2.2 reads
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Corollary 2.29. Let Ω ⊂ Rn be a smooth bounded domain. On the space H2
0 (Ω),

the bilinear form

(u,v) 7→ (u,v)H2
0

:=
∫

Ω
∆u∆vdx for all u,v ∈ H2

0 (Ω)

defines a scalar product over H2
0 (Ω) which induces a norm equal to ‖D2 .‖L2 and

equivalent to (‖D2 .‖2
L2 +‖ .‖2

L2)
1/2.

We now show the less obvious result that the very same scalar product may also

be used in the larger space kerγ0 = H2 ∩H1
0 (Ω) when ∂Ω is not too bad. For later

use, we state this result in general (possibly nonsmooth) domains. The class of do-

mains considered is explained in the following definition taken from [2].

Definition 2.30. We say that a bounded domain Ω ⊂ Rn satisfies an outer ball

condition if for each y ∈ ∂Ω there exists a ball B ⊂ Rn \Ω such that y ∈ ∂B. We

say that it satisfies a uniform outer ball condition if the radius of the ball B can be

taken independently of y ∈ ∂Ω .

In particular, a convex domain is a Lipschitz domain which satisfies a uniform

outer ball condition. We have

Theorem 2.31. Assume that Ω ⊂ Rn is a Lipschitz bounded domain which satisfies

a uniform outer ball condition. Then the space H2∩H1
0 (Ω) becomes a Hilbert space

when endowed with the scalar product

(u,v) 7→
∫

Ω
∆u∆vdx for all u,v ∈ H2 ∩H1

0 (Ω).

This scalar product induces a norm equivalent to ‖ .‖H2 .

Proof. Under the assumptions of the theorem Adolfsson [2] proved that there exists

a constant C > 0 independent of u, such that

‖u‖H2 ≤C‖∆u‖L2 for all u ∈ H2 ∩H1
0 (Ω).

For all u ∈ H2 ∩H1
0 (Ω) we also have

|D2u|2 =
n

∑
i, j=1

(∂i ju)2 ≥
n

∑
i=1

(∂iiu)2 ≥ 1

n
|∆u|2 a.e. in Ω . (2.67)

This shows that the two norms are equivalent. �

Remark 2.32. Let Ω ⊂ Rn be a bounded and convex domain with smooth boundary.

Consider the set

V :=

{
u ∈C2(Ω); u ≥ 0,

∂u

∂ν
≥ 0, u

∂u

∂ν
= 0 on ∂Ω

}
.

Let W denote the closure of V with respect to the norm ‖ .‖H2 . Then we have
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∫

Ω
|D2u|2 dx ≤

∫

Ω
|∆u|2 dx for all u ∈W,

see [198, Theorem 2.1]. This inequality is somehow the converse of (2.67).

The assumptions on ∂Ω under which Theorem 2.31 holds are related to the so-

called Sapondžyan or concave corner paradox. This paradox relies on the fact that,

for some nonsmooth domains Ω , the linear Navier problem may have several dif-

ferent solutions, according to the functional space where they are sought.

One way of getting the existence is through a “system solution” which belongs

to H1
0 (Ω) as well as its Laplacian. A second type of solution is obtained using

Kondratiev’s techniques in the space H2 ∩H1
0 (Ω). Note that, since ‖.‖ defined by

‖u‖ := ‖∆u‖L2 is not a norm on H2 ∩ H1
0 (Ω) when the domain has a reentrant

corner, one cannot directly apply the Lax-Milgram theorem. Indeed, Theorem 2.31

may not hold if a uniform outer ball condition fails. The following example appears

suitable to illustrate this dichotomy in some detail.

Example 2.33. For α ∈
(

1
2
π,π

)
fix the domain

Ωα =
{
(r cosϕ,r sinϕ) ∈ R2;0 < r < 1 and |ϕ| < α

}
.

Let f ∈ L2(Ωα) and consider the homogeneous Navier problem





∆ 2u = f in Ωα ,
u = 0 on ∂Ωα ,
∆u = 0 on ∂Ωα \{0}.

(2.68)

We say that u is a system solution to (2.68) if u,∆u ∈ H1
0 (Ωα) and

{
−∆u = w and −∆w = f in Ωα ,

u = 0 and w = 0 on ∂Ωα .
(2.69)

By applying twice the Lax-Milgram theorem in H1
0 (Ωα), this system solution, as a

solution to an iterated Dirichlet Laplace problem on a bounded domain, exists for

any f ∈ L2(Ωα). Using [251] one finds that there also exists a solution in H2 ∩
H1

0 (Ω) of (2.68), which indeed satisfies ∆u = 0 pointwise on ∂Ω \ {0}. Since its

second derivatives are square summable, let us call this the energy solution.

Next we consider a special function. For ρ = π
2α the function vα defined by

vα(r,ϕ) =
(
r−ρ − rρ

)
cos(ρϕ)

satisfies {
−∆vα = 0 in Ωα ,

vα = 0 on ∂Ωα\{0}.

Moreover, one directly checks that vα ∈ L2(Ωα) for ρ ∈
(

1
2
,1
)
. Then there exists a

unique solution bα ∈ H1
0 (Ωα) of



52 2 Linear problems

{
−∆bα = vα in Ωα ,

bα = 0 on ∂Ωα .

One has ∆bα 6∈ H1
0 (Ωα) and may check that bα 6∈ H2(Ωα). So we have found a

nontrivial solution to (2.68) with f = 0. This bα is neither a system solution nor an

energy solution. Let u be the system solution. Then the following holds:

1. For all c ∈ R we have uc := u+ cbα ∈ H1
0 (Ωα) and ∆uc ∈ L2(Ωα).

2. For all c ∈ R, the function uc satisfies (2.68). Using results in [318] one may

show that in fact uc ∈C0(Ωα) and ∆uc ∈C0
loc(Ωα \{0}) whenever f ∈ L2(Ωα).

3. One finds ∆uc ∈ H1
0 (Ωα) if and only if c = 0.

4. For f ∈ L2(Ωα) let

cα( f ) := −‖vα‖−2
L2

∫

Ωα

vαG−∆ ,Ωα f dx.

We have uc ∈ H2 ∩H1
0 (Ωα) if and only if c = cα( f ).

5. The energy solution to (2.68) is uc with c = cα( f ). Hence the system solution is

different from the energy solution whenever cα( f ) 6= 0.

Now let f be positive. A close inspection shows, see [320], that for the system

solution the H2-regularity fails when cα( f ) 6= 0 while positivity holds true. On the

other hand, the energy solution uc with c = cα( f ) has the appropriate regularity, but

positivity fails when α > 3
4
π and

∫

Ωα

(
r−

π
α − r

π
α

)
sin
(

π
α ϕ
)
G−∆ ,Ωα f dx 6= 0.

For α ∈ ( 1
2
π, 3

4
π) there is only numerical evidence of sign-changing energy solu-

tions. See Figure 2.1.

We now discuss in detail another famous paradox due to Babuška, also known

as the polygon-circle paradox. The starting point is a planar hinged plate Ω with a

load f ∈ L2(Ω). This gives rise to the Steklov problem

{
∆ 2u = f in Ω ,

u = ∆u− (1−σ)κ ∂u
∂ν = 0 on ∂Ω ,

(2.70)

where κ denotes the curvature of the boundary and σ is the Poisson ratio. Problem

(2.70) is considered both in the unit disk B and in the sequence (see Figure 1.3) of

inscribed regular polygons (Pm) ⊂ B (m ≥ 3) with corners

{(
cos

(
2k

m
π

)
,sin

(
2k

m
π

))
;k = 1, . . . ,m

}
.

Since the sides of Pm are flat, the curvature vanishes there and (2.70) becomes

{
∆ 2u = f in Pm,
u = ∆u = 0 on ∂Pm.

(2.71)
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Fig. 2.1 The level lines of u and uc = u + cbα with c = cα ( f ) for f ≥ 0 having a small support

near the left top of the domain. Grey region = {x : uc(x) < 0}; here, a different scale is used for

the level lines.

The so-called Babuška paradox shows that this argument is not correct, that is, (2.71)

is not the right formulation of (2.70) when Ω = Pm. The “infinite curvature” at the

m corners cannot be neglected, one should instead consider Dirac delta-type contri-

butions at each corner. Indeed, the next result states that the sequence of solutions to

(2.71) does not converge (as m → ∞) to the unique solution of (2.70) when Ω = B.

On the contrary, it converges to the unique solution of the following Navier problem

{
∆ 2u = f in B,
u = ∆u = 0 on ∂B.

(2.72)

More precisely, recalling the definition of system solution in (2.69), we have

Proposition 2.34. Let Pm ⊂ B with m ≥ 3 be the interior of the regular polygon

with corners
{(

cos
(

2k
m

π
)
,sin

(
2k
m

π
))

;k = 1, . . . ,m
}

and let f ∈ L2(B). Then the

following holds.

1. There exists a unique (weak) system solution um of (2.71) so that um,∆um ∈
H1

0 (Pm).
2. There exists a unique minimiser ũm in

{
u ∈ H2 ∩H1

0 (Pm)
}

of

J(u) =
∫

Pm

(
1
2
(∆u)2 − f u

)
dx.

3. The solution um satisfies

um ∈ H2 ∩C1(Pm) and ∆um ∈ H2 ∩C0,γ(Pm),

for γ ∈ (0,1) and hence ũm = um.
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4. If we extend um by 0 on B\Pm and let u∞ be the solution of (2.72), then

lim
m→∞

‖um −u∞‖L∞(B) = 0.

Note that even if the identity of um and ũm may not seem very surprising, Exam-

ple 2.33 shows that for domains with nonconvex corners these two solutions can be

different.

Proof. 1. By the Lax-Milgram theorem, for any bounded domain Ω (in particular,

if Ω = Pm) and any f ∈ L2(Ω) the Poisson problem

{
−∆w = f in Ω ,
w = 0 on ∂Ω ,

(2.73)

has a unique (weak) solution in H1
0 (Ω). Similarly, one finds a unique solution in

H1
0 (Ω) to −∆u = w in Ω with u = 0 on ∂Ω . We apply this fact to the case where

Ω = Pm.

2. The functional J is convex and coercive on H2 ∩H1
0 (Pm) in view of Theorem

2.31 since the corner points of Pm all have angles less then π (i.e. Pm satisfies a

uniform outer ball condition). As the functional J is weakly lower semicontinuous

and the closed unit ball in H2 ∩H1
0 (Pm) is weakly compact there exists a minimiser.

The strict convexity gives uniqueness.

3. Invoking again [2] (or [240] since the Pm are convex), we know that the solution

of (2.73) in Pm with source in L2(Pm) lies in H2(Pm). Hence ∆um ∈ H2(Pm) and,

by Theorem 2.6, ∆um ∈C0,γ(Pm) for all γ ∈ (0,1). In fact, by Kondratiev [251] one

finds that for a convex domain in two dimensions, with all corners having an opening

angle less than or equal to α ∈
(

π
2
,π
)
, the solution of (2.73) for f ∈ Lp(Ω) with

p < pα = 2α
2α−π lies in W 2,p(Ω). Hence for each Pm one finds that um ∈W 2,2+ε(Pm)

for 0 ≤ ε < 4
m−4

. Theorem 2.6 then implies that um ∈C1(Pm).
4. It is sufficient to prove this result for f ≥ 0. For r ∈ (0,1) we compare the

solutions wr of {
−∆w = f in Br,
w = 0 on ∂Br.

Extend wr to B\Br by 0. Assuming f ≥ 0 and f ∈ L2(B) one finds that for 0 < r1 <
r2 < 1 it holds that wr1

≤ wr2
and moreover, that

lim
s→r

‖ws −wr‖L∞(B) = 0.

Indeed, if f ∈ L2(B), then ws,wr ∈C0,γ(B) and for s < r we find that

{
−∆ (wr −ws) = 0 in Bs,
wr −ws = wr on ∂Bs.

Since wr ∈C0,γ(B), this yields

‖wr‖L∞(Br\Bs)
≤C f |r− s|γ .
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By the maximum principle

‖wr −ws‖L∞(B) = ‖wr −ws‖L∞(Bs)
≤ ‖wr‖L∞(∂Bs)

≤C f |r− s|γ .

Again using the maximum principle and writing ur for the solution of (2.72) in Br

(instead of B) we find

ur(x) ≤ u1(x) ≤ ur(x)+C̃ f |1− r|γ . (2.74)

Two more applications of the maximum principle result in

urm(x) ≤ um(x) ≤ u1(x) (2.75)

with rm = cos(π/m) since Brm ⊂Pm ⊂B. The last claim follows by combining (2.74)

and (2.75). �

In order to emphasise the role played by smooth/nonsmooth boundaries in this

paradox, we prove

Proposition 2.35. Let Ω ⊂ R2 be a bounded domain with C2 boundary and let σ ∈
(−1,1). If f ∈ L2(Ω), then there exists a unique minimiser uσ ∈ H2 ∩H1

0 (Ω) of

J(u) =
∫

Ω

(
1
2
(∆u)2 +(1−σ)

(
u2

xy −uxxuyy

)
− f u

)
dxdy.

If ∂Ω ∈C4, then uσ ∈ H4(Ω) and uσ satisfies

{
∆ 2u = f in Ω ,

u = ∆u− (1−σ)κ ∂u
∂ν = 0 on ∂Ω .

(2.76)

Proof. Assume first that 0 ≤ σ < 1. Since the expression

1
2
(∆u)2 +(1−σ)

(
u2

xy −uxxuyy

)
= σ

2
(uxx +uyy)

2 + 1−σ
2

(
u2

xx +2u2
xy +u2

yy

)

is convex in the second derivatives of u, so is J. If −1 < σ < 0, following [331,

Proposition 2.4] we note that

〈dJ(v1)−dJ(v2),v1 − v2〉

=
∫

Ω

(
(v1 − v2)

2
xx +(v1 − v2)

2
yy +2σ(v1 − v2)xx(v1 − v2)yy

+ 2(1−σ)(v1 − v2)
2
xy

)
dxdy

≥ (1+σ)
∫

Ω

(
(v1 − v2)

2
xx +(v1 − v2)

2
yy +2(v1 − v2)

2
xy

)
dxdy

> 0

for all v1,v2 ∈ H2 ∩H1
0 (Ω) (v1 6= v2), where we used the simple inequality 2σab ≥

σ(a2 +b2). Hence, also for −1 < σ < 0, the functional J is convex.
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Then existence and uniqueness of a minimiser for J are obtained as in Proposition

2.34. The minimiser u satisfies the weak Euler-Lagrange equation, that is

∫

Ω

(
∆u∆ϕ +(1−σ)(2uxyϕxy −uxxϕyy −uyyϕxx)− f ϕ

)
dxdy = 0

for all ϕ ∈ H2 ∩H1
0 (Ω). Regularity arguments (see Theorem 2.20) show that for

∂Ω ∈ C4 and f ∈ L2(Ω) the minimiser lies in H4(Ω). The integration by parts in

(1.7) and (1.8) show that uσ satisfies (2.76). �

By combining Propositions 2.34 and 2.35 we may now better explain the Babuška

paradox. Assume that f ∈ L2(B) and let σ 6= 1. If u∞ is as in Proposition 2.34 and

uσ is as in Proposition 2.35, then

u∞ ≡ uσ in B ⇐⇒ ∂u∞

∂ν
≡ 0 on ∂B.

But if 0 6= f ≥ 0, then the maximum principle implies −∆u∞ > 0 and u∞ > 0 whereas

Hopf’s boundary point Lemma even gives ∂u∞

∂ν < 0 on ∂B and hence u∞ 6= uσ .

Babuška considered the case where f = 1 in B. This simple source allows us to

compute all the functions involved. The solution to (2.76) with f = 1 on B is the

radially symmetric function

uσ (x) =
(5+σ)− (6+2σ) |x|2 +(1+σ) |x|4

64(1+σ)
.

The limit u∞ in Babuška’s example, defined by u∞(x) = limm→∞ um(x) equals

uσ=1(x), namely

u∞(x) =
3

64
− 1

16
|x|2 +

1

64
|x|4 ,

see also [401, p. 499] and [135].

-1 -0.5 0.5 1

0.02
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Fig. 2.2 The example of Babuška: Ω = B and f = 1. The solutions uσ to (1.10) depend on σ ; from

top to bottom the solutions for σ = 0, .3, .5 and 1. The solution for σ = 1 is the limit of um from

the regular m-polygon with m → ∞.
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2.8 Bibliographical notes

Ellipticity and the complementing condition are well explained in [5], see also Sec-

tion 1 of Chapter 2 in [275]. The polynomial Lm representing the differential op-

erator is taken from [5, Section I.1], see also Section 1.1 of Chapter 2 in [275].

For boundary conditions that do not satisfy assumption (2.15) we refer again to [5].

The complementing condition is sometimes also called Lopatinski-Shapiro condi-

tion and may be defined in an equivalent way, see [416, Section 11]. Concerning

assumption (2.17), we refer to [416, Theorem 13.1] for a general statement relating

ellipticity, the complementing condition, regularity results, Fredholm theory and a

priori estimates.

More results about Sobolev spaces may be found in the monographs by Adams

[1], Maz’ya [291] and Lions-Magenes [275]. All the embedding theorems in Section

2.2.2 may be derived from [1, Theorems 5.4 and 6.2] whereas for the scalar product

in Hm(Ω) see [275, Théorème 1.1]. Theorem 2.31 is taken from [80] and Theorem

2.7 is taken from [1, Theorem 5.23].

The material from Section 2.4 is taken from Section 9 of Chapter 2 in [275] and

from [416]. Theorem 2.13 is a variant of Green’s formula, see [416, Theorem 14.8].

A Hilbert triple as in Definition 2.14 is a particular case of a Gelfand triple, see [416,

Definition 17.1]. The coercivity condition in (2.41) is given in Hm(Ω), the frame-

work of our setting; it is taken from [275, Definition 2.9.1]. Agmon’s condition

which ensures the coercivity of the bilinear form Ψ(u,v) was originally stated in

[3]; we also refer to Theorem 9.3 of Chapter 2 in [275] and to [416, Section 18] for

equivalent formulations. Theorem 2.16 is a direct consequence of the Lax-Milgram

theorem, see [416, Theorem 17.10]. Existence, uniqueness and regularity results for

(2.2)-(2.14) with data in the Hilbert spaces Hs with s ∈ R (possibly also non integer

and negative) are studied in full detail in [275]; in particular, we refer to Remark 7.2

of Chapter 2 in [275] for a statement including all possible cases. Theorem 2.19 is

contained in [5, Theorem 9.3] whereas Theorem 2.20 is contained in [5, Theorem

15.2]. Theorem 2.22 and the extension of Corollary 2.23 to all k ≥ 2 are justified

by [5, Theorem 15.3’]. Theorem 2.25 follows as a by-product of Theorems 2.6 and

2.20 on one hand and maximum modulus estimates for solutions of higher order

elliptic equations on the other hand. This second tool was introduced by Miranda

[304, 305] for higher order problems in the plane and subsequently generalised by

Agmon [4] in any space dimension. We also refer to [377] for a simple sketch of

the proof. Finally, let us mention that partial extensions and counterexamples to

Theorem 2.25 in nonsmooth domains may be found in works by Pipher-Verchota

[337, 338], Maz’ya-Rossmann [290], Mayboroda-Maz’ya [284, 285] and references

therein. Lemma 2.27 is a fundamental contribution by Boggio [63] and is one of the

most frequently used results in this monograph. Results on Green’s functions may

also be found in the monograph [21]. As for Lp-theory of higher-order elliptic op-

erators and underlying kernel estimates one may also see the survey article [129]

by Davies. Theorem 2.31 is a straightforward consequence of results by Adolfsson

[2], see also [237, 238] for related results. Concerning the Sapondžyan paradox, we

refer to the original paper [357] and to more recent results on “multiple” solutions
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in [320]. Babuška [28] noticed first that by approximating a curvilinear domain by

polygons the approximating solutions would not converge to the solution on the

curvilinear domain. Engineering approaches to the Babuška or polygon-circle para-

dox can be found in [241, 314, 354]. A mathematical approach can be found in the

work by Maz’ya and Nazarov [292, 293]. These authors dealt with the paradox by a

careful asymptotic analysis of the boundary layer and the contribution of the corners

in this. Part of their results are based on Γ -convergence results from [422]. More re-

cently, Davini [134] again uses Γ -convergence to find a correct approximation. He

focuses on numerical methods that avoid the pitfall of this paradox. Most part of the

material in Section 2.7 is taken from [387].



Chapter 3

Eigenvalue problems

For quite general second order elliptic operators one may use the maximum princi-

ple and the Kreı̆n-Rutman theorem to show that the eigenfunction corresponding to

the first eigenvalue has a fixed sign. It is then a natural question to ask if a similar

result holds for higher order Dirichlet problems where a general maximum principle

is not available. A partial answer is that a Kreı̆n-Rutman type argument can still be

used whenever the boundary value problem is positivity preserving. We will also ex-

plain in detail an alternative dual cone approach. Both these methods have their own

advantages. The Kreı̆n-Rutman approach shows under fairly weak assumptions that

there exists a real eigenvalue and, somehow as a byproduct, one finds that the eigen-

value and the corresponding eigenfunction are positive. It applies in particular to

non-selfadjoint settings. The dual cone decomposition only applies in a selfadjoint

framework in a Hilbert space, where the existence of eigenfunctions is well-known.

But in this setting it provides a very simple proof for positivity and simplicity of the

first eigenfunction. A further quality of this method is that it applies also to some

nonlinear situations as we shall see in Chapter 7.

We conclude this first part of the chapter with some further remarks on the con-

nection between the positivity preserving property of the Dirichlet problem and the

fixed sign property of the first eigenfunction. In particular, we show that the latter

property, as well as the simplicity of the first eigenvalue, may fail.

Then we turn to the minimisation of the first Dirichlet eigenvalue of the bihar-

monic operator among domains of fixed measure and we show that, in dimensions

n = 2 and n = 3, the ball achieves the minimum. We also consider two further eigen-

value problems, the buckling load of a clamped plate and Steklov eigenvalues. Up

to some regularity to be proved, a quite hard open problem, the disk minimises the

buckling load among planar domains of given measure. For the Steklov problem we

first study in detail the whole spectrum and then we show that an optimal shape of

given measure which minimises the first eigenvalue does not exist.

59
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3.1 Dirichlet eigenvalues

Here we consider the eigenvalue problem

{
(−∆)mu = λu , u 6≡ 0 in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1
(3.1)

on a given bounded domain Ω ⊂ Rn (n ≥ 2). The first eigenvalue of (3.1) is defined

as

Λm,1(Ω) = min
u∈Hm

0 (Ω)\{0}

‖u‖2
Hm

0

‖u‖2
L2

. (3.2)

In this section we discuss several problems related to (3.1) and to its first eigenvalue.

We start by showing that the corresponding eigenfunction is of one sign whenever

the problem {
(−∆)mu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1
(3.3)

is positivity preserving, see Definition 3.1 below. This statement can be obtained in

two different ways, either with a somehow standard Kreı̆n-Rutman type argument

or with a decomposition in dual cones which we discuss in detail. Next, we discuss

the positivity of the first eigenfunction and its failure in general and we end up with

the minimisation of the first eigenvalue among domains of given measure.

3.1.1 A generalised Kreı̆n-Rutman result

The Kreı̆n-Rutman theorem, which can be considered to have its roots in Jentzsch’s

theorem, appears in many forms with many different and partially overlapping con-

ditions but none of the classical versions are optimal for the solution operator of an

elliptic boundary value problem. The main restriction is the necessity of having a

positive cone with an open interior, see [257, Theorems 6.2 and 6.3]. As we shall

see, this restriction could be removed after a profound result of de Pagter [136].

Consider the linear problem (3.3) and the following notion of positivity preserv-

ing.

Definition 3.1. We say that (3.3) has a positivity preserving property when the fol-

lowing holds for all u and f satisfying (3.3):

f ≥ 0 ⇒ u ≥ 0.

In case that a Green function exists, the positivity preserving property holds true

if and only if this Green function is nonnegative. We now establish that if (3.3) is

positivity preserving then a Kreı̆n-Rutman result allows one to verify that the first

eigenvalue for (3.1) is simple and corresponds to an eigenfunction of fixed sign.
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Let us shortly introduce some terminology.

Definition 3.2. An ordered Banach space (E,‖ .‖ ,≥) is called a Banach lattice if:

• the least upper bound of two elements in E lies again in E:

f ,g ∈ E implies f ∨g := inf{h ∈ E;h ≥ f and h ≥ g} ∈ E;

• the ordering of positive elements is preserved by the norm: setting | f |= f ∨(− f )
it holds for all f ,g ∈ E that | f | ≤ |g| implies ‖ f‖ ≤ ‖g‖.

A linear subspace A ⊂ E is called a lattice ideal if

| f | ≤ |g| and g ∈ A implies f ∈ A.

We call A invariant under the operator T : E → E if T (A) ⊂ A.

We can now give a statement which improves the classical Kreı̆n-Rutman theo-

rem, see [257].

Theorem 3.3. Let E be a Banach lattice with dim(E) > 1 and let T : E → E be a

linear operator satisfying:

• T is compact;

• T is positive: T (K ) ⊂ K where K is the positive cone in E;

• T is irreducible: {0} and E are the only closed lattice ideals invariant under T .

Then the spectral radius ρ of T is strictly positive and there exists v ∈K \{0} with

T v = ρv. Moreover, the algebraic multiplicity of ρ is one, all other eigenvalues ρ̃
satisfy |ρ̃| < ρ and no other eigenfunction is positive.

By Lemma 2.27 we know that the Green function in the ball B is positive so

that problem (3.3) has a positivity preserving property whenever Ω = B. In fact,

Theorem 3.3 applies to any domain Ω where the corresponding Green function GΩ

is strictly positive. In this case, one takes E = L2(Ω) or E = {v ∈C(Ω); v|∂Ω = 0}
and T as the solution operator for (3.3). Since for each x ∈ Ω the Green function

GΩ (x, .) is strictly positive on Ω except for a set of measure 0 it follows in both

settings that T is irreducible.

3.1.2 Decomposition with respect to dual cones

We state and discuss here an abstract result due to Moreau [311] about the decom-

position of a Hilbert space H into dual cones; we recall that K ⊂ H is a cone if

u ∈ K and a ≥ 0 imply that au ∈ K . In order to exploit the full power of this

decomposition, we also establish a generalised Boggio result. This will be used in

several different points of this monograph. Finally, we give a first simple application

of this decomposition to a capacity problem.
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It was Miersemann [301] who first observed that the dual cone decomposition

could be quite helpful in the context of fourth order elliptic equations. In the next

section we show how this method can be used to prove simplicity and positivity of

the first eigenfunction of (3.1) in a ball. Moreover, this decomposition will turn out

to be quite useful in a number of semilinear problems considered in this monograph.

Theorem 3.4. Let H be a Hilbert space with scalar product (., .)H . Let K ⊂ H be

a closed convex nonempty cone. Let K ∗ be its dual cone, namely

K
∗ = {w ∈ H; (w,v)H ≤ 0 for all v ∈ K }.

Then for any u ∈ H there exists a unique (u1,u2) ∈ K ×K ∗ such that

u = u1 +u2 , (u1,u2)H = 0. (3.4)

In particular, ‖u‖2
H = ‖u1‖2

H +‖u2‖2
H .

Moreover, if we decompose arbitrary u,v ∈ H according to (3.4), namely u =
u1 +u2 and v = v1 + v2, then we have that

‖u− v‖2
H ≥ ‖u1 − v1‖2

H +‖u2 − v2‖2
H .

In particular, the projection onto K is Lipschitz continuous with constant 1.

Proof. For a given u ∈ H, we prove separately existence and uniqueness of a de-

composition satisfying (3.4).

Existence. Let u1 be the projection of u onto K defined by

‖u−u1‖ = min
v∈K

‖u− v‖

and let u2 := u−u1. Then for all t ≥ 0 and v ∈ K one has

‖u−u1‖2
H ≤ ‖u− (u1 + tv)‖2

H = ‖u−u1‖2
H −2t(u−u1,v)H + t2‖v‖2

H

so that

2t(u2,v)H ≤ t2‖v‖2
H . (3.5)

Dividing by t > 0 and letting t ↘ 0, (3.5) yields (u2,v)H ≤ 0 for all v ∈ K so that

u2 ∈K ∗. Choosing v = u1 also allows for taking t ∈ [−1,0) in (3.5), so that dividing

by t < 0 and letting t ↗ 0 yields (u2,u1)H ≥ 0 which, combined with the just proved

converse inequality, proves that (u2,u1)H = 0.

Lipschitz continuity. From the two inequalities (u1,v2)H ≤ 0 and (v1,u2)H ≤ 0

and by orthogonality, we obtain
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‖u− v‖2
H = (u1 +u2 − v1 − v2,u1 +u2 − v1 − v2)H

= ((u1 − v1)+(u2 − v2),(u1 − v1)+(u2 − v2))H

= ‖u1 − v1‖2
H +‖u2 − v2‖2

H +2(u1 − v1,u2 − v2)H

= ‖u1 − v1‖2
H +‖u2 − v2‖2

H −2(u1,v2)H −2(v1,u2)H

≥ ‖u1 − v1‖2
H +‖u2 − v2‖2

H

and Lipschitz continuity follows.

Uniqueness. It follows from the Lipschitz continuity by taking u = v. �

Remark 3.5. In the context of an abstract Hilbert space it is quite easy to gain an

imagination of the projection u1 of a general element u onto K . However, in the

concrete context of function spaces it is difficult to really see how u1 arises from u

and K . Here, a different point of view is helpful: u2 := u−u1 ∈ H is characterised

by minimising ‖ .‖H subject to the constraint that u−u2 ∈ K . In the framework of

the function space H2
0 (Ω) equipped with the scalar product (u,v)H2

0 (Ω) =
∫

Ω ∆u∆v

and the cone K ⊂ H2
0 (Ω) of nonnegative functions this means that u2 has minimal

(quadratic) elastic energy
∫

Ω (∆u2)
2 among all H2

0 -functions subject to the constraint

that u−u2 ≥ 0, i.e. u2 ≤ u. This means that one seeks u2 as the solution of an obstacle

problem, see [248]. See Figure 3.1 for an example of a dual cone decomposition in

Fig. 3.1 Dual cone decomposition (right) in H2
0 of the function displayed on the left.

H2
0 . We refer to [68] for further explanations and for some explicit examples of the

dual cone decomposition.

Note also that the Lipschitz continuity property stated in Theorem 3.4 strongly

depends on the norm considered. To see this, consider the special case H =
H1

0 (−1,1) with (u,v)H =
∫ 1
−1 u′v′ and let K = {v ∈ H : v ≥ 0 a.e.}. For any

ε ∈ (0,1) let

uε(x) :=





|x|
ε

−1 if |x| ≤ ε,

0 otherwise.

Then

uε
2(x) = |x|−1, uε

1(x) = uε(x)−uε
2(x) =





|x|
ε

−|x| if |x| ≤ ε,

1−|x| otherwise.
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Therefore, uε → 0 in L2(−1,1) as ε ↘ 0, while uε
1 → 1−|x| and uε

2 ≡ |x|−1. This

shows that the decomposition in H1
0 is not continuous with respect to the L2-norm.

Let us now explain how we are planning to use the decomposition in Theorem

3.4. We will take H as a Hilbertian functional space (L2, H2, D2,2 . . .) and

K = {u ∈ H; u ≥ 0 a.e.}.

If H = L2(Ω), then K ∗ = −K and Theorem 3.4 simply yields

u = u+ −u− for all u ∈ L2(Ω).

If H = H1
0 (Ω), in order to characterise K ∗ we seek v ∈ H1

0 (Ω) such that

∫

Ω
∇u∇vdx ≤ 0 for all u ∈ K .

This means that v is weakly subharmonic (formally,
∫

Ω u∆v ≥ 0) and therefore

K
∗ = {v ∈ H1

0 (Ω); v is weakly subharmonic} ( −K .

Note that although
∫

Ω ∇u+∇u− = 0, the decomposition obtained here is different

from u = u+ −u−.

In higher order Sobolev spaces the decomposition u = u+ −u− is no longer ad-

missible because if u ∈ Hm (m ≥ 2) then, in general, u+,u− 6∈ Hm. In some situa-

tions the decomposition into dual cones may substitute the decomposition into pos-

itive and negative part. In order to facilitate and strengthen the application of Theo-

rem 3.4 to higher order Sobolev spaces, we generalise Boggio’s principle (Lemma

2.27) to weakly subpolyharmonic functions in suitable domains. Let us consider

again K = {v ∈ Hm
0 (Ω); v ≥ 0 a.e. in Ω} (or v ∈ Dm,2(Ω) if Ω is unbounded and

n > 2m), then

K
∗ =

{
w ∈ Hm

0 (Ω); (w,v)Hm
0
≤ 0 for all v ∈ K

}
.

Hence, K ∗ = {v ∈ Hm
0 (Ω); (−∆)mv ≤ 0 weakly}. In some cases, we have that

K ∗ ⊂−K .

Proposition 3.6. Assume that either Ω = BR (a ball of radius R), or Ω = Rn
+, or

Ω = Rn; if Ω is unbounded, we also assume that n > 2m. Assume that w ∈ L2(Ω)
is a weak subsolution of the polyharmonic Dirichlet problem, namely

∫

Ω
w(−∆)mudx ≤ 0 for all u ∈ K ∩H2m ∩Hm

0 (Ω) ;

then

either w ≡ 0 or w < 0 a.e. in Ω . (3.6)

In particular, (3.6) holds for all w ∈ K ∗.
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Proof. We only prove the result in the case where Ω = B (the unit ball), the remain-

ing cases being similar. Assuming n > 2m, for the half space it suffices to use (2.66)

instead of (2.65) whereas for the whole space one takes the fundamental solution of

(−∆)m.

Take any ϕ ∈ K ∩C∞
c (B) and let vϕ be the unique (classical) solution of

{
(−∆)mvϕ = ϕ in B,
Dα vϕ = 0 on ∂B for |α| ≤ m−1.

Then by the classical Boggio’s principle (Lemma 2.27) we infer that vϕ ∈ K .

Hence, vϕ is a possible test function for all such ϕ and therefore

∫

B
wϕ dx =

∫

B
w(−∆)mvϕ dx ≤ 0 for all ϕ ∈ K ∩C∞

c (B).

This shows that w ≤ 0 a.e. in B. Assume that w 6< 0 a.e. in B and let φ denote the

characteristic function of the set {x ∈ B; w(x) = 0} so that φ ≥ 0, φ 6≡ 0. Let v0 be

the unique (a.e.) solution of the problem

{
(−∆)mv0 = φ in B,
Dα v0 = 0 on ∂B for |α| ≤ m−1.

Then by Corollary 2.21 and Theorem 2.6, we know that

v0 ∈
(
⋂

q≥1

W 2m,q(B)

)
⊂C2m−1(B)

and again by Boggio’s principle we have v0 > 0 in B. One also reads from Boggio’s

formula (2.65) that (− ∂
∂ν )mv0 > 0 on ∂B, see Theorem 5.7 below. We infer that for

all v ∈C2m(B)∩Hm
0 (B) there exist t1 ≤ 0 ≤ t0 such that v+ t0v0 ≥ 0 and v+ t1v0 ≤ 0

in B. This, combined with the fact that

∫

B
w(−∆)mv0 dx =

∫

{w=0}
wdx = 0,

enables us to show that both

0 ≤
∫

B
w(−∆)m(v+ t0v0)dx =

∫

B
w(−∆)mvdx,

0 ≥
∫

B
w(−∆)m(v+ t1v0)dx =

∫

B
w(−∆)mvdx.

Hence, we have for all v ∈C2m(B)∩Hm
0 (B)

∫

B
w(−∆)mvdx = 0.
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We need to show that C2m(B)∩Hm
0 (B) is dense in H2m ∩Hm

0 (B). For this purpose,

take any function U ∈ H2m ∩Hm
0 (B) and put f := (−∆ m)U . We approximate f in

L2(B) by C∞(B)–functions fk and solve (−∆ m)Uk = fk in B under homogeneous

Dirichlet boundary conditions. We then even have Uk ∈ C∞(B), and by L2–theory

(see Corollary 2.21) it holds that ‖Uk −U‖H2m → 0 as k → ∞.

By the previous statement we may now conclude that

∫

B
w(−∆)mvdx = 0 for all v ∈ H2m ∩Hm

0 (B).

Since w ∈ L2(B), we may take as v ∈ H2m ∩Hm
0 (B) the solution of (−∆)mv = w

under homogeneous Dirichlet boundary conditions. This finally yields w ≡ 0. �

We conclude this section with a first simple application of Theorem 3.4. We show

the positivity of the potential in the second order capacity problem. Given a bounded

domain Ω ⊂ Rn (n > 4) we define its second order capacity as

cap(Ω) = inf

{∫

Rn
|∆u|2 dx; u ∈ D

2,2(Rn), u ≥ 1 a.e. in Ω

}
.

Using Theorem 3.4 we can show that the potential (the minimiser) u is nonnegative.

Let H = D2,2(Rn) and let K = {u ∈ H : u ≥ 0 a.e. in Rn}. If u is sign-changing,

let u = u1 +u2 with u1 ∈ K and u2 ∈ K ∗ \{0} be its decomposition according to

Theorem 3.4. Then by Proposition 3.6 we know that u2 ≤ 0. Hence, u1 ≥ 1 in Ω so

that u1 is an admissible function. Moreover,

∫

Rn
|∆u|2 dx =

∫

Rn
|∆u1|2 dx+

∫

Rn
|∆u2|2 dx >

∫

Rn
|∆u1|2 dx.

This contradicts the minimality of u among admissible functions.

3.1.3 Positivity of the first eigenfunction

In this section we study positivity of the first eigenfunction of (3.1) by means of

the just explained dual cone decomposition. As already mentioned in Section 3.1.1,

whenever we have a positivity preserving solution operator, a Kreı̆n-Rutman result

yields a positive first eigenfunction with the uniqueness properties stated in Theo-

rem 3.3. In our special self-adjoint situation, the dual cone decomposition yields a

direct and simpler proof. Moreover, this strategy can also be exploited for semilinear

problems, see e.g. Lemma 7.22 and Theorem 7.58.

Theorem 3.7. If Ω = B ⊂ Rn, then the first eigenvalue

Λm,1 = inf
Hm

0 (B)\{0}

‖u‖2
Hm

0

‖u‖2
L2

. (3.7)
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of (3.1) is simple and the corresponding first eigenfunction u is of one sign.

Proof. Let H = Hm
0 (B) and let K = {u ∈ H : u ≥ 0 a.e. in B}. For contradiction,

assume that u changes sign. Then according to Theorem 3.4, we decompose u =
u1 +u2, u1 ∈K \{0}, u2 ∈K ∗ \{0}. By Proposition 3.6, we have u2 < 0 a.e. in B.

Replacing u with the positive function u1 − u2 would strictly increase the L2-norm

while by orthogonality we have ‖u1 +u2‖2
H = ‖u1 −u2‖2

H . The ratio would strictly

decrease, a contradiction.

Since a minimiser u ≥ 0 solves (−∆)mu = Λm,1u ≥ 0 we have u > 0 by Propo-

sition 3.6. By contradiction, assume now that (3.7) admits two linearly independent

positive minimisers u and v. Then w = u + αv (for a suitable α < 0) is a sign-

changing minimiser, contradiction! �

For m = 1 the very same technique used in Theorem 3.7 works in any bounded

domain Ω if we wish to show that the first eigenvalue of −∆ in H1
0 (Ω) is simple

and that the corresponding eigenfunction is of one sign. On the other hand, the L2-

norm remains constant if we replace u+ − u− with u+ + u−. So, for this problem,

the decomposition into dual cones works directly, whereas the usual decomposition

into positive and negative parts does not prove simplicity of the first eigenvalue nor

fixed sign of the first eigenfunction without a further regularity argument.

Theorem 3.7 applies to any bounded domain Ω 6= B with a positive Green func-

tion also for m ≥ 2. Note that the positivity preserving property (positivity of the

Green function) implies fixed sign of the first eigenfunction to (3.1) but the con-

verse implication does not hold in general. One can then wonder whether a positive

first eigenfunction can be obtained also for domains which fail to have the positiv-

ity preserving property, see Definition 3.1. The answer is delicate and negative in

general.

Let us quickly outline what is known for sign-changing first eigenfunctions of

{
∆ 2u = λu , u 6≡ 0 in Ω ,

u = |Du| = 0 on ∂Ω .
(3.8)

Basically, only this biharmonic eigenvalue problem on bounded domains has been

considered so far. Concerning (3.8) it is proven in [212] that for an appropriately de-

fined family of perturbations starting from the ball the positivity preserving property

fails to hold strictly before the first eigenfunction loses its fixed sign. So, the con-

verse implication on ellipses as mentioned above is not true, see also Remark 6.4.

It does not seem to be rigorously proven yet that the sign of the first eigenfunction

changes on ellipses with a large ratio but there exists numerical evidence.

The first example of a sign-changing first eigenfunction is due to Coffman [107]

and deals with squares.

Theorem 3.8. For Ω = (0,1)2 problem (3.8) has a sign-changing first eigenfunc-

tion.

Independently of previous results in [111], Kozlov-Kondratiev-Maz’ya [252]

proved that domains in any space dimension whose boundaries contain suitable
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cones also have a sign-changing first eigenfunction for (3.8). Their results cover

a class of elliptic operators of order 2m under Dirichlet boundary conditions. Their

proof is based on a result which ensures the absence of zeros of infinite order at the

vertex of a cone, for nontrivial nonnegative local solutions of the inequality Au ≤ 0,

where A is an elliptic differential operator with real coefficients. Moreover, they con-

structed a sequence of smooth convex domains that exhaust the cone and since the

corresponding first eigenfunctions are proven to converge to the sign-changing first

eigenfunction in the cone the same holds eventually for the approximating domains.

A main assumption that often appears is the convexity of Ω . From Theorem

3.8 and the numerical evidence on eccentric ellipses it is clear that this assumption

will not be sufficient to ensure positivity of the first eigenfunction. Ellipses suggest

that, possibly, a suitable upper bound for the ratio between the radii of the largest

inscribed ball in Ω and the largest filling balls of Ω might yield a sufficient condition

for a positive eigenfunction. We recall that B is a filling ball for Ω if Ω is the union

of translated B. Clearly, for any bounded domain this ratio is always larger than or

equal to 1. An interesting family of domains in this sense are elongated disks, the

so-called stadiums, where the radius of the largest inscribed ball equals the radius of

the largest filling ball. Numerical approximations of the first eigenfunction on such

a domain always resulted in functions apparently of fixed sign.

Fig. 3.2 Stadium-like domains seem to have a positive first eigenfunction in the Dirichlet bihar-

monic case.

Domains which are far from being convex are domains with holes. The standard

examples are the annuli

Aε = {(x,y) ∈ R2; ε2 < x2 + y2 < 1} with 0 < ε < 1.

For these domains, Coffman-Duffin-Shaffer [109, 110, 155] proved the following

somehow surprising statement.

Theorem 3.9. Let Ω = Aε for some ε ∈ (0,1) and consider problem (3.8). There

exists ε0 > 0 such that the following holds.

1. If ε < ε0, then the first eigenvalue has multiplicity two. There exist two indepen-

dent eigenfunctions for this first eigenvalue with diametral nodal lines.

2. If ε = ε0, then the first eigenvalue has multiplicity three. There exists a positive

eigenfunction for this eigenvalue and there are two independent eigenfunctions

with diametral nodal lines.
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3. If ε > ε0, then the first eigenvalue has multiplicity one and the corresponding

eigenfunction is of fixed sign.

It is not surprising that a large hole yields a positive eigenfunction since the do-

main becomes somehow close to an infinite strip with periodic boundary conditions

w.r.t. the unbounded direction, where the first eigenfunction in the appropriate func-

tional space depends only on one variable and is positive.

Even more, numerical experiments indicate that there exist starshaped domains,

where the first eigenfunction is anti-symmetric with respect to a nodal line and hence

sign-changing. See [76] and Figure 3.3 which shows the first and second eigenfunc-

tion for such a domain.

Fig. 3.3 On the left the first eigenfunction for the clamped biharmonic eigenvalue problem on an

8-shaped domain which is sign-changing. On the right the second eigenfunction which is (almost)

positive.

3.1.4 Symmetrisation and Talenti’s comparison principle

Let Λ1,1(Ω) denote the first Dirichlet eigenvalue for −∆ in a bounded domain Ω ⊂
Rn, see (3.2) with m = 1. The celebrated Faber-Krahn [162, 253, 254] inequality

states that if one considers the map Ω 7→ Λ1,1(Ω) in dependence of domains Ω
having all the same measure en as the unit ball B, its minimum is achieved precisely

for Ω = B and, moreover, balls of radius 1 are the only minimisers. The crucial tool

to prove this statement is symmetrisation. We recall here some basic facts about this

method.

In 1836, Jacob Steiner noticed that symmetrisation with respect to planes leaves

the measure of bounded sets invariant and decreases the measure of their boundary.

This is the basic idea for a rigorous proof of the isoperimetric problem. In other

words, if Ω ∗ denotes the ball centered at the origin and having the same measure as
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a bounded domain Ω , we have |Ω ∗| = |Ω | and |∂Ω ∗| ≤ |∂Ω | with strict inequality

if Ω is not a ball. The same principle may be applied to functions.

Definition 3.10. Let Ω ⊂ Rn be a bounded domain and let u ∈C∞
c (Ω). The spher-

ical rearrangement of u is the unique nonnegative measurable function u∗ defined

in Ω ∗ such that its level sets {x ∈ Ω ∗; u∗(x) > t} are concentric balls with the same

measure as the level sets {x ∈ Ω ; |u(x)| > t} of |u|.

By density arguments we may define the spherical rearrangement of any func-

tion in Lp(Ω) for p ∈ [1,∞). We summarise here the basic properties of spherical

rearrangements in a statement which makes clear how the symmetrisation method

can be applied to obtain the Faber-Krahn result.

Theorem 3.11. Let Ω ⊂ Rn be a bounded domain.

1. If u ∈ Lp(Ω) for some p ∈ [1,∞) then u∗ ∈ Lp(Ω ∗) and ‖u∗‖Lp(Ω∗) = ‖u‖Lp(Ω).

2. If u ∈ W
1,p
0 (Ω) for some p ∈ [1,∞) then u∗ ∈ W

1,p
0 (Ω ∗) and ‖∇u∗‖Lp(Ω∗) ≤

‖∇u‖Lp(Ω).

3. If u ∈ Lp(Ω) and v ∈ Lp′(Ω) for some p ∈ (1,∞) with p′ = p
p−1

its conjugate,

then ‖u∗v∗‖L1(Ω∗) ≥ ‖uv‖L1(Ω).

Theorem 3.11 has several important applications, for example in the proof of

first order Sobolev inequalities and of their sharpness. However, it is unsuitable for

higher order derivatives since u∗ may not be twice weakly differentiable even if

u is very smooth. In their monograph, Pólya-Szegö [343, Section F.5] claim that

they can extend the Faber-Krahn result to the Dirichlet biharmonic operator among

domains having a first eigenfunction of fixed sign. Not only this assumption does

not cover all domains, see Section 3.1.3 above, but also their argument is not correct.

They deal with the Laplacian of a symmetrised smooth function and implicitly claim

that it belongs to L2, which is false in general. Incidentally, we point out that this

mistake is responsible for the wrong proof in [373], see Section 1.3.3 for the details.

This shows that standard symmetrisation methods are not available for higher order

problems.

As a possible way out, Cianchi [98] considers larger classes than the Sobolev

space, such as the space of functions whose second order distributional derivatives

are measures with finite total variation. Alternatively, one can prove an inequal-

ity comparing the rearrangement invariant norm of the Hessian matrix of u and a

weighted norm in the representation space of (u∗)′, see [99]. Unfortunately, none of

these tricks works when trying to extend the Faber-Krahn result to the first Dirichlet

eigenvalue of the biharmonic operator.

However, as we shall see, in some significant situations a comparison result by

Talenti [391] turns out to be extremely useful. For our convenience, we state here

an iterated version of this principle which will be used at several different places in

the present book.

Theorem 3.12. Let Ω ⊂ Rn (n ≥ 2) be a Cm-smooth bounded domain such that

|Ω | = |B| = en and let Hm
ϑ (Ω) be the space defined in (2.35), namely
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Hm
ϑ (Ω) :=

{
v ∈ Hm(Ω); ∆ jv = 0 on ∂Ω for j <

m

2

}
.

Let m = 2k be an even number, let f ∈ L2(Ω) and let u ∈ Hm
ϑ (Ω) be the unique

strong solution to

{
(−∆)ku = f in Ω ,
∆ ju = 0 on ∂Ω ,

j = 0, . . . ,k−1. (3.9)

Let f ∗ ∈ L2(B) and u∗ ∈ H1
0 (B) denote respectively the spherical rearrangements of

f and u (see Definition 3.10) and let v ∈ Hm
ϑ (B) be the unique strong solution to

{
(−∆)kv = f ∗ in B,
∆ jv = 0 on ∂B,

j = 0, . . . ,k−1. (3.10)

Then v ≥ u∗ a.e. in B.

Proof. When k = 1, Theorem 3.12 is precisely [391, Theorem 1]. For k ≥ 2 we pro-

ceed by finite induction. We may rewrite (3.9) and (3.10) as the following systems:

{
−∆u1 = f in Ω ,
u1 = 0 on ∂Ω ,

{
−∆ui = ui−1 in Ω ,
ui = 0 on ∂Ω ,

i = 2, . . . ,k; (3.11)

{
−∆v1 = f ∗ in B,
v1 = 0 on ∂B,

{
−∆vi = vi−1 in B,
vi = 0 on ∂B,

i = 2, . . . ,k. (3.12)

Note that uk = u and vk = v. By Talenti’s principle [391, Theorem 1] applied for

i = 1, we know that v1 ≥ u∗1 a.e. in B. Assume that the inequality vi ≥ u∗i a.e. in B

has been proved for some i = 1, . . . ,k−1. By (3.11) and (3.12) we then infer

{
−∆ui+1 = ui in Ω
ui+1 = 0 on ∂Ω ,

{
−∆vi+1 = vi ≥ u∗i in B

vi+1 = 0 on ∂B.

By combining the maximum principle for −∆ in B with a further application of

Talenti’s principle, we obtain vi+1 ≥ u∗i+1 a.e. in B. This finite induction shows that

vk ≥ u∗k and proves the statement. �

3.1.5 The Rayleigh conjecture for the clamped plate

We consider here the domain functional given by the first Dirichlet eigenvalue for

the biharmonic operator

Ω 7→ Λ2,1(Ω) = min
H2

0 (Ω)\{0}

‖u‖2
H2

0

‖u‖2
L2

. (3.13)
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In 1894, Lord Rayleigh [350, p. 382] conjectured that, among planar domains Ω
of given area, the disk minimises Λ2,1(Ω). If Ω ∗ denotes the symmetrised of Ω ,

namely the ball having the same measure as Ω , Rayleigh’s conjecture reads

Λ2,1(Ω
∗) ≤ Λ2,1(Ω). (3.14)

After many attempts, see Section 1.3.1, this conjecture was proved one century later

by Nadirashvili [315] and immediately extended by Ashbaugh-Benguria [22] to the

case of 3-dimensional domains. More precisely, we have

Theorem 3.13. In dimensions n = 2 or n = 3 the ball is the unique minimiser of

the first eigenvalue of the clamped plate problem (3.13) among bounded domains of

given measure. Hence, (3.14) holds whenever n = 2 or n = 3 with equality only if Ω
is a ball.

Proof. Thanks to the homogeneity of the map Ω 7→ Λ2,1(Ω), we may restrict our

attention to the case where |Ω | = |B| = en. For such a domain, let u denote a first

nontrivial eigenfunction so that

‖u‖2
H2

0

‖u‖2
L2

= Λ2,1(Ω).

By a bootstrap argument, elliptic regularity theory (see Theorem 2.20) ensures that

u ∈ C∞(Ω). Moreover, the unique continuation principle [336, 345] ensures that u

cannot be harmonic (in particular, constant) on a subset of positive measure. In view

of Section 3.1.3, both the positive and the negative part of u may be nontrivial so

that it makes sense to define

Ω+ = {x ∈ Ω ; u(x) > 0} , Ω− = {x ∈ Ω ; u(x) < 0}.

Let Ba = Ω ∗
+ and Bb = Ω ∗

− be their spherical symmetrisation, namely the two balls

centered at the origin and such that |Ω ∗
±| = |Ω±|. Let a and b denote the radii of the

balls Ba = Ω ∗
+ and Bb = Ω ∗

−, then

an +bn = 1. (3.15)

Let (∆u)± denote the positive and negative parts of ∆u in Ω ; again we point out

that they may both be nontrivial. For s ∈ [0,en] let σ(s) := (s/en)
1/n and define the

two functions f ,g : [0,en] → R by

g(s) :=
(
(∆u)+

)∗
(σ(s))−

(
(∆u)−

)∗
(σ(en − s)),

f (s) := −g(en − s).

Note that at most one of
(
(∆u)+

)∗
(σ(s)) and

(
(∆u)−

)∗
(σ(en − s)) can be different

from 0 for any s and that

(
(∆u)+

)∗
(σ(s)) ·

(
(∆u)−

)∗
(σ(en − s)) ≡ 0. (3.16)
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The function g sums the contribution of
(
(∆u)+

)∗
starting from the center of B and

the contribution of
(
(∆u)−

)∗
starting from ∂B. The function f switches these two

contributions.

With the change of variable r = σ(s), by Theorem 3.11 and the divergence theo-

rem, we obtain

∫ en

0
g(s)ds =

∫ en

0

((
(∆u)+

)∗
(σ(s))−

(
(∆u)−

)∗
(σ(en − s))

)
ds

=
∫ en

0

((
(∆u)+

)∗
(σ(s))−

(
(∆u)−

)∗
(σ(s))

)
ds

= nen

∫ 1

0
rn−1

((
(∆u)+

)∗
(r)−

(
(∆u)−

)∗
(r)
)

dr

=
∫

B

(
(∆u)+

)∗
dx−

∫

B

(
(∆u)−

)∗
dx =

∫

Ω
(∆u)+ dx−

∫

Ω
(∆u)− dx

=
∫

Ω
∆udx =

∫

∂Ω
uν dω = 0.

A similar computation holds for f so that

∫ en

0
g(s)ds =

∫ en

0
f (s)ds = 0. (3.17)

Let now v ∈ H2 ∩H1
0 (Ba) and w ∈ H2 ∩H1

0 (Bb) be the solutions of the problems

{
−∆v = f (en|x|n) in Ba,
v = 0 on ∂Ba,

{
−∆w = g(en|x|n) in Bb,
w = 0 on ∂Bb.

Therefore, from the definition of f and from (3.15) we infer

∆v(a)+∆w(b) = − f (enan)−g(enbn) = 0.

Moreover, by (3.17) and the definition of f we get

0 =
∫ enan

0
f (s)ds+

∫ en

enan
f (s)ds =

∫ enan

0
f (s)ds−

∫ enbn

0
g(s)ds

= nen

∫ a

0
rn−1 f (enrn)dr−nen

∫ b

0
rn−1g(enrn)dr = −

∫

Ba

∆vdx+
∫

Bb

∆wdx

so that ∫

Ba

∆vdx =
∫

Bb

∆wdx. (3.18)

In turn, employing the divergence theorem, (3.18) yields

an−1v′(a) = bn−1w′(b). (3.19)

In view of (3.16), we remark that



74 3 Eigenvalue problems

∫

Bb

|∆w|2 dx =
∫ |Ωb|

0
g2(s)ds

=
∫ |Ωb|

0

(∣∣((∆u)+
)∗

(σ(s))
∣∣2 +

∣∣((∆u)−
)∗

(σ(en − s))
∣∣2
)

ds.

Similarly, we have

∫

Ba

|∆v|2 dx =
∫ |Ωa|

0

(∣∣((∆u)−
)∗

(σ(s))
∣∣2 +

∣∣((∆u)+
)∗

(σ(en − s))
∣∣2
)

ds.

By adding the last two equations and by Theorem 3.11 we obtain

∫

Ω
|∆u|2 dx =

∫

Ba

|∆v|2 dx+
∫

Bb

|∆w|2 dx. (3.20)

From Talenti [392, (2.7)] we know that

u∗+ ≤ v in Ba , u∗− ≤ w in Bb,

so that, by Theorem 3.11,

∫

Ω
u2 dx ≤

∫

Ba

v2 dx+
∫

Bb

w2 dx,

with strict inequality if Ω 6= B. With this inequality and (3.20) we obtain

Λ2,1(Ω) =

∫
Ω |∆u|2 dx∫

Ω u2 dx
≥
∫

Ba
|∆v|2 dx+

∫
Bb
|∆w|2 dx

∫
Ba

v2 dx+
∫

Bb
w2 dx

(3.21)

with strict inequality if Ω 6= B. As pointed out by Talenti [392], if u > 0 in Ω ,

then Ω ∗
+ = Ba = B and Ω ∗

− = Bb = /0 so that (3.21) proves Rayleigh conjecture for

domains with first eigenfunction of one sign. Indeed, in this case we have b = 0.

Therefore, vν = 0 on ∂B in view of (3.19).

We define

µ = µa,b = min
v,w

∫
Ba
|∆v|2 dx+

∫
Bb
|∆w|2 dx

∫
Ba

v2 dx+
∫

Bb
w2 dx

(3.22)

where the minimum is taken over all radially symmetric functions v ∈ H2 ∩H1
0 (Ba)

and w ∈ H2 ∩H1
0 (Bb) satisfying (3.19). Using standard tools of the calculus of vari-

ations, it is shown in [22, Appendix 2] that the minimum in (3.22) is attained by a

couple of functions satisfying ∆ 2v = µv in Ba and ∆ 2w = µw in Bb, v(a) = w(b) = 0,

an−1v′(a) = bn−1w′(b), ∆v(a)+∆w(b) = 0; moreover, as shown in formula (3.12)

in [315], the functions v and w may be chosen positive and radially decreasing.

By combining (3.21) and (3.22) we obtain Λ2,1(Ω) ≥ µa,b and, since a and b are

unknown,

Λ2,1(Ω) ≥ min
a,b

µa,b (3.23)
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where the minimum is now taken among all couples (a,b)∈ [0,1]2 satisfying (3.15).

At this point a delicate and technical analysis of fine properties of Bessel functions

is needed. A crucial inequality, which only holds for n = 2,3, allows to show that

mina,b µa,b = µ1,0 = Λ2,1(B). This proves the statement when combined with (3.23),

see [22, Section 4] for the details. Indeed, recall that if Ω 6= B then (3.21) is strict.�

We conclude this section by emphasising that a couple of interesting generali-

sations of Rayleigh’s original conjecture are still missing. First, it remains to prove

(3.14) in any space dimension n ≥ 2 and not only for n = 2,3. Second, one might

wonder whether one could prove that Λm,1(Ω
∗) ≤ Λm,1(Ω) for any m ≥ 2 and not

only for m = 2.

3.2 Buckling load of a clamped plate

Similar questions as for the first eigenvalue of the clamped plate (3.2) arise when

considering the buckling load of a clamped plate which may be characterised as

follows

µ1(Ω) = inf
H2

0 (Ω)\{0}

‖∆u‖2
L2

‖∇u‖2
L2

. (3.24)

Here, Ω ⊂ R2 is a bounded planar domain. Minimisers u to (3.24) solve

{
∆ 2u = −µ1∆u in Ω ,
u = uν = 0 on ∂Ω .

(3.25)

This is the Dirichlet version of the Steklov problem (1.22) considered in Section

1.3.2 which describes the linearised von Kármán equations for an elastic plate. For

later use, let us mention that an inequality (which holds true in any space dimension)

due to Payne [333] states that for any bounded domain Ω ⊂ R2

µ1(Ω) ≥ Λ1,2(Ω) with equality if and only if Ω is a disk, (3.26)

where Λ1,2(Ω) denotes the second Dirichlet eigenvalue for the Laplacian in Ω .

Similarly to (3.14), Pólya-Szegö [343, Note F] conjectured that the disk min-

imises the buckling load among domains of given measure.

Conjecture 3.14 (Pólya-Szegö). For any bounded domain Ω ⊂ R2

µ1(Ω
∗) ≤ µ1(Ω),

where Ω ∗ denotes the symmetrised of Ω .

A complete proof of this conjecture is not known at the moment. However, we

show here two interesting results which give some support to its validity. Consider

the following special class of (not necessarily bounded) domains having the same

measure as the unit disk:
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B = {Ω ⊂ R2; Ω open, connected, simply connected, |Ω | = π}.

The first result, due to Ashbaugh-Bucur [23], states that an optimal domain exists

among domains in the class B.

Theorem 3.15. There exists Ωo ∈ B such that µ1(Ωo) ≤ µ1(Ω) for any other do-

main Ω ∈ B.

Proof. Note first that minimising µ1 in the wider class

B0 = {Ω ⊂ R2; Ω open, simply connected, |Ω | = π}

is equivalent to minimising µ1 in B, where we understand that “simply connected”

means that “each connected component is simply connected”. Indeed, if we find a

minimiser in B0, then it is necessarily connected since otherwise, scaling one of

its connected components and noticing that Ω 7→ µ1(Ω) is homogeneous of degree

−2, would contradict minimality.

So, consider a minimising sequence (Ωm) ⊂ B0 with (um) being the correspond-

ing sequence of normalised eigenfunctions, that is,
∫

Ωm
|∇um|2 = 1. Extending um

by 0 in R2 \Ωm we may view (um) as a bounded sequence in H2(Rn) such that

∫

R2
|∆um|2 dx ≤C1 ,

∫

R2
|∇um|2 dx = 1 ,

∫

R2
|um|2 dx ≤C2, (3.27)

for suitable C1,C2 > 0, the L2-bound following from Poincaré’s inequality in

H1
0 (Ωm) and the fact that |Ωm| = π for all m. In particular, (3.27) shows that

inf
Ω∈B0

µ1(Ω) > 0. (3.28)

Indeed, we have

1 =
∫

R2
|∇um|2 dx = −

∫

R2
um∆um dx ≤C

1/2

2

(∫

R2
|∆um|2 dx

)1/2

,

which proves that
∫
R2 |∆um|2 is also bounded away from 0. By (3.27), we may also

apply the concentration-compactness principle [276] and deduce that, up to a sub-

sequence, three cases may occur.

1. Vanishing.

lim
m→∞

sup
y∈R2

∫

BR(y)
|∇um|2 dx = 0 for all R > 0.

2. Dichotomy. There exists α ∈ (0,1) such that for all ε > 0 there exist two bounded

sequences (u
(1)
m ), (u

(2)
m ) ⊂ H2(R2) such that

lim
m→∞

dist
(

support(u
(1)
m ),support(u

(2)
m )
)

= +∞,
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lim
m→∞

∫

R2
|∇u

(1)
m |2 dx → α, lim

m→∞

∫

R2
|∇u

(2)
m |2 dx → 1−α, (3.29)

lim
m→∞

∫

R2

∣∣∣|∇um|2 −|∇u
(1)
m |2 −|∇u

(2)
m |2

∣∣∣dx ≤ ε, (3.30)

lim
m→∞

∫

R2

(
|∆um|2 −|∆u

(1)
m |2 −|∆u

(2)
m |2

)
dx ≥ 0. (3.31)

3. Compactness. There exists a sequence (ym) ⊂ R2 such that for all ε > 0 there

exists R > 0 and

∫

BR(ym)
|∇um|2 dx ≥ 1− ε for all m.

We first show that vanishing cannot occur. By contradiction, assume that vanish-

ing occurs. Up to a permutation of x1 and x2 and up to a subsequence, by (3.27) we

have ∫

R2

(
∂um

∂x1

)2

dx ≥ 1

2
.

Moreover, since two integrations by parts yield

∫

R2

∂ 2um

∂x2
1

∂ 2um

∂x2
2

dx =
∫

R2

(
∂ 2um

∂x1∂x2

)2

dx ≥ 0,

we remark that ∫

R2
|∆um|2 dx ≥

∫

R2

∣∣∣∣∇
∂um

∂x1

∣∣∣∣
2

dx.

Therefore, we infer that

‖∆um‖2
L2

‖∇um‖2
L2

≥ 1

2

‖∇ ∂um

∂x1
‖2

L2

‖ ∂um

∂x1
‖2

L2

. (3.32)

By assumption any translation of ∂um

∂x1
converges weakly to 0 in L2(R2). More-

over, ∂um

∂x1
∈ H1

0 (Ωm) and |Ωm| = π . Hence, we may apply [81, Lemma 3.3] to get

that, up to a subsequence, ‖∇ ∂um

∂x1
‖L2 → ∞. Since the left hand side of (3.32) is sup-

posed to converge to infΩ∈B0
µ1(Ω), we get a contradiction.

Next, we show that dichotomy cannot occur. By contradiction, assume that di-

chotomy occurs and fix ε > 0. Then the sequences (u
(1)
m ) and (u

(2)
m ) can be chosen

as follows, see [276]. Let B2 denote the ball of radius 2 centered at the origin and let

ϕ ∈C∞
c (B2, [0,1]) be such that ϕ ≡ 1 in B (the unit ball). Then for suitable sequences

(Rm),(ρm) → ∞, we put

u
(1)
m (x) := ϕ

(
x

Rm

)
um(x) , u

(2)
m (x) :=

(
1−ϕ

(
x

ρmRm

))
um(x).
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Note that support(u
(1)
m ) ⊂ (Ωm ∩B2Rm) whereas support(u

(2)
m ) ⊂ (Ωm \BρmRm). By

elementary calculus we know that
x1+x2
y1+y2

≥ min{ x1
y1

, x2
y2
} for all x1,x2,y1,y2 > 0.

Hence, by (3.30) and (3.31), up to a switch between u
(1)
m and u

(2)
m , we have

inf
Ω∈B0

µ1(Ω) = lim
m→∞

‖∆um‖2
L2(Ωm)

‖∇um‖2
L2(Ωm)

≥ limsup
m→∞

‖∆u
(1)
m ‖2

L2(Ωm∩B2Rm )

ε +‖∇u
(1)
m ‖2

L2(Ωm∩B2Rm )

. (3.33)

Up to a further subsequence, the above “limsup” becomes a limit.

We now claim that there exists δ > 0 such that for m large enough

|Ωm \BρmRm | ≥ δ . (3.34)

Indeed, if (3.34) were not true, up to a subsequence we would have limm→∞ |Ωm \
BρmRm |= 0 implying that Λ1,1(Ωm\BρmRm)→∞. In view of (3.26), this would imply

µ1(Ωm\BρmRm)→∞. In turn, since (3.29) states that ‖∇u
(2)
m ‖L2(R2) is bounded away

from zero, this implies that ‖∆u
(2)
m ‖L2(R2) → ∞, contradicting (3.27) and (3.31). A

similar argument also shows that δ > 0 in (3.34) may be chosen to be independent

of ε .

By (3.34) we know that there exists γ ∈ (0,1), independent of ε , such that

limsup
m→∞

|Ωm ∩B2Rm | = γπ ≤ π −δ .

Up to a further subsequence, also the above “limsup” becomes a limit. Combined

with (3.28), (3.33), and homogeneity of µ1, this yields

inf
Ω∈B0

µ1(Ω) ≥ lim
m→∞

‖∆u
(1)
m ‖2

L2(Ωm∩B2Rm )

ε +‖∇u
(1)
m ‖2

L2(Ωm∩B2Rm )

≥ lim
m→∞

‖∆u
(1)
m ‖2

L2(Ωm∩B2Rm )

‖∇u
(1)
m ‖2

L2(Ωm∩B2Rm )

‖∇u
(1)
m ‖2

L2(Ωm∩B2Rm )

ε +‖∇u
(1)
m ‖2

L2(Ωm∩B2Rm )

=
α

ε +α
lim

m→∞
µ1(Ωm ∩B2Rm)

=
α

ε +α
lim

m→∞

(
π

|Ωm ∩B2Rm |

)2

µ1

(
π

Ωm ∩B2Rm

|Ωm ∩B2Rm |

)

=
α

ε +α

1

γ2
lim

m→∞
µ1

(
π

Ωm ∩B2Rm

|Ωm ∩B2Rm |

)

≥ α

ε +α

1

γ2
inf

Ω∈B0

µ1(Ω)
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since π
Ωm∩B2Rm

|Ωm∩B2Rm | ∈ B0. As γ < 1, by arbitrariness of ε we get a contradiction which

rules out dichotomy.

Since we excluded both vanishing and dichotomy, compactness necessarily oc-

curs. Then by arbitrariness of ε , we infer that there exist (ym)⊂ R2 and u ∈ H2(R2)
such that

um( .+ ym) ⇀ u in H2(R2) and ‖∇u‖L2(R2) = 1.

By combining um ⇀ u in H1(R2) and the conservation of norms, we deduce that

um → u in the norm topology of H1(R2). In turn, by Poincaré’s inequality applied

in domains of uniformly bounded measure, this yields um → u in L2(R2). Therefore,

it follows that (Ωm) converges in the Hausdorff topology to some simply connected

domain Ω̂ ⊂ R2 such that Ω̂ ⊃ support(u) and

|Ω̂ | ≤ π. (3.35)

From weak convergence in H2 and strong convergence in H1, we get

µ1(Ω̂) ≤
‖∆u‖2

L2(Ω̂)

‖∇u‖2

L2(Ω̂)

≤ liminf
m→∞

‖∆um‖2
L2(Ωm)

‖∇um‖2
L2(Ωm)

= inf
Ω∈B0

µ1(Ω).

By (3.35) and homogeneity of µ1 we infer that all the above inequalities are in fact

equalities. So, the minimiser for µ1 is found. �

As pointed out in Section 1.3.2, the next step would be to show that the min-

imiser Ωo found in Theorem 3.15 has some regularity properties. But already for

second order equations this is a very difficult task, see [228]. However, assuming

smoothness of the boundary, one can show (see [415]) that the optimal domain is

indeed the disk.

Theorem 3.16. If the minimiser Ωo found in Theorem 3.15 has C2,γ boundary, then

it is a disk.

Proof. Let Ωo be the C2,γ minimiser found in Theorem 3.15 and let φ denote the

corresponding first eigenfunction, namely a solution to (3.25) when Ω = Ωo. By

performing the shape derivative [228] of the map Ω 7→ µ1(Ω) and using the opti-

mality of Ωo one finds that

∆φ exists and is constant on ∂Ωo. (3.36)

We point out that this first step is precisely the part of the proof where smoothness

of ∂Ωo is needed. Moreover, the connectedness of the boundary ∂Ωo is here crucial

in order to deduce (3.36).

Since φ = 0 on ∂Ωo, (3.36) also implies that ∆φ + µ1φ is constant on ∂Ωo. In

turn, since φ 7→ ∆φ + µ1φ is harmonic in Ωo in view of (3.25), this implies

∆φ + µ1φ is constant in Ωo. (3.37)
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The function φ has a critical point in Ωo which we may assume to be the origin so

that ∇φ(0) = 0.

Next, for (x,y) ∈ Ωo define w(x,y) := xφy(x,y)− yφx(x,y). In polar coordinates

(r,θ) this can be written as w = φθ . Therefore, if w≡ 0, then φ does not depend on θ
so that Ωo is a disk and we are done. So, assume by contradiction that w 6≡ 0. Since

φ ∈ H2
0 (Ωo), we have w ∈ H1

0 (Ωo) and from (3.37) we deduce that −∆w = µ1w in

Ωo. Hence, µ1 is a Dirichlet eigenvalue for −∆ in Ωo and it is the first Dirichlet

eigenvalue in each of the nodal zones of w.

Note that wx = φy + xφxy − yφxx so that wx(0) = 0, recalling that ∇φ(0) = 0.

Similarly, wy(0) = 0. Hence, both w and ∇w vanish at the origin. This means that

the origin 0 is a nodal point of w and a point where a nodal line intersects itself

transversally. But then, for topological reasons, this nodal line divides Ωo into at

least three nodal domains and at least one has a measure not exceeding |Ωo|/3. This

would imply the following chain of inequalities

µ1(Ωo) = Λ1,1(subdomain of measure ≤ |Ωo|/3) ≥ Λ1,1(ball of measure |Ωo|/3)

= 3Λ1,1(Ω
∗
o ) > Λ1,2(Ω

∗
o ) = µ1(Ω

∗
o ),

which contradicts the minimality of Ωo. In this chain of inequalities we have used

one after the other the monotonicity of Λ1,1 with respect to domain inclusions, the

Faber-Krahn inequality [162, 253, 254], a scaling argument, an inequality from

[335] and (3.26). �

3.3 Steklov eigenvalues

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω , let a ∈ R
and consider the boundary eigenvalue problem

{
∆ 2u = 0 in Ω ,
u = ∆u−auν = 0 on ∂Ω .

(3.38)

We are interested in studying the eigenvalues of (3.38), namely those values of a for

which the problem admits nontrivial solutions, the corresponding eigenfunctions.

By a solution of (3.38) we mean a function u ∈ H2 ∩H1
0 (Ω) such that

∫

Ω
∆u∆vdx = a

∫

∂Ω
uν vν dω for all v ∈ H2 ∩H1

0 (Ω). (3.39)

By taking v = u in (3.39), it is clear that all the eigenvalues of (3.38) are strictly

positive.
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3.3.1 The Steklov spectrum

The least positive eigenvalue of (3.38) may be characterised variationally as

δ1 = δ1(Ω) := min

{ ‖∆u‖2
L2(Ω)

‖uν‖2
L2(∂Ω)

; u ∈ [H2 ∩H1
0 (Ω)]\H2

0 (Ω)

}
. (3.40)

We first prove the existence of a function u ∈ [H2∩H1
0 (Ω)]\H2

0 (Ω) which achieves

equality in (3.40), provided the domain Ω is smooth (C2) or satisfies a geometric

condition which is fulfilled if Ω has no “reentrant corners” (for instance, if Ω is con-

vex). More precisely, we consider domains satisfying a uniform outer ball condition

according to Definition 2.30. Then the following existence result for a minimiser of

δ1(Ω) holds.

Theorem 3.17. Assume that Ω ⊂ Rn is a bounded domain with Lipschitz bound-

ary and satisfying a uniform outer ball condition. Then the minimum in (3.40) is

achieved and, up to a multiplicative constant, the minimiser u for (3.40) is unique,

superharmonic in Ω (in particular, u > 0 in Ω and uν < 0 on ∂Ω ) and it solves

(3.38) when a = δ1. Furthermore, u∈C∞(Ω) and, up to the boundary, u is as smooth

as the boundary permits.

Proof. By Theorem 2.31 we know that u 7→ ‖∆u‖L2 is a norm in H2(Ω). Let (um)
be a minimising sequence for δ1(Ω) with ‖∆um‖L2 = 1 so that (um) is bounded in

H2(Ω). Up to a subsequence, we may assume that there exists u∈H2∩H1
0 (Ω) such

that um ⇀ u in H2(Ω). Moreover, since Ω is Lipschitzian and satisfies a uniform

outer ball condition, by [321, Chapter 2, Theorem 6.2] we infer that the map

H2 ∩H1
0 (Ω) 3 u 7→ ∇u|∂Ω ∈

(
L2(∂Ω)

)n

is well-defined and compact. Hence, we deduce that (um)ν → uν in L2(∂Ω) and that

δ1(Ω) > 0.

Furthermore, since (um) is a minimising sequence, ‖∆um‖L2 = 1 holds, and

‖(um)ν‖L2(∂Ω) is bounded from below, uν is not identically zero on ∂Ω and

‖uν‖−2
L2(∂Ω)

= lim
m→∞

‖(um)ν‖
−2
L2(∂Ω)

= δ1 (Ω) .

Moreover, by weak lower semicontinuity of the norm, we also have

‖∆u‖2
L2 ≤ liminf

m→∞
‖∆um‖2

L2 = 1

and hence u ∈ [H2 ∩H1
0 (Ω)]\H2

0 (Ω) satisfies

‖∆u‖2
L2(Ω)

‖uν‖2
L2(∂Ω)

≤ δ1 (Ω) .
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This proves that u is a minimiser for δ1 (Ω).
For all u ∈ [H2 ∩H1

0 (Ω)]\H2
0 (Ω) put

I(u) :=
‖∆u‖2

L2(Ω)

‖uν‖2
L2(∂Ω)

.

To show that, up to their sign, the minimisers for (3.40) are superharmonic, we

observe that for all u ∈ [H2 ∩ H1
0 (Ω)] \ H2

0 (Ω) there exists w ∈ [H2 ∩ H1
0 (Ω)] \

H2
0 (Ω) such that −∆w ≥ 0 in Ω and I(w) ≤ I(u). Indeed, for a given u, let w be the

unique solution of {
−∆w = |∆u| in Ω ,
w = 0 on ∂Ω ,

so that w is superharmonic. Moreover, both w±u are superharmonic in Ω and vanish

on ∂Ω . This proves that

|u| ≤ w in Ω , |uν | ≤ |wν | on ∂Ω .

In turn, these inequalities (and −∆w = |∆u|) prove that I(w) ≤ I(u). We emphasise

that this inequality is strict if ∆u changes sign.

Any minimiser u for (3.40) solves the Euler equation (3.38) and is a smooth

function in view of elliptic theory, see the explanation just after (2.22). In order to

conclude the proof we still have to show that the minimiser u is unique. By con-

tradiction, let v ∈ H2 ∩H1
0 (Ω) be another positive minimiser and for every c ∈ R,

define vc := v + cu. Exploiting the fact that both v and u solve (3.38) when a = δ1,

we see that also vc is a minimiser. But unless v is a multiple of u, there exists some

c such that vc changes sign in Ω . This leads to a contradiction and completes the

proof. �

We are now interested in the description of the spectrum of (3.38). To this end, we

restrict our attention to smooth domains. As in (2.10), the Hilbert space H2∩H1
0 (Ω)

is endowed with the scalar product

(u,v) 7→
∫

Ω
∆u∆vdx. (3.41)

Consider the space

Z =
{

v ∈C∞(Ω) : ∆ 2u = 0 in Ω , u = 0 on ∂Ω
}

(3.42)

and let V denote the completion of Z with respect to the scalar product in (3.41).

Then we prove

Theorem 3.18. Assume that Ω ⊂Rn (n≥ 2) is a bounded domain with C2-boundary.

Then problem (3.38) admits infinitely many (countable) eigenvalues. The only eigen-

function of one sign is the one corresponding to the first eigenvalue. The set of

eigenfunctions forms a complete orthonormal system in V .
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Proof. Let Z be as in (3.42), define on Z the scalar product given by

(u,v)W :=
∫

∂Ω
uν vν dω for all u,v ∈ Z

and let W denote the completion of Z with respect to this scalar product. We first

claim that the (Hilbert) space V is compactly embedded into the (Hilbert) space W .

Indeed, by definition of δ1 we have

‖u‖W = ‖uν‖L2(∂Ω) ≤ δ
−1/2

1 ‖∆u‖L2(Ω) = δ
−1/2

1 ‖u‖V for all u ∈ Z. (3.43)

Hence any Cauchy sequence in Z with respect to the norm of V is a Cauchy sequence

with respect to the norm of W . Since V is the completion of Z with respect to (3.41),

it follows that V ⊂ W . The continuity of this inclusion can be obtained by density

from (3.43). In order to prove that this embedding is compact, let um ⇀ u in V , so

that also um ⇀ u in H2∩H1
0 (Ω). Then by the compact trace embedding H1/2(∂Ω)⊂

L2(∂Ω) we obtain um → u in W . This proves the claim.

Let I1 : V →W denote the embedding V ⊂W and I2 : W →V ′ the linear contin-

uous operator defined by

〈I2u,v〉 = (u,v)W for all u ∈W and v ∈V.

Moreover, let L : V →V ′ be the linear operator given by

〈Lu,v〉 =
∫

Ω
∆u∆vdx for all u,v ∈V.

Then by the Lax-Milgram theorem, L is an isomorphism and in view of the compact

embedding V ⊂ W , the linear operator K = L−1I2I1 : V → V is compact. Since for

n ≥ 2, V is an infinite dimensional Hilbert space and K is a compact self-adjoint

operator with strictly positive eigenvalues, V admits an orthonormal basis of eigen-

functions of K and the set of the eigenvalues of K can be ordered in a strictly de-

creasing sequence (µi) which converges to zero. Therefore problem (3.39) admits an

infinite set of eigenvalues given by δi =
1
µi

and the eigenfunctions of (3.39) coincide

with the eigenfunctions of K.

To complete the proof we need to show that if δk is an eigenvalue of (3.38)

corresponding to a positive eigenfunction φk then necessarily δk = δ1. So, take φk >
0 in Ω and φk = 0 on ∂Ω ; then (φk)ν ≤ 0 on ∂Ω and, in turn, ∆φk = δk(φk)ν ≤
0 on ∂Ω . Therefore, by ∆ 2φk = 0 in Ω and the weak comparison principle, we

infer ∆φk ≤ 0 in Ω . Moreover, since φk > 0 in Ω and φk = 0 on ∂Ω , the Hopf

boundary lemma implies that (φk)ν < 0 on ∂Ω . Let φ1 be a positive eigenfunction

corresponding to the first eigenvalue δ1, see Theorem 3.17. Then φ1 satisfies (φ1)ν <
0 on ∂Ω and hence from

δk

∫

∂Ω
(φk)ν(φ1)ν dω =

∫

Ω
∆φk∆φ1 dx = δ1

∫

∂Ω
(φk)ν(φ1)ν dω > 0

we obtain δk = δ1. This completes the proof of Theorem 3.18. �
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The vector space V also has a different interesting characterisation.

Theorem 3.19. Assume that Ω ⊂Rn (n≥ 2) is a bounded domain with C2-boundary.

Then the space H2∩H1
0 (Ω) admits the following orthogonal decomposition with re-

spect to the scalar product (3.41)

H2 ∩H1
0 (Ω) = V ⊕H2

0 (Ω).

Moreover, if v ∈ H2 ∩H1
0 (Ω) and if v = v1 + v2 is the corresponding orthogonal

decomposition, then v1 ∈V and v2 ∈ H2
0 (Ω) are weak solutions of





∆ 2v1 = 0 in Ω ,
v1 = 0 on ∂Ω ,
(v1)ν = vν on ∂Ω ,

and





∆ 2v2 = ∆ 2v in Ω ,
v2 = 0 on ∂Ω ,
(v2)ν = 0 on ∂Ω .

(3.44)

Proof. We start by proving that Z⊥ = H2
0 (Ω). Let v ∈ Z and w ∈ H2∩H1

0 (Ω). After

two integrations by parts we obtain

∫

Ω
∆v∆wdx =

∫

Ω
∆ 2vwdx+

∫

∂Ω
(wν ∆v−w(∆v)ν) dω =

∫

∂Ω
wν ∆vdω

for all v ∈ Z and w ∈ H2 ∩H1
0 (Ω). This proves that wν = 0 on ∂Ω if and only if

w ∈ Z⊥ and hence V⊥ = Z⊥ = H2
0 (Ω).

Let v ∈ H2 ∩H1
0 (Ω) and consider the first Dirichlet problem in (3.44), that is





∆ 2v1 = 0 in Ω ,
v1 = 0 on ∂Ω ,
(v1)ν = vν on ∂Ω .

(3.45)

Since vν ∈ H1/2(∂Ω), by Lax-Milgram’s theorem and [275, Ch. 1, Théorème 8.3],

we deduce that (3.45) admits a unique solution v1 ∈ H2 ∩H1
0 (Ω) such that

‖∆v1‖L2(Ω) ≤C‖vν‖H1/2(∂Ω) .

This proves that v1 ∈ V . Let v2 = v− v1, then (v2)ν = 0 on ∂Ω and, in turn, v2 ∈
H2

0 (Ω). Moreover, by (3.45) we infer

∫

Ω
∆v2∆wdx =

∫

Ω
∆v∆wdx−

∫

Ω
∆v1∆wdx =

∫

Ω
∆v∆wdx for all w ∈ H2

0 (Ω)

which proves that v2 is a weak solution of the second problem in (3.44). �

When Ω = B (the unit ball in Rn, n ≥ 2) all the eigenvalues of (3.38) can be

determined explicitly. To this end, consider the spaces of harmonic homogeneous

polynomials

Pk :=

{P ∈C∞(Rn); ∆P = 0 in Rn, P is a homogeneous polynomial of degree k−1} .
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Also, let µk be the dimension of Pk. By [17, p. 450] we know that

µk =
(2k +n−4)(k +n−4)!

(k−1)!(n−2)!
.

In particular, we have

P1 = span{1} , µ1 = 1,

P2 = span{xi; i = 1, . . . ,n} , µ2 = n,

P3 = span{xix j; x2
1 − x2

h; i, j = 1, . . . ,n, i 6= j, h = 2, . . . ,n} , µ3 =
n2 +n−2

2
.

Then we prove

Theorem 3.20. If n ≥ 2 and Ω = B, then for all k = 1,2,3, . . .

1. the eigenvalues of (3.38) are δk = n+2(k−1);
2. the multiplicity of δk equals µk;

3. for all ψk ∈ Pk, the function φk(x) := (1−|x|2)ψk(x) is an eigenfunction corre-

sponding to δk.

Proof. Let u ∈C∞(B) be an eigenfunction of (3.38) so that u = 0 on ∂B. Therefore,

we can write

u(x) = (1−|x|2)φ(x) (x ∈ B) (3.46)

for some φ ∈C∞(B). We have uxi
= −2xiφ +(1−|x|2)φxi

, and on ∂B,

uν = x ·∇u = −2φ . (3.47)

Moreover,

∆u = −2nφ −4x ·∇φ +(1−|x|2)∆φ . (3.48)

Hence,

∆u = −2nφ −4φν on ∂B. (3.49)

From (3.48) we get for i = 1, . . . ,n,

(∆u)xi
= −(2n+4)φxi

−4
n

∑
j=1

x jφx jxi
−2xi∆φ +(1−|x|2)∆φxi

,

and therefore

(∆u)xixi
= −2(n+4)φxixi

−4x ·∇(φxixi
)−2∆φ −4xi(∆φ)xi

+(1−|x|2)∆φxixi
.

Summing with respect to i and recalling that u is biharmonic in B, we obtain

0 = ∆ 2u = −2(n+4)∆φ −4x ·∇∆φ −2n∆φ −4x ·∇∆φ +(1−|x|2)∆ 2φ

= (1−|x|2)∆ 2φ −8x ·∇∆φ −4(n+2)∆φ . (3.50)
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Writing (3.50) as an equation in w = ∆φ , we get

(1−|x|2)∆w−8x ·∇w−4(n+2)w = 0 in B,

so that

0 = −(1−|x|2)4∆w+8(1−|x|2)3x ·∇w+4(n+2)(1−|x|2)3w

= −div
(
(1−|x|2)4∇w

)
+4(n+2)(1−|x|2)3w.

(3.51)

Multiplying the right hand side of (3.51) by w and integrating by parts over B, we

obtain
∫

B
(1−|x|2)4|∇w|2 dx+4(n+2)

∫

B
(1−|x|2)3w2 dx =

∫

∂B
(1−|x|2)4wwν dω = 0.

Hence ∆φ = w = 0 in B. Now from (3.38), (3.47) and (3.49) we get

φν =
a−n

2
φ on ∂B.

Therefore, the number a is an eigenvalue of (3.38) with corresponding eigenfunction

u if and only if φ defined by (3.46) is an eigenfunction of the boundary eigenvalue

problem {
∆φ = 0 in B,

φν = γφ on ∂B,
(3.52)

where

γ =
a−n

2
. (3.53)

We are so led to study the eigenvalues of the second order Steklov problem (3.52).

Let us quickly explain how to obtain them. In radial and angular coordinates (r,θ),
the equation in (3.52) reads

∂ 2φ

∂ r2
+

n−1

r

∂φ

∂ r
+

1

r2
∆θ φ = 0,

where ∆θ denotes the Laplace-Beltrami operator on ∂B. From [47, p. 160] we know

that −∆θ admits a sequence of eigenvalues (λk) having multiplicity µk equal to

the number of independent harmonic homogeneous polynomials of degree k − 1.

Moreover, λk = (k−1)(n+ k−3).

Let us write e
j
k ( j = 1, . . . ,µk) for the independent normalised eigenfunctions

corresponding to λk. Then one seeks functions φ = φ(r,θ) of the kind

φ(r,θ) =
∞

∑
k=1

µk

∑
j=1

φ j
k (r)e j

k(θ).

Hence, by differentiating the series, we obtain
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∆φ(r,θ) =
∞

∑
k=1

µk

∑
j=1

(
d2

dr2
φ j

k (r)+
n−1

r

d

dr
φ j

k (r)− λk

r2
φ j

k (r)

)
e

j
k(θ) = 0.

Therefore, we are led to solve the equations

d2

dr2
φ j

k (r)+
n−1

r

d

dr
φ j

k (r)− λk

r2
φ j

k (r) = 0 k = 1,2 . . . j = 1, . . . ,µk. (3.54)

With the change of variables r = et (t ≤ 0), equation (3.54) becomes a linear constant

coefficients equation. It has two linearly independent solutions, but one is singular.

Hence, up to multiples, the only regular solution of (3.54) is given by φ j
k (r) = rk−1

because
2−n+

√
(n−2)2 +4λk

2
= k−1.

Since the boundary condition in (3.52) reads d
dr

φ j
k (1) = γφ j

k (1) we immediately

infer that γ = k̄−1 for some k̄. In turn, (3.53) tells us that

δk̄ = n+2(k̄−1).

The proof of Theorem 3.20 is so complete. �

Remark 3.21. Theorems 3.18 and 3.20 become false if n = 1 since the problem

uiv = 0 in (−1,1) , u(±1) = u′′(−1)+au′(−1) = u′′(1)−au′(1) = 0, (3.55)

admits only two eigenvalues, δ1 = 1 and δ2 = 3, each one of multiplicity 1. The

reason of this striking difference is that the “boundary space” of (3.55) has precisely

dimension 2, one for each endpoint of the interval (−1,1). This result is consistent

with Theorem 3.20 since µ1 = µ2 = 1 and µ3 = 0 whenever n = 1.

By combining Theorems 3.18 and 3.20 we obtain

Corollary 3.22. Assume that n ≥ 2 and that Ω = B. Assume moreover that for all

k ∈ N+ the set {ψ j
k : j = 1, . . . ,µk} is a basis of Pk chosen in such a way that

the corresponding functions φ j
k are orthonormal with respect to the scalar product

(3.41). Then for any u ∈V there exists a sequence (α j
k )⊂ `2 (k ∈ N+; j = 1, . . . ,µk)

such that

u(x) = (1−|x|2)
∞

∑
k=1

µk

∑
j=1

α j
k ψ j

k (x) for a.e. x ∈ B.

3.3.2 Minimisation of the first eigenvalue

In this section we take advantage of Theorem 3.17 and we study several aspects of

the first Steklov eigenvalue δ1.
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We first give an alternative characterisation of δ1(Ω). Let

C2
H

(
Ω
)

:=
{

v ∈C2
(
Ω
)

; ∆v = 0 in Ω
}

and consider the norm defined by ‖v‖H := ‖v‖L2(∂Ω) for all v∈C2
H

(
Ω
)
. Then define

H := the completion of C2
H

(
Ω
)

with respect to the norm ‖·‖H .

Since Ω is assumed to have a Lipschitz boundary, we infer by [238] that H ⊂
H1/2 (Ω) ⊂ L2 (Ω). Therefore, the quantity

σ1 (Ω) := inf
h∈H\{0}

‖h‖2
L2(∂Ω)

‖h‖2
L2(Ω)

is well-defined. Our purpose is now to relate σ1 with δ1, see (3.40). To this end, we

make use of a suitable version of Fichera’s principle of duality [170]. However, in

its original version, this principle requires smoothness of the boundary ∂Ω . Since

we aim to deal with most general domains, we need to drop this assumption. We

consider Lipschitz domains satisfying a uniform outer ball condition, see Definition

2.30. Then regularity results by Jerison-Kenig [237, 238] enable us to prove the

following result.

Theorem 3.23. If Ω ⊂ Rn is a bounded domain with Lipschitz boundary, then

σ1(Ω) admits a minimiser h ∈ H\{0}. If Ω also satisfies a uniform outer ball

condition then the minimiser is positive, unique up to a constant multiplier and

σ1 (Ω) = δ1 (Ω).

Proof. In the first part of this proof, we just assume that Ω is a domain with Lip-

schitz boundary. Let (hm) ⊂ H\{0} be a minimising sequence for σ1 (Ω) with

‖hm‖H = ‖hm‖L2(∂Ω) = 1. Up to a subsequence, we may assume that there exists

h ∈ H such that hm ⇀ h in H. By regularity estimates [237, 238], we infer that there

exists a constant C > 0 such that

‖h‖
H1/2(Ω) ≤C‖h‖L2(∂Ω) for all h ∈ H

so that σ1(Ω) > 0 and the sequence (hm) is bounded in H1/2 (Ω), hm ⇀ h in

H1/2 (Ω) up to a subsequence and, by compact embedding, we also have hm → h

in L2 (Ω). Therefore, since (hm) is a minimising sequence, ‖hm‖L2(∂Ω) = 1 and

‖hm‖L2(Ω) is bounded it follows that h ∈ H\{0} and

‖h‖−2
L2(Ω)

= lim
m→∞

‖hm‖−2
L2(Ω)

= σ1 (Ω) .

Moreover, by weak lower semicontinuity of ‖.‖H we also have

‖h‖2
L2(∂Ω) = ‖h‖2

H ≤ liminf
m→∞

‖hm‖2
H = 1
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and hence h ∈ H\{0} satisfies

‖h‖2
L2(∂Ω)

‖h‖2
L2(Ω)

≤ σ1 (Ω) .

This proves that h is a minimiser for σ1 (Ω).
In the rest of the proof, we assume furthermore that Ω satisfies a uniform outer

ball condition. Under this condition, we have the existence of a minimiser for δ1(Ω)
by Theorem 3.17. We say that σ is a harmonic boundary eigenvalue if there exists

g ∈ H such that

σ
∫

Ω
gvdx =

∫

∂Ω
gvdω for all v ∈ H.

Clearly, σ1 is the least harmonic boundary eigenvalue. We prove that σ1 = δ1 by

showing two inequalities.

Proof of σ1 ≥ δ1. Let h be a minimiser for σ1, then

σ1

∫

Ω
hvdx =

∫

∂Ω
hvdω for all v ∈ H. (3.56)

Let u ∈ [H2 ∩H1
0 (Ω)]\H2

0 (Ω) be the unique solution to

{
∆u = h in Ω ,
u = 0 on ∂Ω .

Integrating by parts we have

∫

Ω
hvdx =

∫

Ω
v∆udx =

∫

∂Ω
vuν dω for all v ∈ H∩C2(Ω).

By a density argument, the latter follows for all v ∈ H. Inserting this into (3.56)

gives

σ1

∫

∂Ω
vuν dω =

∫

∂Ω
v∆udω for all v ∈ H.

This yields ∆u = σ1uν on ∂Ω . Therefore,

σ1 =
‖h‖2

L2(∂Ω)

‖h‖2
L2(Ω)

=
‖∆u‖2

L2(∂Ω)

‖∆u‖2
L2(Ω)

= σ2
1

‖uν‖2
L2(∂Ω)

‖∆u‖2
L2(Ω)

.

In turn, this implies that

σ1 =
‖∆u‖2

L2(Ω)

‖uν‖2
L2(∂Ω)

≥ min

{ ‖∆v‖2
L2(Ω)

‖vν‖2
L2(∂Ω)

; v ∈ [H2 ∩H1
0 (Ω)]\H2

0 (Ω)

}
= δ1.

Proof of σ1 ≤ δ1. Let u be a minimiser for δ1 in (3.40), then ∆u = δ1uν on ∂Ω so

that ∆u ∈ H1/2(∂Ω) ⊂ L2(∂Ω) and
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∫

∂Ω
v∆udω = δ1

∫

∂Ω
vuν dω for all v ∈ H. (3.57)

Let h := ∆u so that h∈L2(Ω)∩L2(∂Ω). Moreover, ∆h = ∆ 2u = 0 in a distributional

sense and hence h ∈ H. Two integrations by parts and a density argument yield

∫

Ω
hvdx =

∫

∂Ω
vuν dω for all v ∈ H.

Replacing this into (3.57) gives

∫

∂Ω
hvdω = δ1

∫

Ω
hvdx for all v ∈ H.

This proves that h is an eigenfunction with corresponding harmonic boundary eigen-

value δ1. Since σ1 is the least harmonic boundary eigenvalue, we obtain δ1 ≥ σ1.

Then σ1 = δ1 and there is a one-to-one correspondence between minimisers of

σ1(Ω) and δ1(Ω). Hence, uniqueness of a minimiser for σ1(Ω) up to a constant

multiplier follows from Theorem 3.17. �

We now show that an optimal shape for δ1 under volume or perimeter constraint

does not exist in any space dimension n ≥ 2.

Theorem 3.24. Let Dε = {x ∈ R2; ε < |x| < 1} and let Ωε ⊂ Rn (n ≥ 2) be such

that

Ωε = Dε × (0,1)n−2 ;

in particular, if n = 2 we have Ωε = Dε . Then

lim
ε↘0

δ1 (Ωε) = 0.

Proof. We assume first that n = 2. For any ε ∈ (0,1) let wε ∈ H2 ∩H1
0 (Dε) be

defined by

wε(x) =
1−|x|2

4
− 1− ε2

4logε
log |x| for all x ∈ Dε . (3.58)

Then we have

∆wε = −1 in Ωε

and

|∇wε (x)|2 =

( |x|
2

+
1− ε2

4logε

1

|x|

)2

for all x ∈ Ω ε

so that ∫

Ωε

|∆wε |2 dx = π
(
1− ε2

)

and
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∫

∂Ωε

(wε)
2
ν dω = 2π

(
1

2
+

1− ε2

4logε

)2

+2πε

(
ε

2
+

1− ε2

4ε logε

)2

(3.59)

=
π

8

1

ε log2 ε
+o

(
1

ε log2 ε

)
→ +∞ as ε ↘ 0.

It follows immediately that

lim
ε↘0

δ1 (Ωε) ≤ lim
ε↘0

∫

Ωε

|∆wε |2 dx

∫

∂Ωε

(wε)
2
ν dω

= 0.

This completes the proof of the theorem for n = 2.

We now consider the case n ≥ 3. Let

uε (x) =

(
n

∏
i=3

xi (1− xi)

)
wε (x1,x2) for all x ∈ Ωε

where wε is as in (3.58); note that uε vanishes on ∂Ωε and uε ∈ H2 ∩H1
0 (Ωε). Then

we have

∆uε = −
n

∏
i=3

xi (1− xi)−2wε (x1,x2)
n

∑
j=3

n

∏
i=3
i 6= j

xi (1− xi)

(with the convention that ∏i∈ /0 βi = 1) and

∫

Ωε

|∆uε |2 dx ≤ 2

∫

Ωε

n

∏
i=3

x2
i (1− xi)

2
dx+8

∫

Ωε

w2
ε (x1,x2)

n

∑
j=3

n

∏
i=3
i6= j

x2
i (1− xi)

2
dx.

Hence, since |wε(x)| < 1
2

for all x ∈ Dε , there exists C > 0 such that

∫

Ωε

|∆uε |2 dx ≤C for all ε ∈ (0,1). (3.60)

On the other hand, we have

|∇uε |2 =
n

∏
i=3

x2
i (1− xi)

2

((
∂wε

∂x1

)2

+

(
∂wε

∂x2

)2
)

+
n

∑
j=3


(1−2x j)

2
w2

ε (x1,x2)
n

∏
i=3
i6= j

x2
i (1− xi)

2




and since wε vanishes on ∂Dε we obtain
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∫

∂Ωε

(uε)
2
ν dω =

∫

∂Ωε

|∇uε |2 dω ≥
∫

∂Dε×(0,1)n−2
|∇uε |2 dω

≥
∫

∂Dε

(wε)
2
ν dω ·

n

∏
i=3

∫ 1

0
x2

i (1− xi)
2

dxi → +∞

as ε ↘ 0 in view of (3.59). Therefore, by (3.60) we obtain

lim
ε↘0

δ1 (Ωε) ≤ lim
ε↘0

∫

Ωε

|∆uε |2 dx

∫

∂Ωε

(uε)
2
ν dω

= 0

which proves the theorem also when n ≥ 3. �

Theorem 3.24 has several important consequences. First, it shows that δ1(Ω) has

no optimal shape under the constraint that Ω is contained in a fixed ball.

Corollary 3.25. Let BR = {x ∈ Rn; |x| < R}. Then for any R > 0

inf
Ω⊂BR

δ1 (Ω) = 0

where the infimum is taken over all domains Ω ⊂ BR such that ∂Ω ∈ C∞ if n = 2

and ∂Ω is Lipschitzian if n ≥ 3.

A second consequence of Theorem 3.24 is that it disproves the conjecture by

Kuttler [258] which states that the disk has the smallest δ1 among all planar re-

gions having the same perimeter. Let us also mention that, although the ball has no

isoperimetric property, it is a stationary domain for the map Ω 7→ δ1(Ω) in the class

of C4 domains under smooth perturbations which preserve measure, see [80] for the

details.

Theorem 3.24 also shows that the map Ω 7→ δ1 (Ω) is not monotonically de-

creasing with respect to domain inclusion.

Finally, Theorem 3.24 raises several natural questions. Why do we consider an

annulus in the plane and the region between two cylinders in space dimensions

n ≥ 3? What happens if we consider an annulus in any space dimension? The quite

surprising answer is given in

Theorem 3.26. Let n ≥ 3 and let Ω ε = {x ∈ Rn; ε < |x| < 1}.

1. If n = 3 then

lim
ε↘0

δ1 (Ω ε) = 2.

2. If n ≥ 4 then

lim
ε↘0

δ1 (Ω ε) = n.

For the proof of Theorem 3.26 we refer to [80]. Theorems 3.24 and 3.26 highlight

a striking difference between dimension n = 2, dimension n = 3 and dimensions n≥
4. Since the set Ω ε is smooth, by Theorem 3.23 it follows that δ1(Ω

ε) = σ1(Ω
ε).
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Moreover, since the proof of Theorem 3.26 in [80] uses radial harmonic functions

h = h(r) (r = |x|), we may rewrite the ratio defining σ1(Ω
ε) as

∫

∂Ω ε
h2dω

∫

Ω ε
h2dx

=
h(1)2 + εn−1h(ε)2

∫ 1

ε
h(r)2rn−1dr

.

In this setting, we can treat the space dimension n as a real number. Then we have

Theorem 3.27. Let ε ∈ (0,1), let Kε = {h ∈ C2([ε,1]); h′′(r)+ n−1
r

h′(r) = 0, r ∈
[ε,1]} and, for all n ∈ [1,∞), let

γε(n) = inf
h∈Kε\{0}

h(1)2 + εn−1h(ε)2

∫ 1

ε
h(r)2rn−1dr

.

Then

lim
ε→0

γε(n) =





2 if n = 1,
0 if 1 < n < 3,
2 if n = 3,
n if n > 3.

Theorem 3.27 is proved in [80] and shows that dimensions n = 1 and n = 3 are

“discontinuous” dimensions for the behaviour of γε . The reason of this discontinuity

is not clear to us.

Finally, we point out that Steklov boundary conditions, producing a boundary

integral in the denominator of the Rayleigh quotient, require a strong geometric

convergence (namely a very fine topology) in order to preserve the perimeter. How-

ever, contrary to the Babuška paradox (see Section 1.4.2), we notice that we do have

stability of the first eigenvalue on the sequence of regular polygons converging to

the disk.

Theorem 3.28. Let n = 2 and let (Pk) be a sequence of regular polygons with k

edges circumscribed to the unit disk D centered at the origin. Then

lim
k→∞

δ1(Pk) = δ1(D) = 2.

The proof of Theorem 3.28 is lengthy and delicate. This is why we refer again to

[80].

3.4 Bibliographical notes

An interesting survey on spectral properties of higher-order elliptic operators is also

provided by Davies [129].
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For the original version of the Kreı̆n-Rutman theorem, which generalises Jentzsch’s

[236] theorem, we refer to [257, Theorem 6.2 and 6.3]. Theorem 3.3 is taken from

the appendix of [55] and it follows by combining the variant of the Kreı̆n-Rutman

result in [359, Theorem 6.6, p. 337] with a result by de Pagter [136].

Theorem 3.4 is due to Moreau [311]. A first application of this decomposition is

given in the paper by Miersemann [301] for the positivity in a buckling eigenvalue

problem. Proposition 3.6 is the generalisation of [19, Lemma 16] from m = 2 to the

case m ≥ 2.

Theorem 3.7 is a straightforward consequence of Kreı̆n-Rutman’s theorem and

Lemma 2.27 but the elementary proof suggested here is taken from [181]. The rest

of Section 3.1.3 is taken from the survey paper by Sweers [385].

Concerning Theorem 3.8, numerical results in 1972 and 1980 already predicted

that the first eigenfunction on a square changes sign, see [34, 220]. Subsequently,

in 1982 Coffman [107] gave an analytic proof of Theorem 3.8. More recently, in

1996, the numerical results on the square have been revisited by Wieners [412] who

proved that the sign-changing of the numerically approximated first eigenfunction

is rigorous, that is, the sign changing effect is too large to be explained by numerical

errors.

Theorem 3.9 is due to Coffman-Duffin-Shaffer. The eigenvalue problem for do-

mains with holes was first studied by Duffin-Shaffer [155]. Subsequently, with Coff-

man [110] they could show that for the annuli with a small hole, the first eigenfunc-

tion changes sign. They used an explicit formula and explicit values of the Bessel

functions involved and obtained even a critical number for the ratio of the inner and

outer radius. The proof has been simplified in [109].

For further results on sign-changing first eigenfunctions to (3.8), for numerical

experiments, and for conjectures on simple domains (such as ellipses, elongated

disks, dumb-bells, and limaçons) we refer again to [385].

For some first properties of spherical rearrangements, we refer to [343]. A com-

plete proof of Theorem 3.11 can be found in [10] while its essential Item 2 goes back

to Sperner [378] and Talenti [390]. Kawohl [243] discusses the question whether

equality in Item 2 of Theorem 3.11 implies symmetry; he shows that the answer

is affirmative for analytic functions while it is negative in general. A more general

condition ensuring symmetry was subsequently obtained by Brothers-Ziemer [74],

see also [100] and references therein for further results on this topic. Theorem 3.12

is an iteration of Talenti’s principle [391].

For a fairly complete story of Rayleigh’s conjecture [350], we refer to Section

1.3.1. Although it was Nadirashvili [315] who proved first the Rayleigh conjecture

in dimension n = 2, the proof of Theorem 3.13 follows closely the one by Ashbaugh-

Benguria [22] which is more general since it also holds for n = 3. It uses some results

by Talenti [392].

Theorem 3.15 is due to Ashbaugh-Bucur [23]. Minimisation of the buckling load

can be also performed in different classes of domains. For instance, one could argue

in the class of convex domains like in [244, Proposition 4.5]. For further classes

of domains, such as open sets, quasi-open sets or multiply connected sets, we refer

again to [23]. On the occasion of an Oberwolfach meeting in 1995, Willms gave
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a talk with the proof of Theorem 3.16 according to joint work with Weinberger

[415] but the proof was never written by them. With their permission, Kawohl [244,

Proposition 4.4] wrote down the proof of the talk by Willms and this is where we

have taken it, see also [23]. For more results on buckling eigenvalues, mainly under

Dirichlet boundary conditions, we refer to [48, 49, 172, 228, 245, 301, 376] and

references therein.

Elliptic problems with parameters in the boundary conditions are called Steklov

problems from their first appearance in [379]. For the biharmonic operator, these

conditions were first considered by Kuttler-Sigillito [260] and Payne [334] who

studied the isoperimetric properties of the first eigenvalue δ1, see also subsequent

work by Smith [373, 374] and Kuttler [258, 259]. We also refer to the monograph by

Kuttler-Sigillito [261] for some numerical experiments and for a survey of results

known at that time. Finally, we refer to Section 1.3.3 for the complete story about

the minimisation of δ1.

Theorem 3.17 is taken from [80] although it was already known in the smooth

case ∂Ω ∈ C2, see [42]. The characterisation of the first Steklov eigenvalue in the

ball and Remark 3.21 are taken from [42]. Subsequently, the whole spectrum of

the biharmonic Steklov problem was studied by Ferrero-Gazzola-Weth [165] from

where Theorems 3.18, 3.19, and 3.20 are taken. Theorem 3.23 is a generalisation

to nonsmooth domains of a particular application of Fichera’s principle of duality

[170]; in this final form it is proved in [80], see also [165, 170] for previous work in

the case ∂Ω ∈ C2. All the other statements in Section 3.3.2 are taken from Bucur-

Ferrero-Gazzola [80].





Chapter 4

Kernel estimates

In Chapters 5 and 6 we discuss positivity and almost positivity for higher order

boundary value problems. The goal of the present chapter is to provide the required

estimates, which are also interesting in themselves. In order to avoid a too techni-

cal exposition, in many cases the discussion is restricted to fourth order problems.

However, whenever it does not require too many additional distinctions, the general

case of 2m-th order operators is also covered.

4.1 Consequences of Boggio’s formula

Throughout this chapter we will exploit the following notations.

Notation 4.1 Let f ,g ≥ 0 be functions defined on the same set D.

• We write f � g if there exists c > 0 such that f (x) ≤ cg(x) for all x ∈ D.

• We write f ' g if both f � g and g � f .

Notation 4.2 For a smooth bounded domain Ω , we define the distance function to

the boundary

d(x) := dist(x,∂Ω) = min
y∈∂Ω

|x− y| , x ∈ Ω . (4.1)

Many estimates will be for coordinates inside the unit ball B in Rn and for this

special domain the following expression will be used repeatedly.

Notation 4.3 For x,y ∈ B we write

[XY ] :=

√
|x|2 |y|2 −2x · y+1 =

∣∣∣∣|x|y−
x

|x|

∣∣∣∣=
∣∣∣∣|y|x−

y

|y|

∣∣∣∣ . (4.2)

As (4.2) shows, [XY ] is the distance from |y|x to the projection of y on the unit

sphere, which is larger than |x− y|. Indeed

97
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[XY ]2 −|x− y|2 = (1−|x|2)(1−|y|2) > 0 for x,y ∈ B. (4.3)

Since 1−|x| = d(x) for x ∈ B it even shows that

|x− y|2 +d(x)d(y) ≤ [XY ]2 ≤ |x− y|2 +4d(x)d(y). (4.4)

We focus on the polyharmonic analogue of the clamped plate boundary value

problem {
(−∆)mu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1.
(4.5)

Here Ω ⊂ Rn is a bounded smooth domain, f a datum in a suitable functional space

and u denotes the unknown solution.

In bounded smooth domains, a unique Green function G(−∆)m,Ω for problem

(4.5) exists and the representation formula

u(x) =
∫

Ω
G(−∆)m,Ω (x,y) f (y)dy, x ∈ Ω , (4.6)

holds true, see (2.64). Having a positivity preserving property in Ω is equivalent

to G(−∆)m,Ω ≥ 0. Almost positivity will mean that the negative part of G(−∆)m,Ω is

small in a sense to be specified when compared with its positive part. The main goal

of Chapters 5 and 6 is to identify domains and also further differential operators

enjoying almost positivity or even a positivity preserving property. To this end, we

provide in the present chapter fine estimates for the Green function and the other

kernels involved in the solution of higher order boundary value problems.

With [XY ] as in (4.2), the Green function from Lemma 2.27 by Boggio for the

Dirichlet problem (4.5) with Ω = B, the unit ball, is given by

Gm,n(x,y) = km,n |x− y|2m−n

[XY ]
/
|x−y|∫

1

(v2 −1)m−1v1−n dv . (4.7)

In Section 4.2 we give the following characterisation of Gm,n, which will be much

more convenient than Boggio’s original formula in discussing positivity issues:

Gm,n(x,y) '





|x− y|2m−n min

{
1,

d(x)md(y)m

|x− y|2m

}
if n > 2m,

log

(
1+

d(x)md(y)m

|x− y|2m

)
if n = 2m,

d(x)m− n
2 d(y)m− n

2 min

{
1,

d(x)
n
2 d(y)

n
2

|x− y|n

}
if n < 2m.

A more detailed discussion of the boundary terms will be given below. We further

deduce related estimates for the derivatives |Dα
x Gm,n(x,y)|. All these are used to
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prove so-called 3-G-type theorems in Section 4.2.2, which will help us to develop a

perturbation theory of positivity.

It is an obvious question whether in general domains Ω ⊂ Rn, where one does

not have positivity preserving, estimates for |G(−∆)m,Ω | as above are available. This

question is addressed in Section 4.5. In order to avoid too many technicalities, we

confine ourselves here to the biharmonic case. The following estimate is proven in

any bounded domain Ω ⊂ Rn with ∂Ω ∈C4,γ .

∣∣G∆ 2,Ω (x,y)
∣∣�





|x− y|4−n min

{
1,

d(x)2d(y)2

|x− y|4
}

if n > 4,

log

(
1+

d(x)2d(y)2

|x− y|4
)

if n = 4,

d(x)2− n
2 d(y)2− n

2 min

{
1,

d(x)
n
2 d(y)

n
2

|x− y|n

}
if n < 4.

(4.8)

These estimates, also being quite interesting in themselves, will prove to be basic

for the positivity and almost positivity results in Chapter 6.

Finally, kernel estimates and 3-G-type results are collected in Section 4.3 to pre-

pare the discussion of positivity in the Steklov problem which will be given in Sec-

tion 5.4.

4.2 Kernel estimates in the ball

4.2.1 Direct Green function estimates

Let Gm,n : B×B → R∪{∞} denote the Green function for (−∆)m under homoge-

neous Dirichlet boundary conditions, see (4.7), and let

Gm,n : Lp(B) →W 2m,p ∩W
m,p
0 (B), (Gm,n f )(x) =

∫

B
Gm,n(x,y) f (y)dy, (4.9)

be the corresponding Green operator. In order to base a perturbation theory of pos-

itivity on this formula, we first condense the key information on the behaviour of

Gm,n and its derivatives in more convenient expressions, which also allow for a more

direct interpretation of its behaviour, see Theorems 4.6 and 4.7 below.

The first lemma characterises the crucial distinction between the cases “x and y

are closer to the boundary ∂B than to each other” and vice versa.

Lemma 4.4. Let x,y ∈ B. If |x− y| ≥ 1
2
[XY ], then

d(x)d(y) ≤ 3 |x− y|2 , (4.10)

max{d(x),d(y)} ≤ 3 |x− y| . (4.11)
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If |x− y| ≤ 1
2
[XY ], then

3
4
|x− y|2 ≤ 3

16
[XY ]2 ≤ d(x)d(y), (4.12)

1
4
d(x) ≤ d(y) ≤ 4d(x), (4.13)

|x− y| ≤ 3min{d(x),d(y)}, (4.14)

[XY ] ≤ 5min{d(x),d(y)}. (4.15)

Moreover, for all x,y ∈ B we have

d(x) ≤ [XY ] , d(y) ≤ [XY ] , (4.16)

[XY ] ' d(x)+d(y)+ |x− y| . (4.17)

Proof. Let |x− y| ≥ 1
2
[XY ]. Then one has

d(x)d(y) ≤
(
1−|x|2

)(
1−|y|2

)
= [XY ]2 −|x− y|2 ≤ 3 |x− y|2 ,

hence (4.10). The estimate (4.11) follows from

d(x)2 ≤ d(x) (d(y)+ |x− y|) ≤ 3 |x− y|2 + |x− y|d(x) ≤ 4 |x− y|2 + 1
4
d(x)2

⇒ d(x)2 ≤ 16
3
|x− y|2 ,

and a corresponding estimate for y.

Now, let |x− y| ≤ 1
2
[XY ]. Then it follows

d(x)d(y) ≥ 1
4

(
1−|x|2

)(
1−|y|2

)
= 1

4

(
[XY ]2 −|x− y|2

)
≥ 3

16
[XY ]2 ≥ 3

4
|x− y|2 ,

hence (4.12). Inequalities (4.13) can be deduced from

d(y) ≤ d(x)+ |x− y| ≤ d(x)+
(

4
3
d(x)d(y)

)1/2 ≤
(
1+ 2

3

)
d(x)+ 1

2
d(y)

⇒ d(y) ≤ 10
3

d(x),

and the analogous computation with x and y interchanged; (4.14) and (4.15) are now

obvious.

Finally, for all x,y ∈ B we have

[XY ]2 =

∣∣∣∣|x|y−
x

|x|

∣∣∣∣
2

≥ 1−2 |x| |y|+ |x|2 |y|2 = (1−|x| |y|)2 ≥
{

(1−|x|)2 = d(x)2

(1−|y|)2 = d(y)2

thereby proving (4.16). For (4.17), formulae (4.3) and (4.16) show “�”. On the

other hand, [XY ]2 −|x− y|2 =
(
1−|x|2

)(
1−|y|2

)
≤ 4d(x)d(y) ≤ 2d(x)2 + 2d(y)2

showing also “�”. �

In the ball, the following lemma is a direct consequence of the preceding one.

However, since the result is needed also in general domains we prove it in this

framework.
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Lemma 4.5. Let Ω ⊂ Rn be a bounded domain and let p,q ≥ 0 be fixed.

For (x,y) ∈ Ω
2

we have:

min

{
1,

d (y)

|x− y|

}
' min

{
1,

d (y)

d (x)
,

d (y)

|x− y|

}
, (4.18)

min

{
1,

d (x)d (y)

|x− y|2

}
' min

{
d (y)

d (x)
,

d (x)

d (y)
,

d (x)d (y)

|x− y|2

}
, (4.19)

min

{
1,

d (x)p
d (y)q

|x− y|p+q

}
' min

{
1,

d (x)p

|x− y|p ,
d (y)q

|x− y|q ,
d (x)p

d (y)q

|x− y|p+q

}
, (4.20)

min

{
1,

d (x)p
d (y)q

|x− y|p+q

}
' min

{
1,

d (x)

|x− y|

}p

min

{
1,

d (y)

|x− y|

}q

, (4.21)

and assuming moreover that p+q > 0, we also have

log

(
1+

d (x)p
d (y)q

|x− y|p+q

)
' log

(
2+

d (y)

|x− y|

)
min

{
1,

d (x)p
d (y)q

|x− y|p+q

}
. (4.22)

Proof. Case d(x) ≥ 2|x− y| or d(y) ≥ 2|x− y|.
If d(x) ≥ 2|x− y| we also have

d(y) ≥ d(x)−|x− y| ≥ d(x)− 1
2
d(x) = 1

2
d(x) ≥ |x− y| ,

d(y) ≤ d(x)+ |x− y| ≤ 3
2
d(x).

If, on the other hand, d(y) ≥ 2|x− y| one concludes similarly that

|x− y| ≤ 1
2
d(y) ≤ d(x) ≤ 3

2
d(y).

Hence, in what follows we may use that

|x− y| ≤ d(x) and |x− y| ≤ d(x) and d(x) ' d(y). (4.23)

This shows that in (4.18) - (4.21) we have that the left hand sides as well as the right

hand sides all satisfy ' 1. As for (4.22), we have in this case thanks to p+q > 0

log

(
1+

d(x)pd(y)q

|x− y|p+q

)
' log

(
d(x)pd(y)q

|x− y|p+q

)
' (p+q) log

(
d(y)

|x− y|

)

' log

(
2+

d(y)

|x− y|

)
' log

(
2+

d(y)

|x− y|

)
min

{
1,

d(x)pd(y)q

|x− y|p+q

}
.

Case d(x) < 2|x− y| and d(y) < 2|x− y|.
As for (4.18), inequality “�” is obvious, while “�” follows from

min

{
1,

d(y)

|x− y|

}
' d(y)

|x− y| ≤ 2
d(y)

d(x)
.
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For (4.19) one uses min{t, 1
t
} ≤ 1 (for all t > 0) to prove “�”. For “�”one may

observe that
1

|x− y|2 ≤ 4

d(x)2
and

1

|x− y|2 ≤ 4

d(y)2
.

In the case considered claims (4.20) and (4.21) are obvious. Finally, through

log

(
1+

d(x)pd(y)q

|x− y|p+q

)
' d(x)pd(y)q

|x− y|p+q
' min

{
1,

d(x)pd(y)q

|x− y|p+q

}

' log

(
2+

d(y)

|x− y|

)
min

{
1,

d(x)pd(y)q

|x− y|p+q

}

we find (4.22). �

We are now ready to establish the basic Green function estimates. In what follows

the estimates of Gm,n from below will be crucial.

Theorem 4.6. (Two-sided estimates of the Green function) In B×B we have

Gm,n(x,y) '





|x− y|2m−n min

{
1,

d(x)md(y)m

|x− y|2m

}
if n > 2m;

log

(
1+

d(x)md(y)m

|x− y|2m

)
if n = 2m;

d(x)m− n
2 d(y)m− n

2 min

{
1,

d(x)
n
2 d(y)

n
2

|x− y|n

}
if n < 2m.

(4.24)

Proof. According to Lemma 4.4 it is essential to distinguish the two cases “|x−y| ≥
1
2
[XY ]” and “|x− y| ≤ 1

2
[XY ]”.

1st case: |x− y| ≤ 1
2
[XY ]. Here (4.10) applies and we have to show

Gm,n(x,y) '





|x− y|2m−n if n > 2m,

log

(
1+

d(x)md(y)m

|x− y|2m

)
if n = 2m,

d(x)m− n
2 d(y)m− n

2 if n < 2m.

(4.25)

It is not too hard to see that

a ∈ [2,∞) ⇒
∫ a

1
(v2 −1)m−1v1−n dv '

∫ a

1
v2m−n−1 dv

holds true. According to our assumption we may conclude in this case from formula

(4.7) for the Green function
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Gm,n(x,y) ' |x− y|2m−n

∫ [XY ]/|x−y|

1
(v2 −1)m−1v1−n dv

' |x− y|2m−n

∫ [XY ]/|x−y|

1
v2m−n−1 dv

'





|x− y|2m−n if n > 2m,

log

(
[XY ]

|x− y|

)
if n = 2m,

[XY ]2m−n −|x− y|2m−n ' [XY ]2m−n if n < 2m.

(4.26)

If n > 2m, statement (4.25) is already proved. In order to proceed also in small

dimensions n ≤ 2m we combine (4.15) and (4.16). We obtain in this case

[XY ] ' d(x) ' d(y).

Hence, (4.25) is now obvious also for n < 2m. If n = 2m, we observe further that

a ∈ [2,∞) ⇒ loga ' log(1+am). (4.27)

The discussion of the case |x− y| ≤ 1
2
[XY ] is now complete.

2nd case: |x− y| ≥ 1
2
[XY ].

In this case we have
d(x)
|x−y| ≤ 3,

d(y)
|x−y| ≤ 3. Hence, independently of whether n > 2m,

n = 2m or n < 2m, we have to show

Gm,n(x,y) ' |x− y|−nd(x)md(y)m. (4.28)

When using formula (4.7) for Gm,n, we note that the upper integration bound

[XY ]/|x− y| is in [1,2]. On this interval one has v−n ' 1 and may conclude

Gm,n(x,y) ' |x− y|2m−n

∫ [XY ]/|x−y|

1
(v2 −1)m−1 vdv

' |x− y|2m−n

(
[XY ]2

|x− y|2 −1

)m

= |x− y|−n
(
[XY ]2 −|x− y|2

)m

= |x− y|−n
(
(1−|x|2)(1−|y|2)

)m ' |x− y|−nd(x)md(y)m.

The proof of (4.28), and hence of Theorem 4.6, is complete. �

In the spirit of Theorem 4.6 we also have estimates for the derivatives.

Theorem 4.7. (Estimates of the derivatives of the Green function)

Let α ∈ Nn be a multiindex. Then in B×B we have

|Dα
x Gm,n(x,y)| � (∗)

with (∗) as follows:

1. if |α| ≥ 2m−n and n odd, or if |α| > 2m−n and n even
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(∗) =





|x− y|2m−n−|α| min

{
1,

d(x)m−|α|d(y)m

|x− y|2m−|α|

}
for |α| < m,

|x− y|2m−n−|α| min

{
1,

d(y)m

|x− y|m
}

for |α| ≥ m;

2. if |α| = 2m−n and n even

(∗) =





log

(
2+

d(y)

|x− y|

)
min

{
1,

d(x)m−|α|d(y)m

|x− y|2m−|α|

}
for |α| < m,

log

(
2+

d(y)

|x− y|

)
min

{
1,

d(y)m

|x− y|m
}

for |α| ≥ m;

3. if |α| ≤ 2m−n and n odd, or if |α| < 2m−n and n even

(∗) =





d(x)m− n
2−|α|d(y)m− n

2 min

{
1,

d(x)
n
2 d(y)

n
2

|x− y|n

}
for |α| < m− n

2
,

d(y)2m−n−|α| min

{
1,

d(x)m−|α|d(y)n−m+|α|

|x− y|n

}
for m− n

2
≤ |α| < m,

d(y)2m−n−|α| min

{
1,

d(y)n−m+|α|

|x− y|n−m+|α|

}
for |α| ≥ m.

Proof. 1. We claim that on {(x,y) ∈ B×B : |x− y| ≥ 1
2
[XY ]} it holds true that

|Dα
x Gm,n(x,y)| � |x− y|2m−n−|α|

(
d(x)

|x− y|

)max{m−|α|,0}(
d(y)

|x− y|

)m

. (4.29)

To this end we use the transformation s = 1− 1
v2 in formula (4.7) in order to show

the boundary behaviour of the Green function more clearly. We have

Gm,n(x,y) =
km,n

2
|x− y|2m−n fm,n(Ax,y), (4.30)

where

fm,n(t) :=

t∫

0

sm−1(1− s)
n
2−m−1 ds, (4.31)

Ax,y :=
[XY ]2 −|x− y|2

[XY ]2
=

(1−|x|2)(1−|y|2)
[XY ]2

' d(x)d(y)

[XY ]2
. (4.32)

According to the assumption we have
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Ax,y ≤
3

4
. (4.33)

Here, i.e for t ∈ [0, 3
4
], we know

∣∣∣ f ( j)
m,n(t)

∣∣∣� tmax{m− j,0}. (4.34)

Since d(x) ≤ [XY ], by (4.16), for every multiindex β ∈ Nn one has

∣∣∣Dβ
x Ax,y

∣∣∣� d(y)[XY ]−1−|β |. (4.35)

Application of a general product and chain rule yields

|Dα
x Gm,n(x,y)| � ∑

β≤α

∣∣∣Dα−β
x |x− y|2m−n

∣∣∣ ·
∣∣∣Dβ

x fm,n(Ax,y)
∣∣∣

� |x− y|2m−n−|α| ·
∣∣ fm,n(Ax,y)

∣∣

+ ∑
β ≤ α
β 6= 0

|x− y|2m−n−|α|+|β | ·
|β |
∑
j=1





∣∣∣ f ( j)
m,n(Ax,y)

∣∣∣ · ∑
∑

j
i=1 β (i) = β

|β (i)| ≥ 1

j

∏
i=1

∣∣∣Dβ (i)

x Ax,y

∣∣∣





� |x− y|2m−n−|α| d(x)md(y)m

[XY ]2m

+ ∑
β ≤ α
β 6= 0

|x− y|2m−n−|α|+|β | ·
|β |
∑
j=1

{(
d(x)d(y)

[XY ]2

)max{m− j,0}
· d(y) j

[XY ] j+|β |

}

by (4.32), (4.34), (4.35)

� ∑
β≤α

|x− y|2m−n−|α|
(

d(x)

[XY ]

)max{m−|β |,0}(
d(y)

[XY ]

)m( |x− y|
[XY ]

)|β |

by (4.16)

� |x− y|2m−n−|α|
(

d(x)

[XY ]

)max{m−|α|,0}(
d(y)

[XY ]

)m

by (4.3) and (4.16).

Thanks to inequality (4.3) the estimate (4.29) follows.

2. We claim that in
{
(x,y) ∈ B×B : |x− y| ≤ 1

2
[XY ]

}
one has
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|Dα
x Gm,n(x,y)| �





|x− y|2m−n−|α| if |α| > 2m−n,

log

(
[XY ]

|x− y|

)
if |α| = 2m−n and n even,

1 if |α| = 2m−n and n odd,

[XY ]2m−n−|α| if |α| < 2m−n.

(4.36)

In contrast with the proof of (4.29) here we do not have to discuss the behaviour

of the Green function close to the boundary but “close to the singularity x = y”.

For this reason it is suitable to expand formula (4.7) first and then to carry out the

integration explicitly. The integrand contains a term like 1
v

if and only if n even and

n ≤ 2m. It follows for suitable numbers c j = c j(m,n) ∈ R, j = 0, . . . ,m:

Gm,n(x,y) =





cm|x− y|2m−n +
m−1

∑
j=0

c j[XY ]2m−n−2 j|x− y|2 j

if n > 2m or n odd,

cm|x− y|2m−n log
[XY ]

|x− y| +
m−1

∑
j=0

c j[XY ]2m−n−2 j|x− y|2 j

if n ≤ 2m and n even.

(4.37)

When differentiating we take into account that |x− y|2 j is a polynomial of degree

2 j, whose derivatives of order > 2 j vanish identically. Moreover, taking advantage

of |x− y| ≤ [XY ], |Dα
x [XY ]k| � [XY ]k−|α| and |Dα

x |x− y|k| � |x− y|k−|α|:

|Dα
x Gm,n(x,y)| �





|x− y|2m−n−|α| +[XY ]2m−n−|α|

if n > 2m−|α| or n odd,

|x− y|2m−n−|α|
(

1+ log
[XY ]

|x− y|

)
+[XY ]2m−n−|α|

if n ≤ 2m−|α| and n even.

(4.38)

This already proves (4.36) except in the case where n is even and n < 2m−|α|. In

this case, we use a ∈ [1,∞) ⇒ 0 ≤ loga ≤ a and conclude from (4.38):

|Dα
x Gm,n(x,y)| � |x− y|2m−n−|α|−1[XY ]+ [XY ]2m−n−|α| � [XY ]2m−n−|α|.

Therefore, (4.36) holds in any case.

3. We conclude the proof of the theorem by using (4.29) and (4.36). Let x,y ∈ B be

arbitrary. According to Lemma 4.4 two cases have to be distinguished.

1st case: |x− y| ≤ 1
2
[XY ].

Here d(x) ' d(y), and using Lemma 4.4 we obtain for p,q ≥ 0:

min

{
1,

(
d(x)

|x− y|

)p(
d(y)

|x− y|

)q}
' 1.
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We have to show that

|Dα
x Gm,n(x,y)| �





|x− y|2m−n−|α| if |α| > 2m−n,

log

(
2+

d(y)

|x− y|

)
if |α| = 2m−n and n even,

1 if |α| = 2m−n and n odd,

d(y)2m−n−|α| if |α| < 2m−n.

This estimate follows from (4.36), since d(x)' d(y)' [XY ] according to (4.15) and

(4.16). For the logarithmic term one should observe further (4.27). Making use of

[XY ]/|x− y| ≥ 2 and [XY ] ≤ 5d(y) we obtain

log
[XY ]

|x− y| � log

(
1+

1

5

[XY ]

|x− y|

)
≤ log

(
2+

d(y)

|x− y|

)
.

2nd case: |x− y| ≥ 1
2
[XY ].

According to Lemma 4.4 we have for p,q ≥ 0:

log

(
2+

d(y)

|x− y|

)
' 1,

min

{
1,

(
d(x)

|x− y|

)p(
d(y)

|x− y|

)q}
'
(

d(x)

|x− y|

)p(
d(y)

|x− y|

)q

.

The estimates for (∗) as in the statement follow immediately from (4.29). �

The Green function for the Laplacian (m = 1,n > 2) satisfies the estimates above

in arbitrary bounded C2,γ -smooth domains, see e.g. [411]. This result is proved with

the help of general maximum principles and Harnack’s inequality. For higher or-

der equations we proceed just in the opposite way, namely, we deduce the above

estimates from Boggio’s explicit formula and, in turn, use them to prove some com-

parison principles.

In general the following estimate is weaker than Item 3 of Theorem 4.7 but still

appropriate and more convenient for our purposes.

Corollary 4.8. For |α| ≤ 2m−n and n odd, or, |α| < 2m−n and n even we have

|Dα
x Gm,n (x,y)| � d (x)m− n

2−|α|
d (y)m− n

2 min

{
1,

d (x)
n
2 d (y)

n
2

|x− y|n

}
.
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4.2.2 A 3-G-type theorem

In Chapter 5 we develop a perturbation theory of positivity for Boggio’s prototype

situation of the polyharmonic operator in the ball. This will be achieved by means

of Neumann series and estimates of iterated Green operators. The latter are conse-

quences of the following 3-G-type result, which provides an estimate for a term of

three Green functions.

Theorem 4.9 (3-G-theorem). Let α ∈ Nn be a multiindex. Then on B×B×B we

have

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)
�

�





|x− z|2m−n−|α| + |y− z|2m−n−|α| if |α| > 2m−n,

log

(
3

|x− z|

)
+ log

(
3

|y− z|

)
if |α| = 2m−n and n even,

1 if |α| = 2m−n and n odd,

1 if |α| < 2m−n.

(4.39)

The proof is crucially based on the Green function estimates in Theorems 4.6 and

4.7 and a number of technical inequalities and equivalencies which we are going to

prove first.

Lemma 4.10. For s, t > 0 it holds that

log(1+ t)

log(1+ s)
≤ 1+

t

s
. (4.40)

Proof. For s > 0 and α ≥ 1 concavity of the logarithm yields

log(1+ s) = log

(
1

α
(1+αs)+(1− 1

α
·1)

)
≥ 1

α
log(1+αs),

i.e. log(1 + αs)/ log(1 + s) ≤ α . For 0 < α ≤ 1 it is obvious that log(1 + αs) ≤
log(1+ s). Combining these estimates we have for s,α > 0

log(1+αs)

log(1+ s)
≤ 1+α.

The claim (4.40) follows by taking α = t
s
. �

Boggio’s formula is the reason that we can prove the 3-G-theorem 4.9 only in balls.

The following lemmas, however, hold true in any bounded domain.

Lemma 4.11. Let Ω ⊂ Rn be a bounded domain. Assume that p,q,r ≥ 0, r ≤ p+q.

Further let s ∈ R be such that r
2
− p ≤ s ≤ q− r

2
. Then, on Ω ×Ω , we have
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min

{
1,

(
d(x)

|x− y|

)p(
d(y)

|x− y|

)q}
�
(

d(y)

d(x)

)s

min

{
1,

d(x)d(y)

|x− y|2
} r

2

. (4.41)

Proof. We make the same distinction as in the proof of Lemma 4.5.

Case d(x) ≥ 2|x− y| or d(y) ≥ 2|x− y|. According to (4.23) we have that

|x− y| ≤ d(x) and |x− y| ≤ d(x) and d(x) ' d(y)

which directly yields (4.41).

Case d(x) < 2|x− y| and d(y) < 2|x− y|. Under this assumption we obtain

min

{
1,

(
d(x)

|x− y|

)p(
d(y)

|x− y|

)q}
'
(

d(x)

|x− y|

)p(
d(y)

|x− y|

)q

=

(
d(y)

d(x)

)s(
d(x)d(y)

|x− y|2
) r

2
(

d(x)

|x− y|

)p+s− r
2
(

d(y)

|x− y|

)q−s− r
2

and, since p+ s− r
2

and q− s− r
2

are nonnegative, the estimate in (4.41). �

Lemma 4.12. Let Ω ⊂ Rn be a bounded domain. On Ω ×Ω ×Ω , it holds true that

Q(x,y,z) :=
min

{
1, d(x)d(z)

|x−z|2
}

min
{

1, d(z)d(y)
|z−y|2

}

min
{

1, d(x)d(y)
|x−y|2

} � 1, (4.42)

R(x,y,z) :=
min

{
1, d(x)d(z)

|x−z|2
}

min
{

1, d(y)
|z−y|

}

min
{

1, d(x)d(y)
|x−y|2

} � 1+
|y− z|
|x− z| , (4.43)

S(x,y,z) :=
log
(

1+ d(x)d(z)
|x−z|2

)
min

{
1, d(y)

|z−y|

}

log
(

1+ d(x)d(y)
|x−y|2

) � 1+
|y− z|
|x− z| , (4.44)

T (x,y,z) :=
|x− y|

|x− z| |z− y| ≤
1

|x− z| +
1

|z− y| . (4.45)

Proof. Estimate (4.45) is an immediate consequence of the triangle inequality. To

prove the remaining estimates we distinguish several cases as in Lemmas 4.5 and

4.11.

Case d(x) ≥ 2|x− y| or d(y) ≥ 2|x− y|. Again, we refer to (4.23):

|x− y| ≤ d(x) and |x− y| ≤ d(x) and d(x) ' d(y).

This shows that the denominators of Q and R are bounded from below. Estimating

the numerators by 1 from above proves (4.42) and (4.43). In order to estimate S, we

make also use of (4.22) and Lemma 4.10.
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S(x,y,z) �
log
(

2+ d(x)
|x−z|

)

log
(

2+ d(x)
|x−y|

) ·1 � 1+
1+ d(x)

|x−z|

1+ d(x)
|x−y|

≤ 2+

d(x)
|x−z|

1+ d(x)
|x−y|

≤ 2+
|x− y|
|x− z| ≤ 3+

|y− z|
|x− z| .

Case d(x) < 2|x− y| and d(y) < 2|x− y|. Under this assumption we have

min

{
1,

d(x)d(y)

|x− y|2
}
' log

(
1+

d(x)d(y)

|x− y|2
)
' d(x)d(y)

|x− y|2 .

A further distinction with respect to z seems inevitable.

Assume first that |x− z| ≥ 1
2
|x− y|. Then (4.18), (4.19), and log(1+ x) ≤ x yield

Q(x,y,z)
R(x,y,z)
S(x,y,z)



� |x− y|2

d(x)d(y)
· d(x)d(z)

|x− z|2 · d(y)

d(z)
� 1.

Assume now that |x− z|< 1
2
|x−y|. Then |y− z| ≥ |y−x|− |x− z| ≥ 1

2
|x−y|. We

obtain by applying Lemma 4.5

Q(x,y,z) � |x− y|2
d(x)d(y)

· d(x)

d(z)
· d(z)d(y)

|y− z|2 � 1,

R(x,y,z) � |x− y|2
d(x)d(y)

· d(x)

|x− z| ·
d(y)

|y− z| �
|x− y|
|x− z| � 1+

|y− z|
|x− z| ,

S(x,y,z) � |x− y|2
d(x)d(y)

· log

(
2+

d(x)

|x− z|

)
·min

{
1,

d(x)

|x− z|

}
· d(y)

|y− z|

� |x− y|
|x− z| � 1+

|y− z|
|x− z| .

�

Proof of the 3-G-theorem 4.9. According to Theorems 4.6 and 4.7 several cases have

to be distinguished.

The case: n > 2m.

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)

�
|x− y|n−2m min

{
1, d(x)md(z)m

|x−z|2m

}
min

{
1,
(

d(z)
|z−y|

)max{m−|α|,0}(
d(y)
|z−y|

)m
}

|x− z|n−2m|z− y|n+|α|−2m min
{

1, d(x)md(y)m

|x−y|2m

}

� 1

|y− z||α| (T (x,y,z))n−2m (Q(x,y,z))max{m−|α|,0} (R(x,y,z))min{|α|,m} =: (?0)
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thanks to (4.21). We continue by Lemma 4.12 to find

(?0) �
1

|y− z||α|

(
1

|x− z| +
1

|y− z|

)n−2m(
1+

|y− z|
|x− z|

)min{|α|,m}

� |x− z|2m−n|y− z|−|α| + |y− z|2m−n−|α|

+ |x− z|2m−n−min{|α|,m}|y− z|−|α|+min{|α|,m}

+ |x− z|−min{|α|,m}|y− z|2m−n−|α|+min{|α|,m}

� |x− z|2m−n−|α| + |y− z|2m−n−|α|.

The case: n = 2m and α = 0.

Gm,n(x,z)Gm,n(z,y)

Gm,n(x,y)

�
log
(

2+ d(x)
|x−z|

)
log
(

2+ d(y)
|y−z|

)
min

{
1, d(x)md(z)m

|x−z|2m

}
min

{
1, d(z)md(y)m

|z−y|2m

}

max
{

log
(

2+ d(x)
|x−y|

)
, log

(
2+ d(y)

|x−y|

)}
min

{
1, d(x)md(y)m

|x−y|2m

}

by virtue of (4.22)

�
log
(

2+ d(x)
|x−z|

)
log
(

2+ d(y)
|y−z|

)

max
{

log
(

2+ d(x)
|x−y|

)
, log

(
2+ d(y)

|x−y|

)} (Q(x,y,z))m =: (?1).

If |x− z| ≥ 1
2
|x− y|, then log

(
2+ d(x)

|x−z|

)
� log

(
2+ d(x)

|x−y|

)
. If, on the other hand,

|x− z| < 1
2
|x− y|, then the reverse inequality |y− z| ≥ |x− y| − |x− z| ≥ 1

2
|x− y|

follows and hence log
(

2+ d(y)
|y−z|

)
� log

(
2+ d(y)

|x−y|

)
. Combining this estimate with

Lemma 4.12, (4.42) yields

(?1) � log

(
2+

d(x)

|x− z|

)
+ log

(
2+

d(y)

|y− z|

)
� log

(
3

|x− z|

)
+ log

(
3

|y− z|

)
.

The case: n = 2m and |α| > 0.

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)

�
log
(

1+ d(x)d(z)
|x−z|2

)
min

{
1, d(x)m−1d(z)m−1

|x−z|2m−2

}
min

{
1, d(z)max{m−|α|,0}d(y)m

|z−y|m+max{m−|α|,0}

}

log
(

1+ d(x)d(y)
|x−y|2

)
|y− z||α| min

{
1, d(x)m−1d(y)m−1

|x−y|2m−2

}

� |y− z|−|α|
S(x,y,z)(Q(x,y,z))max{m−|α|,0} (R(x,y,z))min{|α|,m}−1

by (4.21)
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� |y− z|−|α|
(

1+
|y− z|
|x− z|

)min{|α|,m}
by Lemma 4.12

� |x− z|−|α| + |y− z|−|α| .

The case: n < 2m and |α| < 2m−n,

or: n < 2m and |α| ≤ 2m−n and n odd.

Here we use Corollary 4.8. Together with Theorem 4.6 we obtain

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)

�
d(x)m− n

2 d(z)2m−n−|α|d(y)m− n
2 min

{
1, d(x)

n
2 d(z)

n
2

|x−z|n

}
min

{
1, d(z)

n
2 d(y)

n
2

|z−y|n

}

d(x)m− n
2 d(y)m− n

2 min

{
1, d(x)

n
2 d(y)

n
2

|x−y|n

}

� d(z)2m−n−|α| (Q(x,y,z))
n
2 � 1 due to (4.42).

The case: n < 2m and |α| = 2m−n and n even.

We employ Lemma 4.11 with p = max{m− |α|,0}, q = m, s = m− n
2

and r = n.

In the present case, due to |α| = 2m− n, one has: p + q = max{n−m,0}+ m =
max{n,m} ≥ n = r; q− r

2
= m− n

2
= s = n

2
− (n−m) ≥ r

2
− p.

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)

�
d(x)m− n

2 d(z)m− n
2 min

{
1, d(x)

n
2 d(z)

n
2

|x−z|n

}

d(x)m− n
2 d(y)m− n

2 min

{
1, d(x)

n
2 d(y)

n
2

|x−y|n

}

× log

(
2+

d(y)

|z− y|

)
min

{
1,

(
d(z)

|z− y|

)max{m−|α|,0}(
d(y)

|z− y|

)m
}

�
log
(

2+ d(y)
|z−y|

)
d(z)m− n

2 min

{
1, d(x)

n
2 d(z)

n
2

|x−z|n

}(
d(y)
d(z)

)m− n
2

min

{
1, d(z)

n
2 d(y)

n
2

|z−y|n

}

d(y)m− n
2 min

{
1, d(x)

n
2 d(y)

n
2

|x−y|n

}

� log

(
2+

d(y)

|z− y|

)
(Q(x,y,z))

n
2 � log

(
3

|y− z|

)
by virtue of (4.42).
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The case: n < 2m and |α| > 2m−n.

Gm,n(x,z)
∣∣Dα

z Gm,n(z,y)
∣∣

Gm,n(x,y)
�

d(x)m− n
2 d(z)m− n

2 min

{
1, d(x)

n
2 d(z)

n
2

|x−z|n

}

d(x)m− n
2 d(y)m− n

2 min

{
1, d(x)

n
2 d(y)

n
2

|x−y|n

}

× |z− y|2m−n−|α| min

{
1,

(
d(z)

|z− y|

)max{m−|α|,0}(
d(y)

|z− y|

)m
}

= |y− z|2m−n−|α|
d(z)m− n

2 min

{
1, d(x)

n
2 d(z)

n
2

|x−z|n

}

d(y)m− n
2 min

{
1, d(x)

n
2 d(y)

n
2

|x−y|n

}

× min

{
1,

(
d(z)

|z− y|

)max{m−|α|,0}(
d(y)

|z− y|

)m
}

=: (?2).

In order to proceed, we have to distinguish further cases.

In addition, we assume first that |α| ≤ 2m− n
2
.

We apply (4.21) of Lemma 4.5 to the “dangerous” term in (?2). Here one has to

observe that |α|+n−2m > 0 as well as 3m−n−|α| ≥ 3m−n−2m+ n
2

= m− n
2

>
0. In a second step we make use of Lemma 4.11 with p = max{m− |α|,0} ≥ 0,

q = 3m−n−|α| ≥ 0, r = 4m−n−2|α| ≥ 0 and s = m− n
2
. Obviously p+q− r =

max{|α|−m,0} ≥ 0, q− r
2

= s, r
2
− p = m− n

2
−max{|α|−m,0} ≤ s.

min

{
1,

(
d(z)

|z− y|

)max{m−|α|,0}(
d(y)

|z− y|

)m
}

' min

{
1,

d(y)

|y− z|

}|α|+n−2m

min

{
1,

(
d(z)

|z− y|

)max{m−|α|,0}(
d(y)

|z− y|

)3m−n−|α|}

� min

{
1,

d(y)

|y− z|

}|α|+n−2m(
d(y)

d(z)

)m− n
2

min

{
1,

d(z)d(y)

|z− y|2
}2m− n

2−|α|
.

With the aid of this estimate and of Lemma 4.12 we obtain further

(?2) � |y− z|2m−n−|α| (Q(x,y,z))2m− n
2−|α| (R(x,y,z))|α|+n−2m

� |y− z|2m−n−|α|
(

1+
|y− z|
|x− z|

)|α|+n−2m

� |y− z|2m−n−|α| + |x− z|2m−n−|α| .

Now we assume that additionally |α| > 2m− n
2

holds true.

Here one has to deal with the “dangerous” term in (?2) in a different manner. Ob-

viously, one has that |α| > m +
(
m− n

2

)
> m. We apply repeatedly Lemma 4.5,

observing that n
2

< m.
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min

{
1,

(
d(z)

|z− y|

)max{m−|α|,0}(
d(y)

|z− y|

)m
}

' min

{
1,

(
d(y)

|z− y|

)m}

' min

{
1,

d(y)

|y− z|

} n
2

min

{
1,

d(y)

|z− y|

}m− n
2

� min

{
1,

d(y)

|y− z|

} n
2
(

d(y)

d(z)

)m− n
2

.

By means of this estimate and of Lemma 4.12 we further conclude that

(?2) � |y− z|2m−n−|α| (R(x,y,z))
n
2 � |y− z|2m−n−|α|

(
1+

|y− z|
|x− z|

) n
2

� |y− z|2m−n−|α| + |y− z|2m− n
2−|α| |x− z|−

n
2

� |y− z|2m−n−|α| + |x− z|2m−n−|α| .

To apply Young’s inequality in the last step, one has to exploit the assumption

2m− n
2
−|α| < 0 of this case. �

4.3 Estimates for the Steklov problem

In the previous section we considered the higher order operator (−∆)m
under

Dirichlet boundary conditions starting from the explicit formula of Boggio and

hence we necessarily had to restrict ourselves to the ball as domain. Under different

boundary conditions the boundary value problem may be rewritten as a second or-

der system. The present section prepares for such a situation so that general bounded

smooth domains are allowed. So we consider the second order Green operator G and

the Poisson operator K on a general domain Ω , that is, w = G f +K g formally

solves

{
−∆w = f in Ω ,
w = g on ∂Ω .

For bounded C2-domains the operators G and K can be represented by integral

kernels G and K, namely

(G f )(x) =
∫

Ω
G(x,y) f (y)dy and (K g)(x) =

∫

∂Ω
K(x,y)g(y)dωy. (4.46)

Moreover, it holds that

K(x,y) =
−∂

∂νy

G(x,y) for all (x,y) ∈ Ω ×∂Ω . (4.47)

According to (4.6), the Green function G in (4.46) should be written as G−∆ ,Ω .

However, since this function is frequently used in this section, we drop the subscripts

for a simpler notation.
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In this section we prove some estimates for the kernels G and K in general

bounded domains Ω such that ∂Ω ∈ C2. These estimates will be intensively used

in Section 5.4 in order to prove positivity properties for the biharmonic Steklov

problem.

Based on several estimates due to Zhao [420, 421] (see also [118, 384]), Grunau-

Sweers [213] were able to show:

Proposition 4.13. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C2. Then the fol-

lowing uniform estimates hold for (x,y) ∈ Ω ×Ω :

for n > 4 :

∫

Ω
G(x,z)G(z,y)dz ' |x− y|4−n

min

{
1,

d(x)d(y)

|x− y|2

}
, (4.48)

for n = 4 :

∫

Ω
G(x,z)G(z,y)dz ' log

(
1+

d(x)d(y)

|x− y|2

)
, (4.49)

for n = 3 :

∫

Ω
G(x,z)G(z,y)dz '

√
d(x)d(y)min

{
1,

√
d(x)d(y)

|x− y|

}
, (4.50)

for n = 2 :

∫

Ω
G(x,z)G(z,y)dz ' d(x)d(y) log

(
2+

1

|x− y|2 +d(x)d(y)

)
.(4.51)

We will exploit these estimates combined with the following “geometric” result:

Lemma 4.14. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈C2. For x ∈ Ω
let x∗ ∈ ∂Ω be any point such that d(x) = |x− x∗|.
• Then there exists rΩ > 0 such that for x ∈ Ω with d(x) ≤ rΩ there is a unique

x∗ ∈ ∂Ω .

• Then the following uniform estimates hold:

for (x,y) ∈ Ω ×Ω : |x− y| � d(x)+d(y)+ |x∗− y∗| , (4.52)

for (x,y) ∈ Ω ×Ω :
d(x)

d(x)+d(y)+ |x∗− y∗| � min

{
1,

d(x)

|x− y|

}
, (4.53)

for (x,z) ∈ Ω ×∂Ω : |x− z| ' d(x)+ |x∗− z| . (4.54)

And for (x,y,z) ∈ Ω ×Ω ×∂Ω :

if d(y) ≤ d(x) and |x∗− y∗| ≤ d(x)+d(y), then |x− z| ' d(x)+ |y∗− z| .
(4.55)

Proof. Since ∂Ω ∈ C2, there exists r1 > 0 such that Ω can be filled with balls of

radius r1. Set rΩ = 1
2
r1. For x ∈ Ω with d(x) ≤ rΩ there is a unique x∗ ∈ ∂Ω .

Estimate (4.52) is just the triangle inequality. Estimate (4.54) follows from the

three inequalities

|x− z| ≤ |x− x∗|+ |x∗− z| = d(x)+ |x∗− z| ,
d(x) ≤ |x− z| and |x∗− z| ≤ |x∗− x|+ |x− z| ≤ 2 |x− z| .
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In order to prove (4.55), we first remark that under the assumptions made we

have d(x) ≥ 1
2
|x∗− y∗|. This yields the two inequalities

d(x)+ |x∗− z| ≤ d(x)+ |x∗− y∗|+ |y∗− z| ≤ 3d(x)+ |y∗− z| ≤ 3(d(x)+ |y∗− z|),
d(x)+ |y∗− z| ≤ d(x)+ |x∗− y∗|+ |x∗− z| ≤ 3d(x)+ |x∗− z| ≤ 3(d(x)+ |x∗− z|).

In turn these inequalities read as d(x)+ |x∗− z| ' d(x)+ |y∗− z|. This, combined

with (4.54), proves (4.55).

To prove (4.53), we distinguish two cases. If |x− y| ≤ 1
2

max(d(x),d(y)), then
1
2
d(x) ≤ d(y) ≤ 2d(x) and |x− y| � d(x) ' d(y). It follows that

d(x)

d(x)+d(y)+ |x∗− y∗| � 1 ' min

{
1,

d(x)

|x− y|

}

and a similar estimate with x and y interchanged. If |x− y| ≥ 1
2

max(d(x),d(y)), we

use (4.52) to find that

d(x)

d(x)+d(y)+ |x∗− y∗| �
d(x)

|x− y| ' min

{
1,

d(x)

|x− y|

}

and a similar estimate with x and y interchanged. �

We are now ready to prove the estimates which are needed for the study of the

Steklov problem.

Lemma 4.15. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2. Then the

following uniform estimates hold for (x,z) ∈ Ω ×∂Ω :

∫

Ω
G(x,ξ )K(ξ ,z)dξ '





d(x) |x− z|2−n
for n ≥ 3,

d(x) log
(

2+ 1

|x−z|2
)

for n = 2.

Proof. Let

H(x,z) :=
∫

Ω
G(x,ξ )G(ξ ,z)dξ for all (x,z) ∈ Ω ×∂Ω .

In view of (4.47), and since H(x,z) = 0 for z ∈ ∂Ω , we have

∫

Ω
G(x,ξ )K(ξ ,z)dξ =

−∂

∂νz

H(x,z) = lim
t→0

H(x,z− tνz)

t
. (4.56)

Note also that if rΩ is as in Lemma 4.14, then d(z− tνz) = t for all z ∈ ∂Ω and

t ≤ rΩ . Hence, by (4.48) we obtain for n > 4

lim
t→0

H(x,z− tνz)

t
' lim

t→0

|x− z+ tνz|4−n
min

{
1, td(x)

|x−z+tνz|2
}

t
= d(x) |x− z|2−n .
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For n = 4 we use (4.49) to obtain

lim
t→0

H(x,z− tνz)

t
' lim

t→0

log
(

1+ td(x)

|x−z+tνz|2
)

t
' d(x) |x− z|−2 .

For n = 3 we use (4.50) to obtain

lim
t→0

H(x,z− tνz)

t
' lim

t→0

√
td(x) min

{
1,

√
td(x)

|x−z+tνz|

}

t
= d(x) |x− z|−1 .

And finally for n = 2 we use (4.51) to obtain

lim
t→0

H(x,z− tνz)

t
' lim

t→0

td(x) log
(

2+ 1

|x−z+tνz|2+td(x)

)

t
= d(x) log

(
2+

1

|x− z|2

)
.

By (4.56) the statement is so proved for any n ≥ 2. �

Lemma 4.16. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2. Then the

following uniform estimates hold for (x,y) ∈ Ω ×Ω :

∫

Ω

∫

∂Ω

∫

Ω
G(x,ξ )K(ξ ,z)

−∂

∂νz

G(z,w)G(w,y)dξ dωzdw

�





d(x)d(y) (d(x)+d(y)+ |x∗− y∗|)2−n
for n ≥ 3,

d(x)d(y) log
(

2+ 1
d(x)+d(y)+|x∗−y∗|)

)
for n = 2,

(4.57)

respectively for (x,y) ∈ Ω ×∂Ω :

∫

Ω

∫

∂Ω

∫

Ω
G(x,ξ )K(ξ ,z)

−∂

∂νz

G(z,w)K(w,y)dξ dωzdw

�





d(x) |x− y|2−n
for n ≥ 3,

d(x) log
(

2+ 1
|x−y|)

)
for n = 2.

(4.58)

Proof. Setting

R(x,y) :=
∫

Ω

∫

∂Ω

∫

Ω
G(x,ξ )K(ξ ,z)

−∂

∂νz

G(z,w)G(w,y)dξ dωzdw,

and using (4.47) and the estimates from Lemma 4.15, the following holds:

R(x,y) � d(x)d(y)
∫

∂Ω
|x− z|2−n |z− y|2−n

dωz for n ≥ 3,

R(x,y) � d(x)d(y)
∫

∂Ω
log

(
2+

1

|x− z|2

)
log

(
2+

1

|y− z|2

)
dωz for n = 2.
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Let rΩ be as in Lemma 4.14. We distinguish three cases, according to the positions

of x,y ∈ Ω .

Case 1: max(d(x),d(y)) ≥ rΩ .

By symmetry we may assume that d(y) ≥ rΩ and find for n ≥ 3 that

∫

∂Ω
|x− z|2−n |z− y|2−n

dωz �
∫

∂Ω
|x− z|2−n

dωz �
∫ 1

0

rn−2

(d(x)+ r)n−2
dr � 1,

and for n = 2

∫

∂Ω
log
(

2+ 1

|x−z|2
)

log
(

2+ 1

|z−y|2
)

dωz �
∫ 1

0
log
(

2+ 1

(d(x)+r)2

)
dr � 1,

which imply (4.57) since d(y) ≥ rΩ .

Case 2: max(d(x),d(y)) < rΩ and |x∗− y∗| ≥ d(x)+d(y).
In this case, in view of Lemma 4.14, we have that (4.54) holds for both x and y. So,

for n ≥ 3 we have

∫

∂Ω
|x− z|2−n |z− y|2−n

dωz �
∫

∂Ω

1

(d(x)+ |x∗− z|)n−2

1

(d(y)+ |y∗− z|)n−2
dωz.

We split this integral as Ix + Iy where Ix is over ∂Ωx = {z ∈ ∂Ω ; |x∗− z| ≤ |y∗− z|}
and Iy over ∂Ωy = ∂Ω\∂Ωx. Over ∂Ωx we have

|x∗− z|+ |x∗− y∗| ≤ |x∗− z|+ |x∗− z|+ |y∗− z| ≤ 3|y∗− z|.

Hence we find

Ix �
∫

∂Ωx

1

(d(x)+ |x∗− z|)n−2

1

(d(y)+ |x∗− z|+ |x∗− y∗|)n−2
dωz

� 1

|x∗− y∗|n−2

∫ 1

0

rn−2

(d(x)+ r)n−2
dr � |x∗− y∗|2−n

� (d(x)+d(y)+ |x∗− y∗|)2−n

where we used |x∗− y∗| ≥ d(x)+d(y) in the last estimate.

Similarly, for n = 2 we find

Ix �
∫

∂Ωx

log

(
2+

1

d(x)+ |x∗− z|

)
log

(
2+

1

d(y)+ |x∗− z|+ |x∗− y∗|

)
dωz

� log

(
2+

1

d(y)+ |x∗− y∗|

)∫ 1

0
log

(
2+

1

d(x)+ r

)
dr

� log

(
2+

1

d(y)+ |x∗− y∗|

)
� log

(
2+

1

d(x)+d(y)+ |x∗− y∗|

)
.

Analogous estimates hold for Iy. All together these estimates prove (4.57) in Case 2.
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Case 3: max(d(x),d(y)) < rΩ and |x∗− y∗| ≤ d(x)+d(y).
By symmetry, we may assume that d(y) ≤ d(x). Then we may use both (4.54) and

(4.55). So, for n ≥ 3 we find

∫

∂Ω
|x− z|2−n |z− y|2−n

dωz

�
∫

∂Ω

1

(d(x)+ |y∗− z|)n−2

1

(d(y)+ |y∗− z|)n−2
dωz

�
∫ 1

0

rn−2

(d(x)+ r)n−2

1

(d(y)+ r)n−2
dr

� 1

d(x)n−2
� (d(x)+d(y)+ |x∗− y∗|)2−n ,

and for n = 2

∫

∂Ω
log

(
2+

1

|x− z|

)
log

(
2+

1

|y− z|

)
dωz

�
∫

∂Ω
log

(
2+

1

d(x)+ |y∗− z|

)
log

(
2+

1

d(y)+ |y∗− z|

)
dωz

�
∫ 1

0
log

(
2+

1

d(x)+ r

)
log

(
2+

1

d(y)+ r

)
dr

� log

(
2+

1

d(x)

)
� log

(
2+

1

d(x)+d(y)+ |x∗− y∗|

)
.

This proves (4.57) in Case 3.

For the estimates in (4.58) one divides the estimates in (4.57) by d(y), takes

the limit for d(y) → 0, and uses (4.54), namely that d(x) + |x∗− y| ' |x− y| for

y ∈ ∂Ω . �

4.4 General properties of the Green functions

In this section we collect some smoothness properties of biharmonic functions and

derive some preliminary pointwise estimates. That is, we first give a more precise

statement concerning the smoothness of the Green functions simultaneously with

respect to both variables. Next we will show some pointwise estimates for the Green

function that follow almost directly from its construction through the fundamental

solution.
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4.4.1 Regularity of the biharmonic Green function

For brevity we here write G = G∆ 2,Ω for the Green function in the domain Ω , see

(4.6).

Proposition 4.17. Let Ω be a bounded C4,γ -smooth domain. Let G be the Green

function for the biharmonic Dirichlet problem. Then

G ∈C4,γ
(
Ω ×Ω \

{
(x,x) : x ∈ Ω

})
.

Proof. Suppose α ∈ Nn with i = |α| ≤ 3 and let p ∈ (n,n+1). In particular it holds

that 4− n
p

> i. Let ϕ ∈C∞
c (Ω) and consider ψ ∈C4,γ(Ω) such that ∆ 2ψ = ϕ in Ω

and ψ = ψν = 0 on ∂Ω . It follows from Theorem 2.20 and Sobolev’s embedding

theorem 2.6 that

‖ψ‖Ci,µ (Ω) ≤C‖ψ‖W 4,p(Ω) ≤C‖ϕ‖Lp(Ω)

for all µ ∈ (0,1) with i+ µ ≤ 4− n
p
. Since ψ(x) =

∫
Ω G(x,y)ϕ(y)dy, we get that

∣∣∣∣
∫

Ω

(
Dα

x G(x,y)−Dα
x G(x′,y)

)
ϕ(y)dy

∣∣∣∣≤C2‖ϕ‖Lp(Ω)

∣∣x− x′
∣∣µ for all x,x′ ∈ Ω .

By duality, we then obtain y 7→ Dα
x G(x,y) ∈ Lq(Ω) for all q ∈ ( n+1

n
, n

n−1
) and more-

over, for all µ ≤ 4− i−n+ n
q

with µ ∈ (0,1), that

‖Dα
x G(x, .)−Dα

x G(x′, .)‖q ≤C(q)
∣∣x− x′

∣∣µ for all x,x′ ∈ Ω .

Since the functions y 7→ G(x,y) are biharmonic in Ω \ {x}, so is y 7→ Dα
x G(x,y).

Fix x and consider y 7→ Dα
x G(x,y). Since Dα

x G(x, .) = ∂
∂ν Dα

x G(x, .) = 0 on ∂Ω ,

regularity theory, as one may find in Theorem 2.19, gives that Dα
x G(x, .)∈C4,γ(Ω \

{x}). Moreover, for all δ > 0 there exists C(δ ) > 0 such that

‖Dα
x G(x, .)−Dα

x G(x′, .)‖C4,γ (Ω\(Bδ (x)∪Bδ (x′))) ≤C(δ )
∣∣x− x′

∣∣µ for all x,x′ ∈ Ω .

This is valid for |α| ≤ 3. Using the symmetry of the Green function, we have a

similar result for |α| = 4 with respect to the C3,γ(Ω \ (Bδ (x)∪Bδ (x′)))-norm. So,

all derivatives of order 4 are covered and we find that G ∈C4,γ(Ω ×Ω \{(x,x) : x ∈
Ω}). �

4.4.2 Preliminary estimates for the Green function

We start with a relatively straightforward application of the Schauder theory to the

construction of Green’s functions.
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Lemma 4.18. Let Ω ⊂ Rn be a bounded C4,γ -smooth domain and let d( .) be as in

(4.1). Then for the biharmonic Green function G∆ 2,Ω the following estimates hold

true:

∣∣G∆ 2,Ω (x,y)
∣∣≤C(Ω) ·





|x− y|4−n +max{d(x),d(y)}4−n if n > 4,

log
(

1+ |x− y|−1 +max{d(x),d(y)}−1
)

if n = 4,

1 if n = 2,3.
(4.59)

For n = 2,3,4 also the following gradient estimates hold true:

∣∣∇xG∆ 2,Ω (x,y)
∣∣≤C(Ω) ·

{
|x− y|−1 +max{d(x),d(y)}−1

if n = 4,

1 if n = 2,3.
(4.60)

By symmetry (4.60) also holds for
∣∣∇yG∆ 2,Ω (x,y)

∣∣. The dependence of the constants

C(Ω) on Ω is explicit via the C4,γ -properties of ∂Ω .

Proof. For brevity we write G(x,y) = G∆ 2,Ω (x,y). We recall a fundamental solution

for ∆ 2 on Rn:

Fn(x) =





cn|x|4−n if n 6∈ {2,4},
−2c4 log |x| if n = 4,

2c2|x|2 log |x| if n = 2,

(4.61)

where cn is defined through en = |B| and

cn =





1

2(n−4)(n−2)nen

if n 6∈ {2,4},

1

8nen

if n ∈ {2,4}.

The Green function is given by G(x,y) = Fn(|x− y|) + h(x,y), where h(x, .) is a

solution of the following Dirichlet problem:





∆ 2
y h(x,y) = 0 in Ω ,

h(x,y) = −Fn(|x− y|) for y ∈ ∂Ω ,
∂

∂νy
h(x,y) = − ∂

∂νy
Fn(|x− y|) for y ∈ ∂Ω .

(4.62)

We first discuss extensively the generic case n > 4. At the end we comment on

the changes and additional arguments which have to be made for n ∈ {2,3,4}.

Case n > 4. In (4.62), the C1,γ -norm of the datum for h(x, .)|∂Ω and the C0,γ -norm

of the datum for ∂
∂νy

h(x, .)|∂Ω are bounded by C(∂Ω)d(x)3−n−γ . The dependence of

the constant C(∂Ω) on ∂Ω is constructive and explicit via its curvature properties

and their derivatives. According to C1,γ -estimates for boundary value problems in

variational form like (4.62) we see with the help of Theorem 2.19 that
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‖h(x, .)‖C1,γ (Ω) ≤C(∂Ω)d(x)3−n−γ . (4.63)

One should observe that the differential operators are uniformly coercive, so that no

h(x, .)-term needs to appear on the right-hand-side of (4.63).

As long as d(y) ≤ d(x), (4.63) shows h(x,y) ≤C(∂Ω)d(x)4−n and hence that

|G(x,y)| ≤C(∂Ω)
(
|x− y|4−n +d(x)4−n

)
. (4.64)

For d(y) > d(x), we conclude from (4.64) by exploiting the symmetry of the Green

function:

|G(x,y)| = |G(y,x)| ≤C(∂Ω)
(
|x− y|4−n +d(y)4−n

)
. (4.65)

Combining (4.64) and (4.65) yields (4.59) for n > 4.

Case n = 4. As above we find that

‖h(x, .)‖
C1,γ(Ω) ≤C(∂Ω)d(x)−1−γ . (4.66)

As long as d(y) ≤ d(x), (4.66) shows that

∣∣∇yG(x,y)
∣∣≤C(∂Ω)

(
|x− y|−1 +d(x)−1

)
. (4.67)

In order to exploit the symmetry of G(x,y) we need a similar estimate also for

|∇xG(x,y)|. To this end one has to differentiate (4.62) with respect to x being con-

sidered here as a parameter and obtains as before that for d(y) ≤ d(x)

|∇xG(x,y)| ≤C(∂Ω)
(
|x− y|−1 +d(x)−1

)
. (4.68)

By symmetry G(x,y) = G(y,x), and (4.68) shows that for d(x) ≤ d(y) one has

∣∣∇yG(x,y)
∣∣≤C(∂Ω)

(
|x− y|−1 +d(y)−1

)
(4.69)

while (4.67) yields

|∇xG(x,y)| ≤C(∂Ω)
(
|x− y|−1 +d(y)−1

)
. (4.70)

Combining (4.67)-(4.70) proves (4.60) and hence (4.59) in the case n = 4.

Case n = 3. As in the previous cases one comes up with

‖h(x, .)‖
C1,γ(Ω) ≤C(∂Ω)d(x)−γ .

Proceeding as for n = 4 yields (4.60) and hence (4.59) also in the case n = 3.

Case n = 2. Here, one directly finds that

‖h(x, .)‖
C1,γ(Ω) ≤C(∂Ω)

and the claims (4.59), (4.60) immediately follow. �
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4.5 Uniform Green functions estimates in C4,γ -families of

domains

Later on we will need convergence properties of Green functions defined on a con-

verging family of domains. For the sake of simplicity we restrict ourselves also in

this section to biharmonic operators. Moreover, in order to avoid too many techni-

calities, we restrict ourselves to special families of bounded domains that may be

parametrised with the help of global coordinate charts over the closure of a fixed

bounded smooth domain.

To be more precise: we will consider the family of the biharmonic Green func-

tions Gk = G∆ 2,Ωk
and G = G∆ 2,Ω in Ωk and Ω respectively, where (Ωk)k∈N is a

family of domains converging to a bounded domain Ω ⊂ Rn in the following sense.

Definition 4.19. We say that the sequence (Ωk)k∈N is a C4,γ -perturbation of the

bounded C4,γ -smooth domain Ω , if there exists a neighbourhood U of Ω and for

each k ∈ N a C4,γ -diffeomorphism Ψk : U →Ψk(U) with Ψk(Ω) = Ωk such that one

has

lim
k→∞

‖Id −Ψk‖C4,γ (U) = 0.

The remaining section is divided in a part without and a part with boundary terms

and we finish with some results on the convergence of these Green functions.

4.5.1 Uniform global estimates without boundary terms

As for the diffeomorphisms Ψk we refer to Definition 4.19.

Theorem 4.20. Assume that (Ωk)k∈N is a C4,γ -perturbation of the bounded C4,γ -

smooth domain Ω ⊂Rn and let Gk = G∆ 2,Ωk
be the biharmonic Green function in Ωk

under Dirichlet boundary conditions. Then there exists a constant C = C((Ωk)k∈N),
which is independent of k, such that for all k ∈ N and α,β ∈ Nn with |α|+ |β | ≤ 4:

• If |α|+ |β |+n > 4:

∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤C |x− y|4−n−|α|−|β |

for all x,y ∈ Ωk. (4.71)

• If |α|+ |β |+n = 4 and n is even

∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤C log

(
1+ |x− y|−1

)
for all x,y ∈ Ωk. (4.72)

• If |α|+ |β |+n = 4 and n is odd, or if |α|+ |β |+n < 4

∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤C for all x,y ∈ Ωk. (4.73)
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This kind of estimates was given by Krasovskiı̆ [255, 256] in a very general

framework. Here we provide an independent proof, which is simpler but never-

theless still quite involved. We shall proceed in several steps, where the proof of

Proposition 4.22 is the most important part.

Lemma 4.21. Assume that n≥ 4. Let (Ωk)k∈N be a C4,γ -perturbation of the bounded

C4,γ -smooth domain Ω . Let Gk denote the Green functions for ∆ 2 in Ωk under

Dirichlet boundary conditions and d( .) the distance function to the boundary ∂Ωk.

For any q ∈
(

n
n−3

, n
n−4

)
there exists C(q) > 0 such that for all k and all x ∈ Ωk we

have

‖Gk(x, .)‖Lq(Ωk)
≤C(q) d(x)4−n+ n

q . (4.74)

The constant C(q) can be chosen uniformly for the family (Ωk)k∈N.

Proof. We proceed with the help of a duality argument. Let ψ ∈ C∞
c (Ωk) and let

ϕ ∈C4,γ(Ωk) be a solution of

{
∆ 2ϕ = ψ in Ωk,
ϕ = ϕν = 0 on ∂Ωk.

Let q ∈
(

n
n−3

, n
n−4

)
and let q′ = q

q−1
be the dual exponent, so that in particular n

4
<

q′ < n
3
. It follows from Theorem 2.20 (in particular, Corollary 2.21) that there exists

C3 > 0 independent of ϕ,ψ and k such that

‖ϕ‖
W 4,q′ (Ωk)

≤C3 ‖ψ‖
Lq′ (Ωk)

.

The embedding W 4,q′(Ωk)⊂C0,µ(Ωk) (see Theorem 2.6) with µ = 4− n
q′ = 4−n+

n
q

being continuous uniformly in k shows that there exists C4 > 0 independent of ϕ

and k such that ‖ϕ‖C0,µ (Ωk)
≤C4 ‖ϕ‖

W 4,q′ (Ωk)
. Let x ∈ Ωk and x′ ∈ ∂Ωk. We then get

that

|ϕ(x)| =
∣∣ϕ(x)−ϕ(x′)

∣∣≤ ‖ϕ‖C0,µ (Ωk)

∣∣x− x′
∣∣µ ≤C3C4 ‖ψ‖

Lq′ (Ωk)

∣∣x− x′
∣∣µ .

Moreover, it follows from Green’s representation formula that

ϕ(x) =
∫

Ωk

Gk(x,y)ψ(y)dy for all x ∈ Ωk.

Therefore, taking the infimum with respect to x′ ∈ ∂Ωk, we have that

∣∣∣∣
∫

Ωk

Gk(x,y)ψ(y)dy

∣∣∣∣≤C3C4 ‖ψ‖
Lq′ (Ωk)

d(x)µ

for all ψ ∈C∞
c (Ωk). Inequality (4.74) then follows. �
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4.5.1.1 Zero and first derivative estimates

Proposition 4.22. Let (Ωk)k∈N be a C4,γ -perturbation of the bounded C4,γ -smooth

domain Ω . Let Gk be as in Lemma 4.21. Then there exists a constant C1 > 0 such

that for all k and all x,y ∈ Ωk with x 6= y one has that

|Gk(x,y)| ≤C1 ·





|x− y|4−n if n > 4,
log
(
1+ |x− y|−1

)
if n = 4,

1 if n = 2,3.
(4.75)

Moreover, for n = 2,3,4 and for all k ∈ N and x,y ∈ Ωk with x 6= y

|∇xGk(x,y)| ≤C1 ·
{
|x− y|−1

if n = 4,
1 if n = 2,3.

(4.76)

By symmetry the last estimate also holds for
∣∣∇yGk(x,y)

∣∣.
Proof. If n = 2,3, the statement of Lemma 4.18 is already strong enough and nothing

remains to be proved.

We start with the case n > 4. We use an argument by contradiction and assume

that there exist two sequences (xk)k∈N, (yk)k∈N with xk,yk ∈ Ω`k
for a suitable se-

quence (`k) ⊂ N such that xk 6= yk for all k ∈ N and such that

lim
k→+∞

|xk − yk|n−4
∣∣G`k

(xk,yk)
∣∣= +∞. (4.77)

It is enough to consider `k = k; other situations may be reduced to this by relabeling

or are even more special. After possibly passing to a subsequence, it follows from

(4.59) that there exists x∞ ∈ ∂Ω such that

lim
k→+∞

xk = x∞ and lim
k→+∞

d(xk)

|xk − yk|
= 0. (4.78)

We remark that the constant in (4.59) can be chosen uniformly for the family

(Ωk)k∈N.

Next we claim that if (4.77) holds, then

lim
k→+∞

|xk − yk| = 0. (4.79)

Assume by contradiction that |xk − yk| does not converge to 0. After extracting a

subsequence we may then assume that there exists δ > 0 such that for all k we have

xk ∈ Bδ (x∞) and yk ∈ Ωk \B3δ (x∞). We consider q as in Lemma 4.21. In particular

we know that ‖Gk(x, .)‖Lq(Ωk)
≤ C uniformly in k. By applying local elliptic esti-

mates (see Theorem 2.20) combined with Sobolev embeddings in Ωk \B2δ (x∞) we

find that

‖Gk(xk, .)‖L∞(Ωk\B3δ (x∞)) ≤C(q,δ )

uniformly in k. In particular, we would have
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|Gk(xk,yk)| ≤C(q,δ ) and |xk − yk|n−4 |Gk(xk,yk)| ≤C(q,δ )

independent of k. This contradicts the hypothesis (4.77) and proves the claim in

(4.79).

Let Φ : U → Rn, Φ(0) = x∞ be a fixed coordinate chart for Ω around ∞. We put

Φk := Ψk ◦Φ and have that

Φk(U ∩{x1 < 0}) = Φk(U)∩Ωk and Φk(U ∩{x1 = 0}) = Φk(U)∩∂Ωk.

Let xk = Φk(x
′
k) and yk = Φk(y

′
k). Therefore, (4.78) rewrites as

lim
k→+∞

x′k = 0 and lim
k→+∞

x′k,1∣∣x′k − y′k
∣∣ = 0. (4.80)

We define for R and k large enough

G̃k(z) =
∣∣x′k − y′k

∣∣n−4
Gk

(
Φk(x

′
k),Φk

(
x′k +

∣∣x′k − y′k
∣∣(z−ρke1)

))

in BR(0)∩{x1 < 0}, where ρk :=
x′k,1

|x′k−y′
k|

and e1 is the first unit vector. The bihar-

monic equation ∆ 2Gk(x, .) = 0, complemented with Dirichlet boundary conditions,

is rewritten as

∆ 2
gk

G̃k = 0 in (BR(0)∩{z1 < 0})\{ρke1}, G̃k = ∂1G̃k = 0 on {z1 = 0}.

Here, gk(z) = Φ∗
k (E )(x′k + |x′k − y′k|(z−ρke1)), E = (δi j) the Euclidean metric, and

∆gk
denotes the Laplace-Beltrami operator with respect to this scaled and translated

pull back of the Euclidean metric under Φk. Then for some q∈
(

n
n−3

, n
n−4

)
and τ > 0

being chosen suitably small, it follows from elliptic estimates (see Theorem 2.20)

and Sobolev embeddings that there exists C(R,τ,q) > 0 such that

|G̃k(z)| ≤C(R,q,τ)
∥∥G̃k

∥∥
Lq(BR(0)\Bτ (0))

(4.81)

for all z ∈ BR/2(0) \B2τ(0), z1 ≤ 0. In order to estimate the Lq-norm on the right-

hand side we use (4.74) and obtain that

∫

BR(0)∩{ζ1<0}
|G̃k(ζ )|q dζ ≤C

∣∣x′k − y′k
∣∣q(n−4)−n

∫

Ωk

|Gk(xk,y)|q dy

≤C
∣∣x′k − y′k

∣∣q(n−4)−n
d(xk)

(4−n)q+n ≤C

(
d(xk)∣∣x′k − y′k

∣∣

)n−q(n−4)

.

Therefore, with (4.78), we get that limk→+∞

∥∥G̃k

∥∥
Lq(BR(0)\Bτ (0))

= 0, and (4.81)

yields

lim
k→+∞

G̃k = 0 in C0((BR/2(0)\B2τ(0))∩{z1 ≤ 0}).

In particular, since limk→+∞ ρk = 0, we have that
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lim
k→+∞

G̃k

(
y′k − x′k∣∣x′k − y′k

∣∣ +ρke1

)
= 0.

This limit rewrites as

lim
k→+∞

|xk − yk|n−4 |Gk(xk,yk)| = 0,

contradicting (4.77). This completes the proof of Proposition 4.22 for the case n > 4.

Now let us consider the case n = 4. Here it is enough to prove (4.76) for ∇y,

exploiting the symmetry of the Green function. We argue by contradiction and, as in

the proof for n > 4, we may assume that there exist two sequences (xk)k∈N,(yk)k∈N

with xk,yk ∈ Ωk such that xk 6= yk and

lim
k→+∞

|xk − yk|
∣∣∇yGk(xk,yk)

∣∣= +∞. (4.82)

After possibly passing to a subsequence it follows from (4.60) that there exists x∞ ∈
∂Ω such that

lim
k→+∞

xk = x∞ and lim
k→+∞

d(xk)

|xk − yk|
= 0. (4.83)

Lemma 4.21 may be applied with some q > 4. The analogue of (4.79) is proved

in exactly the same way as above. Like above we now put for R and k large enough

G̃k(z) = Gk

(
Φk(x

′
k),Φk(x

′
k +
∣∣x′k − y′k

∣∣(z−ρke1))
)

in BR(0)∩{z1 < 0}, where xk = Φk(x
′
k), yk = Φk(y

′
k), ρk :=

x′k,1
|x′

k
−y′

k
| . As above we

find for τ > 0 small enough that there exists C(R,τ,q) > 0 such that

∣∣∇G̃k(z)
∣∣≤C(R,q,τ)

∥∥G̃k

∥∥
Lq(BR(0)\Bτ (0))

for all z ∈ BR/2(0)\B2τ(0), z1 ≤ 0. Using (4.74) we obtain that

∫

BR(0)∩{ζ1<0}
|G̃k(ζ )|q dζ ≤ C

∣∣x′k − y′k
∣∣−4

∫

Ωk

|Gk(xk,y)|q dy

≤ C

(
d(xk)∣∣x′k − y′k

∣∣

)4

.

In the same way as in the generic case n > 4 this yields first that

lim
k→+∞

∇G̃k = 0 in C0((BR/2(0)\B2τ(0))∩{z1 ≤ 0})

and back in the original coordinates

lim
k→∞

|xk − yk|
∣∣∇yGk(xk,yk)

∣∣= 0.
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So, we achieve a contradiction also if n = 4. This proves (4.76). By integrating

(4.76) we get (4.75). The proof of Proposition 4.22 is complete. �

4.5.1.2 First and higher derivatives for n ≥ 3

Proposition 4.23. Suppose that n ≥ 3 and let (Ωk)k∈N be a C4,γ -perturbation of the

bounded C4,γ -smooth domain Ω . Let Gk be as in Lemma 4.21. Then there exists a

constant C > 0 such that for all k, all α,β ∈ Nn with 1 ≤ |α|+ |β | < 4, and all

x,y ∈ Ωk with x 6= y one has that

∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤C · |x− y|4−n−|α|−|β |. (4.84)

Proof. For |α|+ |β | = 1 with n = 3,4 the result is found in (4.76).

To obtain estimates for (higher) derivatives we will use the following local esti-

mate, see (2.19) for biharmonic functions. This local estimate is fundamental. More-

over, it also holds near the boundary part where homogeneous Dirichlet boundary

conditions are satisfied. For any two concentric balls BR ⊂ B2R and |α| ≤ 4 we have

‖Dα v‖L∞(BR∩Ωk) ≤
C

R|α| ‖v‖L∞(B2R∩Ωk). (4.85)

The constant is uniform in k and R. The behaviour with respect to (small) R is

obtained by means of scaling.

Case n > 4. Keeping x ∈ Ωk fixed, for any y ∈ Ωk \{x} we choose R = |x− y|/4

and apply (4.85) and (4.75) of Proposition 4.22 in BR(y) ⊂ B2R(y) to Gk(x, .). This

proves (4.84) for |α| = 0. By symmetry the same estimate holds for |α| > 0 and

|β |= 0. Since also Dα
x Gk(x, .) is biharmonic with homogeneous Dirichlet boundary

conditions we may repeat the argument to find estimates for mixed derivatives.

Case n = 3,4. The result follows from a similar argument as above but now

starting with the first order estimate in (4.76). �

4.5.1.3 Second and higher derivatives for n = 2

Lemma 4.24. Let n = 2 and δ > 0. Then there exists a constant C = C(δ ,(Ωk)k∈N)
such that for α,β ∈ N2 with |a|+ |β | = 2

x,y ∈ Ωk, max{d(x),d(y)} ≥ δ ⇒
∣∣∣Dα

x Dβ
y Gk(x,y)

∣∣∣≤C log
(
1+ |x− y|−1

)
.

Proof. The Green function can be written as G(x,y) = Fn,2(|x− y|)+ h(x,y) with

h(x, .) the solution of (4.62). For d(x) > δ one finds as a direct consequence of

Schauder estimates that ‖h(x, .)‖Cm(Ω) < C(δ ,m) for any m ∈ N and uniformly for

all x with d(x) > δ . Hence, for |β | = 2 one obtains
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∣∣∣Dβ
y G(x,y)

∣∣∣≤C1

∣∣∣Dβ
y Fn,2(x,y)

∣∣∣+C(δ ),

which shows the estimate in Lemma 4.24 for α = 0. For |β | < 2 and hence |α| > 0

one considers the function Dα
x h(x, .) and proceeds similar as before. So one has

found the estimates in Lemma 4.24 for d(x) > δ . Since the Green function is sym-

metric one may interchange the role of x and y and a similar result holds when

d(y) > δ . �

Proposition 4.25. Let n = 2. There exists a constant C = C((Ωk)k∈N) such that for

α,β ∈ N2 with |a|+ |β | ≥ 3

∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤C |x− y|2−|α|−|β | .

The proposition requires a somehow technical proof which will be performed in

several steps. However, combining the lemma and the proposition obviously gives

a proof of the remaining cases of (4.72)-(4.73) and the proof of Theorem 4.20 will

then be complete for n = 2.

As a starting point we prove an Lq-estimate for second derivatives of the Green

functions.

Lemma 4.26. Let n = 2. For any q > 2, there exists a constant C = C(q,(Ωk)k∈N)
such that

∥∥∇2
yGk(x, .)

∥∥
Lq(Ωk)

≤ C d(x)2/q; (4.86)

∥∥∇x∇yGk(x, .)
∥∥

Lq(Ωk)
≤ C d(x)2/q. (4.87)

Proof. We argue along the lines of the proof of Lemma 4.21 to which we refer for

more detailed arguments. We prove first (4.86). For ψ ∈ Lq′(Ωk), q′ = q
q−1

∈ (1,2)

let ϕ ∈W 2,q′(Ωk) be the solution of

{
∆ 2ϕ = ∇2ψ in Ωk,
ϕ = ϕν = 0 on ∂Ωk.

For biharmonic equations in integral form Lq′ -estimates (see Theorem 2.22) yield

‖ϕ‖
W 2,q′ ≤C‖ψ‖

Lq′ .

Since q′ ∈ (1,2) we have that 2− 2/q′ ∈ (0,1) and employing also Sobolev’s em-

bedding theorem gives

|ϕ(x)| ≤C‖ψ‖
Lq′ d(x)2−2/q′ . (4.88)

We observe the following representation formula, homogeneous Dirichlet boundary

data of the Green functions and integrate by parts:
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ϕ(x) =
∫

Ωk

Gk(x,y)∇
2
yψ(y)dy =

∫

Ωk

∇2
yGk(x,y)ψ(y)dy.

Together with (4.88) and 2−2/q′ = 2/q this shows (4.86).

In order to prove (4.87) we solve

{
∆ 2ϕ = ∇ψ in Ωk,
ϕ = ϕν = 0 on ∂Ωk.

and get

‖ϕ‖
W 3,q′ ≤C‖ψ‖

Lq′ .

We proceed similarly as above and find

|∇ϕ(x)| ≤C‖ψ‖
Lq′ d(x)2−2/q′

as well as

∇ϕ(x) = −
∫

Ωk

∇x∇yGk(x,y)ψ(y)dy

and so, finally, (4.87). �

Proof of Proposition 4.25. We first prove the statement for D
β
y Gk(x,y) with |β | = 3.

We assume by contradiction that, after suitably relabeling, there exist sequences

(xk), (yk) with xk,yk ∈ Ωk and xk 6= yk, such that

lim
k→∞

|xk − yk| Dβ
y Gk(xk,yk) = ∞. (4.89)

As in Proposition 4.22, local elliptic estimates show that

lim
k→∞

|xk − yk| = 0.

Hence, we may assume that there exists x∞ ∈ Ω with x∞ = limk→∞ xk = limk→∞ yk.

This shows that local elliptic estimates around xk and yk may be rescaled and hold

with uniform constants.

First case: d(xk) < 2|xk − yk|. Here we work in B4|xk−yk|(xk) \ B|xk−yk|/2(xk),
which certainly hit the boundaries ∂Ωk where we have homogeneous Dirichlet

boundary data for Gk(xk, .). These allow to apply local rescaled elliptic estimates

and a localised Poincaré inequality to show that

|Dβ
y Gk(xk,yk)| ≤ C|xk − yk|−3−2/q‖Gk(xk, .)‖Lq(Ω∩(B4|xk−yk |(xk)\B|xk−yk |/2(xk)))

≤ C|xk − yk|−1−2/q‖∇2
yGk(xk, .)‖Lq(Ω∩(B4|xk−yk |(xk)\B|xk−yk |/2(xk)))

≤ C|xk − yk|−1−2/qd(xk)
2/q ≤C|xk − yk|−1,

where q > 2 is some arbitrarily chosen number. This inequality contradicts the as-

sumption (4.89).
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Second case: d(xk) ≥ 2|xk − yk|. We change our point of view and consider now

yk as parameter and the boundary value problem for the regular part of ∇3
yGk( . ,yk).

Arguing as in Lemma 4.18 and integrating local Schauder estimates yields

|Dβ
y Gk(xk,yk)| ≤C

(
1

|xk − yk|
+

d(xk)
1+γ

d(yk)2+γ

)
. (4.90)

By assumption we have d(xk) ≥ 2|xk − yk|, which implies that

d(xk) ≤ |xk − yk|+d(yk) ≤
1

2
d(xk)+d(yk),

⇒ d(xk) ≤ 2d(yk).

Inserting this into (4.90) gives

|Dβ
y Gk(xk,yk)| ≤C

(
1

|xk − yk|
+

1

d(xk)

)
≤C

1

|xk − yk|
,

again a contradiction to the assumption (4.89).

We comment now on how to prove the statement for ∇x∇2
yGk(x, .). The remain-

ing cases then follow by exploiting the symmetry of the Green functions. We assume

by contradiction that – after a suitable relabeling – there exist sequences (xk), (yk),
with xk,yk ∈ Ωk and xk 6= yk, such that

lim
k→∞

|xk − yk| · ∇x∇2
yGk(xk,yk) = ∞. (4.91)

As for (4.79), local elliptic estimates show that

lim
k→∞

|xk − yk| = 0.

Hence, we may assume that there exists x∞ ∈ Ω with x∞ = limk→∞ xk = limk→∞ yk.

This shows that local elliptic estimates around xk and yk may be rescaled and hold

with uniform constants.

First case: d(xk) < 2|xk − yk|. As above we work in B4|xk−yk|(xk)\B|xk−yk|/2(xk)
and find that

|∇x∇2
yGk(xk,yk)| ≤C|xk − yk|−2−2/q‖∇xGk(xk, .)‖Lq(Ω∩(B4|xk−yk |(xk)\B|xk−yk |/2(xk)))

≤ C|xk − yk|−1−2/q‖∇x∇yGk(xk, .)‖Lq(Ω∩(B4|xk−yk |(xk)\B|xk−yk |/2(xk)))

≤ C|xk − yk|−1−2/qd(xk)
2/q ≤C|xk − yk|−1,

where q > 2 is some arbitrarily chosen number. This inequality contradicts the as-

sumption (4.91).

Second case: d(xk) ≥ 2|xk − yk|. Again we change our point of view and con-

sider now yk as parameter and the boundary value problem for the regular part of

∇2
yGk( . ,yk). Arguing as in Lemma 4.18, integrating local Schauder estimates yield
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|∇x∇2
yGk(xk,yk)| ≤C

(
1

|xk − yk|
+

d(xk)
γ

d(yk)1+γ

)
. (4.92)

As above we may insert d(xk) ≤ 2d(yk) into (4.92) and obtain

|∇x∇2
yGk(xk,yk)| ≤C

(
1

|xk − yk|
+

1

d(xk)

)
≤C

1

|xk − yk|
,

again a contradiction to the assumption (4.91).

Once the estimates for |α|+ |β | = 3 have been derived, we may proceed as in

the proof of Proposition 4.23 to obtain the estimates for |α|+ |β | = 4. �

Proposition 4.27. Let n = 2. There exists a constant C = C((Ωk)k∈N) such that for

α,β ∈ N2 with |a|+ |β | = 2

∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤C log

(
1+ |x− y|−1

)
.

Proof. For x or y away from the boundary the result is found in Lemma 4.24. For

δ > 0 small enough take y0 ∈ Ωk with d(y0) > 2δ and assume both d(x) < δ and

d(y) < δ . Let r0 > 0 be small enough such that Ωk \B2r0
(z) is still connected for

each z ∈ Ωk. Using the estimate from Proposition 4.23 and integrating along a path

γ from y0 to y that avoids Br(x) with r = min{r0, |x− y|}, one finds

∣∣∣Dα
x Dβ

y Gk(x,y)
∣∣∣≤
∣∣∣Dα

x Dβ
y Gk(x,y0)

∣∣∣+
∫

γ

∣∣∣Dα
x ∇yDβ

y Gk(x,γ(s))
∣∣∣dγ(s)

≤C

(
1+

∫ M

|x−y|
r−1dr

)
≤C′ log

(
1+ |x− y|−1

)
,

which shows the claim. �

4.5.1.4 The proof of the uniform estimates

Proof of Theorem 4.20. For n ≥ 3 and |α|+ |β |+ n > 4 the estimate in (4.71) fol-

lows from Propositions 4.22 and 4.23. For n = 2 the estimate (4.71) follows from

Proposition 4.25. The estimate in (4.72) is stated in Proposition 4.22 for n = 4 and in

Proposition 4.27 for n = 2. The estimate in (4.73) is contained in Proposition 4.22.�

4.5.2 Uniform global estimates including boundary terms

Theorem 4.28. We assume that (Ωk)k∈N is a C4,γ -perturbation of the bounded C4,γ -

smooth domain Ω ⊂ Rn. Let Gk = G∆ 2,Ωk
denote the biharmonic Green func-

tion in Ωk under Dirichlet boundary conditions. Then there exists a constant

C = C((Ωk)k∈N), independent of k, such that for all k ∈ N it holds that
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∣∣∣Dα
x Dβ

y Gk (x,y)
∣∣∣≤C (∗), (4.93)

where (∗) is as in Table 4.1. In this table the following abbreviations are used:

d(x) = d(x,∂Ωk) and d(y) = d(y,∂Ωk),

Wx = min

{
1,

d (x)

|x− y|

}
and Wy = min

{
1,

d (y)

|x− y|

}
.

Table 4.1 Expressions to be inserted into (∗) of (4.93).

|α| = |β | = 2 :

|x− y|−n

|α| = 1 and |β | = 2 :

|x− y|1−n
Wx

|α| = 2 and |β | = 1 :

|x− y|1−n
Wy

|α| = 0 and |β | = 2 :

|x− y|2−n
W 2

x for n ≥ 3

log
(

1+ d(x)2

|x−y|2
)

for n = 2

|α| = |β | = 1 :

|x− y|2−n
WxWy for n ≥ 3

log
(

1+ d(x)d(y)

|x−y|2
)

for n = 2

|α| = 2 and |β | = 0 :

|x− y|2−n
W 2

y for n ≥ 3

log
(

1+ d(y)2

|x−y|2
)

for n = 2

|α| = 0 and |β | = 1 :

|x− y|3−n
W 2

x Wy for n ≥ 4

W 2
x Wy for n = 3

d (x)WxWy for n = 2

|α| = 1 and |β | = 0 :

|x− y|3−n
WxW

2
y for n ≥ 4

WxW
2
y for n = 3

d (y)WxWy for n = 2

|α| = |β | = 0 :

|x− y|4−n
W 2

x W 2
y for n ≥ 5

log
(

1+ d(x)2d(y)2

|x−y|4
)

for n = 4

d (x)1/2
d (y)1/2

W
3/2
x W

3/2
y for n = 3

d (x)d (y)WxWy for n = 2

Proof. The ingredients of this proof are the estimates in Theorem 4.20, the construc-

tion of appropriate curves connecting x with a boundary point x∗ that avoid singular

points, and integral estimates along these curves. The C4,γ -smoothness only comes

in through the constant that appear in Theorem 4.20. So we may suppress the de-

pendence on k in the present proof.

Claim 1: Let x,y∈Ω . There exists a piecewise smooth curve Γx connecting x with the

boundary ∂Ω such that d (Γx,y) ≥ 1
2
|x− y| and if we parametrise Γx by arclength,

it holds that:
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2
3
s ≤ |Γx(s)− x| ≤ s, (4.94)

|Γx(s)− y| ≥ 1
8
|x− y|+ 1

8
|Γx(s)− x| . (4.95)

Let x∗ be such that d (x) = |x− x∗|. If the interval [x,x∗] does not intersect

B 1
2 |x−y| (y), then we take Γx = [x,x∗]. If the set [x,x∗]∩B 1

2 |x−y| (y) is nonempty while

B 1
2 |x−y| (y)∩ ∂Ω is empty, one modifies Γx by replacing [x,x∗]∩ B 1

2 |x−y| (y) by a

shortest path on ∂B 1
2 |x−y| (y) that connects the two points of [x,x∗]∩ ∂B 1

2 |x−y| (y).

If both [x,x∗]∩B 1
2 |x−y| (y) and B 1

2 |x−y| (y)∩ ∂Ω are nonempty, the part of [x,x∗]∩
B 1

2 |x−y| (y) is replaced by the shortest path on ∂B 1
2 |x−y| (y) that connects with the

boundary, see Figure 4.1.

x

y

x

y

x

y

Fig. 4.1 Curves connecting x with the boundary by a path of length less than 3
2

d(x) that avoid the

singularity in y by staying outside of B 1
2 |x−y|(y).

Geometric arguments show that s ≤ 1
3
(π +1) |Γx(s)− x|. Using 1

3
(π +1) < 3

2
,

(4.94) follows. Moreover, writing z = Γx(s), we have |z− y| ≥ 1
2
|x− y|. So, if

|z− x| ≤ 2 |x− y|, then |z− x| ≤ 4 |z− y|. If |z− x| ≥ 2 |x− y|, then |z− y| ≥ |z− x|−
|x− y| ≥ 1

2
|z− x|. Combining we obtain (4.95).

Claim 2: Let k ≥ 2 and ν1,ν2 ≥ 0. If H (x,y) = 0 for all x ∈ ∂Ω and y ∈ Ω and if

for some C ∈ R+

|∇xH (x,y)| ≤C |x− y|−k
min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x,y ∈ Ω ,

then there is C̃ ∈ R+ such that

|H (x,y)| ≤ C̃ |x− y|1−k
min

{
1,

d(x)

|x− y|

}ν1+1

min

{
1,

d(y)

|x− y|

}ν2

for x,y ∈ Ω .

Let s 7→ x(s) parametrise Γx as above by arclength connecting x∗ ∈ ∂Ω with x.

Then

H (x,y) = H (x∗,y)+
∫

Γx

∇xH (x(s) ,y) · τ (s)ds (4.96)

and using Lemma 4.5
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|H (x,y)| ≤
∫

Γx

|∇xH (x(s) ,y)|ds

≤
∫

Γx

C |x(s)− y|−k
min

{
1,

d(x(s))ν1d(y)ν2

|x(s)− y|ν1+ν2

}
ds.

It follows from (4.95) that

|H (x,y)| ≤ c1

∫ 3
2 d(x)

0
(|x− y|+ s)−k

min

{
1,

d(x)ν1d(y)ν2

(|x− y|+ s)ν1+ν2

}
ds

= c1 |x− y|1−k
∫ 3

2
d(x)
|x−y|

0
(1+ t)−k

min

{
1,

d(x)ν1d(y)ν2

(1+ t)ν1+ν2 |x− y|ν1+ν2

}
dt.

We distinguish two cases. If d(x) ≤ |x− y|, then

|H (x,y)| ≤ c1 |x− y|1−k
∫ 3

2
d(x)
|x−y|

0
min

{
1,

d(x)ν1d(y)ν2

|x− y|ν1+ν2

}
dt

≤ c2 |x− y|1−k
min

{
1,

d(x)ν1d(y)ν2

|x− y|ν1+ν2

}
d(x)

|x− y|

≤ c3 |x− y|1−k
min

{
1,

d(x)ν1+1d(y)ν2

|x− y|ν1+ν2+1

}
. (4.97)

If d(x) ≥ |x− y|, then

|H (x,y)| ≤ c1 |x− y|1−k
∫ 3

2
d(x)
|x−y|

0
(1+ t)−k

dt · min

{
1,

d(y)ν2

|x− y|ν2

}

≤ c2 |x− y|1−k
min

{
1,

d(y)ν2

|x− y|ν2

}

≤ c3 |x− y|1−k
min

{
1,

d(x)ν1+1d(y)ν2

|x− y|ν1+ν2+1

}
.

Claim 3: Let ν1,ν2 ≥ 0. If H (x,y) = 0 for x ∈ ∂Ω and for some C ∈ R+

|∇xH (x,y)| ≤C |x− y|−1
min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x,y ∈ Ω ,

then there is C̃ ∈ R+ such that for all x,y ∈ Ω

|H (x,y)| ≤ C̃ log

(
2+

d(x)

|x− y|

)
min

{
1,

d(x)

|x− y|

}ν1+1

min

{
1,

d(y)

|x− y|

}ν2

.

The steps of Claim 2 remain valid until
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|H (x,y)| ≤ c1

∫ 3
2

d(x)
|x−y|

0
(1+ t)−1

min

{
1,

d(x)ν1d(y)ν2

(1+ t)ν1+ν2 |x− y|ν1+ν2

}
dt,

and inclusive (4.97). For d(x) ≤ |x− y| the claim follows. If d(x) ≥ |x− y|, then

∫ 3
2

d(x)
|x−y|

0
(1+ t)−1

min

{
1,

d(x)ν1d(y)ν2

(1+ t)ν1+ν2 |x− y|ν1+ν2

}
dt

≤ log

(
2+

d(x)

|x− y|

)
min

{
1,

d(x)ν1d(y)ν2

|x− y|ν1+ν2

}

≤ log

(
2+

d(x)

|x− y|

)
min

{
1,

d(x)ν1+1d(y)ν2

|x− y|ν1+ν2+1

}
.

Claim 4: Let k ≥ 2 and ν1,ν2,α1,α2 ≥ 0. If H (x,y) = 0 for x ∈ ∂Ω and for some

C ∈ R+

|∇xH (x,y)| ≤C d(x)α1d(y)α2 min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x,y ∈ Ω ,

then there is C̃ ∈ R+ such that

|H (x,y)| ≤ C̃ d(x)α1+1d(y)α2 min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x,y ∈ Ω .

This is a direct consequence of (4.96), (4.94) and (4.95).

Claim 5: Let k ≥ 2 and ν1,ν2,α1,α2 ≥ 0. If H (x,y) = 0 for x ∈ ∂Ω and if there

exists C ∈ R+ such that

|∇xH (x,y)| ≤C log

(
2+

d(x)d(y)

|x− y|2

)
min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x,y ∈ Ω , then there is C̃ ∈ R+ such that

|H (x,y)| ≤ C̃ d(x)min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x,y ∈ Ω .

We first observe that

log

(
2+

d(x)d(y)

|x− y|2

)
min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

' log

(
2+

d(x)

|x− y|

)
min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2
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If
d(x)
|x−y| ≤ 1, then log

(
2+ d(x)

|x−y|

)
is bounded and the result is again a direct conse-

quence of (4.96), (4.94) and (4.95). If
d(x)
|x−y| ≥ 1, then for z ∈ Γx

d(z)

|x− z| ≤
8d(z)

|x− y|+ s

and one finds

|∇xH (x(s),y)| ≤ c1 log

(
2+

d(x)

|x− y|+ s

)
· min

{
1,

d(y)ν2

|x− y|ν2

}
.

Hence

|H (x,y)| ≤ c1

∫ 3
2 d(x)

0
log

(
2+

d(x)

|x− y|+ s

)
ds · min

{
1,

d(y)ν2

|x− y|ν2

}

≤ c2d(x)min

{
1,

d(y)ν2

|x− y|ν2

}
.

In order to complete the proof of Theorem 4.28 one starts from the estimates of

Theorem 4.20. We find, using the Claims 2 to 5 and working our way down, the

estimates as in Table 4.1 except for n = 3 with |α|+ |β | ≤ 1. Suppose α = 0 and

|β | = 1. Then

∣∣∣∇xDβ
y G(x,y)

∣∣∣≤C |x− y|−1
min

{
1,

d(x)

|x− y|

}
min

{
1,

d(y)

|x− y|

}

implies
∣∣∣Dβ

y G(x,y)
∣∣∣≤C log

(
1+

d(x)2d(y)

|x− y|3

)
.

Together with (4.76) we obtain

∣∣∣Dβ
y G(x,y)

∣∣∣≤C min

{
1,

d(x)

|x− y|

}2

min

{
1,

d(y)

|x− y|

}
.

For the zeroth order in case n = 3 one finds through

∣∣∇yG(x,y)
∣∣≤C min

{
1,

d(x)

|x− y|

}2

min

{
1,

d(y)

|x− y|

}

that

|G(x,y)| ≤C d(y)min

{
1,

d(x)

|x− y|

}2

min

{
1,

d(y)

|x− y|

}

and through the similar estimate for |∇xG(x,y)| that
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|G(x,y)| ≤C M (x,y)min

{
1,

d(x)d(y)

|x− y|2

}

with

M (x,y) = min

{
d(y)min

{
1,

d(x)

|x− y|

}
,d(x)min

{
1,

d(y)

|x− y|

}}
.

Since M (x,y) ≤
√

d(x)d(y)min
{

1, d(x)d(y)

|x−y|2
}3/2

the proof is complete. �

In a similar way one may derive estimates for the Poisson kernels. Consider

{
∆ 2u = f in Ω ,

u|∂Ω = ψ, − ∂u
∂ν |∂Ω = ϕ.

(4.98)

If G = G∆ 2,Ω is the Green function for this boundary value problem, then the solu-

tion of (4.98) is written as

u(x) =
∫

Ω
G(x,y) f (y) dy+

∫

∂Ω
K (x,y)ψ(y) dωy +

∫

∂Ω
L(x,y)ϕ(y) dωy,

with K,L : Ω ×∂Ω → R defined by

K (x,y) =
∂

∂νy

∆yG(x,y),

L(x,y) = ∆yG(x,y).

Theorem 4.29. Let (Ωk)k∈N be as in Theorem 4.28 and let KΩk
and LΩk

be the

corresponding Poisson kernels. Then there exists C = C
(
(Ωk)k∈N

)
such that for all

(x,y) ∈ Ω ×∂Ω :

∣∣KΩk
(x,y)

∣∣≤C
d (x)2

|x− y|n+1
and

∣∣LΩk
(x,y)

∣∣≤C
d (x)2

|x− y|n .

For n = 2 one obtains
∣∣LΩk

(x,y)
∣∣≤C.

4.5.3 Convergence of the Green function in domain

approximations

Proposition 4.30. Let xk ∈ Ωk and assume that limk→∞ xk = x∞ ∈ Ω . Then we have

Gk(xk, .) → G(x∞, .) in C4
loc(Ω \{x∞}),

Gk(xk, .) → G(x∞, .) in L1(Rn),

Gk(xk, .)◦Ψk → G(x∞, .) in C4
loc(Ω \{x∞}).
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If n = 3 we have in addition that

Gk( . , .) → G( . , .) in C0
loc(Ω ×Ω).

Proof. According to Theorem 4.20 we know that

|Gk(x,y)| ≤C





|x− y|4−n if n > 4,
log
(
1+ |x− y|−1

)
if n = 4,

1 if n = 3;

(4.99)

uniformly in k. This shows that in particular

‖Gk(x, .)‖L1(Ωk)
≤C uniformly in x and k.

Moreover, since xk → x∞, we may assume that all xk are in a small neighbour-

hood around x∞. Let Ω0 ⊂⊂ Ω be arbitrary; local Schauder estimates (see Theo-

rem 2.19) show that (Gk(xk, .))k∈N is locally bounded in C4
loc

(
Ω0 \{x∞}

)
. Hence,

after selecting a suitable subsequence we see that for each such Ω0 ⊂⊂ Ω one has

Gk(xk, .) → ϕ in C4
loc

(
Ω0 \{x∞}

)
and Gk(xk, .)◦Ψk → ϕ in C4

loc(Ω \{x∞}) with a

suitable ϕ ∈ C4,γ(Ω \ {x∞}). Thanks to this compactness and the fact that in any

case the limit is the uniquely determined Green function, we have convergence on

the whole sequence towards G(x∞, .).
Finally, since we have pointwise convergence, (4.99) allows for applying Vitali’s

convergence theorem to show that

Gk(xk, .) → G(x∞, .) in L1(Rn).

The statement concerning C0
loc(Ω ×Ω)-convergence in n = 3 is a consequence of

|∇Gk( . , .)| ≤C, see (4.60). �

In order to have enough smoothness to conclude also for the last case in Theo-

rem 6.30 we also need a convergence result simultaneous in both variables.

Proposition 4.31. We have that

Gk( . , .)◦ (Ψk ×Ψk) → G( . , .) in C4
loc

(
Ω ×Ω \{(x,x) ;x ∈ Ω}

)
.

Proof. We combine the ideas of the proofs of Propositions 4.30 and 4.17. One

should observe that Theorem 4.20 guarantees uniform L1-bounds for Gk as in the

proof of Proposition 4.30. �

4.6 Weighted estimates for the Dirichlet problem

As a side result the estimates in the previous section for the homogeneous bihar-

monic Dirichlet problem allow weighted Lp-Lq estimates for elliptic boundary value

problems under homogeneous boundary conditions with d ( .)θ
as weight function.
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Here we will restrict ourselves to the biharmonic case. A more general version of

this theorem is found in [118].

If u and f are such that

{
∆ 2u = f in Ω ,
u = uν = 0 on ∂Ω ,

(4.100)

then we have

Theorem 4.32. Let Ω be a bounded C4,γ -smooth domain and let u ∈ C4
(
Ω
)
, f ∈

C
(
Ω
)

be as in (4.100). Then the following hold:

1. For n < 4 there exists C = C (Ω) such that for all θ ∈ [0,1]:

∥∥∥d ( .)θn−2
u

∥∥∥
L∞(Ω)

≤C

∥∥∥d( .)2−(1−θ)n f

∥∥∥
L1(Ω)

. (4.101)

2. For all n ≥ 2 if p,q ∈ [1,∞] are such that 0 ≤ 1
p
− 1

q
< α ≤ min

{
1, 4

n

}
, then there

exists C = C (Ω ,α) such that for all θ ∈ [0,1]:

∥∥∥d ( .)θnα−2
u

∥∥∥
Lq(Ω)

≤C

∥∥∥d( .)2−(1−θ)nα f

∥∥∥
Lp(Ω)

. (4.102)

Remark 4.33. Notice that the shift in the exponent of d ( .) in (4.102) is 4−nα with

α > 0. If p = q this shift can be arbitrarily close to 4 but will not reach 4.

Before proving this theorem we recall an estimate involving the Riesz potential

(
Kγ ∗ f

)
(x) :=

∫

Ω
|x− y|−γ

f (y)dy.

We prove a classical convolution estimate which can e.g. be found in [231, Corol-

lary 4.5.2].

Lemma 4.34. Let Ω ⊂ Rn be bounded, γ ∈ (0,n) and 1 ≤ p,q ≤ ∞. If
γ
n

< 1
r

:=

min
{

1,1+ 1
q
− 1

p

}
, then there exists C = C (diam(Ω),n− γr) ∈ R+ such that for

all f ∈ Lp(Ω): ∥∥Kγ ∗ f
∥∥

Lq(Ω)
≤C ‖ f‖Lp(Ω) . (4.103)

Proof. We let p′ ∈ [1,∞] denote the conjugate of p ∈ [1,∞]: 1
p
+ 1

p′ = 1 etc. Set

CΩ ,s = max
x∈Ω

∥∥|x− . |−s
∥∥

L1(Ω)

and notice that CΩ ,s is bounded for s < n.

If q = 1, then r = 1 and a change in the order of integration gives

∥∥Kγ ∗ f
∥∥

L1(Ω)
≤
∫

Ω

(∫

Ω
|x− y|−γ

dx

)
| f (y)|dy

≤CΩ ,γr ‖ f‖L1(Ω) ≤C ‖ f‖Lp(Ω) . (4.104)
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If p ≥ q, then r = 1 and

∥∥Kγ ∗ f
∥∥q

Lq(Ω)
=
∫

Ω

∣∣∣∣
∫

Ω
|x− y|−γ

f (y)dy

∣∣∣∣
q

dx

≤
∫

Ω

(∫

Ω
|x− y|−γ

dy

) q

q′
(∫

Ω
|x− y|−γ | f (y)|q dx

)
dy

≤ C
q/q′
Ω ,γr

∥∥Kγ ∗ | f |q
∥∥

L1(Ω)

and one continues with (4.104).

One finds for 1 < p < q < ∞, since 1
r′ +

1
p′ +

1
q

= 1, that

∣∣(Kγ ∗ f
)
(x)
∣∣ ≤

≤
(∫

Ω
| f (y)|p dy

) 1
r′
(∫

Ω
|x− y|−rγ

dy

) 1
p′
(∫

Ω
|x− y|−rγ | f (y)|p dy

) 1
q

(4.105)

and, by changing the order of integration and using pq/r′ + p = q, also

∥∥Kγ ∗ f
∥∥q

Lq(Ω)
≤ ‖ f‖pq/r′

Lp(Ω)
C

q/p′
Ω ,γr

∫

Ω

(∫

Ω
|x− y|−rγ

dx

)
| f (y)|p dy

≤ C
1+q/p′
Ω ,γr ‖ f‖q

Lp(Ω)
. (4.106)

For q = ∞ and has r = p′ and the proof reduces to

∣∣(Kγ ∗ f
)
(x)
∣∣≤
∥∥|x− . |−γ

∥∥
Lp′ (Ω)

‖ f‖Lp(Ω) ≤C
1/r

Ω ,γr ‖ f‖Lp(Ω) .

For p = 1 one replaces (4.105) by

∣∣(Kγ ∗ f
)
(x)
∣∣≤
(∫

Ω
| f (y)|dy

) 1
q′
(∫

Ω
|x− y|−qγ | f (y)|dy

) 1
q

and continues similar as in (4.106) by changing the order of integration. �

Proof of Theorem 4.32. Again we use the notation (4.1). The estimate that we will

use repeatedly is a consequence of Lemma 4.5:

min

{
1,

d (x)d (y)

|x− y|2

}
≤C

(
d (x)d (y)

|x− y|2

)1−s(
d (y)

d (x)

)s(2θ−1)

for all s,θ ∈ [0,1] .

(4.107)

To prove Item 1 in Theorem 4.32 we apply this estimate for s = 1 to find for n < 4

|G(x,y)| ≤Cd(x)2− 1
2 nd(y)2− 1

2 n

(
d (y)

d (x)

) 1
2 n(2θ−1)

= Cd(x)2−nθ d(y)2−n(1−θ)
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and a straightforward integration shows (4.101).

For Item 2, we need Lemma 4.34. If n > 4 we use from Theorem 4.28 the estimate

for the Green function itself, and (4.107) for s = 1
4
nα , which is allowed since 0 ≤

1
4
nα ≤ 1,

|G(x,y)| ≤C |x− y|4−n
min

{
1,

d (x)d (y)

|x− y|2

}2

≤C |x− y|4−n

(
d (x)d (y)

|x− y|2

)2(1− 1
4 nα)(

d (y)

d (x)

) 1
2 nα(2θ−1)

= C |x− y|n(α−1)
d (x)2−θnα

d (y)2−(1−θ)nα .

For n = 4 it holds that

|G(x,y)| ≤C log

(
1+

d (x)2
d (y)2

|x− y|2

)
≤C |x− y|−ε

min

{
1,

d (x)d (y)

|x− y|2

}2

and we may continue as before if we choose ε small enough such that α − 1
4
ε >

1
p
− 1

q
.

If n = 3, one has for α,θ ∈ [0,1]

|G(x,y)| ≤Cd (x)
1
2 d (y)

1
2 min

{
1,

d (x)d (y)

|x− y|2

} 3
2

≤Cd (x)
1
2 d (y)

1
2

(
d (x)d (y)

|x− y|2

) 3
2 (1−α)(

d(y)

d(x)

) 3
2 α(2θ−1)

= C |x− y|−3(1−α)
d (x)2−3αθ

d (y)2−3α(1−θ) .

Similarly, if n = 2 one finds for α,θ ∈ [0,1]

|G(x,y)| ≤C |x− y|−2(1−α)
d (x)2−2αθ

d (y)2−2α(1−θ) .

We have found for all n 6= 4 (and with a minor change for n = 4) that

∣∣∣d (x)θnα−2
u(x)

∣∣∣≤C

∣∣∣∣
∫

Ω
|x− y|−n(1−α)

d (y)2−(1−θ)nα
f (y)dy

∣∣∣∣ .

By Lemma 4.34 we have

∥∥∥d ( .)θnα−2
u

∥∥∥
Lq(Ω)

≤C

∥∥∥d( .)2−(1−θ)nα f

∥∥∥
Lp(Ω)

whenever α > 1
p
− 1

q
and with α ≤ 1

4
n for n ≥ 4 and α ≤ 1 for n < 4. �
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4.7 Bibliographical notes

Characterisations of Green’s functions like in Section 4.2.1 are well-known by now

in the context of second order problems on arbitrary smooth domains. Estimates

from above go back to works of Grüter-Widman [215, 411]. The two-sided sharp

estimates for the Green function of the Dirichlet-Laplacian are due to Zhao in

[419, 420, 421]. Hueber-Sieveking [233] and Cranston-Fabes-Zhao [114] proved

bounds for the Green function for general second order operators based on Harnack

inequalities. For the importance of so-called 3-G-theorems in the potential theory

of Schrödinger operators and the link with stochastic processes we refer to [97]. A

first place where the optimal two-sided estimates are listed is [384].

For the higher order problems considered here the situation is quite different,

namely, no general maximum principles and in particular no general Harnack in-

equalities are available. In the polyharmonic situation the starting point is Boggio’s

explicit formula for the Green’s function in balls [63] from 1905, see (2.65). His

formula led to optimal two-sided estimates for the polyharmonic Green function in

case of a ball and inspired the estimates for the absolute value of the Green function

in general domains. The subsequent estimates and 3-G-theorems were developed by

Grunau-Sweers [210]. For further classical material on polyharmonic operators we

refer to the book of Nicolesco [323].

As for the biharmonic Steklov boundary value problem in Section 4.3, we follow

Gazzola-Sweers [191]. Proposition 4.13 is taken from [213, Lemmas 3.1 and 3.2]

and is based on previous estimates by Zhao [420, 421], see also [118, 384]. Some

of the results in Section 4.3 can be obtained under the assumption that ∂Ω ∈ C1,1,

see [191].

Estimates of Green’s functions for general higher order elliptic operators are

due to Krasovskiı̆ [255, 256]. However, due the general situation considered there,

high regularity was imposed on the boundary. Since we restrict ourselves to bi-

harmonic Green’s functions and for the reader’s convenience, we give a more ele-

mentary derivation of such estimates which only need to refer to Agmon-Douglis-

Nirenberg [5], i.e. to Section 2.5 of the present book. The actual estimates are based

on Dall’Acqua-Sweers and Grunau-Robert [118, 207]. For generalisations of Green

function estimates to nonsmooth domains see also Mayboroda-Maz’ya [286].





Chapter 5

Positivity and lower order perturbations

As already mentioned in Section 1.2, in general one does not have positivity pre-

serving for higher order Dirichlet problems. Nevertheless, in Chapter 6 we shall

identify some families of domains where the biharmonic — or more generally the

polyharmonic — Dirichlet problem enjoys a positivity preserving property. More-

over, there we shall prove “almost positivity” for the biharmonic Dirichlet problem

in any bounded smooth domain Ω ⊂ Rn.

As an intermediate step, taking advantage of the kernel estimates proved in Chap-

ter 4, we study lower order perturbations of the prototype ((−∆)m, B ⊂ Rn) where

B is again the unit ball. In Theorem 5.1 we prove positivity for Dirichlet problems





Lu := (−∆)m
u+ ∑

|β |≤2m−1

aβ (x)Dβ u = f in B,

Dα u|∂B = 0 for |α| ≤ m−1,
(5.1)

with “small” coefficients aβ . Its proof is based on Green’s function estimates, esti-

mates for iterated Green’s functions via the 3-G-theorem 4.9, and Neumann series.

With the help of Riemann’s theorem on conformal mappings and a reduction to nor-

mal form, this result will be used to prove the more general Theorem 6.3 where this

approach permits to consider also highest-order perturbations in two dimensions.

If we remove in (5.1) the smallness assumptions on the coefficients aβ , we are

still able to prove a local maximum principle for differential inequalities, which is

true also in arbitrary domains Ω , see Theorem 5.19.

In the same spirit we study in Section 5.4 positivity preserving for the Steklov

boundary value problem

{
∆ 2u = f in Ω ,
u = ∆u−auν = 0 on ∂Ω ,

with data a ∈C0(∂Ω) and suitable f ≥ 0. It turns out that when a is below the corre-

sponding positive first Steklov eigenvalue (see (3.40)) and above a negative critical

parameter, one has positivity preserving, i.e. f ≥ 0 ⇒ u ≥ 0. This critical parameter

may also be −∞. This issue is somehow related to positivity in the corresponding

145
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Dirichlet problem. As an application we will see that in a convex planar domain the

hinged plate described by (1.10) satisfies the positivity preserving property, namely

upwards pushing yields upwards bending.

It is another interesting question to ask which is the role of nontrivial Dirich-

let boundary data with regard to the positivity of the solution. We look first at the

inhomogeneous problem for the clamped plate equation:





∆ 2u = 0 in Ω ,

u|∂Ω = ψ, − ∂u

∂ν
|∂Ω = ϕ.

(5.2)

One could think that, at least in the unit ball B, nonnegative data ψ ≥ 0, ϕ ≥ 0 yield

a nonnegative solution u ≥ 0. Actually, for B this is true with respect to ϕ in any

dimension and with respect to ψ if n ≤ 4. But for n ≥ 5, the corresponding integral

kernel changes sign! This issue will be discussed in detail in Section 5.2. A per-

turbation theory of positivity, allowing also for highest order perturbations, can be

developed also with respect to ϕ in the special case ψ = 0. This can be generalised to

equations of arbitrary order, see Theorems 5.6 and 5.7 and Remark 6.8. With respect

to ψ we can prove only a rather restricted perturbation result, see Theorem 5.15.

5.1 A positivity result for Dirichlet problems in the ball

In order to avoid unnecessarily strong assumptions on the coefficients, a reasonable

framework for the positivity results is Lp-theory. For existence and regularity we

refer to Chapter 2. The next statement should be compared with Corollary 5.5 below

for the necessity of the smallness assumptions on the coefficients.

Theorem 5.1. There exists ε0 = ε0(m,n) > 0 such that if the aβ ∈ C0(B) satisfy

the smallness condition ‖aβ‖C0(B) ≤ ε0, |β | ≤ 2m− 1, then for every f ∈ Lp(B),

1 < p < ∞, there exists a solution u ∈ W 2m,p ∩W
m,p
0 (B) of the Dirichlet problem

(5.1). Moreover, if f 	 0 then the solution is strictly positive,

u > 0 in B.

To explain the strategy of the proof, we rewrite the boundary value problem (5.1)

as {
((−∆)m +A )u = f in B,

Dα u|∂B = 0 for |α| ≤ m−1,
(5.3)

where we put

A u := ∑
|β |≤2m−1

aβ ( .)Dβ u( .), aβ ∈C0(B).
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We recall from Section 4.2.1 the definition of the Green operator Gm,n for the bound-

ary value problem (5.3) with A = 0. In order to prove Theorem 5.1, we write the

solution of (5.3) in the form

u = (I +Gm,nA )−1
Gm,n f ,

where I is the identity operator, and we shall estimate

(I +Gm,nA )−1
Gm,n ≥

1

C
Gm,n.

For this purpose we introduce the following notation.

Definition 5.2. For two operators S ,T : Lp(B) → Lp(B) we write

S ≥ T ,

if for all f ∈ Lp(B) satisfying f ≥ 0, one has that S f ≥ T f .

Lemma 5.3. Let 1 < p < ∞. Then Gm,nA : W 2m,p ∩W
m,p
0 (B) → W 2m,p ∩W

m,p
0 (B)

is a bounded linear operator. Furthermore, there exists ε1 = ε1(m,n) > 0 such that

the following holds true.

Assume that ‖aβ‖C0(B) ≤ ε1 for all |β | ≤ 2m− 1. Then I + Gm,nA : W 2m,p ∩
W

m,p
0 (B) → W 2m,p ∩W

m,p
0 (B) is boundedly invertible. For each f ∈ Lp(B) the

boundary value problem (5.3) has precisely one solution. This solution is given by

u = (I +Gm,nA )−1
Gm,n f . (5.4)

The Green operator for the boundary value problem (5.3)

(I +Gm,nA )−1
Gm,n : Lp(B) →W 2m,p ∩W

m,p
0 (B) ⊂ Lp(B)

is compact.

Proof. This is an immediate consequence of Corollary 2.21: Gm,n : Lp(B)→W 2m,p∩
W

m,p
0 (B) is a bounded linear operator. �

The Green operator for (5.3) is studied with the help of a Neumann series. The-

orem 5.1 then follows from the next result.

Theorem 5.4. Assume that 1 < p < ∞. There exists ε0 = ε0(m,n) > 0 such that if

‖aβ‖C0(B) ≤ ε0 for all |β | ≤ 2m−1, then the Green operator

Gm,n,A := (I +Gm,nA )−1
Gm,n : Lp(B) →W 2m,p ∩W

m,p
0 (B)

for the boundary value problem (5.3) exists. The corresponding Green function

Gm,n,A : B×B → R∪{∞} is defined according to:

(
Gm,n,A f

)
(x) =

∫

B
Gm,n,A (x,y) f (y)dy
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and satisfies the following estimate with a constant C = C(m,n) > 0:

1

C
Gm,n ≤ Gm,n,A ≤CGm,n. (5.5)

On B×B, this reads:

1

C
Gm,n(x,y) ≤ Gm,n,A (x,y) ≤C Gm,n(x,y). (5.6)

Proof. Let ε := max|β |≤2m−1 ‖aβ‖C0(B). If ε ≤ ε1, then according to Lemma 5.3,

Gm,n,A exists and enjoys the properties listed there. If we choose moreover ε small

enough such that ‖Gm,nA ‖ < 1 in the sense of bounded linear operators in W 2m,p ∩
W

m,p
0 (B), we may use a Neumann series to see that for all f ∈ Lp(B)

Gm,n,A f = (I +Gm,nA )−1
Gm,n f =

∞

∑
i=0

(−1)i (Gm,nA )i
Gm,n f .

Here, with the aid of the Fubini-Tonelli theorem and analogously to [197, Lemma

4.1], we conclude:

G
(i) f := (−1)i (Gm,nA )i

Gm,n f

= (−1)i

∫

B
Gm,n( . ,z1)Az1

∫

B
Gm,n(z1,z2)Az2

. . .

. . .Azi

∫

B
Gm,n(zi,y) f (y)dydzi . . .dz1

=
∫

B

{
(−1)i

∫

B
· · ·
∫

B
Gm,n( . ,z1)(Az1

Gm,n(z1,z2)) . . .

. . .(Azi
Gm,n(zi,y)) d(z1, . . . ,zi)

}
f (y)dy

=:

∫

B
G(i)( . ,y) f (y)dy.

We use the following version of the 3-G-theorem 4.9:

∫

B

Gm,n(x,z) |AzGm,n(z,y)|
Gm,n(x,y)

dz ≤ εM < ∞

where M = M(m,n) > 0 is independent of ε and obtain:

∣∣∣G(i)(x,y)
∣∣∣ =

=

∣∣∣∣
∫

B
· · ·
∫

B

Gm,n(x,z1)(Az1
Gm,n(z1,z2))

Gm,n(x,z2)

Gm,n(x,z2)(Az2
Gm,n(z2,z3))

Gm,n(x,z3)
· · ·

· · · Gm,n(x,zi)(Azi
Gm,n(zi,y))

Gm,n(x,y)
Gm,n(x,y)d(z1, . . . ,zi)

∣∣∣∣ ≤
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≤ Gm,n(x,y)
i

∏
j=1

sup
ξ ,η∈B

∫

B

Gm,n(ξ ,z j)
∣∣Az j

Gm,n(z j,η)
∣∣

Gm,n(ξ ,η)
dz j

≤ (εM)i
Gm,n(x,y). (5.7)

For εM < 1, thanks to ∑
∞
i=0(εM)i = (1− εM)−1 < ∞, we have absolute local uni-

form convergence in x 6= y of

Gm,n,A (x,y) :=
∞

∑
i=0

G(i)(x,y). (5.8)

It follows that ∣∣Gm,n,A (x,y)
∣∣≤ 1

1− εM
Gm,n(x,y). (5.9)

On the other hand, Lebesgue’s theorem yields

(
Gm,n,A f

)
(x) =

∞

∑
i=0

(
G

(i) f
)

(x) =
∞

∑
i=0

∫

B
G(i)(x,y) f (y)dy

=
∫

B

(
∞

∑
i=0

G(i)(x,y) f (y)

)
dy =

∫

B
Gm,n,A (x,y) f (y)dy.

Finally, thanks to (5.7) we have

Gm,n,A (x,y) = Gm,n(x,y)+
∞

∑
i=1

G(i)(x,y)

≥ Gm,n(x,y)−
(

∞

∑
i=1

(εM)i

)
Gm,n(x,y) =

1−2εM

1− εM
Gm,n(x,y).

Choosing ε0 ≤ 1/(4M) yields the crucial part of the estimate (5.6) from below for

the Green function of the perturbed boundary value problem (5.3), provided ε ∈
[0,ε0]. �

If we confine ourselves to perturbations of order zero, we may show the necessity

of the smallness conditions in Theorem 5.1. Consider the problem

{
(−∆)mu+a(x)u = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,
(5.10)

where Ω ⊂ Rn is a bounded C2m,γ -smooth domain. For coefficients a ∈ C0(Ω),
where we have uniqueness and hence existence in (5.10), let Gm,Ω ,a be the corre-

sponding Green operator. In case of a constant coefficient a, Gm,Ω ,a is the resolvent

operator. Recalling the meaning of the symbols

φ > 0 , φ � 0 , φ 	 0 ,
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in the Notations-Section, the positivity properties of Dirichlet problem (5.10) may

be summarised as follows.

Corollary 5.5. Let m > 1 and let Ω ⊂ Rn be a bounded smooth domain such that

the (Dirichlet-) Green function for (−∆)m is positive in Ω ×Ω . Let Λm,1 denote the

first Dirichlet eigenvalue of (−∆)m in Ω .

Then there exists a critical number ac ∈ [0,∞) such that for a ∈C0(Ω) we have:

1. If a > ac on Ω , then Gm,Ω ,a does not preserve positivity:

there exists f 	 0 : Gm,Ω ,a f 6≥ 0. (5.11)

On the other hand we have:

for all f 	 0 : Gm,Ω ,a f 6≤ 0, (5.12)

there exists f 	 0 : Gm,Ω ,a f ≥ 0. (5.13)

2. If −Λm,1 < a ≤ ac (or −Λm,1 < a < ac, respectively), then Gm,Ω ,a is positivity

preserving (or strongly positivity preserving, respectively), that is,

for all f 	 0 : Gm,Ω ,a f ≥ 0 (or Gm,Ω ,a f > 0 in Ω , respectively). (5.14)

3. If a = −Λm,1 and f 	 0, then (5.10) has no solution.

4. If a < −Λm,1, then (5.10) kills positivity, that is, if f 	 0 and u is a solution to

(5.10), then u 6≥ 0 in Ω .

For a proof, the strategy of which is related to – but simpler than – the arguments in

Section 5.4, we refer to [210, Section 6] and [212, Lemma 1].

Case 1 does not occur in second order equations. This different behaviour may be

responsible for the difficulties in classical solvability of semilinear boundary value

problems of higher order, see e.g. [209, 395, 404, 405]. If m > 1, we have that for a

large enough the resolvent is always sign changing, see e.g. Coffman-Grover [111].

As was noted e.g. by Bernis [51], this is equivalent to instantaneous change of sign

for the corresponding parabolic heat kernel, see also related contributions to local

eventual positivity by Ferrero-Gazzola-Grunau [164, 183, 184].

5.2 The role of positive boundary data

This section is devoted to the role of nonhomogeneous boundary data with regard

to the sign of the solution. As already mentioned in the introduction this problem is

rather subtle. In general we cannot expect that fixed sign of any particular Dirich-

let datum leads to fixed sign of the solution. It seems that a perturbation theory

of positivity (analogous to that above with regard to the right-hand side) exists in
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general only for the Dirichlet datum of highest order. As a dual result we obtain

also a Hopf-type boundary lemma in the ball for perturbed polyharmonic Dirichlet

problems.

With respect to lower order data, only much more restricted results can be

achieved, see Theorem 5.15 below.

5.2.1 The highest order Dirichlet datum

Here, we consider the following boundary value problem:





((−∆)m +A )u = f in B,

Dα u|∂B = 0 for |α| ≤ m−2,




− ∂

∂ν
∆ (m/2)−1u|∂B = ϕ

∆ (m−1)/2u|∂B = ϕ

if m is even,

if m is odd.

(5.15)

Here f ∈C0(B), ϕ ∈C0(∂B) and

A = ∑
|β |≤2m−1

aβ ( .)Dβ , aβ ∈C|β |(B), (5.16)

is a sufficiently small lower order perturbation. For existence of solutions u ∈
W

2m,p
loc (B)∩Cm−1(B), p > 1, we refer to the local Lp-theory in Theorem 2.20 and the

lines following it and to the Agmon-Miranda maximum estimates of Theorem 2.25.

The latter already require the strong regularity assumptions on the coefficients aβ .

These have to be imposed whenever the adjoint operator (−∆)m +A ∗ is involved.

Theorem 5.6. There exists ε0 = ε0(m,n) > 0 such that the following holds true.

If for all |β | ≤ 2m−1 the smallness condition ‖aβ‖C|β |(B) ≤ ε0 is fulfilled, then for

every f ∈ C0(B) and ϕ ∈ C0(∂B) there exists a solution u ∈ W
2m,p
loc (B)∩Cm−1(B),

1 < p < ∞, to the Dirichlet problem (5.15). Moreover, f ≥ 0 and ϕ ≥ 0, with f 6≡ 0

or ϕ 6≡ 0, implies that u > 0.

If m = 1, we recover a special form of the strong maximum principle for second

order elliptic equations. The next result, in some sense dual to the previous one, may

be viewed as a higher order analogue to the Hopf boundary lemma.

Theorem 5.7. Assume aβ ∈ C0(B), |β | ≤ 2m− 1. There exists ε0 = ε0(m,n) > 0

such that the following holds:

If ‖aβ‖C0(B) ≤ ε0, |β | ≤ 2m−1, then for every f ∈C0(B) the Dirichlet problem

(5.1) has a solution u ∈W 2m,p(B)∩C2m−1(B), p > 1 arbitrary. Moreover 0 6≡ f ≥ 0

implies u > 0 in B and for every x ∈ ∂B
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∆ (m/2)u(x) > 0 if m even,

− ∂

∂ν
∆ (m−1)/2u(x) > 0 if m odd.

(5.17)

The common key point in the proof of both theorems is the observation that the

corresponding Green function Gm,n,A vanishes (in both variables) on ∂B precisely

of order m, see Theorem 4.7 and estimate (5.6). In the proof of Theorem 5.6 we

observe further that, for x ∈ B, y ∈ ∂B, the Poisson kernel for ϕ is given by





∆
m/2
y Gm,n,A (x,y) if m even,
(
− ∂

∂νy

∆
(m−1)/2
y

)
Gm,n,A (x,y) if m odd.

In order to prove the theorems we need a precise characterisation of the growth prop-

erties near ∂B of the Green function Gm,n,A for the boundary value problem (5.15).

These estimates were proved in a more general setting but under more restrictive

assumptions on the coefficients by Krasovskiı̆ [255, 256], see also Theorem 4.20.

In the present special situation we provide an elementary proof which combines

Theorems 4.6 and 5.4. Moreover, we need to verify suitable smoothness.

Lemma 5.8. We assume that aβ ∈ C0(B). Then there exists ε1 = ε1(m,n) > 0 such

that the following holds true.

If ‖aβ‖C0(B) ≤ ε1 for all |β | ≤ 2m−1, then the Green function Gm,n,A ( . , .) for

the boundary value problem (5.15) exists. For each y ∈ B, Gm,n,A ( . ,y) ∈C2m−1(B\
{y}). Furthermore, there exist constants C = C(m,n) such that for |β | ≤ 2m− 1,

x,y ∈ B





Gm,n,A ( . ,y) ∈C|β |(B) if 0 ≤ |β | < 2m−n,

∣∣∣Dβ
x Gm,n,A (x,y)

∣∣∣≤C if 0 ≤ |β | < 2m−n,
∣∣∣Dβ

x Gm,n,A (x,y)
∣∣∣≤C log

(
3

|x− y|

)
if |β | = 2m−n and n even,

∣∣∣Dβ
x Gm,n,A (x,y)

∣∣∣≤C if |β | = 2m−n and n odd,

∣∣∣Dβ
x Gm,n,A (x,y)

∣∣∣≤C |x− y|2m−n−|β |
if 2m−n < |β | < 2m.

(5.18)

Moreover, one has D
β
x Gm,n,A ∈C0

(
B×B\{(x,y) : x = y}

)
.

Proof. We come back to Theorem 5.4, making use of the notations and formulae in

its proof. The following holds true, provided ε1 is chosen sufficiently small.

The Green function Gm,n,A exists, and one has

Gm,n,A (x,y) =
∞

∑
i=0

G(i)(x,y),
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where

G(0)(x,y) = Gm,n(x,y),

G(i)(x,y) = (−1)i

∫

B
· · ·
∫

B
Gm,n(x,z1)(Az1

Gm,n(z1,z2))

× . . . (Azi
Gm,n(zi,y)) d(z1, . . . ,zi).

In particular, we have G(i)( . ,y)∈C2m−1(B\{y}), G(i)( . ,y)∈C|β |(B) for 0 ≤ |β |<
2m−n. If |β | ≤ 2m−1 and i ≥ 1, one has with constants C j = C j(m,n) which are

independent of i

∣∣∣Dβ
x G(i)(x,y)

∣∣∣

≤
∫

B
· · ·
∫

B

∣∣∣Dβ
x Gm,n(x,z1)

∣∣∣ |Az1
Gm,n(z1,z2)| . . . |Azi

Gm,n(zi,y)| d(z1, . . . ,zi)

≤ ε i
1 Ci+1

1

∫

B
· · ·
∫

B
Γ (|x− z1|) |z1 − z2|1−n . . . |zi − y|1−nd(z1, . . . ,zi).

Here, in view of Theorem 4.7, we define

Γ (ρ) :=





1 if 0 ≤ |β | < 2m−n,

log

(
3

ρ

)
if |β | = 2m−n and n even,

1 if |β | = 2m−n and n odd,

ρ2m−n−|β | if |β | > 2m−n.

Applying repeatedly
∫

B |ξ − z|1−n |z−η |1−n dz ≤C2|ξ −η |1−n, we conclude:

∣∣∣Dβ
x G(i)(x,y)

∣∣∣ ≤ ε i
1 Ci+1

1 Ci−1
2

∫

B
Γ (|x− z1|) |z1 − y|1−n dz1

≤ ε i
1 Ci+1

1 Ci−1
2

{
C2 if |β | ≤ 2m−n,

C2|x− y|2m−n−|β | if 2m−n < |β | < 2m.

For sufficiently small ε1 > 0 we achieve absolute uniform convergence of the series

∑
∞
i=0 D

β
x G(i)( . ,y) in B if |β | ≤ 2m− n, and in B \Bδ (y) otherwise, where δ > 0 is

arbitrary. Taking the properties of G(0) = Gm,n into account we obtain the estimates

for D
β
x Gm,n,A as well as the stated smoothness. �

Lemma 5.9. We assume that aβ ∈C|β |(B). Then there exists ε2 = ε2(m,n) > 0 such

that the following holds true.

If ‖aβ‖C|β |(B) ≤ ε2 for all |β | ≤ 2m − 1, the Green function Gm,n,A ( . , .) for

the boundary value problem (5.15) exists. Moreover, for each x ∈ B we have

Gm,n,A (x, .) ∈ C2m−1(B \ {x}). Furthermore, for |β | ≤ 2m− 1 one has with con-

stants C = C(m,n) being independent of x,y:
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Gm,n,A (x, .) ∈C|β |(B) if 0 ≤ |β | < 2m−n,
∣∣∣Dβ

y Gm,n,A (x,y)
∣∣∣≤C if 0 ≤ |β | < 2m−n,

∣∣∣Dβ
y Gm,n,A (x,y)

∣∣∣≤C log

(
3

|x− y|

)
if |β | = 2m−n and n even,

∣∣∣Dβ
y Gm,n,A (x,y)

∣∣∣≤C if |β | = 2m−n and n odd,

∣∣∣Dβ
y Gm,n,A (x,y)

∣∣∣≤C |x− y|2m−n−|β |
if 2m−n < |β | < 2m.

(5.19)

Moreover, D
β
y Gm,n,A is continuous outside the diagonal of B×B.

Proof. Thanks to the strong differentiability assumptions on the coefficients aβ we

may consider the adjoint boundary value problem

{
(−∆)mu+A

∗u = f in B,

Dα u|∂B = 0 for |α| ≤ m−1,

where (A ∗u)(x) = ∑|β |≤2m−1(−1)|β |Dβ
(
aβ (x)u(x)

)
. If ε2 is small enough, the cor-

responding Green function Gm,n,A ∗ exists and satisfies Gm,n,A (x,y) = Gm,n,A ∗(y,x).
This observation allows us to apply Lemma 5.8 and the claim follows. �

Proof of Theorem 5.6. Let ε0 > 0 be sufficiently small so that Theorem 5.4 and

Lemma 5.9 are applicable.

The required smoothness of the Green function Gm,n,A has just been proved in

Lemma 5.9. For solutions of the boundary value problem (5.15) we have the follow-

ing representation formula:

u(x) =





∫

B
Gm,n,A (x,y) f (y)dy+

∫

∂B
∆

m/2
y Gm,n,A (x,y)ϕ(y)dω(y)

if m even,
∫

B
Gm,n,A (x,y) f (y)dy+

∫

∂B

(
− ∂

∂νy

∆
(m−1)/2
y

)
Gm,n,A (x,y)ϕ(y)dω(y)

if m odd.

We keep arbitrary x ∈ B fixed and consider y “close” to ∂B. Then an application of

Theorems 5.4 and 4.6 yields

Gm,n,A (x,y) � Gm,n(x,y) � |x− y|−nd(x)md(y)m � d(y)m.

It follows for each x ∈ B that





∆
m/2
y Gm,n,A (x, .)|∂B > 0 for even m,

− ∂

∂νy

∆
(m−1)/2
y Gm,n,A (x, .)|∂B > 0 for odd m.
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Together with the positivity of Gm,n,A , the claim of Theorem 5.6 is now obvious. �

Proof of Theorem 5.7. This proof is “dual” to the previous one. Let ε0 > 0 be suffi-

ciently small. Differentiating the representation formula

u(x) =
∫

B
Gm,n,A (x,y) f (y)dy

gives for x ∈ ∂B:





∆ m/2u(x) =
∫

B

(
∆

m/2
x Gm,n,A (x,y)

)
f (y)dy m even,

− ∂

∂ν
∆ (m−1)/2u(x) =

∫

B

(
− ∂

∂νx

∆
(m−1)/2
x Gm,n,A (x,y)

)
f (y)dy m odd.

Keeping an arbitrary y ∈ B fixed, we see that for x̃ “close” to ∂B

Gm,n,A (x̃,y) � Gm,n(x̃,y) � |x̃− y|−nd(x̃)md(y)m � d(x̃)m

and consequently for x ∈ ∂B, y ∈ B





∆
m/2
x Gm,n,A (x,y) > 0 for even m,

− ∂

∂νx

∆
(m−1)/2
x Gm,n,A (x,y) > 0 for odd m.

Now it is immediate that ∆ m/2u(x) > 0 or − ∂
∂ν ∆ (m−1)/2u(x) > 0, according to

whether m is even or odd. �

5.2.2 Also nonzero lower order boundary terms

Now we turn to investigating further conditions on ϕ ≥ 0 and ψ ≥ 0 such that the

solution u of the Dirichlet problem





∆ 2u = 0 in B,

u|∂B = ψ,

(
− ∂u

∂ν

)
|∂B = ϕ,

(5.20)

is positive, i.e. u ≥ 0. We recall that we have the following explicit formula for the

solution u of (5.20), see [323, p.34]:

u(x) =
∫

∂B
K2,n(x,y)ψ(y)dω(y)+

∫

∂B
L2,n(x,y)ϕ(y)dω(y), x ∈ B, (5.21)

where
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K2,n(x,y) =
1

2nen

(1−|x|2)2

|x− y|n+2

(
2+(n−4)x · y− (n−2)|x|2

)
, (5.22)

L2,n(x,y) =
1

2nen

(1−|x|2)2

|x− y|n , (5.23)

with x ∈ B, y ∈ ∂B, and nen = |∂B|. Evidently L2,n > 0 for any n, while K2,n > 0

only for n ≤ 4 and K2,n changes sign for n ≥ 5.

We will show that the Dirichlet problem (5.20) may be reformulated in such

a way that we have a positivity result with respect to both boundary data in any

dimension. Moreover for n ≤ 3 and in particular for n = 2 the above mentioned

result may be sharpened so that if ψ(x0) > 0 for some x0 ∈ ∂B. Also negative values

for ϕ near x0 are admissible.

Finally, we switch to polyharmonic Dirichlet problems of arbitrary order 2m. We

will admit some “small” lower order perturbations of the differential operator. Posi-

tivity with respect to the Dirichlet data of order (m−1) and (m−2) will be shown in

any dimension n, provided the other boundary data are prescribed homogeneously

and the positivity assumption is posed in a suitable way.

5.2.2.1 The appropriate positivity assumption for the clamped plate equation

In order to find the adequate positivity assumption on the boundary data in the

Dirichlet problem (5.20), one may observe that adding a suitable multiple of L2,n

to K2,n yields a positive kernel.

Lemma 5.10. Let s ∈ R, s ≥ 1
2
(n−4). Then for

K̂2,n,s(x,y) := K2,n(x,y)+ sL2,n(x,y), x ∈ B, y ∈ ∂B, (5.24)

we have

K̂2,n,s(x,y) > 0.

Proof. We observe that for x ∈ B, y ∈ ∂B (i.e. |y| = 1) we have

K2,n(x,y) =
1

2nen

(1−|x|2)2

|x− y|n+2

(
n

2
(1−|x|2)− 1

2
(n−4)|x− y|2

)

=
1

4en

(1−|x|2)3

|x− y|n+2
− 1

2
(n−4)L2,n(x,y), nen = |∂B|. �

Proposition 5.11. Let ϕ ∈C0(∂B), ψ ∈C1(∂B) and s ≥ 1
2
(n−4). If we assume that

ψ(x) ≥ 0 and ϕ(x) ≥ sψ(x) for x ∈ ∂B,

then the uniquely determined solution u ∈ C4(B)∩C1(B) of the Dirichlet problem

(5.20) is positive:

u ≥ 0 in B.
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Proof. From (5.21) and (5.24) we obtain:

u(x) =
∫

∂B
K2,n(x,y)ψ(y)dω(y)+

∫

∂B
L2,n(x,y)ϕ(y)dω(y)

=
∫

∂B
K̂2,n,s(x,y)ψ(y)dω(y)+

∫

∂B
L2,n(x,y)

(
ϕ(y)− sψ(y)

)
dω(y). �

One may observe that for n = 1,2,3 also negative values for s are admissible. On

BR(0) the condition on s is s ≥ 1
2R

(n−4).
We are interested in whether this positivity result remains under perturbations of

the prototype problem (5.20). Since in higher order Dirichlet problems quite similar

phenomena can be observed, we develop the perturbation theory for the biharmonic

Dirichlet problem (5.20) as a special case of the perturbation theory for the polyhar-

monic Dirichlet problem (5.25) below.

5.2.2.2 Higher order equations. Perturbations

In this section we assume m ≥ 2.

First we consider the polyharmonic prototype Dirichlet problem:





(−∆)mu = 0 in B,
(
− ∂

∂ν

) j

u = 0 on ∂B for j = 0, . . . ,m−3,

(
− ∂

∂ν

)m−2

u = ψ on ∂B,

(
− ∂

∂ν

)m−1

u = ϕ on ∂B.

(5.25)

No uniform positivity result can be expected with respect to the boundary data of

order 0, . . . ,m− 3, as we will explain below in Example 5.14. So, these data are

prescribed homogeneously. Such behaviour is in contrast with the radially symmet-

ric case u = u(|x|), where (−∆)mu ≥ 0 in B, (−1) ju( j)(1) ≥ 0 ( j = 0, . . . ,m− 1)
implies that u ≥ 0 in B, see Soranzo [375, Proposition 1, Remark 9].

After some elementary calculations we find from Boggio’s formula (2.65) (see

also [158]) that for ϕ ∈C0(∂B), ψ ∈C1(∂B) the solution u ∈C2m(B)∩Cm−1(B) to

the Dirichlet problem (5.25) is given by

u(x) =
∫

∂B
Km,n(x,y)ψ(y)dω(y)+

∫

∂B
Lm,n(x,y)ϕ(y)dω(y), x ∈ B. (5.26)

Here, the Poisson kernels are defined by
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Km,n(x,y) =
1

2m(m−2)!nen

(1−|x|2)m

|x− y|n+2

(
n(1−|x|2)− (n−2−m)|x− y|2

)
, (5.27)

Lm,n(x,y) =
1

2m−1(m−1)!nen

(1−|x|2)m

|x− y|n , (5.28)

with x ∈ B, y ∈ ∂B. The following result generalises Lemma 5.10.

Lemma 5.12. Let s ∈ R satisfy s ≥ 1
2
(n−2−m)(m−1). Then for

K̂m,n,s(x,y) := Km,n(x,y)+ sLm,n(x,y), x ∈ B, y ∈ ∂B, (5.29)

we have

K̂m,n,s(x,y) > 0.

Proof.

K̂m,n,s(x,y) =
1

2m (m−2)!nen

(1−|x|2)m

|x− y|n+2

×
(

n(1−|x|2)+

(
2s

m−1
− (n−2−m)

)
|x− y|2

)
.

(5.30)

�

Proposition 5.13. Let ϕ ∈C0(∂B), ψ ∈C1(∂B) and s ≥ 1
2
(n−2−m)(m−1). If

ψ(x) ≥ 0 and ϕ(x) ≥ sψ(x) for x ∈ ∂B,

then the uniquely determined solution u ∈C2m(B)∩Cm−1(B) of the Dirichlet prob-

lem (5.25) is positive:

u ≥ 0 in B.

Example 5.14. In the triharmonic Dirichlet problem





(−∆)3u = 0 in B,

u = χ on ∂B,
(
− ∂

∂ν

)
u = ψ on ∂B,

(
∂

∂ν

)2

u = ϕ on ∂B,

the solution is given by

u(x) =
∫

∂B
H3,n(x,y)χ(y)dω(y)+

∫

∂B
K3,n(x,y)ψ(y)dω(y)

+
∫

∂B
L3,n(x,y)ϕ(y)dω(y), x ∈ B.
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The kernels K3,n and L3,n are defined above and

H3,n(x,y) =
1

16nen

(1−|x|2)3

|x− y|n+4

(
n(n+2)(1−|x|2)2 +(n−4)(n−8)|x− y|4

−2n(n−7)(1−|x|2)|x− y|2 −4n|x− y|2
)

with x ∈ B, y ∈ ∂B. For any n, x → y, x “very close” to the boundary, H3,n takes on

also negative values. By adding multiples of L3,n and K3,n, only the terms |x− y|4
and (1−|x|2)|x− y|2 in the curved brackets could be effected. In any case the most

dangerous term −4n|x− y|2 remains.

Theorem 5.15. Let s > 1
2
(n−2−m)(m−1). Then there exists ε0 = ε0(m,n,s) > 0

such that the following holds.

If ‖aβ‖C|β |(B) ≤ ε0 for |β | ≤ 2m−2, then for every ϕ ∈C0(∂B) and ψ ∈C1(∂B)

with
ψ ≥ 0

ϕ ≥ sψ

}
on ∂B, ψ 6≡ 0 or ϕ 6≡ 0,

the Dirichlet problem





(−∆)mu+ ∑
|β |≤2m−2

aβ (x)Dβ u = 0 in B,

(
− ∂

∂ν

) j

u = 0 on ∂B for j = 0, . . . ,m−3,

(
− ∂

∂ν

)m−2

u = ψ on ∂B,

(
− ∂

∂ν

)m−1

u = ϕ on ∂B,

(5.31)

has a solution u ∈W
2m,p
loc (B)∩Cm−1(B) (p > 1 arbitrary) which is strictly positive:

u > 0 in B.

In order to prove this result we first need to describe the essential properties of

the integral kernels K̂m,n,s and Lm,n.

Lemma 5.16. 1. Let s ≥ 1
2
(n− 2−m)(m− 1). On B× ∂B (i.e. for x ∈ B, y ∈ ∂B)

we have

K̂m,n,s(x,y)

{
� |x− y|−n−1d(x)m,

� |x− y|−n−2d(x)m+1,
(5.32)

Lm,n(x,y) ' |x− y|−nd(x)m. (5.33)

2. If we assume additionally that s > 1
2
(n−2−m)(m−1), then we have on B×∂B:
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K̂m,n,s(x,y)

{
� |x− y|−n−1d(x)m,

� |x− y|−nd(x)m.
(5.34)

Proof. The claim follows from 1−|x|2 ' d(x), d(x) ≤ |x− y| and the expression in

(5.30). �

Remark 5.17. 1. The estimation constants in (5.34) depend strongly on s.

2. If s = 1
2
(n− 2−m)(m− 1) then we have K̂m,n,s(x,y) ' |x− y|−n−2d(x)m+1, i.e.

for x → ∂B\{y} we have a zero of order (m+1). We would have expected, and

actually need in order to prove perturbation results, a zero of order m. Conse-

quently in what follows we have to assume s > 1
2
(n−2−m)(m−1). The estimate

(5.34) is more appropriate. But as K̂m,n,s(x,y) 6' |x− y|−n−1d(x)m our perturba-

tion result Theorem 5.15 below is less general than the corresponding results in

Theorems 5.1, 6.3 and 6.29. In particular, domain perturbations are not consid-

ered.

For our purposes the following “3-G-type” estimates are essential. We recall that

Gm,n = G(−∆)m,B denotes the Dirichlet Green function for (−∆)m in the unit ball

B ⊂ Rn.

Lemma 5.18. Let s > 1
2
(n− 2−m)(m− 1), β ∈ Nn. Then on B× ∂B×B (i.e. for

x ∈ B, y ∈ ∂B, z ∈ B) we have the following:

∣∣∣Dβ
z Gm,n(x,z)

∣∣∣ K̂m,n,s(z,y)

K̂m,n,s(x,y)

�
{

1 if |β | < 2m−n,

|x− z|2m−1−n−|β | + |y− z|2m−1−n−|β | if |β | ≥ 2m−n;
(5.35)

∣∣∣Dβ
z Gm,n(x,z)

∣∣∣Lm,n(z,y)

Lm,n(x,y)

�





1 if |β | < 2m−n,

1 if |β | = 2m−n and n odd,

log

(
3

|x− z|

)
if |β | = 2m−n and n even,

|x− z|2m−n−|β | + |y− z|2m−n−|β | if |β | > 2m−n.

(5.36)

The proof is quite similar to that of Theorem 4.9 and is based on the Green’s

functions estimates of Theorems 4.6 and 4.7, Corollary 4.8 and the boundary kernel

estimates of Lemma 5.16. For this reason we skip the proof here and refer to [211,

Lemma 3.4].

Proof of Theorem 5.15. For existence and regularity we refer to Theorem 2.25. First,

we assume additionally that ψ ∈Cm+2,γ(∂B), ϕ ∈Cm+1,γ(∂B). We write ϕ̂s = ϕ −
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sψ and let p > 1 be arbitrary. The operator

Lm,nϕ̂s(x) :=
∫

∂B
Lm,n(x,y)ϕ̂s(y)dω(y)

satisfies Lm,n : Cm+1,γ(∂B) →C2m,γ(B) ⊂W 2m,p(B), the operator

ˆKm,n,sψ(x) :=
∫

∂B
K̂m,n,s(x,y)ψ(y)dω(y)

satisfies ˆKm,n,s : Cm+2,γ(∂B) →C2m,γ(B) ⊂W 2m,p(B), while the Green operator

Gm,n f (x) :=
∫

B
Gm,n(x,y) f (y)dy

satisfies Gm,n : Lp(B) → W 2m,p ∩W
m,p
0 (B), see Theorem 2.19 and Corollary 2.21.

We write A := ∑|β |≤2m−2 aβ ( .)Dβ . The solution of (5.31) is given by

u = −Gm,nA u+ ˆKm,n,sψ +Lm,nϕ̂s or (I +Gm,nA )u = ˆKm,n,sψ +Lm,nϕ̂s.

Here, I +Gm,nA is a bounded linear operator in W 2m,p(B) which for sufficiently

small ε0 is invertible. Hence

u = (I +Gm,nA )−1 ˆKm,n,sψ +(I +Gm,nA )−1
Lm,nϕ̂s

= ˆKm,n,sψ +
∞

∑
i=1

(−Gm,nA )i ˆKm,n,sψ +Lm,nϕ̂s +
∞

∑
i=1

(−Gm,nA )i
Lm,nϕ̂s.

We only show how to deal with the first Neumann series containing ˆKm,n,s, the

second series containing Lm,n can be treated in the same way with some obvious

simplifications. For i ≥ 1 we integrate by parts. As A is of order ≤ 2m− 2 and
ˆKm,n,sψ vanishes on ∂B of order m− 2 no additional boundary integrals arise. By

means of the Fubini-Tonelli theorem we obtain for x ∈ B

(−Gm,nA )i ˆKm,n,sψ(x) = (−1)i

∫

z1∈B
Gm,n(x,z1) Az1

∫

z2∈B
Gm,n(z1,z2)

× . . . Azi−1

∫

zi∈B
Gm,n(zi−1,zi) Azi

∫

y∈∂B
K̂m,n,s(zi,y)ψ(y)dω(y)dzi . . .dz1

= (−1)i

∫

z1∈B

(
A

∗
z1

Gm,n(x,z1)
)∫

z2∈B

(
A

∗
z2

Gm,n(z1,z2)
)

× . . .
∫

zi∈B

(
A

∗
zi

Gm,n(zi−1,zi)
)∫

y∈∂B
K̂m,n,s(zi,y)ψ(y)dω(y)dzi . . .dz1

= (−1)i

∫

B
· · ·
∫

B

∫

∂B

(
A

∗
z1

Gm,n(x,z1)
)(

A
∗

z2
Gm,n(z1,z2)

)

× . . .
(
A

∗
zi

Gm,n(zi−1,zi)
)

K̂m,n,s(zi,y)ψ(y)dω(y)d(z1, . . . ,zi).
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Here A ∗
. = ∑|β |≤2m−2(−1)|β |Dβ (aβ . ) is the (formally) adjoint operator of the

perturbation A . The estimates (5.35) and (5.36) in Lemma 5.18 are integrable with

respect to z ∈ B uniformly in x ∈ B, y ∈ ∂B if |β | ≤ 2m−2. They yield

∣∣∣(−Gm,nA )i ˆKm,n,sψ(x)
∣∣∣

≤
∫

∂B

∫

B
· · ·
∫

B
K̂m,n,s(x,y)

∣∣A ∗
z1

Gm,n(x,z1)
∣∣ K̂m,n,s(z1,y)

K̂m,n,s(x,y)

×
∣∣A ∗

z2
Gm,n(z1,z2)

∣∣ K̂m,n,s(z2,y)

K̂m,n,s(z1,y)

× . . .

∣∣A ∗
zi

Gm,n(zi−1,zi)
∣∣ K̂m,n,s(zi,y)

K̂m,n,s(zi−1,y)
ψ(y)d(z1, . . . ,zi)dω(y)

≤ (C0ε0)
i
∫

∂B
K̂m,n,s(x,y)ψ(y)dω(y) = (C0ε0)

i
(

ˆKm,n,sψ
)
(x).

Analogously we have:

∣∣∣(−Gm,nA )i
Lm,nϕ̂s(x)

∣∣∣≤
(
Ĉ0ε0

)i
(Lm,nϕ̂s)(x).

The constants C0 = C0(m,n,s), Ĉ0 = Ĉ0(m,n) do not depend on i.

If ε0 = ε0(m,n,s) > 0 is chosen sufficiently small, we come up with

u ≥ 1

C
ˆKm,n,sψ +

1

C
Lm,nϕ̂s. (5.37)

The general case ϕ ∈ C0(∂B), ψ ∈ C1(∂B) follows from (5.37) with the help of

an approximation, the maximum modulus estimates of Theorem 2.25 and local Lp-

estimates, see Theorem 2.20. �

5.3 Local maximum principles for higher order differential

inequalities

The comparison results of Section 5.1 together with the observations of Section 5.2

on the Poisson boundary kernels will yield local maximum principles for differen-

tial inequalities, which are valid for a large class of operators. Here lower order

perturbations are no longer subject to smallness restrictions.

We consider C2m,γ -smooth domains Ω ⊂ Rn and differential operators L like

Lu :=

(
−

n

∑
i, j=1

ãi j
∂ 2

∂xi∂x j

)m

u+ ∑
|β |≤2m−1

aβ ( .)Dβ u, (5.38)

with constant highest order coefficients ãi j = ã ji obeying the ellipticity condition



5.3 Local maximum principles for higher order differential inequalities 163

λ |ξ |2 ≤
n

∑
i, j=1

ãi jξiξ j ≤ Λ |ξ |2 for all ξ ∈ Rn.

The ellipticity constants are subject to the condition 0 < λ ≤ Λ . The lower order

coefficients are merely assumed to be smooth,

aβ ∈C|β |,γ(Ω).

Under these assumptions, we have:

Theorem 5.19. Assume that q ≥ 1, q > n
2m

and that K ⊂ Ω is a compact subset.

Then there exists a constant

C = C
(

n,m,λ ,Λ ,q, max
|β |≤2m−1

‖aβ‖C|β |(Ω),dist(K,∂Ω)
)

such that, for every f ∈C0(Ω) and every subsolution u ∈C2m(Ω) of the differential

inequality

Lu ≤ f ,

the following local maximum estimate holds true:

sup
K

u ≤C
(
‖ f +‖Lq +‖u‖W m−1,1

)
. (5.39)

Proof. With the help of a linear transformation we may achieve ãi j = δi j. So, in

what follows we consider the principal part (−∆)m.

We want to apply Theorem 5.4 and Lemma 5.9. Let ε0 = ε0(m,n) > 0 be

such that both results hold true in the unit ball B for all differential operators

L̃ = (−∆)m + ∑|β |≤2m−1 ãβ Dβ with max|β |≤2m−1 ‖ãβ‖C|β |(B) ≤ ε0. For the differ-

ential operator L = (−∆)m + ∑|β |≤2m−1 aβ Dβ defined in Ω we want to achieve the

required smallness by means of scaling.

Let x0 ∈ K be arbitrary, after translation we may assume x0 = 0. We put

M := max
|β |≤2m−1

‖aβ‖C|β |(Ω),

ρ0 := min

{
1,

1

2
dist(K,∂Ω),

ε0

M

}
. (5.40)

For ρ ∈ (0,ρ0] we introduce the following scaled functions B → R:

uρ(x) := u(ρx), fρ(x) := ρ2m f (ρx), aβ ,ρ(x) := ρ2m−|β |aβ (ρx).

For these functions we have on B the following differential inequality

Lρ uρ(x) := (−∆)muρ(x)+ ∑
|β |≤2m−1

aβ ,ρ(x)Dβ uρ(x) ≤ fρ(x). (5.41)
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Here, thanks to our choice (5.40) of ρ0, on B the coefficients aβ ,ρ , |β | ≤ 2m−1, are

subject of the following smallness condition

‖aβ ,ρ‖C|β |(B) = ∑
|µ|≤|β |

max
x∈B

∣∣Dµ aβ ,ρ(x)
∣∣= ∑

|µ|≤|β |
max
x∈B

(
ρ2m−|β |+|µ| ∣∣(Dµ aβ

)
(ρx)

∣∣
)

≤ ρ0‖aβ‖C|β |(Ω) ≤ ρ0M ≤ ε0.

Let GLρ ,B be the Green function for Lρ in B. Theorem 5.4 and Lemma 5.9 show that

there exist constants C = C (m,n,ε0(m,n)) = C(m,n), independent of ρ ∈ (0,ρ0],
such that we have:





GLρ ,B(x,y) > 0 in B×B,

GLρ ,B(x,y) ≤C|x− y|2m−n in B×B if n > 2m,

GLρ ,B(x,y) ≤C log

(
3

|x− y|

)
in B×B if n = 2m,

GLρ ,B(x,y) ≤C in B×B if n < 2m,
∣∣∣Dβ

y GLρ ,B(0,y)
∣∣∣≤C for |β | ≤ 2m−1, y ∈ ∂B.

(5.42)

To estimate u(0) = uρ(0) we use the representation formula for uρ . Beside the

Dirichlet data Dβ uρ , |β | ≤ m− 1 and terms of the kind D
β
y GLρ ,B(0,y), m ≤ |β | ≤

2m − 1, the boundary integrals contain factors aβ ,ρ and their derivatives up to

order ≤ max{0, |β | −m− 1}. Making use of (5.42), we obtain independently of

ρ ∈ (0,ρ0]:

u(0) = uρ(0) ≤
∫

B
GLρ ,B(0,y) f +

ρ (y)dy

+ C(m,n,M) ∑
|β |≤m−1

∫

∂B

∣∣∣Dβ uρ(y)
∣∣∣ dω(y)

≤ C(m,n,q)‖ f +
ρ ‖Lq(B) +C(m,n,M) ∑

|β |≤m−1

ρ |β |
∫

∂B

∣∣∣
(

Dβ u
)

(ρy)
∣∣∣ dω(y)

≤ C(m,n,q)ρ2m−(n/q)‖ f +‖Lq(Bρ )

+ C(m,n,M) ∑
|β |≤m−1

ρ |β |−n+1
∫

|y|=ρ

∣∣∣Dβ u(y)
∣∣∣ dω(y).

Integration with respect to ρ ∈ [ 1
2
ρ0,ρ0] yields

u(0) ≤C
(
‖ f +‖Lq(Ω) +‖u‖W m−1,1(Ω)

)

with a constant C = C(m,n,q,M,ρ0). Here C = O(ρ−n
0 ) for ρ0 ↘ 0. �

Remark 5.20. This local maximum principle may also be applied to nonlinear

problems which are not subject to the standard (controllable) growth conditions
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as in [404, 405], see [209]. For instance, one finds “almost” classical solutions

u ∈C2m,γ(Ω)∩Hm
0 (Ω) to the Dirichlet problem for Lu = eu where L is as in (5.38).

5.4 Steklov boundary conditions

Let Ω be a bounded domain of Rn (n ≥ 2) with ∂Ω ∈C2 and consider the boundary

value problem {
∆ 2u = f in Ω ,

u = ∆u−a ∂u
∂ν = 0 on ∂Ω ,

(5.43)

where a ∈C0(∂Ω), f ∈ L2(Ω) and ν is the outside normal (we will also use uν =
∂u
∂ν ). In this section we study the positivity preserving property for (5.43), namely

under which conditions on Ω and on the boundary coefficient a the assumption

f ≥ 0 implies that the solution u exists and is positive. Let us first make precise

what is meant by a solution of (5.43).

Definition 5.21. For f ∈ L2(Ω) we say that u is a weak solution of (5.43) if u ∈
H2 ∩H1

0 (Ω) and

∫

Ω
∆u∆v dx−

∫

∂Ω
a uν vν dω =

∫

Ω
f v dx for all v ∈ H2 ∩H1

0 (Ω). (5.44)

Note that weak solutions are well-defined for a ∈ C0(∂Ω). For u ∈ H4(Ω) one

may integrate by parts to find indeed that a weak solution of (5.44) satisfies the

boundary value problem in (5.43). This means that the second boundary condition

in (5.43) is hidden in the choice of the space H2 ∩H1
0 (Ω) of admissible testing

functions. For regularity results related to problem (5.43) we refer to Corollary 2.23.

In the next section we state the positivity preserving properties for (5.43) and

we give the first part of their proof. The second part of their proof is more delicate

and requires a Schauder setting and a different notion of solution. This is the reason

why it is postponed to Section 5.4.3. In turn, the Schauder setting takes advantage

of the positivity properties of the operators involved in the solution of (5.43). These

properties are proven in Section 5.4.2 with a strong use of the kernel estimates of

Section 4.3.

5.4.1 Positivity preserving

The first statement describes existence, uniqueness and positivity of a weak solution

to (5.43). A crucial role is played by a “weighted first eigenvalue”. Fix a nontrivial

positive weight function b ∈C0(∂Ω) and set

Jb(u) =

∫
Ω |∆u|2 dx∫
∂Ω b u2

ν dω
for

∫

∂Ω
b u2

ν dω 6= 0 (5.45)
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and Jb(u) = ∞ otherwise. For every u ∈ H2 ∩ H1
0 (Ω) the functional in (5.45) is

strictly positive, possibly ∞. Since the linear map H2(Ω) → L2(∂Ω) defined by

u 7→ uν |∂Ω is compact, there exists a minimiser for the problem

δ1,b = δ1,b(Ω) := inf
u∈H2∩H1

0 (Ω)
Jb(u). (5.46)

Hence δ1,b > 0 and it may be viewed as a kind of first Steklov eigenvalue with re-

spect to the weight function b and any minimiser as a corresponding eigenfunction.

This definition should be compared with (3.40) in Section 3.3.1.

The next statement summarises the positivity preserving results for (5.43), see

the Notations-Section for the interpretation of the symbols.

Theorem 5.22. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2 and let

0 � b ∈ C0(∂Ω). Let the eigenvalue δ1,b be as defined in (5.46). Then there exists

a number δc,b := δc,b(Ω) ∈ [−∞,0) such that the following holds for any function

a ∈C0(∂Ω).

1. If a ≥ δ1,bb and if 0 � f ∈ L2(Ω), then (5.43) has no nontrivial positive weak

solution.

2. If a = δ1,bb, then there exists a positive eigenfunction, that is, problem (5.43) with

f = 0 admits a weak solution u1,b that satisfies u1,b > 0 and −∆u1,b > 0 in Ω ,
∂

∂ν u1,b < 0 on ∂Ω . This eigenfunction u1,b is unique, up to a constant multiplier.

3. If a � δ1,bb, then for any f ∈ L2(Ω) problem (5.43) admits a unique weak solu-

tion u.

a. If δc,bb ≤ a � δ1,bb and if 0 � f ∈ L2(Ω), then u 	 0.

b. If δc,bb < a � δ1,bb and if 0 � f ∈ L2(Ω), then for some c f > 0 it holds that

u ≥ c f d with d as in (4.1). Furthermore, if a(x0) < 0 for some x0 ∈ ∂Ω , then

−∆u � 0 in Ω , whereas if a ≥ 0, then 0 � f implies −∆u ≥ 0 in Ω .

c. If a < δc,bb, then there are 0 � f ∈ L2(Ω) such that the corresponding solution

u of (5.43)is not positive: 0 � u.

Proof. We first prove Item 2, then Item 1 and we end with Item 3.

Proof of Item 2. Let u1 := u1,b ∈ H2 ∩H1
0 (Ω) be a minimiser for (5.46) and let

ũ1 be the unique solution in H2 ∩H1
0 (Ω) of −∆ ũ1 = |∆u1|. Then by the maximum

principle we infer that |u1| ≤ ũ1 in Ω and

∣∣∣ ∂
∂ν u1

∣∣∣≤
∣∣∣ ∂

∂ν ũ1

∣∣∣ on ∂Ω . If ∆u1 changes

sign, then these inequalities are strict and imply Jb(u1) > Jb(ũ1). Hence, ∆u1 is of

fixed sign, say −∆u1 ≥ 0, so that the maximum principle implies ∂
∂ν u1 < 0 on ∂Ω

and u1 ≥ cd in Ω , where d is as in (4.1). Similarly, if u1 and u2 are two minimisers

which are not multiples of each other, then there is a linear combination which is

a sign changing minimiser and one proceeds as above to find a contradiction. This

proves Item 2.

Proof of Item 1. Let us suppose by contradiction that a ≥ δ1,b, that f 	 0 and

that u is a nontrivial positive solution to (5.43). Hence uν ≤ 0 on ∂Ω . Let u1,b be a

minimiser for (5.46) as obtained above. By taking v = u1,b in (5.44) one finds
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0 <
∫

Ω
f u1,b dx =

∫

Ω
∆u∆u1,b dx−

∫

∂Ω
a uν

(
u1,b

)
ν

dω

≤
∫

Ω
∆u∆u1,b dx−

∫

∂Ω
δ1,b b uν

(
u1,b

)
ν

dω = 0,

a contradiction. The last equality follows by the fact that u1,b minimises (5.46). This

proves Item 1.

Proof of Item 3. On the space H2 ∩H1
0 (Ω) we define the energy functional

I(u) := 1
2

∫

Ω
|∆u|2 dx− 1

2

∫

∂Ω
au2

ν dω −
∫

Ω
f u dx u ∈ H2 ∩H1

0 (Ω).

Critical points of I are weak solutions of (5.43) in the sense of Definition 5.21. We

will show that for a � δ1,bb the functional I has a unique critical point.

If a < δ1,bb, one sets

ε :=
min

{
δ1,bb(x)−a(x); x ∈ ∂Ω

}

max
{

δ1,bb(x); x ∈ ∂Ω
} > 0, (5.47)

and finds that a ≤ (1− ε)δ1,bb. By the definition of δ1,b we have for all u ∈ H2 ∩
H1

0 (Ω)

∫

Ω
|∆u|2 dx−

∫

∂Ω
a u2

ν dω

≥ ε
∫

Ω
|∆u|2 dx+(1− ε)

(∫

Ω
|∆u|2 dx−

∫

∂Ω
δ1,bb u2

ν dω

)
(5.48)

≥ ε
∫

Ω
|∆u|2 dx,

so that the functional I is coercive. Since it is also strictly convex the functional I

admits a unique critical point which is its global minimum over H2 ∩H1
0 (Ω).

In order to deal with the case that a+ � δ1,bb, but a+(x) = δ1,bb(x) for some

x ∈ ∂Ω , we set

b̃ :=
1

2

(
b+δ−1

1,b a+
)

.

Let u1 be a minimiser of Jb̃ and u2 of Jb. For the definition see (5.45). Then, since

0 � b̃ � b and
(

∂
∂ν u1

)2

> 0 on ∂Ω , we find δ1,b̃ = Jb̃(u1) > Jb(u1)≥ Jb(u2) = δ1,b.

Instead of (5.47) we set

ε := 1−δ1,b/δ1,b̃ > 0,

find for x ∈ ∂Ω that a ≤ a+ = δ1,b(2b̃− b) ≤ δ1,bb̃ = (1− ε)δ1,b̃b̃ and proceed by

replacing all b in (5.48) with b̃.

If a+ = δ1,bb and a− 	 0, then one may not proceed directly as before. However,

instead of the functional in (5.45), one may use
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Ja−
b (u) =

(∫

Ω
|∆u|2 dx+

∫

∂Ω
a− u2

ν dω

) (∫

∂Ω
b u2

ν dω

)−1

.

Then, defining δ a−
1,b for Ja−

b as in (5.46), this minimum is assumed, say by ua−
1,b. Since

δ a−
1,b = Ja−

b (ua−
1,b) ≥ Jb(u

a−
1,b) ≥ Jb(u1,b) = δ1,b,

with the last inequality strict if ua−
1,b 6= c u1,b and with the first inequality strict if

ua−
1,b = c u1,b since (u1,b)

2
ν > 0, we find δ a−

1,b > δ1,b. So,

∫

Ω
|∆u|2 dx+

∫

∂Ω
a− u2

ν dω ≥ δ a−
1,b

∫

∂Ω
b u2

ν dω for all u ∈ H2 ∩H1
0 (Ω)

and by setting

ε := 1−δ1,b/δ a−
1,b > 0

we find the result that replaces (5.48). Indeed

∫

Ω
|∆u|2 dx−

∫

∂Ω
a u2

ν dω =
∫

Ω
|∆u|2 dx+

∫

∂Ω
a− u2

ν dω −
∫

∂Ω
δ1,bb u2

ν dω

≥ ε
∫

Ω
|∆u|2 dx+(1− ε)

(∫

Ω
|∆u|2 dx+

∫

∂Ω
a− u2

ν dω −
∫

∂Ω
δ a−

1,b b u2
ν dω

)

≥ ε
∫

Ω
|∆u|2 dx.

Hence, I is coercive and strictly convex and we conclude as for (5.48). The existence

and uniqueness is so proved.

Assume now that there exists x0 ∈ ∂Ω such that a(x0) < 0. If the weak solution

u were superharmonic, then by Hopf’s boundary lemma we would have uν(x0) < 0.

Using the second boundary condition in (5.43), we would then obtain ∆u(x0) > 0,

a contradiction.

If a ≥ 0 and f 	 0, let ũ be the unique solution in H2 ∩H1
0 (Ω) of −∆ ũ = |∆u| in

Ω . Since ũ > u or ũ = u in Ω , and |ũν | ≥ |uν | on ∂Ω , one finds for f 	 0 that

I(ũ)− I(u) = −1

2

∫

∂Ω
a
(
ũ2

ν −u2
ν

)
dω −

∫

Ω
f (ũ−u) dx ≤ 0.

Equality occurs only when ũ = u. Since I is strictly convex there is at most one

critical point which is a minimum. So u = ũ > 0 and −∆u = −∆ ũ = |∆u| ≥ 0. This

completes the proof of existence and uniqueness whenever a � δ1,bb. The proof of

the remaining statements (a), (b), (c) in Item 3 is more lengthy and delicate and we

give it in Section 5.4.3, see Theorem 5.37. �

Note that in Theorem 5.22 it may happen that b(x) = 0 on some part Γ1 ⊂ ∂Ω
and b(x) > 0 on the remaining part Γ0 = ∂Ω \Γ1. If moreover δc,b = −∞, then the

limit problem for which the positivity preserving property holds (that is, a = δc,bb)

becomes a mixed Dirichlet-Navier problem with boundary conditions
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u = 0 on ∂Ω , uν = 0 on Γ0, ∆u = 0 on Γ1.

As a first consequence of Theorem 5.22 we have the positivity preserving prop-

erty for the hinged plate model in planar convex domains. As we have seen in Sec-

tion 1.1.2, the physical bounds for the Poisson ratio are given by

−1 < σ < 1 . (5.49)

Under this constraint, the following result holds.

Corollary 5.23. Let Ω ⊂ R2 be a bounded convex domain with C2-boundary and

assume (5.49). For any f ∈ L2(Ω) there exists a unique minimiser u ∈ H2 ∩H1
0 (Ω)

of the elastic energy functional (1.11) that is, of

J(u) =
∫

Ω

( |∆u|2
2

− f u

)
dx− 1−σ

2

∫

∂Ω
κ u2

ν dω,

where κ denotes the curvature of ∂Ω . The minimiser u is the unique weak solution

to {
∆ 2u = f in Ω ,
u = ∆u− (1−σ)κuν = 0 on ∂Ω .

Moreover, f 	 0 implies that there exists c f > 0 such that u(x) ≥ c f d(x) and u is

superharmonic in Ω .

Proof. We first show that the energy functional J coincides with the form given in

(1.5). This can be done on a dense subset of smooth functions. Since u|∂Ω = 0, one

has ux = uν ν1 and uy = uν ν2 and may conclude that

2

∫

Ω

(
u2

xy −uxxuyy

)
dxdy

=
∫

∂Ω
(uxyuyν1 +uxyuxν2 −uxxuyν2 −uyyuxν1) dω

=
∫

∂Ω
uν

(
2uxyν1ν2 −uxxν2

2 −uyyν2
1

)
dω = −

∫

∂Ω
κu2

ν dω,

where in the last step we used (1.8). Hence, existence and uniqueness of a minimiser

u follow from Proposition 2.35.

Since ∂Ω ∈C2 and Ω is convex we have 0 � κ ∈C0(∂Ω). In Proposition 2.35,

it is also shown that J is strictly convex so that (1−σ)κ � δ1,κ κ . Hence, if f 	 0

it follows first from statement 3.(a) in Theorem 5.22 that u 	 0 in Ω and so that

uν |∂Ω ≤ 0. In view of the boundary value problem solved by u we obtain −∆u 	 0

in Ω . This superharmonicity finally yields the other properties stated for u. �

More generally, if we take b = 1 in Theorem 5.22, we obtain the following

Corollary 5.24. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈C2 and let

δ1 := δ1(Ω) := inf

{∫
Ω |∆u|2 dx∫
∂Ω u2

ν dω
; u ∈ H2 ∩H1

0 (Ω)\H2
0 (Ω)

}
∈ (0,∞) (5.50)
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be the first Steklov eigenvalue. Then there exists a number δc := δc(Ω) ∈ [−∞,0)
such that the following holds for any function a ∈C0(∂Ω).

1. If a ≥ δ1 and if 0 � f ∈ L2(Ω), then (5.43) has no nontrivial positive weak

solution.

2. If a = δ1, then there exists a positive eigenfunction, that is, problem (5.43) admits

a nontrivial weak solution u1 with u1 > 0 in Ω for f = 0. Moreover, the function

u1 is, up to multiples, the unique solution of (5.43) with f = 0 and a = δ1.

3. If a � δ1, then for any f ∈ L2(Ω) problem (5.43) admits a unique weak solution

u.

a. If δc ≤ a � δ1, then 0 � f ∈ L2(Ω) implies u 	 0 in Ω .

b. If δc < a � δ1, then 0 � f ∈ L2(Ω) implies u ≥ c f d > 0 in Ω for some c f > 0.

c. If a < δc, then there are 0 � f ∈ L2(Ω) with 0 � u.

The result described in Corollary 5.24 quite closely resembles the structure for

the resolvent of the biharmonic operator under Navier boundary conditions – see

McKenna-Walter [297] and Kawohl-Sweers [246] – or for the biharmonic operator

under Dirichlet boundary conditions in case the domain is a ball – see Corollary 5.5

where (−a) plays the same role as a here. For all these problems the scheme is as

follows.

∃ f > 0 with u � 0 ∀ f > 0 : ∃u and u ≥ 0 ∀ f > 0 if ∃u then u � 0

0δc δ1 a −→

Under Dirichlet boundary conditions such that the corresponding Green function

is positive, Corollary 5.5 tells us that the set of constant coefficients a ∈R for which

∆ 2u ≥ au implies u ≥ 0 is an interval (ac,Λ2,1) with ac ∈ (−∞,0]. By combining

Theorem 5.22 with Lemma 5.35 below, we immediately see that a similar result

holds for (5.43).

Theorem 5.25. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2 and let

ai ∈ C0(∂Ω) with i = 1,2. Suppose that a1 ≤ 0 ≤ a2 are such that both for a = a1

and a = a2 we have the following: for all f ∈ L2(Ω) there exists a weak solution

u = ui (i = 1,2) for (5.43), and moreover

f 	 0 implies u 	 0. (5.51)

Then for any a ∈C0(∂Ω) satisfying a1 ≤ a ≤ a2 and for each f ∈ L2(Ω), a unique

weak solution of (5.43) exists and (5.51) holds true.

However, a crucial difference with the Dirichlet boundary value problem for

∆ 2u ≥ au is that ac ∈ (−∞,0] while for problem (5.43) it might happen that

δc(Ω) = −∞ although for general domains one cannot expect to have the posi-

tivity preserving property for any negative a. This is stated in the next results which
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show that the limit situation where δc(Ω) = −∞ is closely related to the positivity

preserving property for the biharmonic Dirichlet problem

{
∆ 2u = f in Ω ,
u = uν = 0 on ∂Ω .

(5.52)

To this end, let us recall once more that the positivity preserving property does

not hold in general domains Ω ⊂ Rn for (5.52), see Section 1.2. It is clear that

(5.43) with |a| = +∞ corresponds to (5.52). However, if a → +∞ then a crosses the

spectrum of −∆ under Steklov boundary conditions, see Theorem 3.18, whereas

the next statement justifies the feeling that (5.52) only corresponds to the limit case

a = −∞.

Theorem 5.26. Let Ω ⊂Rn (n≥ 2) be a bounded domain with ∂Ω ∈C2. If for every

m ∈ N+ and 0 � f ∈ L2(Ω) the weak solution of (5.43) with a = −m is nontrivial

and positive, then for every 0 � f ∈ L2(Ω) the solution u∈H2
0 (Ω) of (5.52) satisfies

u 	 0.

Proof. Let us first recall the two boundary value problems addressed in the state-

ment, namely

{
∆ 2u = f in Ω ,

u =
(

∆ +m ∂
∂ν

)
u = 0 on ∂Ω ,

and

{
∆ 2u = f in Ω ,
u = uν = 0 on ∂Ω ,

(5.53)

For all m > 0 let um ∈ H2 ∩H1
0 (Ω) be the unique weak solution of the problem on

the left in (5.53). Then according to (5.44) we have

∫

Ω
∆um∆φ dx+m

∫

∂Ω

∂um

∂ν

∂φ

∂ν
dω =

∫

Ω
f φ dx for all φ ∈ H2 ∩H1

0 (Ω) . (5.54)

Taking φ = um in (5.54) and using Hölder and Poincaré inequalities, gives for all

m > 0

‖∆um‖2
L2 ≤‖∆um‖2

L2 +m

∫

∂Ω

∣∣∣∣
∂um

∂ν

∣∣∣∣
2

dω =
∫

Ω
f um dx ≤ c‖ f‖L2‖∆um‖L2 . (5.55)

Inequality (5.55) shows that the sequence (um) is bounded in H2(Ω) so that, up to

a subsequence, we have

um ⇀ u in H2(Ω) as m → ∞ (5.56)

for some u ∈ H2 ∩H1
0 (Ω). Once boundedness is established, if we let m → ∞ then

(5.55) also tells us that

∂um

∂ν
→ 0 in L2(∂Ω) as m → ∞ .
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Therefore, u ∈ H2
0 (Ω). Now take any function φ ∈ H2

0 (Ω) in (5.54) and let m → ∞.

By (5.56) we obtain

∫

Ω
∆u∆φ dx =

∫

Ω
f φ dx for all φ ∈ H2

0 (Ω) .

Hence, u is the unique solution of the corresponding Dirichlet problem (5.52). Since

(5.56) also implies that, up to a subsequence, um(x)→ u(x) for a.e. x ∈ Ω , one finds

that u 	 0. �

Theorem 5.26 states that there exists some link between the Steklov and the

Dirichlet problems. This link is confirmed by the special case when Ω is the unit

ball. In this case, from Theorem 3.20 we know that the first Steklov eigenvalue as

defined in (5.50) satisfies δ1 = n and the following holds.

Theorem 5.27. Let Ω = B, the unit ball in Rn (n ≥ 2). Then, for all 0 � f ∈ L2(B)
and all a ∈C0(∂B) such that a � n, there exists c > 0 such that the weak solution u

of (5.43) satisfies u(x) ≥ cd(x) in B.

The constant c depends both on f and a, c = c f ,a. For a fixed 0 � f ∈ L2(B) we

expect that c = c f ,a → 0 as a →−∞.

Also the proof of Theorem 5.27 requires a Schauder setting and an approximation

procedure. For this reason it is postponed to the end of Section 5.4.3.

5.4.2 Positivity of the operators involved in the Steklov problem

We consider the second order Green operator G and the Poisson operator K , that

is, w = G f +K g formally solves

{
−∆w = f in Ω ,
w = g on ∂Ω .

For C2-domains, the operators G and K can be represented by integral kernels G

and K, see (4.46) in Section 4.3. Let (Pw)(x) :=−ν ·∇w(x) =−wν(x) for x ∈ ∂Ω .

In this section we use the kernel estimates obtained in Section 4.3 in order to prove

some positivity properties of these operators. First, we fix the appropriate setting so

that G , K and P are well-defined operators.

Notation 5.28 Let d denote the distance to ∂Ω as defined in (4.1). Set

Cd(Ω) =
{

u ∈C0(Ω); there exists w ∈C0(Ω) such that u = dw
}

with norm

‖u‖Cd(Ω) = sup

{ |u(x)|
d(x)

;x ∈ Ω

}
.

Set also C0(Ω) =
{

u ∈C0(Ω); u = 0 on ∂Ω
}

so that Cd(Ω) ( C0(Ω).
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We consider the three above operators in the following setting.

G : C0(Ω) →Cd(Ω), K : C0(∂Ω) →C0(Ω), P : Cd(Ω) →C0(∂Ω).

We also define the embedding

Id : Cd(Ω) →C0(Ω). (5.57)

The space Cd(Ω) is a Banach lattice, that is, a Banach space with the ordering

such that |u| ≤ |v| implies ‖u‖Cd(Ω) ≤ ‖v‖Cd(Ω), see Definition 3.2 or [13, 309, 359].

The positive cone

Cd(Ω)+ =
{

u ∈Cd(Ω); u(x) ≥ 0 in Ω
}

is solid (namely, it has nonempty interior) and reproducing (that is, every w∈Cd(Ω)
can be written as w = u−v for some u,v ∈Cd(Ω)+). Similarly, we define C0(∂Ω)+

and C0(Ω)+.

Note that the interiors of the cones in these spaces are as follows:

C0(∂Ω)+,◦ =
{

v ∈C0(∂Ω); v(x) ≥ c for some c > 0
}

,

C0(Ω)+,◦ =
{

u ∈C0(Ω); u(x) ≥ c for some c > 0
}

,

Cd(Ω)+,◦ =
{

u ∈Cd(Ω); u(x) ≥ cd(x) for some c > 0
}

.

Definition 5.29. The operator F : C1 → C2 is called

• nonnegative, F ≥ 0, when g ∈ C
+
1 ⇒ Fg ∈ C

+
2 ;

• strictly positive, F  0, when g ∈ C
+
1 \{0}⇒ Fg ∈ C

+
2 \{0};

• strongly positive, F > 0, when g ∈ C
+
1 \{0}⇒ Fg ∈ C

+,◦
2 .

If F ≥ 0 and F 6= 0, that is, for some g ∈ C
+
1 we find Fg 	 0, we call F posi-

tive. Similarly, two operators are ordered through ≥ (respectively  or >) whenever

their difference is nonnegative (respectively strictly or strongly positive).

We now prove a positivity result.

Proposition 5.30. Suppose that ∂Ω ∈ C2 and a ∈ C0(∂Ω). Let G , K and P be

defined as above. Then G K aP : Cd(Ω)→Cd(Ω) is a well-defined compact linear

operator. If in addition a 	 0, then G K aP is positive and even such that

u ∈Cd(Ω)+ implies either G K aPu = 0 or G K aPu ∈Cd(Ω)+,◦.
(5.58)

Proof. Take γ ∈ (0,1), p > n(1−γ)−1 and fix the embeddings I1 : C0(Ω)→ Lp(Ω),
I2 : W 2,p(Ω) →C1,γ(Ω) and I3 : C1,γ ∩C0(Ω) →Cd(Ω). Since ∂Ω ∈C2, for every

p ∈ (1,∞) there exists a bounded linear operator Gp : Lp(Ω) → W 2,p ∩W
1,p
0 (Ω)

such that −∆Gp f = f for all f ∈ Lp(Ω), see Theorem 2.20. If Id is as in (5.57),

then the Green operator from Cd(Ω) to Cd(Ω) should formally be denoted G Id ,
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where G = I3I2GpI1. Note that the embedding I1 : C0(Ω) → Lp(Ω) is bounded

and the embedding I2 : W 2,p(Ω) → C1,γ(Ω) is compact, see Theorem 2.6. Since

W 2,p ∩W
1,p
0 (Ω) ⊂ C1,γ ∩C0(Ω) and I3 : C1,γ ∩C0(Ω) → Cd(Ω) is bounded, G is

not only well-defined but even compact. The strong maximum principle and Hopf’s

boundary point lemma allow then to conclude that G : C0(Ω)→Cd(Ω) is a compact

linear operator and it is strongly positive.

Since ∂Ω ∈ C2 and Ω is bounded all boundary points are regular. According

to Perron’s method [197, Theorem 2.14] the Dirichlet boundary value problem is

solvable for arbitrary continuous boundary values by

(K φ)(x) = sup{v(x);v ≤ φ on ∂Ω and v subharmonic in Ω} .

For φ ∈C0(∂Ω) one obtains K φ ∈C0(Ω)∩C2(Ω) and by the maximum principle

sup
x∈Ω

(K φ)(x) = max
x∈∂Ω

φ(x) and inf
x∈Ω

(K φ)(x) = min
x∈∂Ω

φ(x)

implying not only that ‖K φ‖L∞(Ω) = ‖φ‖L∞(∂Ω), but also that K : C0(∂Ω) →
C0(Ω) is a strictly positive bounded linear operator.

Finally, from the fact that every function u ∈ Cd(Ω) can be written as u = d w

for some w ∈ C0(Ω) and Pd w = w|∂Ω , we infer that P : Cd(Ω) → C0(∂Ω) is a

positive bounded linear operator.

From the just proved properties of G , K and P we infer compactness and

positivity of G K aP when a ≥ 0 and that K aPu 	 0 implies that G K aPu ∈
Cd(Ω)+,◦. �

Proposition 5.30 enables us to compare (using the notations of Definition 5.29)

some of the operators involved in the Steklov problem.

Proposition 5.31. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C2 and let Id be

as in (5.57). Then there exists a constant MΩ > 0 such that

G K PG I d G ≤ MΩ G I d G and G K PG K ≤ MΩ G K .

Proof. We know that the integral kernel which corresponds to G K PG I d G sat-

isfies the estimates in Lemma 4.16. By Proposition 4.13 we know estimates from

below for G I d G . We have to compare these estimates. To this end, we use the

following trivial fact

min(1,α)min(1,β ) ≤ min(1,αβ ) for all α,β ≥ 0,

combined with (4.53) and (4.52). Considering the different dimensions separately

we then have the following. For n ≥ 5, if x∗ ∈ ∂Ω is such that |x− x∗| = d(x),

(d(x)+d(y)+ |x∗− y∗|)2−n
d(x)d(y) � |x− y|4−n

min

(
1,

d(x)d(y)

|x− y|2

)
.
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This, combined with Lemma 4.16 and (4.48), proves the statement for n ≥ 5.

For n = 4 we argue as for n = 5 to find

(d(x)+d(y)+ |x∗− y∗|)−2
d(x)d(y)�min

(
1,

d(x)d(y)

|x− y|2

)
� log

(
1+

d(x)d(y)

|x− y|2

)
.

This, combined with Lemma 4.16 and (4.49), proves the statement for n = 4.

For n = 3 we have

(d(x)+d(y)+ |x∗− y∗|)−1
d(x)d(y) �

�

√√√√d(x)d(y)min

(
1,

d(x)d(y)

|x− y|2

)
=
√

d(x)d(y)min

(
1,

√
d(x)d(y)

|x− y|

)
.

This, combined with Lemma 4.16 and (4.50), proves the statement for n = 3.

For n = 2, by using (4.52) we find as a variation of (4.53) that

log

(
2+

1

d(x)+d(y)+ |x∗− y∗|

)
� log

(
2+

1

|x− y|2 +d(x)d(y)

)
.

This, combined with Lemma 4.16 and (4.51), proves the statement for n = 2. �

5.4.3 Relation between Hilbert and Schauder setting

In this section we complete the proof of Theorem 5.22 and we give the proof of The-

orem 5.27. For Theorem 5.22, it remains to prove statements (a), (b) and (c) in Item

3, see Theorem 5.37 below. In these situations it is more convenient to set the prob-

lem in spaces of continuous functions. This forces us to argue in a Schauder setting

and we rewrite (5.43) as an integral equation. Then we proceed by approximation.

As in (5.57), let Id : Cd(Ω) → C0(Ω) denote the embedding operator, then

(5.43) is equivalent to

u = G K aPu+G I d G f . (5.59)

Definition 5.32. For f ∈C0(Ω) we say that u is a C -solution of (5.43) if u ∈Cd(Ω)
satisfies (5.59).

Proposition 5.33. Suppose that Ω is a bounded domain in Rn (n ≥ 2) with ∂Ω ∈
C2 and let a ∈ C0(∂Ω). If f ∈ C0(Ω), then a C -solution of (5.43) is also a weak

solution in the sense of Definition 5.21.

Proof. If f ∈ C0(Ω) and u ∈ Cd(Ω) then by (5.59) it follows that w = K aPu +
Id G f ∈C0(Ω) ⊂ L2(Ω) and hence u = G w ∈ H2 ∩H1

0 (Ω). Moreover, for such u

and for any v ∈ H2 ∩H1
0 (Ω) we have
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∫

Ω
∆u ∆v dx =

∫

Ω
(K aPu+G f ) ∆v dx =

∫

∂Ω
auν vν dωx +

∫

Ω
f v dx,

which is precisely (5.44). �

Next, we note that (possibly by changing its sign) the minimiser u1,b for (5.46)

lies in Cd(Ω)+,◦.

Lemma 5.34. Let ∂Ω ∈ C2 and suppose that a ∈ C0(∂Ω) is such that a � δ1,bb.

Then

E
a
G := (I −G K aP)−1

G I d G : C0(Ω) →Cd(Ω),

E
a
K := (I −G K aP)−1

G K : C0(∂Ω) →Cd(Ω),

are well-defined operators. Moreover, the following holds.

• For f ∈C0(Ω) the unique C -solution of problem (5.43) is u = E a
G

f .

• The function u1,b defined in Theorem 5.22 (Item 2) is a positive eigenfunction of

E a
K

(
δ1,bb−a

)
P : Cd(Ω) → Cd(Ω) with eigenvalue 1. Any other nonnegative

eigenfunction ũ of E a
K

(
δ1,bb−a

)
P satisfies

(
δ1,bb−a

)
P ũ = 0 on ∂Ω .

Proof. By Theorem 5.22 (Item 3) one finds for a � δ1,bb that µ = 1 is not an eigen-

value of the (compact) operator G K aP . Therefore, the operator (I −G K aP)
is invertible in L2(Ω) and hence in Cd(Ω).

• Equation (5.59) reads as u = (I −G K aP)−1
G I d G f .

• One directly checks that u1,b is an eigenfunction of E a
K

(
δ1,bb−a

)
P with

λ = 1 for all a � δ1,bb. By Theorem 5.22 (Item 2), up to its multiples, it is the

unique eigenfunction with λ = 1. Let ũ be another nonnegative eigenfunction of

E a
K

(
δ1,bb−a

)
P corresponding to some eigenvalue λ 6= 1. One finds that λ = 0 if

and only if (δ1,bb−a)P ũ = 0. For λ 6= 0 it holds that

ũ−G K δ1,bbP ũ =
(
λ−1 −1

)
G K (δ1,bb−a)P ũ. (5.60)

We have u1,b, ũ ∈ H2 ∩H1
0 (Ω). This fact allows us to use (5.60) and to find a con-

tradiction in the case that (δ1,bb−a)P ũ 	 0. Indeed,

0 =
∫

Ω
∆u1,b ∆ ũ dx−

∫

∂Ω
δ1,bb (u1,b)ν ũν dω

=
∫

Ω
∆u1,b ∆

(
ũ−G K δ1,bbP ũ

)
dx

=
(
λ−1 −1

)∫

Ω
∆u1,b G K (δ1,bb−a)P ũdx

=
(
1−λ−1

)∫

Ω
u1,b K (δ1,bb−a)P ũ dx,

and this last expression has a sign if λ 6= 1. �
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Lemma 5.35. Let ∂Ω ∈C2 and suppose that a ∈C0(∂Ω) is such that a � δ1,bb. Let

E a
G

and E a
K

be as in Lemma 5.34 and suppose that E a
G

is a positive operator.

1. Then E a
G

, E a
K

, PE
a
G and PE

a
K are strictly positive operators.

2. If ã ∈ C0(∂Ω) is such that a ≤ ã � δ1,bb, then E ã
G
≥ E a

G
, E ã

K
≥ E a

K
, PE

ã
G ≥

PE
a
G and PE

ã
K ≥ PE

a
K .

3. If ã ∈ C0(∂Ω) is such that a < ã � δ1,bb, then E ã
G

> E a
G

, E ã
K

> E a
K

, PE
ã
G >

PE
a
G and PE

ã
K > PE

a
K .

Proof. Assume that 0 � f ∈ C0(Ω) and 0 � ϕ ∈ C0(∂Ω). Writing ua = E a
G

f and

va = E a
K

ϕ one gets

(I −G K aP)ua = G I dG f and (I −G K aP)va = G K ϕ.

1. If ua = E a
G

f = 0 for f 	 0, then

ua = G K aPua +G I dG f = G I dG f > 0

by the maximum principle, a contradiction. So E a
G

positive implies that E a
G

is strictly

positive. Since K(x,y∗) = limt↘0 G(x,y∗− tν)/t for x ∈ Ω , y∗ ∈ ∂Ω and ν the exte-

rior normal at y∗, we find that positivity of E a
G

implies that E a
K

is positive. We even

have strict boundary positivity. Indeed, if Pua = 0 then ua = G I dG f and Hopf’s

boundary point lemma gives Pua > 0, a contradiction. A similar argument holds

for va. This proves the first set of claims.

2. Let a ≤ ã � δ1,bb. We have

(I −G K aP)uã = G K (ã−a)Puã +G I dG f

and, in turn, since (I −G K aP) is invertible in view of Lemma 5.34,

(I −E
a
K (ã−a)P)uã = ua. (5.61)

For ‖ã−a‖L∞(∂Ω) small enough (say ‖ã−a‖L∞(∂Ω) < ε) one may invert the operator

in (5.61) and find an identity with a convergent series, that is

E
ã
G = E

a
G +

∞

∑
k=1

(E a
K (ã−a)P)k

E
a
G . (5.62)

Since E a
K

(ã−a)P ≥ 0 holds, one finds that uã = E ã
G

f ≥ E a
G

f = ua. The series

formula (5.62) holds for ‖ã−a‖L∞(∂Ω) < ε . However, if ‖ã−a‖L∞(∂Ω) ≥ ε then the

above argument can be repeated by considering some intermediate a := a0 � a1 �
... � ak := ã such that ‖ai+1 −ai‖L∞(∂Ω) < ε for all i. A similar reasoning applies to

vã, va. This proves the second set of claims.

3. Let us consider the sequence (ϕm) ⊂Cd(Ω), defined by

ϕ0 = E
a
G f ,

ϕm+1 = E
a
K

(
δ1,bb−a

)
Pϕm for m ≥ 0.
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Since E a
G

f 	 0 we find that ϕm ≥ 0 for all m≥ 0. Moreover, since E a
K

(
δ1,bb−a

)
P

is compact, two cases may occur;

(i) there exists m0 > 0 such that ϕm 	 0 for m < m0 and ϕm = 0 for all m ≥ m0;

(ii) ϕm/‖ϕm‖Cd(Ω) → ϕ∞ where ϕ∞ is a nonnegative eigenfunction (with λ = 1)

of the operator

E
a
K

(
δ1,bb−a

)
Pϕ∞ = λϕ∞.

If (i) occurs, then E a
K

(δ1,bb− a)Pϕm0
= 0 so that by Item 1 we infer (δ1,bb−

a)Pϕm0
= 0 and hence Pϕm0

= 0. We find a contradiction since as in the proof of

Item 1 it follows that ϕm0
= G I dG ϕm0−1 and Pϕm0

> 0 holds by Hopf’s boundary

point lemma.

Therefore, case (ii) occurs. Then ϕ∞ is a multiple of the unique positive eigen-

function u1,b, see Lemma 5.34. So for m1 large enough we find that there exists

c2 > c1 > 0 such that

c1u1,b ≤
ϕm

‖ϕm‖Cd(Ω)

≤ c2u1,b for all m ≥ m1.

Now set

ψ0 = E
a
G f , ψm+1 = E

a
K (ã−a)Pψm for m ≥ 0. (5.63)

Since for some ε > 0 it holds that

ε
(
δ1,bb−a

)
≤ ã−a ≤ δ1,bb−a,

we obtain ψm ≥ εmϕm for all m and by (5.63)

ψm ≥ εmϕm ≥ c1εm‖ϕm‖Cd(Ω) u1,b for all m ≥ m1.

Then from (5.62) it follows that there exists c3 > 0 such that

E
ã
G f ≥ E

a
G f + c3u1,b.

In a similar way we proceed with EK , PE G and PE K . �

With the result in Lemma 5.34 it will be sufficient to have positivity preserving

for a negative a ∈ C0(∂Ω) in order to ensure that this property will hold for any

sign-changing ã with a ≤ ã � δ1,bb. So we may restrict ourselves to a ≤ 0. We

now prove a crucial “comparison” statement in the case where G K aP has a small

spectral radius.

Lemma 5.36. Let ∂Ω ∈C2 and assume that 0 ≥ a ∈C0(∂Ω) is such that

rσ (G K aP) < 1.

If there exists M > 0 such that

G K PG I dG ≤ M G I dG , (5.64)
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and if ‖a‖L∞(∂Ω) < M−1, then E a
G

> 0.

Proof. Clearly, a = −a−. Since rσ (G K a−P) < 1 the equation (5.59) can be

rewritten as a Neumann series

u =
(
I +G K a−P

)−1
G I dG f =

∞

∑
k=0

(
−G K a−P

)k
G I d G f ,

which reads

u =

(
∞

∑
k=0

(
G K a−P

)2k

)
(
I −G K a−P

)
G I d G f (5.65)

after joining the odd and even powers. Next, notice that in view of (5.65) it suffices

to show that the operator (I −G K a−P)G I d G is strongly positive. This fact is

a direct consequence of (5.64) and ‖a−‖L∞(∂Ω) ≤ M−1. �

By combining the previous statements, we obtain the following result, which

completes the proof of Item 3 of Theorem 5.22. The proof uses estimates for the

kernels involved and for this reason it seems more suitable to employ a Schauder

setting and to approximate.

Theorem 5.37. There exists δc,b := δc,b(Ω) ∈ [−∞,0) such that the following holds

for a weak solution u of (5.43):

1. for δc,bb ≤ a � δ1,bb it follows that if 0 � f ∈ L2(Ω), then u 	 0;

2. for δc,bb < a � δ1,bb it follows that if 0 � f ∈ L2(Ω), then u ≥ c f d for some

c f > 0 (depending on f ), d being the distance function from (4.1);

3. for a < δc,bb there are 0 � f ∈ L2(Ω) with u somewhere negative.

Proof. Let MΩ be as in Proposition 5.31 and put δ := −(MΩ maxx∈∂B b(x))−1 < 0.

Then by Lemmas 5.34 and 5.36 we infer that

if δb ≤ a � δ1,bb and 0 � f ∈C0(Ω) then u 	 0 in Ω , (5.66)

where u is the unique C -solution of (5.43). Let δc,b be the (negative) infimum of all

such δ which satisfy (5.66). We have so proved that there exists δc,b := δc,b(Ω) ∈
[−∞,0) such that, if δc,bb ≤ a � δ1,bb and 0 � f ∈ C0(Ω), then u 	 0, where u is

the C -solution of (5.43). Moreover, if δc,bb < a and 0 � f ∈ C0(Ω), then Lemma

5.35 yields the existence of c f such that u≥ c f d. Finally, the above definition of δc,b

shows that, if a < δc,bb, then there are 0 � f ∈C0(Ω) with u somewhere negative.

In view of Proposition 5.33, this proves Item 3.

For Item 1 we use a density argument. Assume that δc,bb ≤ a � δ1,bb and 0 �
f ∈ L2(Ω). Let u ∈ H2∩H1

0 (Ω) be the unique weak solution of (5.43), according to

Item 3 in Theorem 5.22. Consider a sequence of functions ( fk) ⊂ C0(Ω) such that

fk 	 0 for all k ∈ N and fk → f in L2(Ω) as k → ∞. Let uk be the C -solution to

∆ 2uk = fk in Ω , uk = ∆uk −a
∂uk

∂ν
= 0 on ∂Ω .
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Then, by (5.66), uk 	 0 in Ω for all k. Moreover, by Corollary 2.23, the sequence

(uk) is bounded in H2(Ω) so that, up to a subsequence, it converges weakly and

pointwise to some u ∈ H2 ∩H1
0 (Ω). By Definition 5.21, we know that

∫

Ω
∆uk∆vdx−

∫

∂Ω
a(uk)ν vν dω =

∫

Ω
fkvdx for all v ∈ H2 ∩H1

0 (Ω).

Therefore, letting k →∞, we deduce that u is a weak solution to the original problem

and

u 	 0 in Ω . (5.67)

The proof of Item 2 is more delicate. Assume that δc,bb < a � δ1,bb and 0 � f ∈
L2(Ω). Let u ∈ H2 ∩H1

0 (Ω) be the unique weak solution to (5.43). Let

g(x) := min{1, f (x)}, x ∈ Ω ,

and let v ∈ H2 ∩H1
0 (Ω) be the unique weak solution to

{
∆ 2v = g in Ω ,
v = ∆v−avν = 0 on ∂Ω .

Since g ≤ f , we deduce by Lemma 5.35 and a density argument that

u ≥ v in Ω . (5.68)

Moreover, since g ∈ L∞(Ω), by Corollary 2.23 and Theorem 2.6 we infer that v ∈
C1(Ω).

Let δc,b be as at the beginning of this proof, take a function a0 ∈ C0(∂Ω) such

that δc,bb < a0 < a (if δc,b >−∞ one can also take a0 = δc,bb) and consider also the

unique weak solution w to

{
∆ 2w = g in Ω ,
w = ∆w−a0wν = 0 on ∂Ω .

Again, we have w ∈ C1(Ω). Since w ≥ 0 in Ω in view of Item 1, we know that

wν ≤ 0 on ∂Ω . Moreover, it cannot be that wν ≡ 0 since otherwise the boundary

condition would imply −∆w = 0 on ∂Ω with −∆w superharmonic in Ω . This would

imply first that −∆w > 0 in Ω and next, by Hopf’s lemma, that wν < 0 on ∂Ω , a

contradiction. Therefore,

ψ := (a0 −a)wν 	 0, ψ ∈C0(∂Ω).

Finally, let z := v−w. Then z ∈C1(Ω) and z is the unique weak solution to





∆ 2z = 0 in Ω ,
z = 0 on ∂Ω ,
∆z−azν = −ψ on ∂Ω .
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In fact, by Corollary 2.23 and Theorem 2.6, we have that z ∈Cd(Ω)+ and z = E a
K

ψ .

By Lemma 5.35 we know that E a
K

> E
a0

K
 0 so that there exists c > 0 with

z(x) ≥ cd(x). (5.69)

Note that c depends on ψ and therefore also on w. Hence, it depends on f so that

c = c f . By combining (5.68) with (5.69) we obtain

u(x) ≥ v(x) = z(x)+w(x) ≥ z(x) ≥ c f d(x)

and Item 2 follows. �

Proof of Theorem 5.27. We first assume that f ∈ C∞
c (B). In this case, by Corollary

2.23 we know that the weak solution u satisfies u ∈W 2,p(B) for all p > 1. In turn, by

Theorem 2.6, this proves that u ∈C1(B) and hence ∆u = auν ∈C0(∂B). Therefore,

Theorems 2.19 and 2.25 yield u ∈C∞(B)∩C2(B). In particular, by Lemma 5.34, u

is a C -solution.

Consider the auxiliary function φ ∈C∞(B)∩C0(B) defined by

φ(x) = (|x|2 −1)∆u(x)−4x ·∇u(x)−2(n−4)u(x) for x ∈ B.

Since x = ν and u = 0 on ∂B, we have

φ = −4uν on ∂B. (5.70)

Moreover, for x ∈ B we have

∇φ = (2∆u)x+(|x|2 −1)∇∆u+2(2−n)∇u−4D2u · x , (5.71)

−∆φ = (1−|x|2) f (x) ≥ 0, (5.72)

where D2u denotes the Hessian matrix of u. By (5.71) we find

φν = 2∆u+2(2−n)uν −4〈ν ,D2u ·ν〉 on ∂B.

Since 〈ν ,D2u ·ν〉 = uνν , by recalling that u = 0 on ∂B and using the expression of

∆u on the boundary, the previous equation reads φν =−2∆u+2nuν . Finally, taking

into account the second boundary condition in (5.43), we obtain

φν = 2(n−a)uν on ∂B. (5.73)

So, combining (5.70), (5.72) and (5.73) we find that φ satisfies the second order

Steklov boundary value problem

{
−∆φ = (1−|x|2) f ≥ 0 in B,
φν + 1

2
(n−a)φ = 0 on ∂B.
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As a � n, by the maximum principle (for this second order problem!) we infer that

φ > 0 in B and hence by (5.70) that uν ≤ 0 on ∂B. By (2.65) and Proposition 5.11,

we deduce that u > 0 in B whenever 0 � f ∈C∞
c (B).

Assume now that 0 � f ∈ L2(B) and let u ∈ H2 ∩H1
0 (B) be the unique weak

solution to (5.43), according to Definition 5.21. Then the same density argument

leading to (5.67) shows that u 	 0 in B. Hence, by Corollary 5.24 3.(c), we infer that

δc = −∞. In turn the lower bound u(x) ≥ cd(x) in B follows from Corollary 5.24,

part 3.(b). �
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follows [209, 211]. The underlying formulae for the Poisson kernels for the bihar-

monic Dirichlet problem go back to Lauricella-Volterra [268, 402] and were col-

lected in the book [323] by Nicolesco. For the polyharmonic Poisson kernels we

refer to Edenhofer [158, 159]. Estimates as in Lemmas 5.8 and 5.9 were proved in

a more general setting but under more restrictive assumptions on the coefficients by
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cussion on existence and positivity of the solution to (5.43) when a− δ1 changes
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Chapter 6

Dominance of positivity in linear equations

In Section 1.2 we mentioned that although the Green function G∆ 2,Ω for the clamped

plate boundary value problem

{
∆ 2u = f in Ω ,
u = |∇u| = 0 on ∂Ω ,

(6.1)

is in general sign changing, it is very hard to display its negative part in numerical

simulations or in real world experiments. Moreover, numerical work in nonlinear

elliptic fourth order equations suggests that maximum or comparison principles are

violated only to a “small extent”. Nevertheless, we do not yet have tools at hand to

give this feeling a precise form and, in particular, a quantitative form which might

prove to be useful also for nonlinear higher order equations.

This chapter may be considered as a first preliminary step in this direction. We

study the negative part of the biharmonic Green function G−
∆ 2,Ω

and show that it

is small when compared with its positive part G+
∆ 2,Ω

. For a precise formulation see

Theorems 6.15 and 6.24 and the subsequent interpretations. We emphasise that these

are not just continuous dependence on data results. Green’s functions are families of

functions with the position of the pole as a parameter and the main problem consists

in gaining uniformity with respect to the position of the pole when it approaches the

boundary. In proving these results, one has to distinguish between the dimensions

n = 2 and n ≥ 3. The second case seems to be much simpler and is carried out in

detail. We are confident that the arguments can be extended to fourth order operators

where the principal part is a square of a second order operator and which may con-

tain also lower order perturbations. Uniformity with respect to unbounded families

of such perturbations can, however, in general not be expected. The proof (n ≥ 3)

heavily relies on uniform Krasovskiı̆-type estimates for biharmonic Green’s func-

tions G∆ 2,Ω in general domains, which are deduced in Section 4.5. Local positivity

results from Section 6.3 are used as an essential first step which, in the particular

case n = 3, were observed first by Nehari [322]. Although in the two-dimensional

case one has holomorphic maps at hand, the result there requires a much more in-

volved proof, which we sketch in Section 6.2.2 and where for details we refer to

183
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the literature [117]. This proof is based on the explicit biharmonic Green functions

in the “limaçons de Pascal”, on carefully putting together parts of boundaries of

several prototype domains and delicate asymptotic estimates.

A second main objective of this chapter is to show that positivity of the bihar-

monic Green function G∆ 2,B in the unit ball B ⊂ Rn is not just a singular event but

remains true under small C4,γ -smooth perturbations Ω of B. For n ≥ 3 see Theo-

rem 6.29; its proof is quite similar to that of the small negative part result mentioned

before. For n = 2, see Theorem 6.3. Here we build on the lower order perturbation

theory developed in Theorem 5.1 and benefit from holomorphic maps and reduction

to normal form. These tools are special for n = 2 and allow for considering also

any m-th power of a regular second order elliptic operator being close enough to the

polyharmonic prototype (−∆)m in domains Ω close enough to the unit disk. Having

such a perturbation theory of positivity is remarkable since, again, this is not just a

continuous dependence on data result.

6.1 Highest order perturbations in two dimensions

In two dimensions also perturbations of highest order of the polyharmonic prototype

may be taken into account. Here we consider

{
Lu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,
(6.2)

with

Lu :=

(
−

2

∑
i, j=1

ãi j(x)
∂ 2

∂xi∂x j

)m

u+ ∑
|β |≤2m−1

aβ (x)Dβ u, (6.3)

where ãi j = ã ji ∈C2m−1,γ(Ω), aβ ∈C0,γ(Ω). In view of the maximum principle for

second order operators we assume throughout the whole chapter that

m ≥ 2.

First we define an appropriate notion of closeness for domains and operators.

Definition 6.1. We assume that Ω \ and Ω are bounded Ck,γ -smooth domains. Let

ε ≥ 0. We call Ω ε-close to Ω \ in Ck,γ -sense, if there exists a Ck,γ -mapping g : Ω \ →
Ω such that g(Ω \) = Ω and

‖g− Id‖
Ck,γ (Ω \)

≤ ε.

We remark that if k ≥ 1, Ω \ is convex and ε is sufficiently small, then g−1 ∈Ck,γ(Ω)
exists and ‖g−1 − Id‖Ck,γ (Ω) = O(ε) as ε → 0.
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Definition 6.2. Let ε ≥ 0 and assume that L is as in (6.3). We call the operator L

ε-close to (−∆)m in Ck,γ -sense, if (in the case k ≥ 2m) additionally ãi j ∈ Ck,γ(Ω)
and

‖ãi j −δi j‖Ck,γ (Ω) ≤ ε,

‖aβ‖C0(Ω) ≤ ε for |β | ≤ 2m−1.

If ε ≥ 0 is small, then L is uniformly elliptic.

The following is the main perturbation result if n = 2.

Theorem 6.3. There exists ε0 = ε0(m) > 0 such that we have for 0 ≤ ε ≤ ε0:

If the bounded C2m,γ -smooth domain Ω ⊂R2 is ε-close to the unit disk B in C2m,γ -

sense and if the differential operator L is ε-close to (−∆)m in C2m−1,γ -sense, then

for every f ∈ C0,γ(Ω) satisfying f 	 0 the solution u ∈ C2m,γ(Ω) to the Dirichlet

problem (6.2) is strictly positive, namely

u > 0 in Ω .

Remark 6.4. 1. Let Ea,b be an ellipse with half axes a,b > 0. In case of small eccen-

tricity, i.e. a
b
≈ 1, Green’s function for ∆ 2 in Ea,b is positive. For larger eccentric-

ity, e.g. a
b
≈ 1.2, it changes sign according to the example of Garabedian [176]

and the refined version by Hedenmalm, Jakobsson, and Shimorin in [226].

2. The proof of Theorem 6.3 suggests that ε0(m) ↘ 0 for increasing m ↗ ∞.

3. As long as one restricts to the polyharmonic operator (−∆)m in perturbed do-

mains, it was shown by Sassone [358] that Cm,γ -closeness to the disk is suffi-

cient. In case of the clamped plate equation this means that positivity is governed

by closeness of the boundary curvature to a constant with respect to a Hölder

norm. We think that also in the case of perturbed principal parts, the required

closeness to the polyharmonic operator may be relaxed. But we expect that such

a relaxation will require a big technical effort. In particular, all problems should

be written in divergence form and one should refer to Cm,γ -Schauder-theory for

operators in divergence form.

4. We recall that Theorem 6.3 cannot be proved by just referring to continuous

dependence on data.

5. According to Jentzsch’s [236] or Kreı̆n-Rutman’s [257] theorem, see Theo-

rem 3.3, positivity of the Green function implies existence of a positive first

eigenfunction. A somehow stronger result was proved in [212], which was al-

ready briefly mentioned in Section 3.1.3. Assume that (Ωt)t≥0 is a C2m+1-smooth

family of domains with Ω0 = B. Assume further that transition from positivity of

G(−∆)m,Ωt
to sign change may be observed and let tg be the largest parameter such

that G(−∆)m,Ωt
> 0 for t ∈ [0, tg). Then for some ε > 0 and for all t ∈ [0, tg +ε), the

first polyharmonic eigenvalue in Ωt is still simple and the corresponding eigen-

function may be chosen strictly positive.
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In order to prove Theorem 6.3 we proceed in three steps.

1. First, we consider ãi j = δi j and domains Ω which are close to the disk in a confor-

mal sense. In this case the claim can be proved by using conformal maps which

leave the principal part (−∆)m invariant. The pulled back differential equation

is a lower order perturbation of the polyharmonic equation and Theorem 5.4 is

applicable. See Lemma 6.5 below.

2. Next we employ a quantitative version of the Riemannian mapping theorem.

Conformal maps B → Ω enjoy a representation based on the harmonic Green

function in Ω . This representation allows to apply elliptic theory in order to con-

clude “conformal closeness” from “differentiable closeness”. See Lemma 6.6.

3. The theory of normal forms for second order elliptic operators allows to trans-

form the leading coefficients ãi j into δi j thereby giving rise to a further “small”

perturbation of the domain Ω . See Lemma 6.7.

Only in two dimensions, the theory of normal forms is available and, moreover,

sufficiently many conformal maps exist to deform suitable domains into the unit

disk. In higher dimensions, the only conformal maps are Möbius transforms, which

map balls onto balls or half spheres.

6.1.1 Domain perturbations

Lemma 6.5. There exists ε1 = ε1(m) > 0 such that the following statement holds

true. Let Ω be a simply connected bounded C2m,γ -smooth domain. For the differ-

ential operator L in (6.3), we assume that ãi j = δi j. Moreover, let h : B → Ω be a

biholomorphic map with h ∈C2m,γ(B), h−1 ∈C2m,γ(Ω).
If ‖h− Id‖C2m−1(B) ≤ ε1 and ‖aβ‖C0(B) ≤ ε1 for all |β | ≤ 2m−1, then the Green

function GL,Ω for the boundary value problem (6.2) in Ω exists and is positive.

Proof. In the disk B, the corresponding result is given in Theorem 5.4. In order to

apply this theorem also to the boundary value problem (6.2) in Ω , it has to be “pulled

back” to the disk. The crucial point is that conformal maps leave the principal part

(−∆)m invariant and yield only additional terms of lower order.

Let ε := max
{

max|β |≤2m−1 ‖aβ‖C0(Ω),‖h− Id‖C2m−1(B)

}
be sufficiently small.

For the pulled back solution v : B → R, v(x) := u(h(x)), using

∆v(x) =
1

2
|∇h(x)|2

(
(∆u)◦h

)
(x),

the boundary value problem





(
− 2

|∇h|2
∆

)m

v+ ∑
|β |≤2m−1

âβ Dβ v = f ◦h in B,

Dα v|∂B = 0 for |α| ≤ m−1,
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has to be considered with suitable coefficients âβ ∈ C0,γ(B), ‖âβ‖C0(B) = O(ε).

Computing
(
− 2

|∇h|2 ∆
)m

yields additional coefficients Dµ
(

1
|∇h|2

)
with 0 < |µ| ≤

2m−2 for the lower order terms. The leading term becomes ( 2
|∇h|2 )m (−∆)mv. Here,

‖ 2
|∇h|2 −1‖C2m−2(B) = O(ε). So, we obtain the boundary value problem





(−∆)m
v+ ∑

|β |≤2m−1

ãβ Dβ v = f̃ in B,

Dα v|∂B = 0 for |α| ≤ m−1,

with f̃ :=
(
|∇h|2

2

)m

f ◦h and suitable coefficients ãβ ∈C0,γ(B), which obey the es-

timate ‖ãβ‖C0(B) = O(ε). Obviously, f 	 0 in Ω is equivalent to f̃ 	 0 in B. Hence,

for sufficiently small ε all statements of Theorem 5.4 carry over to the boundary

value problem (6.2). �

The Riemannian mapping theorem, combined with the Kellogg-Warschawski

theorem, see e.g. [344], shows existence of conformal maps which satisfy the qual-

itative assumptions of Lemma 6.5. Observe that here the assumptions on the domain

in Lemma 6.5 are to be used. However, even in very simple domains it may be ex-

tremely difficult to give an explicit expression for the conformal map h : B → Ω
and even more difficult to check explicitly the smallness condition imposed on

‖h− Id‖C2m−1(B). For ellipses such maps were constructed in [366] by means of

elliptic functions.

So, Lemma 6.5 is not very useful yet. However, the next lemma gives a general

abstract result that “differentiable closeness” always implies “conformal closeness”.

Lemma 6.6. For any ε1 > 0 there exists ε2 = ε2(m,ε1) > 0 such that for 0 ≤ ε ≤ ε2

we have:

If the C2m,γ -smooth domain Ω is ε-close to B in C2m-sense, then there exists a

biholomorphic map h : B → Ω , h ∈C2m,γ(B), h−1 ∈C2m,γ(Ω) with

‖h− Id‖C2m−1(B) ≤ ε1.

Proof. Let g : B → Ω be a map according to Definition 6.1 with ε := ‖g− Id‖C2m(B).

In what follows we always assume ε ≥ 0 to be sufficiently small. In particular, Ω is

then simply connected and bounded, and 0 ∈ Ω .

According to [112], see also [383, Sect. 4.2], a biholomorphic map h : B → Ω
such that h ∈C2m,γ(B), h−1 ∈C2m,γ(Ω) may be constructed as follows.

Let G−∆ ,Ω be the Green function of −∆ in Ω under Dirichlet boundary condi-

tions. For x ∈ Ω , we set

w(x) := 2πG−∆ ,Ω (x,0)

and introduce the conjugate harmonic function
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w∗(x) :=
∫ x

1/2

(
− ∂

∂ξ2
w(ξ )dξ1 +

∂

∂ξ1
w(ξ )dξ2

)
.

Here, the integral is taken along any curve from the complex number 1
2

to x =
x1 + ix2 in Ω \ {0}. The function w∗ is well-defined up to integer multiples of 2π .

Identifying R2 and C, by means of

h−1(x) := exp(−w(x)− iw∗(x)) , x ∈ Ω ,

we obtain a well-defined holomorphic map Ω → B enjoying the required qualitative

properties. Moreover, h−1(0) = 0 and 1
2

is mapped onto the positive real half axis.

The Green function G−∆ ,Ω is given by

G−∆ ,Ω (x,0) = − 1

2π
(log |x|− r(x)) , x ∈ Ω ,

where r : Ω → R solves the boundary value problem

{
∆r = 0 in Ω ,

r(x) = ϕ(x) on ∂Ω , ϕ(x) := log |x|.

It is sufficient to show that

‖r‖C2m−1(Ω) = O(ε), (6.4)

because by virtue of

h−1(x) = x · exp(−r(x)− ir∗(x)) , x ∈ Ω ,

one obtains ‖h−1 − Id‖C2m−1(Ω) = O(ε) and finally ‖h− Id‖C2m−1(B) = O(ε). Here,

the estimate ‖r‖C0(Ω) = O(ε) is an obvious consequence of the maximum principle.

We assume first that ϕ|∂Ω may be extended by ϕ̂ ∈C2m(Ω) in such a way that

‖ϕ̂‖C2m(Ω) = O(ε) (6.5)

holds true. The Schauder estimates of Theorem 2.19 then give ‖r‖C2m−1,γ (Ω) = O(ε)
and (6.4) is proved. Here, one should observe that thanks to the ε–closeness of Ω to

B in C2m-sense and m ≥ 2, for all small enough ε > 0 the estimation constants can

be chosen independently of ε .

Hence it remains to show that extensions ϕ̂ of ϕ|∂Ω satisfying (6.5) indeed exist.

For this purpose, only the “tangential derivatives” of ϕ|∂Ω have to be estimated.

This means that it is enough to consider the boundary data being parametrised with

the help of the maps g|∂B : ∂B → ∂Ω and R 3 t 7→ (cos t,sin t) ∈ ∂B:

ψ(t) := ϕ (g(cos t,sin t)) .

For this map, we show that
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max
j=0,...,2m

max
t∈R

∣∣∣∣∣

(
d

dt

) j

ψ

∣∣∣∣∣= O(ε). (6.6)

Indeed, for j = 0 this is due to ‖g− Id‖C0(B) = O(ε) and | log(1 + ε)| = O(ε). We

set g̃(t) = g(cos t,sin t), g̃ : R → ∂Ω . For j ≥ 1 a general chain rule shows that

(
d

dt

) j

ψ =

(
d

dt

) j

(ϕ ◦ g̃)

=
j

∑
|β |=1

((
Dβ ϕ

)
◦ g̃
)

 ∑

p1+...+p|β |= j

p1,...,p|β |≥1

d j,β ,p

|β |
∏
`=1

(
d

dt

)p`

g̃(µ`)




with suitable coefficients d j,β ,p, p = (p1, . . . , p|β |). The coefficient µ` refers to the

component of g̃ and is chosen as µ` = 1 for ` = 1, . . . ,β1 and µ` = 2 for ` = β1 +
1, . . . , |β | = β1 + β2. To show that this huge sum is indeed O(ε), we observe that

it is equal to 0, provided Ω = B and g = Id. So we put g̃0(t) = Id ◦ (cos t,sin t) =
(cos t,sin t) and compare corresponding terms. We obtain

(
d

dt

) j

ψ =
j

∑
|β |=1

((
(Dβ ϕ)◦ g̃− (Dβ ϕ)◦ g̃0

)
+(Dβ ϕ)◦ g̃0

)

×


 ∑

p1+...+p|β |= j

p1,...,p|β |≥1

d j,β ,p

|β |
∏
`=1

(((
d

dt

)p`

g̃(µ`) −
(

d

dt

)p`

g̃
(µ`)
0

)
+

(
d

dt

)p`

g̃
(µ`)
0

)

 .

As already mentioned, thanks to ϕ (g̃0(t)) = log |(cos t,sin t)| ≡ 0 the sum taken over

all the terms which contain only g̃0 and no differences, equals 0. In the remaining

sum, each term contains at least one factor of the type

(Dβ ϕ)◦ g̃− (Dβ ϕ)◦ g̃0 or

(
d

dt

)p` (
g̃(µ`) − g̃

(µ`)
0

)
.

For ε → 0 each of these factors is O(ε), and the remaining factors are uniformly

bounded independently of ε . This proves (6.6) and the claim of the lemma. �

6.1.2 Perturbations of the principal part

We define

L0u := −
2

∑
i, j=1

ãi j(x)
∂ 2u

∂xi∂x j

, ãi j = ã ji ∈C2m−1,γ(Ω), (6.7)
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the second order elliptic operator whose m-th power forms the principal part of the

operator L in (6.3) under investigation. By means of a suitable coordinate transfor-

mation (x1,x2) 7→ (ξ1,ξ2), Ω → Ω \, (6.7) can be reduced to normal form

L̃0v = −A(ξ )∆v−B1(ξ )
∂v

∂ξ1
−B2(ξ )

∂v

∂ξ2
,

see e.g. [177, pp.66-68]. In this way, the operator L is transformed into an opera-

tor L̃ where Lemma 6.5 becomes applicable. We check that L̃ remains “close” to

(−∆)m and Ω \ “close” to B, if the same holds for L and Ω , respectively. The new

coordinates ξ1 = ϕ(x1,x2), ξ2 = ψ(x1,x2) satisfy the Beltrami system in Ω , namely

∂ϕ

∂x1
=

ã21ψx1
+ ã22ψx2√

ã11ã22 − ã2
12

,
∂ϕ

∂x2
= − ã11ψx1

+ ã12ψx2√
ã11ã22 − ã2

12

. (6.8)

Assume that we have already found a bijective, at least twice differentiable trans-

formation

Φ = (ϕ,ψ) : Ω → Ω \. (6.9)

Then as in [177] one finds that

L0u =
(
L̃0v
)
◦Φ , (6.10)

where we put





v(ξ1,ξ2) = u◦Φ−1(ξ1,ξ2),

A(Φ(x)) = ã11(x)ϕ
2
x1

+2ã12(x)ϕx1
ϕx2

+ ã22(x)ϕ
2
x2

= ã11(x)ψ
2
x1

+2ã12(x)ψx1
ψx2

+ ã22(x)ψ
2
x2

> 0,

B1 (Φ(x)) = ã11(x)ϕx1x1
+2ã12(x)ϕx1x2

+ ã22(x)ϕx2x2
,

B2 (Φ(x)) = ã11(x)ψx1x1
+2ã12(x)ψx1x2

+ ã22(x)ψx2x2
.

(6.11)

We determine ψ as solution of the boundary value problem





∂

∂x1


 ã11ψx1

+ ã12ψx2√
ã11ã22 − ã2

12


+

∂

∂x2


 ã21ψx1

+ ã22ψx2√
ã11ã22 − ã2

12


= 0 in Ω ,

ψ(x) = x2 on ∂Ω ,

(6.12)

and then construct ϕ with the help of the Beltrami equations (6.8) and the normali-

sation ϕ(0) = 0.

In this special situation, the required results for the transformation Φ can be

easily proved directly.

Lemma 6.7. Let ε2 > 0. Then there exists ε3 = ε3(m,ε2) such that for 0 ≤ ε ≤ ε3

the following holds true.
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Assume that the domain Ω is C2m,γ -smooth and ε-close to B in C2m-sense. Let

the operator L of (6.3) be ε-close to (−∆)m in C2m−1,γ -sense. Then we have for the

transformation Φ : Ω → Ω \ = Φ(Ω) defined in (6.8), (6.9) and (6.12), that

• Φ is bijective, Φ ∈C2m,γ(Ω), Φ−1 ∈C2m,γ(Ω \),

• Ω \ is ε2-close to B in C2m-sense.

Putting v := u◦Φ−1, see (6.11), the boundary value problem

{
Lu = f in Ω ,

Dα u|∂Ω = 0 for |α| ≤ m−1,

is transformed into

{
L̂v = A−m ( f ◦Φ−1) in Ω \,

Dα v|∂Ω \ = 0 for |α| ≤ m−1.

Here L̂v = (−∆)mv+∑|β |≤2m−1 âβ ( .)Dβ v with suitable coefficients âβ ∈C0,γ(Ω \)
such that for all |β | ≤ 2m−1 the smallness condition

‖âβ‖C0(Ω \)
≤ ε2

is satisfied.

Proof. We may assume ε to be sufficiently small and in particular Ω to be bounded

and uniformly convex. First we consider the boundary value problem (6.12), which

is uniformly elliptic thanks to ‖ãi j −δi j‖C2m−1,γ (Ω) ≤ ε with coefficients in the space

C2m−1,γ(Ω). Since Ω is C2m,γ -smooth, elliptic theory (see Theorem 2.19) shows the

existence of a solution ψ ∈ C2m,γ(Ω) to (6.12). At the same time, this differential

equation is the integrability condition for (6.8) in the convex domain Ω . This shows

that a solution ϕ ∈C2m,γ(Ω) of the Beltrami system (6.8) with ϕ(0) = 0 exists.

Next we investigate Φ = (ϕ,ψ) quantitatively. For this purpose we consider the

auxiliary function Ψ(x) := ψ(x)− x2 that solves the boundary value problem





∂

∂x1


 ã11Ψx1

+ ã12Ψx2√
ã11ã22 − ã2

12


+

∂

∂x2


 ã21Ψx1

+ ã22Ψx2√
ã11ã22 − ã2

12




= − ∂

∂x1


 ã12√

ã11ã22 − ã2
12


− ∂

∂x2


 ã22√

ã11ã22 − ã2
12


=: F(x1,x2) in Ω ,

Ψ |∂Ω = 0,
(6.13)

where

F = O(ε) in C2m−2,γ(Ω).

Schauder estimates for higher order norms as in Theorem 2.19 yield
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‖ψ − x2‖C2m,γ (Ω) = ‖Ψ‖C2m,γ (Ω) ≤C‖F‖C2m−2,γ (Ω),

‖ψ − x2‖C2m(Ω) ≤ C‖F‖C2m−2,γ (Ω). (6.14)

Here one should observe that the C2m−1,γ(Ω)-norms of the coefficients in (6.13)

are bounded independently of ε; the ellipticity constants are uniformly close to 1.

Finally, by means of the uniform C2m-closeness of the domains to the disk B we

may choose an estimation constant in (6.14) being independent of Ω . Taking also

(6.8) into account we conclude that

‖Φ − Id‖C2m(Ω) = O(ε), (6.15)

thereby proving the bijectivity of Φ , the qualitative statements on Φ−1 and Ω \ =
Φ(Ω), as well as

‖Φ−1 − Id‖
C2m(Ω \)

= O(ε). (6.16)

We still have to study the properties of the transformed differential operator L̂.

From (6.10) it follows that

Lu = Lm
0 u+ ∑

|β |≤2m−1

aβ Dβ u

=

{
L̃m

0 v+ ∑
|β |≤2m−1

(
aβ ◦Φ−1

) (
Dβ (v◦Φ)

)
◦Φ−1

}
◦Φ

=

{
L̃m

0 v+ ∑
|β |≤2m−1

ãβ Dβ v

}
◦Φ =:

(
Am L̂v

)
◦Φ .

Here the new coefficients ãβ contain additional derivatives of Φ of order at most

(2m−1) and hence ‖ãβ‖C0(Ω \)
= O(ε). Finally, L̃0v = −A∆v−B1

∂v
∂ξ1

−B2
∂v

∂ξ2
, so

we still need to show that

‖A−1‖
C2m−2(Ω \)

= O(ε), ‖B j‖C2m−2(Ω \)
= O(ε).

Observing the definition (6.11) of A,B1,B2, this follows from the properties (6.15)

and (6.16) of Φ and the assumptions on the coefficients ãi j. �

Proof of Theorem 6.3. It follows by combining Lemmas 6.5-6.7. �

Remark 6.8. Similarly as in Section 5.2, also here one has results on the qualita-

tive boundary behaviour of solutions. Using the theory of maps described above

and referring to Theorem 5.7 instead of Theorem 5.4, the claim of Theorem 5.7 on

the m-th order boundary derivatives of the solution remains true also under the as-

sumptions of Theorem 6.3, while the Dirichlet boundary data have to be prescribed

homogeneously.

On the other hand, if one wants to study the influence of the sign of Dm−1u|∂Ω on

the sign of the solution in Ω , while the first (m−2) derivatives on ∂Ω are prescribed
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homogeneously, one has to ensure that the assumptions of Theorem 6.3 are satisfied

by the (formally) adjoint operator L∗. This means that if we assume that Ω is close

to B in C2m-sense, L close to (−∆)m in C2m-sense, aβ ∈ C|β |(Ω) and ‖aβ‖C|β |(Ω)
small, then the conclusions of Theorem 5.6 remain true.

Our methods are not suitable to carry over further statements of Section 5.2 on

the influence of u|∂B on the sign of u in B to the situation of Theorem 6.3. This is

because in the relevant result Theorem 5.15, only perturbations of order (m−2) can

be treated, while terms of order (m− 1) may indeed arise. However, in the special

case of the polyharmonic operator, using Sassone’s paper [358], we expect that a

positivity result with respect to the two highest order boundary data may also be

shown in domains Ω being a sufficiently small perturbation of the disk.

6.2 Small negative part of biharmonic Green’s functions in two

dimensions

We come back to the question raised in Section 1.2 whether the negative part of

the biharmonic Green function is small in a suitable sense when compared with its

positive part. In two dimensions, we have a family of domains – among which are

even nonconvex ones – with positive Green’s functions. These limaçons de Pascal

are discussed first and serve as a basis to give a first answer to the question just

mentioned.

6.2.1 The biharmonic Green function on the limaçons de Pascal

Lemma 6.5 does not supply us with a reasonable bound for the perturbation in or-

der to have a positive Green function. Hadamard found an explicit formula for the

biharmonic Green function on any limaçon. As already mentioned in Section 1.2 he

claimed in [222] that these Green functions were all positive. Although this claim

is wrong, his formula allowed Dall’Acqua and Sweers [120] to show that the Green

functions for a sufficiently large class of limaçons are indeed positive. We define the

filled limaçon by

Ωa = (−a,0)+
{
(ρ cosϕ,ρ sinϕ) ∈ R2; 0 ≤ ρ < 1+2acosϕ

}
. (6.17)

For a ∈
[
0, 1

2

]
the boundary is defined by ρ = 1 + 2acosϕ; for a = 0 it is the unit

circle and for a = 1
2

one finds the cardioid. In Figure 1.2 in Section 1.2, images are

shown of these limaçons which are rotated by 1
2
π .

Proposition 6.9. The biharmonic Green function for Ωa with a ∈
[
0, 1

2

]
is positive

if and only if a ∈
[
0, 1

6

√
6
]
.
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Before proving this result we fix some preliminaries that will give us additional

information on what happens when positivity breaks down. To do so, we fix the

conformal map ha : B = Ω0 → Ωa that maps the unit disk on the perturbed domains

and that keeps the horizontal axis on the horizontal axis. In complex coordinates it

is defined as follows

ha (η) = η +aη2.

The Green function on Ωa is defined through the coordinates on B; see Figure 6.1

for these curvilinear coordinates. We remark that according to Loewner [278] the

only conformal maps which leave the biharmonic equation invariant are the Möbius

transforms.

Fig. 6.1 Transformed polar coordinates corresponding to ha.

Let us write

ha (η) = x1 + ix2 and ha (ξ ) = y1 + iy2

and

r = |η −ξ | , R =
∣∣1−ηξ̄

∣∣ and s =

∣∣∣∣η +ξ +
1

a

∣∣∣∣ .

The formula Hadamard presents in [222] using these coordinates is

GΩa
(x,y) = 1

16π a2s2r2

(
R2

r2
−1− log

(
R2

r2

)
− a2

1−2a2

R2

s2

r2

R2

(
R2

r2
−1

)2
)

.

To verify that this is indeed the biharmonic Green function for Ωa requires some

tedious calculations which can be found in [120]. By setting

F (β ,q) = q−1− logq−β
(q−1)2

q
(6.18)

one obtains that
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