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ADHESIVE FLEXIBLE MATERIAL STRUCTURES

FRANCESCO MADDALENA, DANILO PERCIVALE, FRANCO TOMARELLI

Abstract. We study variational problems modeling the adhesion in-
teraction with a rigid substrate for elastic strings and rods. We produce
conditions characterizing bonded and detached states as well as opti-
mality properties with respect to loading and geometry. We show Euler
equations for minimizers of the total energy outside self-contact and
secondary contact points with the substrate.

Contents

Introduction 1
1. Adhesion of shearable elastic strings to a rigid substrate 4
2. Adhesion of elastic rods to a rigid substrate 7
3. Euler equations for a detached rod 15
4. Explicit conditions for detachment from a flat substrate 19
References 25

Introduction

At the fundamental level of some recent fields of research such as nanoscale
engineering and byophysics there is the need of a fine understanding of the
behavior of thin flexible material structures involved in complex interac-
tions. Indeed, the small scale interactions of material components, governed
by surface-tension forces and adhesive forces as one-dimensional nanostruc-
tures like nanotubes, nanowires and biopolymers adhering on different mate-
rial substrates, are crucial in the study of biological adhesion and the devel-
opment of nanoelectronics and nanocomposites as well as MEMS and NEMS
devices ([27]), e.g. super coiled DNA molecules, bacteria filaments, gecko in-
spired materials, actuators, etc. It has been shown that at the nanoscale,
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2 ADHESIVE FLEXIBLE STRUCTURES

the peeling of long slender molecules and nanostructures from substrates
involves a strong coupling between elasticity, friction, and adhesive forces.
At these scales, if carbon nanotubes can adhere to each other under the
influence of capillary forces, fluid-regulated forces are not the only factors
that must be examined and dispersion or van der Waals forces may become
more important than at larger scales, as well as the microscopic intermolec-
ular forces ([13]) of extended media start to have a macroscopic effect on
structural stability ([8],[3],[17],[18]).
The previous considerations sketch the physical framework in which we
move from the mathematical perspective with the aim of establishing suf-
ficiently general and, as far as possible, simplified mathematical models
capturing the essentials of the involved phenomena. In particular, here we
intend to develop the line of thoughts exposed in [19], [20], [21] (where only
linear elastic behavior was considered) and [7], [23], [25] and [24] by focus-
ing on nonlinear models of the structural behavior to the aim of settle a
variational scheme in which the study of the adhesion interactions of one-
dimensional non linear elastic filaments and curved rods can be carried on.
In Section 1 we study elastic models whose bulk energy is characterized by
shear deformations, under the simplifying assumption that the rigid sub-
strate boundary is a graph: we study the adhesion regime and focus the
attention on the main features regulating the mechanical behavior. In par-
ticular we show that the debonded state depends on the constitutive param-
eters and on the length of the curve representing the substrate boundary,
but it does not depend on the shape of such a curve (Theorems 1.3, 1.4).
In Section 2 we study adhesion models governed by curvature elasticity, i.e.
the bulk energy density is a measure of the curvature gap between the rod
and the rigid substrate.
Precisely we focus our analysis on the minimization of the functional

F(u) =





EJ

2

∫ L

0

|κ(u) − κ(u∗)|2 ds−Wf (u) +Wψ(u) if u ∈ A,

+∞ else,

(0.1)

where: u∗ and u denote respectively the unloaded and loaded rod, κ is the
scalar curvature, the flexural rigidity of the rod is given by the product EJ
of the Young modulus E times the moment of inertia J of the cross-section
of the rod, f is a given load, adhesion energy Wψ and load potential Wf are
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expressed respectively by

Wψ(u) = ψ(H1({p : u(p) 6= u∗(p)})) ,

Wf (u) = f · {u(L) − u∗(L)} ,
with ψ strictly increasing, ψ(0) = 0, H1 denotes the 1-d Hausdorff measure
and the set A of admissible configurations (clamped at first end, loaded
at the other end and confined in Ω) is the closure in the weak topology of
H2((0, L); Ω) of the following set A of simple curves

A =
{
u ∈ H2((0, L); Ω) : u injective in [0, L], |u̇| = 1,

and u(0) = u∗(0), u̇(0) = u̇∗(0)} ,
where Ω ⊂ R

2 is an open set, the substrate is given by Ω \ R
2.

We emphasize that A contains also non-simple curves, nevertheless self-
crossing of the rod is always forbidden in A, while self-contact of the rod
without interpenetration may take place (see Definition 2.9, Lemma 2.3,
Lemma 2.11): coincidence of the tangents must hold true (up to the sign)
at any multiple point (Proposition 2.2). The set A allows also configurations
undergoing secondary contact with the rigid substrate at detached points
of the rod. We analyze general conditions regulating bonded and debonded
states of the rod and, in particular, we deduce precise relationship governing
the case of strong adhesion (Theorem 2.15, Corollary 2.16, Remark 2.17)
in which the whole rod remains bonded to the substrate. This suggests a
shape optimization problem (Remark 2.18) in view of finding the support
curve realizing the strongest adhesion. Several properties of functional (0.1)
are proven in the last sections: in Section 3 we derive necessary conditions
of minimality, precisely we deduce the Euler-Lagrange equation (3.20) of
a detached solution in a general geometry; such equation retrieves Euler

elastica equation when the substrate is flat and the rod is compressed; in
Section 4 we show explicit conditions (Theorems 4.3, 4.4) for detachment
of rectilinear rods by exploiting an auxiliary rescaled functional.
About motivations for taking into account only scalar curvature in func-
tional (0.1) we refer to [1] and to a forthcoming paper [22] where justifi-
cation of this assumption is deduced by a dimension reduction via scaling
arguments. We refer to a forthcoming paper also for the analysis of local
minimizers (related to buckling phenomenon), which is motivated by data
of type described in Example 2.20 and Example 3.5 and can be performed
by exploiting the Euler equation (3.20) itself.
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1. Adhesion of shearable elastic strings to a rigid substrate

In this subsection we study a shearable elastic string modeling, for instance,
a viscous fluid filament, bonded to a rigid substrate through a thin adhesive
layer. We suppose the rigid substrate is given by the subgraph of a given
scalar function h ∈ C1([0, 1]) and that the initial configuration Γ of the
string is the graph of h: hence Γ is a C1 regular curve. We denote by γ the
parametrization of Γ:

γ(x) = (x, h(x)), ∀x ∈ [0, 1], (1.1)

∫ 1

0

|γ̇| dx =

∫ 1

0

√
1 + ḣ2dx = L. (1.2)

The unit normal vector to the curve is inward oriented with respect to the
rigid substrate. The tangent and normal fields will be denoted respectively
by tγ and nγ (where nγ is the π/2 radiants clock-wise rotation of tγ). We
set γ(0) = p0 and γ(1) = p1 where, due to (1.2), p1 belongs to the set

P
def
=
{
p = (p1, p2) ∈ R

2 : |p− p0| ≤ L , p2 ≥ h(p1)
}

(1.3)

Let u : Γ → R
2 be the displacement field of the string, we take the following

form for the elastic (shearing) energy of the string:

We(u) =
k

2

∫

Γ

|Dtγ
(u · nγ)|2 dH1 , (1.4)

where k denotes the stiffness of the string and Dtγ(u · nγ) represents the
tangential derivative of u · nγ on Γ. The adhesion interaction of the string
with the substrate offers to the energetic competition a contribution which
is an increasing function of the length of the detached set, that is

Wψ(u) = λH1(Γu), (1.5)

where

Γu = {p ∈ Γ | u(p) · nγ(p) > 0} (1.6)

is the detached set and

λ > 0 (1.7)

is a given constitutive parameter. Therefore the total energy is given by the
functional

F (u) = We(u) +Wψ(u).
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In order to study the above functional we introduce the vector valued func-
tion v : [0, 1] → R

2 defined as v = u ◦ γ and set w = v · nγ = (u ◦ γ) · nγ .
We denote the set of parameters related to the detached set by

Iw = {x ∈ [0, 1] | w = (v(x) − γ(x)) · nγ(x) > 0}. (1.8)

hence γ(Iw) = Γv. Let

G(w) =
1

2

∫ 1

0

k
|ẇ|2
|γ̇| dx+ λ

∫

Iw

|γ̇| dx. (1.9)

Obviously, we have F (u) = G(w) hence we are interested in minimizing the
functional G in the admissible set

Wγ = {w ∈ H1((0, 1)) : w ≥ 0, w(0) = 0, w(1) = w} (1.10)

where

w
def
= (v(1) − p1) · nγ(1). (1.11)

Theorem 1.1. Assume (1.7)-(1.9). Then the functional G achieves a non-
negative minimum in the set Wγ, whenever we fix the C1 regular graph γ.

Proof. Notice that min |γ̇| ≥ 1 since γ is C1(0, 1) regular. Then the elastic
term in (1.9) is lower semicontinuous in H1(0, 1). If ϕk ⇀ ϕ in H1(0, 1) then
ϕk uniformly converges to ϕ hence 1Iwk

→ 1Iw in L1(0, 1) and therefore
∫

Iwk

|γ̇| dx→
∫

Iw

|γ̇| dx (1.12)

thus proving semicontinuity of G. Since G is coercive and nonnegative, we
get the thesis by applying a standard compactness argument. �

Theorem 1.2. Assume (1.7)-(1.9). Assume that w ∈ argminWγ
G . Then

there exists a unique ξ ∈ [0, 1] such that Iw = (ξ, 1] and

G(w) =
1

2

∫ 1

ξ

k
|ẇ|2
|γ̇| dx+ λ

∫ L

ξ

|γ̇| dx.

Proof. We can repeat the same analysis which is contained in the proof of
Proposition 2.3 in [19]. �

Theorem 1.3. Assume (1.7)-(1.9). Then

minG = min
ξ

{
1

2
kw̄2

(∫ 1

ξ

|γ̇| dx
)−1

+ λ

∫ 1

ξ

|γ̇| dx
}
. (1.13)
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Proof. By Proposition 1.2 we get easily

minG = min
ξ

min {J(ξ, w) : w ∈Wγ} (1.14)

where

J(ξ, w) =
1

2

∫ 1

ξ

k
|ẇ|2
|γ̇| dx+ λ

∫ 1

ξ

|γ̇| dx. (1.15)

If wo ∈ argminw J(ξ, w) then Euler equation in (ξ, 1) yield

ẇo = w|γ̇|
(∫ 1

ξ

|γ̇| dx
)−1

(1.16)

in (ξ, 1] and by substituting in (1.15) we get easily (1.13). �

Theorem 1.4. Assumptions (1.7)-(1.9) entail that only one of the following
two alternatives hold true.
If

kw2

2λ
< L2, (1.17)

then the detachment parameter ξ is the unique solution in (0, L) of
∫ 1

ξ

|γ̇| dx =
w
√
k√

2λ
(1.18)

and

minG = w
√

2λk. (1.19)

If
kw2

2λ
≥ L2, (1.20)

then the detachment point is ξ = 0, i.e. we obtain a complete debonding,
and

minG =
w2k

2L
+ λL. (1.21)

Proof. The theorem follows by applying the standard optimality conditions
to the function

ξ →
{

1

2
kw2

(∫ 1

ξ

|γ̇| dx
)−1

+ λ

∫ 1

ξ

|γ̇| dx
}
. (1.22)

�
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2. Adhesion of elastic rods to a rigid substrate

We focus our attention on the adhesion of an Euler rod which is glued
to a rigid substrate clamped at one end and loaded at the other one: the
aim of this section is to give some condition on the load in order to avoid
the detachment. We study the adhesion phenomenon in the context of non
linear elasticity by considering the bulk energy density as the curvature gap
between the rod and the support.
We denote the standard basis of R

2 by {e1, e2} and the clockwise rotation
of π/2 by

W = e1 ⊗ e2 − e2 ⊗ e1. (2.1)

We assume: Ω is a bounded C2-regular bounded open subset of R
2; the

bonded configuration Γ of the rod is a (not necessarily flat) portion of ∂Ω
such that H1(Γ) = L > 0, here Γ is the unstressed configuration of the
elastic rod; Ω is the region where the obstacle allows the rod to undergo
deformations; ψ is the cost function to detach a unit length of the road. We
assume

ψ : [0, L) → [0,∞) strictly increasing, ψ(0) = 0. (2.2)

We shall use the notation

nu = Wu̇ ∀u ∈ H2((0, L),R2).

We introduce a parametrization u∗ of Γ with respect to the arc length and
the related regularity assumptionsas follows

u∗ ∈ H2((0, L); ∂Ω), u∗ is injective in [0, L] . (2.3)

The above parametrization is choosen in such a way that u̇∗ provides the
standard positive orientation of the boundary ∂Ω and

nΩ = Wu̇∗ = nu∗

is the unit outward vector normal to ∂Ω. We describe the admissible region
Ω as the sublevel of a given function ϕ :

Ω = {x ∈ R
2 : ϕ(x) ≤ 0} (2.4)

ϕ ∈ C2(R2,R); lim
|x|→+∞

ϕ(x) = +∞; {∇ϕ(x) = 0}∩{ϕ(x) = 0} = ∅. (2.5)

Let f ∈ R
2 be a given concentrated load acting at the end point of the rod.

For every u ∈ H2(0, L; Ω) such that |u̇| = 1 a.e. in [0, L] we define the scalar
curvature

κ(u) = |ü| = ü · nu = ü · Wu̇. (2.6)
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It is worth noticing that for any such u we have ü · u̇ = 0 a.e. hence
ü = κ(u)Wu̇. The elastic rod is clamped at s = 0 and confined in Ω. We
define the set A of the admissible configurations of the rod via

A =
{
u ∈ H2((0, L); Ω) : u injective, |u̇| = 1

and u(0) = u∗(0), u̇(0) = u̇∗(0)} (2.7)

A is the closure of A in the weak topology of H2((0, L); Ω). (2.8)

We notice that the bonded configuration u∗ belongs to A .
The total energy of the rod in adhesion contact with the support and subject
to a given load acting at the endpoint s = L is given by the functional

F(u) =





EJ

2

∫ L

0

|κ(u) − κ(u∗)|2ds−Wf (u) +Wψ(u), ifu∈A

+∞ otherwise

(2.9)

where
Wψ(u) = ψ(H1({p : u(p) 6= u∗(p)})), (2.10)

Wf (u) = f · {u(L) − u∗(L)} , f ∈ R
2 . (2.11)

Theorem 2.1. Assume (2.2)-(2.11).
Then the functional F admits minimizers.

Proof. Since the rod is clamped in s = 0 then Wf is bounded and hence F
is bounded from below and coercive. Then every minimizing sequence, say
(un)n∈N, is bounded in H2(0, L; R2) hence, up to subsequences, both u̇n and
un are uniformly convergent in [0, L]. Lower semi-continuity of F yields the
expected result. �

In the sequel we shall use the short notation argminF in place of argmin
A

F .

For every τ ∈ [0, L) we introduce the following sets

Aτ =
{
u ∈ H2((τ, L); Ω) : u injective in [τ, L], |u̇| = 1,

and u(τ) = u∗(τ), u̇(τ) = u̇∗(τ)} ,
Aτ = closure of Aτ in the weak topology of H2((τ, L); Ω) .

The set A0 will be shortly denoted by A.
The curves in Aτ may lack injectivity, nevertheless the self contact is allowed
only without crossing, as it is clarified in the sequel by Definitions 2.7, 2.11,
Lemmas 2.2, 2.11 and Theorem 2.13.
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Lemma 2.2. Assume (2.4)-(2.5), (2.7)-(2.8), u ∈ Aτ \Aτ and there exist
0 ≤ s1 < s2 < L such that u(s1) = u(s2) . Then |u̇(s1) · u̇(s2)| = 1.

Proof. Let u ∈ Aτ \Aτ and 0 ≤ s1 < s2 < L such that u(s1) = u(s2). If
we assume that |u̇(s1) · u̇(s2)| < 1 then by setting B±(u(s1), δ) = {x ∈
B(u(s1), δ) : x ·nu ≶ 0}, we find that u(s) belongs to B−(u(s1), δ) (resp to
B+(u(s1), δ)) in a small right (resp. left) neighborhood of s2. By recalling
now that u is the weak limit (in H2) of simple curves we get a contradiction.

�

Lemma 2.3. Assume (2.2)-(2.11) and u ∈ argmin F .
Then, either u ≡ u∗ or there exists a unique ξu ∈ [0, L) such that

u(s) = u∗(s) ∀s ∈ [0, ξu] , u(s) 6= u∗(s) ∀s ∈ (ξu, L] . (2.12)

Proof. Let K = {s ∈ [0, L] : u(s) = u∗(s)}. Since ϕ(u(s)) ≥ 0 then u̇ = u̇∗

on K and if we assume by contradiction that there exists (α, β) ⊂ [0, L]\K
with α, β ∈ K then by choosing ū = u in [0, L]\ [α, β] and ū = u∗ otherwise
we get F(ū) < F(u) thus contradicting minimality of u. �

Definition 2.4. We will denote by Ã the subset of u ∈ A such that there
exists a value ξu ∈ [0, L) with

u(s) = u∗(s) ∀s ∈ [0, ξ] , u(s) 6= u∗(s) ∀(ξ, L] .

Remark 2.5. By virtue of Lemma 2.3 we get argminA F ⊂ Ã and

min
A

F = min
Ã

F = min
ξ

{
ψ(L− ξ) + min

u∈Aξ

Fξ(u)

}
(2.13)

where

Fξ(u) =
EJ

2

∫ L

ξ

|κ(u) − κ(u∗)|2 ds−
∫ L

ξ

f · (u̇− u̇∗) ds. (2.14)

Definition 2.6. For every u ∈ Ã s.t u 6≡ u∗ , the value ξu given by Def-
inition 2.4 is called detachment parameter of u while u(ξu) is called the
detachment point of u.
ξu is the unique ξ ∈ [0, L] with u(s) = u∗(s) for every s ∈ [0, ξ] and
u(s) 6= u∗(s) in (ξ, L].
We emphasize that this value ξu coincide with the one introduced by Lemma
2.3. This is the reason why they are labelled in the same way.
The detachment parameter ξu is shortly denoted by ξ whenever there is no
risk of confusion.
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Figure 2.1. Examples of secondary contact points.

Definition 2.7. We say that x ∈ ∂Ω is a secondary contact point of u ∈ Ã
with the substrate if there exist s ∈ (ξu, L] with x = u(s) and ϕ(x) = 0.

Remark 2.8. Lemma 2.3 does not exclude secondary contact points.

Definition 2.9. We say that x ∈ Ω is self-contact point of u∈A if
there exist s, s̃ ∈ [0, L] with s̃ 6= s and x = u∗(s̃) = u(s) 6= u∗(s).
We notice that self-contact points may have multiplicity bigger than 2.

Remark 2.10. The property u ∈ A does not exclude self-contact points
x, moreover Proposition 2.2 entails that all oriented tangent vectors at x

coincide up to the sign if x 6= u(L). Nevertheless crossing is forbidden for
u the set of admissible configurations A even if self-contact takes places, as
it is clarified by the following statements.
Moreover, Lemma 2.3 allows for u ∈ argminF the existence of a secondary
contact or self contact point x = u(s) with ξu < s ≤ L.

Lemma 2.11. Assume (2.4)-(2.5) and (2.7)-(2.8). If x = u(s) = u(s̃) is
an isolated self-contact point of u ∈ A, i.e. s, s̃ ∈ [0, L] , s 6= s̃ , and

∃ δ > 0 s.t. x is the only self contact point of u in Bδ(x) ,

then there is ε > 0 s.t. the two curves obtained by restricting the parametriza-
tion of u to (s− ε, s+ ε) and (s̃− ε, s̃+ ε) do not cross each other.
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Figure 2.2. Example of self-crossing.

Proof. By definition of the admissible set A there is a sequence of simple
curves uk which is H2 weakly convergent (hence uniformly) to u. By contra-
diction: if the two curves cross each other at an isolated self-contact point x

takes place, then for small enough δ > 0 and 0 < r < δ there is a δ−tubular
neighborhood U of u([0, L]) s.t. U ∩ Br(x) has an X shaped topology. For
k big enough, the curve uk must be contained in U ∩Br(x) and follow the
orientation of u, hence uk cannot be simple, which is a contradiction. �

In general self-crossing of an C∞ curve may take place in a more complicate
situation than the case of an isolated self-contact point: along a nontrivial
portion of a curve or even a Cantor-like set. In order to show that this never
happens in A , first we introduce a suitable definition Definition 2.12), then
we get the conclusion by adapting the proof of the simpler case.

Definition 2.12. We say that u undergoes self-crossing if there are five
distinct points x, x1, x2, x3, x4 and a simply connected, bounded C1 neigh-
borhood V of x s.t. V ⊂ Ω , xj belong to ∂V and are ordered according to
their indexes j along ∂V, xj = u(sj) , j = 1, 2, 3, 4, x = u(s) = u(s̃) ,
0 ≤ s1 < s < s3 < s2 < s̃ < s4 ≤ L and u̇(s1), u̇(s2) are the inward normal
at ∂V at x1 and x2 respectively, while u̇(s3), u̇(s4) are the outward normal
at ∂V at x3 and x4 respectively and both u((s1, s3)),u((s2, s4)) ⊂ V .

Theorem 2.13. Assume u ∈ A and (2.4)-(2.5),(2.7)-(2.8) hold true.
Then, referring to Definition 2.12, u never undergoes self-crossing.
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Figure 2.3. Examples of self-contact points.

Proof. By definition of the admissible set A there is a sequence of simple
curves uk which is H2 weakly convergent (hence uniformly) to u. By con-
tradiction: if u undergoes self-crossing then, according to Definition 2.12
and the notation therein, for small enough δ > 0 there is a δ−tubular
neighborhood U of u([s1, s3]) ∪ u([s2, s4]) s.t. U ∩ ∂V has four disjoint
components Ej, with xj = u(sj) ∈ Ej , which can be chosen such that
nV (x) · u̇(sj) > 3/4, for every x ∈ Ej . For k big enough, the curve uk must
hit Ej in such a way that uk hit Ej at y = uk(σj) with u̇k(σj) ·u(sj) > 3/4
and uk((σ1, σ2)) ∪ uk((σ3, σ4)) ⊂ V . Then uk([σ1, σ3]) disconnects V and
x2,x4 are in different connected components, hence uk cannot be simple,
which is a contradiction. �

Remark 2.14. We emphasize that Definition 2.12 neither entails that x is
an isolated crossing point of u, nor that there is any other isolated crossing
point of u in V. Definition 2.12 simply tells that two branches of u cross
each other in V.

We are now in a position to prove the following statement.

Theorem 2.15. (Strong Adhesion)
Assume (2.2)-(2.11), 1 ≤ p ≤ ∞, and

ψ(τ) ≥ |f |2
6EJ

τ 3 +
2 |f | ‖κ(u∗)‖Lp(L−τ,L)

(p/p− 1)p/p−1
τ 2− 1

p ∀τ ∈ [0, L] (2.15)

and let u ∈ argminF . Then u ≡ u∗.

Proof. An integration by parts and the condition u̇(ξ) = u̇∗(ξ) show that
∫ L

ξ

f · (u̇− u̇∗) ds =

∫ L

ξ

(L− s)f · (ü− ü∗) ds (2.16)
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and since

f · (ü− ü∗) = (κ(u) − κ(u∗))f · Wu̇ + κ(u∗)f · (Wu̇− Wu̇∗) (2.17)

by using (2.14) we get

ψ(L− ξ) + Fξ(u) ≥

≥ ψ(L− ξ) +

∫ L

ξ

∣∣∣∣∣

(√
EJ

2
κ(u) − κ(u∗)

)
− L− s√

2EJ
f · Wu̇

∣∣∣∣∣

2

ds+

− |f |2
2EJ

∫ L

ξ

(L− s)2 ds−
∫ L

ξ

(L− s) κ(u∗) f · (Wu̇− Wu̇∗) ds ≥

≥ ψ(L− ξ) − |f |2(L− ξ)3

6EJ
− 2(L− ξ)2− 1

p

(p/p− 1)p/p−1
|f |‖κ(u∗)‖Lp(ξ,L) ≥

≥ 0 = F(u∗) ∀ξ ∈ (0, L]

and the proof is achieved. �

Corollary 2.16. We assume (2.2)-(2.11),

ψ(τ) = µ τ 2− 1

p ∀τ ∈ [0, L] , µ > 0 (2.18)

and

|f | ≤ min

{√
6µEJ

L
p+1

2

,
µ(p/p− 1)p/p−1

2‖κ(u∗)‖Lp(0,L)

}
. (2.19)

Then u = u∗.

Proof. Assumptions (2.18) and (2.19) together entail (2.15).
Hence by Theorem 2.15 we have u = u∗. �

Remark 2.17. We underline the dependence of the right hand side of (2.19)
on the physical and geometrical characteristics of the structure: in particular
the dependence on the ratio EJ/Lα (α > 1) which is crucial in the study of
elastic stability, while the dependence on the ratio µ/‖κ(u∗)‖Lp(0,L) says that
the constitutive property of adhesion material and the substrate curvature
determine the overall adhesion strength.
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Remark 2.18. The right-hand side of (2.19) can be thought of as a mea-
sure of the global adhesion strength of the rod glued in the configuration
u∗ . This perspective leads to the formulation of the following optimization
problem: find a curve maximizing the global adhesion strength among the

closed curves Γ which enclose a connected region with fixed area”, via the
minimization of functionals of type

Γ 7−→
∫

Γ

(c+ κp) dH1 . (2.20)

Similar minimization problems are studied also in image
segmentation and image inpainting: we refer to [5], where the relaxed for-
mulation of (2.20) in the class of varifolds is studied.

When the force field has the same direction of the inner normal to the
rigid substrate, then intuition suggests that minimizers coincide with the
fully bonded rod, since admissible deformations are allowed to stay only in
the complementary region of the rigid obstacle. Indeed this is not true in
general: precisely the following statement shows that, if Ω is convex (say,
the substrate is concave), then this intuition is correct; on the other hand
Example 2.20 shows that, if Ω is concave then it fails to be true.

Proposition 2.19. Assume (2.2)-(2.11), u ∈ argminF , ϕ is a convex
function and

f = λ∇ϕ(u∗(L)), λ > 0 . (2.21)

Then u ≡ u∗.

Proof. We have that, by using convexity of ϕ and recalling ϕ(u(L)) ≤ 0 =
ϕ(u∗(L)). By contradiction, if u 6= u∗ then Wψ(u) > 0, hence

F(u) >
EJ

2

∫ L

0

|κ(u) − κ(u∗)|2 ds−Wf (u) =

=
EJ

2

∫ L

0

|κ(u) − κ(u∗)|2ds− λ∇ϕ(u∗(L))·(u(L) − u∗(L)) ≥

≥ EJ

2

∫ L

0

|κ(u) − κ(u∗)|2ds− λ(ϕ(u(L) − ϕ(u∗(L)) ≥ 0

= F(u∗) .

(2.22)

�
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Unfortunately the above result is true only in the case the admissible de-
formations take place in a convex set, as we can show in the following

Example 2.20. We choose ϕ(x) = 1 − |x|2, Ω = R
2 \ B1(0) , u∗(s) =

(cos s, sin s), s ∈ [−π
2
, π], and f = fe1. By assuming v̇(s) = e1 with

v(−π
2
) = u∗(−π

2
) = −e2 we get ϕ(v(s)) ≤ 0 with strict inequality for

−π/2 < s ≤ L . Then, by taking f sufficiently large, the energy of v be-
comes strictly negative, therefore u∗ cannot be a minimizer:

F(v) =
3

4
πEJ − f

(
1

2
+

3

2
π

)
+ ψ

(
3

2
π

)
< 0 = F(u∗) .

The previous example suggests that a more accurate description of the prob-
lem requires a careful analysis of the local minimizers besides the study of
global minimizers which we are considering in the present work.

3. Euler equations for a detached rod

In this section we assume a general geometry of the substrate as described
by (2.4),(2.5) and look for conditions fulfilled by an optimal configuration
u in case of detachment state.
We fix u ∈ argminF according to this case, then, by Lemma 2.3, we can
assume its detachment parameter ξ = ξu is such that

0 ≤ ξ < L, (3.1)

u(s) ≡ u∗(s) ∀s ∈ [0, ξ], u(s) 6= u∗(s)∀s ∈]ξ, L]. (3.2)

Let M ∈ SO(2) be an orthogonal matrix, then by Euler Formula there is
ϑ ∈ [−π, π) s.t. M represents a rotation of angle ϑ in R

2 :

M = M(ϑ) = cos(ϑ)I + sin(ϑ)W , (3.3)

where W is given by (2.1) and I is the identity matrix.
We can represent any admissible configuration v ∈ A of the rod as follows

v̇ = M(ϑv) u̇∗ , ϑv = ϑv(s), (3.4)

by selecting a branch ϑv of the multi-valued function Θv (oriented angle
between v and u∗) such that

ϑv(s) ∈ H1(0, L), M ∈ C∞(R, SO(2)). (3.5)

The restriction of u to the interval [ξu, L] minimizes

Fξu(v) =
EJ

2

∫ L

ξu

|κ(v) − κ(u∗)|2 ds−
∫ L

ξu

f · (v̇ − u̇∗) ds (3.6)
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among v in

Aξ = {v ∈ A : v(s) = u(s) = u∗(s) ∀s ∈ [0, ξu]}. (3.7)

To the aim of deducing necessary conditions of minimality we have to study
variations of Fξ around a curve u, whose restriction in [ξ, L] is a global min-
imizer in Aξ.. In order to perform these variations correctly, if u undergoes
self-contact and/or secondary contact with the substrate, the variations can
be made only in the last interval avoiding these interactions.

Theorem 3.1. (Euler-Lagrange equations)
Assume (2.2)-(2.5), (2.9)-(2.11), u belongs to argminF and ξ = ξu ∈ [0, L]
is the detachment parameter of u .
Moreover, by referring to Definitions 2.7 and setting

ξ̃u = max{ξ, s, t}, over ξ, s, t ∈ [0, L] s.t. ξ = ξu , and
u(s) is a secondary contact point, u(t) is a self-contact point,

(3.8)

assume
ξ̃u < L; (3.9)

Then ϑu fulfils the following relationship:

ϑ̈(s) =
1

EJ
f · {(sinϑ(s)I − cosϑ(s)W) u̇∗(s)}, s ∈ (ξ̃u, L), (3.10)

ϑ(ξ̃u) = 0 , ϑ̇(L) = 0 . (3.11)

Proof. We have the representation

u̇ = M(ϑu) u̇∗ , ϑu = ϑu(s) (3.12)

By the definition of ξ̃u we know that

u(s) ∈ Ω ∀s ∈ (ξ̃u, L] . (3.13)

s→ u(s) is injective in (ξ̃u, L] . (3.14)

Then, for any δ > 0 and

η ∈ {h ∈ C2([0, L]) spt h ⊂ [ξ̃u + δ,L]} , (3.15)

there is ε0 > 0 s.t., by denoting vε(s) the unique function which fulfills

vε(0) = u∗(0) , v̇ε(0) = u̇∗(0) , v̇ε(s) = M(εη)u̇(s) ,

we have

vε ∈ A, vε simple in [ξ̃u + δ, L], ϕ(vε) ≤ ϕ < 0 ∀ε : −ε0 < ε < ε0
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say vε is an admissible configuration having neither self-contact nor secondary-
contact in [ξu, L]. As in (3.5) we choose ϑu, shortly denoted by ϑ = ϑ(s).
Then, by M(ϑ+ εη) = M(ϑ)M(εη), we get

v̇ε(s) = M(ϑu(s) + εη(s))u̇∗(s) = M(εη(s))u̇(s). (3.16)

By (2.6) we have

κ(vε) = v̈ε · Wv̇ε =

= ( M(ϑvε
) ü∗) · ( W M(ϑvε

) u̇∗) +

+ ϑ̇vε
( M

′(ϑvε
) u̇∗) · ( W M(ϑvε

) u̇∗)

= κ(u∗) + ϑ̇vε
( M(ϑvε

− π/2) u̇∗) · ( M(ϑvε
− π/2) u̇∗) ,

hence

κ(vε) = κ(u∗) + ϑ̇vε
. (3.17)

By taking into account (3.16) and (2.6) we evaluate the functional (3.6) at
vε, we get

F(vε) = Iξ̃u(ϑu + εη) (3.18)

where the functional Iξu of the angular function is defined as follows:

Iξ̃u(ϑ)
def
=

∫ L

ξ̃u

{
ϑ̇2 − f ·

(
(cosϑ(s) − 1)I + sinϑ(s)W

)
u̇∗

}
ds. (3.19)

With a standard first variation argument we impose

d

dε
Iξ̃u(ϑ+ εη)|ε=0 = 0 ∀η as in (3.15) .

Hence, by taking into account that sptη ⊂ [ξ̃ + δ,L] and ϕ(u(L)) < 0, we
get (3.10),(3.11).
The computation of the first variation is correct under the available regu-
larity assumption (see (3.5)) that ϑ, η ∈ H1(0, L), since M is an analytic
function with bounded derivatives in R. �

Remark 3.2. The right-hand side of (3.10) is equal to

1

EJ
f · u∗(s) sin (ϑ(s)) − cos (ϑ(s)) ‖f ∧ u∗(s)‖ =

=
1

EJ
|f |
(
sin(ϑ(s)) cos((ϕ∗(s)) − cos(ϑ(s)) sin(ϕ∗(s))

)
,
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where ϕ∗(s) denote the positively-oriented angle between f and u∗(s) .
Hence the Euler equation (3.10) reads as follows:

ϑ̈(s) =
1

EJ
|f | sin

(
ϑ(s) − ϕ∗(s)

)
, s ∈ (ξ̃u, L) . (3.20)

we emphasize that whenever ϕ∗(s) ≡ kπ, k ∈ Z, by equation (3.20) we
retrieve the well known Euler elastica equation.

Remark 3.3. Among solutions ϑ of (3.20) we have to select only the ones
such that, by defining vϑ as follows

vϑ(s) =





u∗(s) if s ∈ [0, ξ̃u]

u∗(ξ̃u) +

∫ s

ξ̃u

M(ϑ(σ))u̇∗(σ)dσ if s ∈ (ξ̃u, L],
(3.21)

we obtain that vϑ ∈ A and vϑ does not undergo neither self-contact nor

secondary contact points in (ξ̃u, L], that is

vϑ(s) ∈ Ω ∀s ∈ (ξ̃u, L] and vϑ is injective in [ξ̃u, L]. (3.22)

Corollary 3.4. (Compliance)

Assume (2.2)-(2.11), (3.8),(3.9) hold true, u belongs to argminF and ξ̃u ∈
[0, L] is the detachment parameter of u . Then

∫ L

ξ̃u

ϑ̇2 ds =
1

EJ

∫ L

ξ̃u

f · [(cos ϑu(s)W − sinϑu(s)I) u̇∗]ϑu(s) ds

= − |f |
EJ

∫ L

ξ̃u

ϑu(s) sin(ϑu(s) − ϕ∗(s)) ds,

(3.23)

and
F(u) = Iξ̃u(ϑu) =

= − |f |
EJ

∫ L

ξ̃u

{
1

2
sin(ϑu(s)−ϕ∗(s))+ϑu(s)[cos(ϑu(s)−ϕ∗(s))−cosϕ∗(s)]

}
ds.

(3.24)

Proof. By multiplying for ϑ both the terms in (3.10), after integrating and
taking into account (3.11) and (3.20) we get (3.23). After a simple substi-
tution (3.24) follows. �
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Figure 3.1. Example 3.5.

A slight modification of Example 2.20 provides a simple explicit solution of
the nonlinear equation (3.20) fulfilling boundary conditions (3.11), as shown
by the following example.

Example 3.5. We choose ϕ(x) = x4
1 + ((|x2| − 1)+)4 − 1 , say

Ω = {x ∈ R
2 | |x1| > 1 if |x2| < 1, x4

1 + |x2 − 1|4 > 1 if |x2| > 1},
u∗ denotes the arc-length parametrization of the portion of the boundary
∂Ω connecting (0,−2) and (−1, 0) whose length is L, u∗(0) = (0,−2) and
u∗(L) = (−1, 0) and f = fe1.
In such geometry we find explicitely a complete detached solution which do
satify (3.20) and (3.11), given by

w(s) = (s,−1), s ∈ [0, L].

Indeed we have ξ̃w = 0 and ϑw(s) = ϕ∗(s) for every s. Then, by taking f
sufficiently large we have F(w) < F(u∗). It is easy to verify that u∗ is a
strict local minimizer for F in the weak topology of H2(0, L; Ω), moreover
u∗ seems to be the physical solution since u∗ cannot snap to w without
overleaping a potential wall. It seems reasonable also that w is a global
minimizer for F in A, though we are not able to prove this point.

4. Explicit conditions for detachment from a flat substrate

In this section on we focus our attention on rectilinear beams. We assume

Ω = {x = {x1, x2} ∈ R
2 : x2 ≥ 0}, (4.1)

u∗(s) = se1, s ∈ [0, L]. (4.2)
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Hence (2.4),(2.5) are automatically fulfilled with the choice ϕ(x) = −x2 .
Then, by assuming again (2.2)(2.3), the functional (2.9) reads

F(u) =





EJ

2

∫ L

0

κ(u)2 ds− f · (u(L) − Le1) +Wψ(u), if u ∈ A

+∞ otherwise

(4.3)

and we introduce now an auxiliary problem for a re-scaled version of the
functional F . First we define an auxiliary functional J : [0, L]×H2(0, 1; R2) →
R ∪ {+∞} as follows:

J (ξ,v) =





E(ξ,v) if v ∈ B, 0 ≤ ξ < L
0 if v ∈ B, ξ = L
+∞ otherwise

(4.4)

where B is the closure in the weak topology of H2(0, 1; R2) of the set B,
defined as follows,

B = {u ∈ H2((0, 1); R2) : u injective, |u̇| = 1
and u(0) = u∗(0), u̇(0) = u̇∗(0)} (4.5)

and

E(ξ,v) =
EJ

2(L− ξ)

∫ 1

0

κ(v)2 ds− (L− ξ)

∫ 1

0

f · (v̇(s) − e1) ds+ ψ(L− ξ) .

(4.6)
In order to prove that J admits global minimizers via direct method in the
calculus of variations it is enough showing that J is lower semicontinuous
in the product of [0, L] and H2(0, 1; Ω) endowed with euclidean and weak
convergence respectively. This property is proven by the following Lemma.

Lemma 4.1. Assume (2.2)-(2.3), (2.7),(2.8) and (4.1)-(4.6). Then for ev-
ery ξn → ξ in [0, L] and for every vn → v weakly in H2(0, 1; Ω) we have

lim inf J (ξn,vn) ≥ J (ξ,v)

and J achieve a finite minimum over {[0, L] ×A} .
Proof. The proof is obvious when ξ 6=L. If ξ=L we have only to prove that

lim inf J (ξn,vn) ≥ 0 = J (L,v).
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Such relationship follows by Poincarè and Young inequalities:
∫ 1

0

f · (v̇n(s) − e1) ds ≤
|f |2
EJ

+
EJ

4

∫ 1

0

|v̇n(s) − e1|2 ds ≤

≤ |f |2
EJ

+
EJ

4

∫ 1

0

|v̈n(s)|2 .
(4.7)

Then the thesis follows by

J (ξn,vn) ≥
EJ

4(L− ξn)

∫ 1

0

|v̈n(s)|2 ds− (L− ξn)
|f |2
EJ

+ ψ(L− ξn) ≥

≥ −(L− ξn)
|f |2
EJ

.

(4.8)

�

We prove now that minimization of J and F are equivalent problems.

Theorem 4.2. Assume (2.2)-(2.3), (2.7),(2.8), (4.1)-(4.6) hold true.
If u ∈ argminF , then

• If u ≡ u∗ then (L,v) ∈ argminJ for every v ∈ A and J (L,v) = 0.
• If there is a detachment parameter ξu < L, then (ξu,v) ∈ argminJ ,

where v is the unique curve related to u by the following relation

v(t) = (L− ξ)−1u(ξ+ t(L− ξ)) if , 0 ≤ ξ < L, t ∈ [0, 1], u ∈ A. (4.9)

Conversely let (ξ,v) ∈ argminJ then

u(s) =






s e1 if 0 ≤ s ≤ ξ

(L− ξ) v

(
s− ξ

L− ξ

)
if ξ < s ≤ L

(4.10)

belongs to argminF .
In addition if ξ < L we get u(t) · e2 > 0 in (0, L) and v(t) · e2 > 0 in (0, 1).
Notice that we can have v(1) · e2 = 0 in case of secondary contact with the
substrate at the free end of the rod (e.g. when u(L) 6= u∗(L), ϕ(u(L)) = 0).

Proof. Let u be a global minimizer of F , and ξ ∈ [0, L) its detachment
parameter. Set v(t) = (L−ξ)−1u(ξ+ t(L−ξ)). A direct computation shows



22 ADHESIVE FLEXIBLE STRUCTURES

that

F(u) =
EJ

2(L− ξ)

∫ 1

0

κ(v)2 ds+

−(L− ξ)

∫ 1

0

f · (v̇(s) − e1) ds+ ψ(L− ξ)

(4.11)

hence, arguing by contradiction, if (ξ,v) were not a global minimizer of J
then there should exist (ξ′,v′) such that

J (ξn,vn) < J (ξ,v).

Then by setting

u′(s) = (L− ξ′)v′

(
s− ξ′

L− ξ′

)

we get easily
F(u′) = J (ξ′,v′) < J (ξ,v) = F(u)

thus contradicting minimality of u. The case ξ = L can be treated analo-
gously.
In order to prove the converse we may notice that we have only to show that
v2 > 0 in (0, 1) whenever ξ < L: if this were not true, then by proceeding as
in the proof of Lemma 2.4, we may show that there exists a unique 0 < τ < 1
such that v(t) = te1 in [0, τ ] and v(t) 6= te1 for every t ∈ (τ, 1]. Then we
may choose 0 < δ < τ and by setting w(t) = (1 − δ)−1v(δ + t(1 − δ)) we
get, by taking into account that v(t) = te1 in [0, δ],

J (ξ + δ(L− ξ),v) = (1 − δ)

{
EJ

2(L− ξ)

∫ 1

0

|v̈(s)|2 ds
}

+

−(1 − δ)

{
(L− ξ)

∫ 1

0

f · (v̇(s) − e1) ds

}
+ ψ((1 − δ)(L− ξ)) <

< J (ξ,v),
(4.12)

a contradiction that completes the proof. �

The equivalence Theorem 4.2 provides additional information on the struc-
ture for global minimizers of F . For instance, in the present context of flat
substrate, if ψ grows slowly enough then either the rod stays bonded to the
substrate or it is fully detached, as stated by the following Theorem.
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Theorem 4.3. Assume (2.2)-(2.3), (2.7),(2.8), (4.1)-(4.6), u ∈ argminF ,
ξ = ξu is the related detachment parameter and

ψ ∈ C1([0, L]) s.t. t→ t−1ψ(t) is non increasing in (0, L] . (4.13)

Then either u ≡ u∗ or the detachment parameter fulfils ξu = 0.

Proof. Assume by contradiction that ξ ∈ (0, L): then, by setting v(s) =
u(ξ+ s(L− ξ)), Theorem 4.2 implies that (ξ,v) is a global minimizer of J .
Since

∂J
∂ξ

(u, ξ) =
EJ

2(L− ξ)2

∫ 1

0

κ(u)2 ds+

∫ 1

0

f ·(u̇(s)−e1) ds−ψ′(L−ξ) (4.14)

and we have
∂J
∂ξ

(v, ξ) = 0, (4.15)

therefore by taking into account that the derivative of t→ t−1ψ(t) is nega-
tive we get ψ ≥ tψ′ and

J (ξ,v) =
EJ

(L− ξ)

∫ 1

0

κ(v)2 ds+

+ψ(L− ξ) − (L− ξ)ψ′(L− ξ) ≥ EJ

(L− ξ)

∫ 1

0

κ(v)2 ds ≥ 0.

(4.16)

Since, by Theorem 4.2, v · e2 > 0 in (0, 1], the last inequality in (4.16) is
strict, hence

0 = J (L,v) < J (ξ,v) (4.17)

thus contradicting minimality of (ξ,v) and then minimality of u. �

A necessary condition for a complete peeling of the rod is given by the
following Theorem.

Theorem 4.4. Assume that (2.2),(2.3), (2.7),(2.8), (4.1)-(4.6) hold true
and there is a completely detached configuration is a global minimizer of F
in A (say there is u ∈ argminF with ξu = 0). Then

ψ′(L−) ≤ 4|f |min

{
1,

|f |L2

3EJ

}
. (4.18)
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Proof. Let (0,u) ∈ argminF be given. Then Theorem 4.2 entails (0,v) ∈
argminJ , where v is related to u by (4.9), thus ∂J

∂ξ
(0,v) ≥ 0 and so, after

an integration by parts, by taking into account the condition v̇(0) = e1, we
get

ψ′(L−) ≤ EJ

2L2

∫ 1

0

κ(v)2 ds+

∫ 1

0

f · (v̇(s) − e1) ds =

=
EJ

2L2

∫ 1

0

κ(v)2 ds+

∫ 1

0

(1 − s)f · v̈(s), ds ≤

≤ EJ

2L2

∫ 1

0

κ(v)2 ds+
|f |√

3

{∫ 1

0

κ(v)2 ds

} 1

2

(4.19)

and by taking into account that

J (0,v) ≤ J (0, se1) = ψ(L) (4.20)

we get

EJ

2L

∫ 1

0

κ(v)2 ds− L

∫ 1

0

f · (v̇(s) − e1) ds+ ψ(L) ≤ ψ(L) (4.21)

that is

EJ

2L

∫ 1

0

κ(v)2 ds ≤ |f |L√
3

{∫ 1

0

κ(v)2 ds

} 1

2

. (4.22)

Therefore {∫ 1

0

κ(v)2 ds

} 1

2

≤ 2L2|f |√
3EJ

. (4.23)

and by recalling (4.19) we get

ψ′(L−) ≤ 4

3

L2|f |2
EJ

. (4.24)

On the other hand, by recalling again that

ψ′(L−) ≤ EJ

2L2

∫ 1

0

κ(v)2 ds+

∫ 1

0

f · (v̇(s) − e1) ds

and
EJ

2L

∫ 1

0

κ(v)2 ds ≤ L

∫ 1

0

f · (v̇(s) − e1) ds
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we get

ψ′(L−) ≤ 2

∫ 1

0

f · (v̇(s) − e1) ds ≤ 4|f | (4.25)

and thesis follows by gathering together (4.24) and (4.25). �
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