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Hardy–Rellich inequalities with boundary

remainder terms and applications

Elvise Berchio ∗ Daniele Cassani † Filippo Gazzola ‡

Abstract

We prove a family of Hardy-Rellich inequalities with optimal constants and additional boundary
terms. These inequalities are used to study the behavior of extremal solutions to biharmonic
Gelfand-type equations under Steklov boundary conditions.

1 Introduction

A well-known generalization of the first order Hardy inequality [35, 36] to the second order is due to
Rellich [44] and reads

∫

Ω
|∆u|2 dx ≥ N2(N − 4)2

16

∫

Ω

u2

|x|4 dx ∀u ∈ H2
0 (Ω) (1)

where Ω ⊂ R
N (N ≥ 5) is a smooth bounded domain and the constant N2(N−4)2

16 is optimal, in the
sense that it is the largest possible. In [29], the validity of (1) was extended to the space H2 ∩H1

0 (Ω)
(see also previous work in [21] when Ω is a ball) and the existence of remainder terms was established.
More precisely, among other results, it is proved there that there exist constants Ci = Ci(Ω) > 0
(i = 1, 2) such that

∫

Ω
|∆u|2 dx ≥ N2(N − 4)2

16

∫

Ω

u2

|x|4 dx + C1

∫

Ω

u2

|x|2 dx + C2

∫

Ω
u2dx (2)

for all u ∈ H2 ∩ H1
0 (Ω). Higher order versions of (1) and (2) were obtained in [17, 29, 40]. We also

refer to [1, 4, 5, 33, 45] for further improvements and variants of these inequalities.
The existence of a constant d0 = d0(Ω) > 0 such that

∫

Ω
|∆u|2 dx ≥ d0

∫

∂Ω
u2

νdS ∀u ∈ H2 ∩ H1
0 (Ω), (3)

where ν is the unit outer normal to ∂Ω, is proved in [8]. The number d0 is the first simple boundary
eigenvalue of the biharmonic operator ∆2 under the so-called Steklov boundary conditions: u =
∆u − duν = 0 on ∂Ω for some d ∈ R. When Ω = B, the unit ball, one has d0(B) = N .
The first purpose of the present paper is to consider intermediate situations between inequalities (2)
and (3). We seek two positive constants h = h(Ω) and d = d(Ω) such that

∫

Ω
|∆u|2 dx ≥ h

∫

Ω

u2

|x|4 dx + d

∫

∂Ω
u2

ν dS ∀u ∈ H2 ∩ H1
0 (Ω). (4)
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Clearly, in (4) one expects a dependence d = d(h) and, of course, one is interested in finding the
optimal (largest) constant d for any h ≥ 0. We will prove (4) in all the situations between the two

extremal cases where h = 0 (corresponding to (3)) and h = N2(N−4)2

16 (corresponding to (2) with a

boundary remainder term). As expected, in the limit situation where h = N2(N−4)2

16 there is a loss of
compactness and (4) becomes a strict inequality for all u 6= 0. There is no way to further increase
h, even at expenses of a smaller (possibly negative) value of d; to see this, it suffices to consider the
original inequality (1) in the space H2

0 (Ω).
The second purpose of the paper is to apply inequalities (4) to the study of the regularity of extremal
solutions to semilinear biharmonic problems such as

(Gλ)

{
∆2u = λg(u), u ≥ 0 in Ω

u = ∆u − duν = 0 on ∂Ω

where λ and d are nonnegative constants, and the nonlinearity g has the following form:

g(u) = eu , g(u) = (1 + u)p (p > 1),

g(u) =
1

(1 − u)γ
(0 ≤ u < 1, γ ≥ 2).

(5)

Fourth order problems as (Gλ) were studied under different boundary conditions, such as Dirichlet
conditions u = uν = 0 on ∂Ω, see [3, 13, 15, 18, 19, 20, 24, 25, 26, 47], or Navier conditions u = ∆u = 0
on ∂Ω, see [7, 19, 20, 34]. See also [14, 38] for related nonlocal problems. We are here interested in
intermediate boundary conditions, the Steklov conditions u = ∆u − duν = 0 on ∂Ω.
Although problem (Gλ) is the fourth order version of long-standing and well-studied second order
problems [9, 11, 32, 37, 39], the proofs of the corresponding results turn out to be much more involved.
The first difficulty one has to face for biharmonic problems is the lack of a general maximum principle.
Under Steklov conditions, a maximum principle can be proved only for restricted values of d (see
[8, 30]). In particular, the maximum principle holds for d ∈ [0, d0) (see (3)) in any domain Ω and
also for some d < 0 depending on the domain. This is one reason why, for general domains Ω, we
only have partial results, see Section 3.1. When Ω is a ball, more can be said. When looking for
radial solutions, one may perform a phase space analysis for the corresponding system of ODEs.
For second order problems the phase space is a plane. For the fourth order counterpart, the phase
space is four-dimensional where the topology is more complicated and the Poincaré-Bendixson theory
is not available, see [2, 3, 28]. Finally, in problems (Gλ) one usually does not succeed in finding
explicit singular solutions which allow to describe the bifurcation branch (λ, u) of nontrivial solutions.
However, in somehow particular situations (suitable choice of d) we can still prove fairly exhaustive
results, see Section 3.2 where we take advantage of the Hardy-type inequalities (4). This paper should
be intended as a further step towards a complete understanding of the mathematical phenomena
related to (Gλ).
The interest in studying (Gλ) is not only mathematical. For instance when g(u) = 1

(1−u)2
, it represents

a model for MicroElectroMechanicalSystems, see [43] for a systematic development on the subject and
also the introduction in [13, 14]. In this context, one of the main points is the study of the so-called
pull-in instability, which corresponds to the situation in which the deflected profile u reaches the value
u = 1 and generates ruptures phenomena.
This paper is organized as follows. In Section 2 we derive our family of Hardy-Rellich type inequalities.
In Section 3 we state the results about (Gλ), first for general domains Ω (Section 3.1) and then for
the ball (Section 3.2). The proofs of the results of Section 2 are given in Section 4, the ones of Section
3 are given in Sections 6 and 7.
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2 Hardy–Rellich type inequalities

Let Ω ⊂ R
N , N ≥ 5, be a bounded domain containing the origin and with smooth boundary and

denote by B the unit ball of R
N . For h ≥ 0 and d ∈ R, consider the following boundary eigenvalue

problem 



∆2u = h
u

|x|4 in Ω

u = ∆u − duν = 0 on ∂Ω.
(6)

For fixed h, we are interested in finding the values d for which (6) admits nontrivial solutions, namely
u ∈ H2 ∩ H1

0 (Ω) such that
∫

Ω
∆u∆v dx − d

∫

∂Ω
uν vν dS = h

∫

Ω

u

|x|4 v dx ∀ v ∈ H2 ∩ H1
0 (Ω). (7)

Since the boundary conditions in (6) satisfy the complementing condition, by elliptic regularity any
solution to (6) belongs to C∞(Ω \ {0}), whereas up to the boundary the solution is as smooth as
the boundary, see [8, Lemma 15]. The first (smallest) eigenvalue of (6) has the following variational
characterization

d1(h) := inf
H2∩H1

0 (Ω)\H2
0 (Ω)

∫
Ω |∆u|2 dx − h

∫
Ω

u2

|x|4 dx
∫
∂Ω u2

ν dS
(8)

and we have

Proposition 1. The infimum in (8) is achieved if and only if 0 ≤ h < N2(N−4)2

16 and, up to a
multiplicative constant, the minimizer uh is unique, positive, superharmonic in Ω and it solves (6)
when d = d1(h). Moreover, uh is the only eigenfunction of (6) having one sign.

The proof of Proposition 1 is somehow standard and we briefly sketch it in Section 4. By Proposition
1 we deduce the first part of the next statement.

Theorem 2. Let 0 ≤ h ≤ N2(N−4)2

16 and let d1(h) be as in (8). Then d1(h) ≥ 0 and

∫

Ω
|∆u|2 dx ≥ h

∫

Ω

u2

|x|4 dx + d1(h)

∫

∂Ω
u2

ν dS ∀u ∈ H2 ∩ H1
0 (Ω). (9)

Furthermore, the map h 7→ d1(h) is strictly decreasing, the constant d1(h) is sharp and attained if

and only if 0 ≤ h < N2(N−4)2

16 . Finally, if Ω is strictly starshaped with respect to the origin, then

d1(
N2(N−4)2

16 ) > 0.

The last statement of Theorem 2 requires the domain Ω to be strictly starshaped. We do not know if
a similar result holds without this geometric assumption. Related to this problem, one may wonder

if, for a fixed h ∈ [0, N2(N−4)2

16 ], there exists a constant d1 > 0 which serves as the best possible for all
domains Ω having a given measure. The results obtained in [12] in the case h = 0 suggest a negative
answer since one has

inf
|Ω|=1

d0(Ω) = 0,

where d0 = d1(0) is the optimal constant in (3).
In the case of the unit ball, d1(h) can be explicitly determined. In order to simplify the computations,
we introduce an auxiliary parameter 0 ≤ α ≤ N − 4 and we set

h(α) :=
α(α + 4)(α + 4 − 2N)(α + 8 − 2N)

16
(10)
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and

δ1(α) :=
N − α +

√
N2 − α2 + 2α(N − 4)

2
. (11)

For α ∈ [0, N − 4], the map α 7→ δ1(α) is strictly decreasing whereas the map α 7→ h(α) is strictly

increasing, h(0) = 0 and h(N − 4) = N2(N−4)2

16 so that 0 ≤ h(α) ≤ N2(N−4)2

16 for all α ∈ [0, N − 4]
and Theorem 2 applies. Moreover, (10) is invertible so that α = α(h) is well-defined for any 0 ≤ h ≤
N2(N−4)2

16 and, by making this dependence explicit, (11) can be used to obtain d1(h) = δ1(α(h)).

Theorem 3. For every u ∈ H2 ∩ H1
0 (B) and 0 ≤ α ≤ N − 4, there holds

∫

B
|∆u|2 dx ≥ h(α)

∫

B

u2

|x|4 dx + δ1(α)

∫

∂B
u2

ν dS (12)

where h(α) and δ1(α) are defined in (10) and (11). Furthermore, the best constant δ1(α) is attained
if and only if 0 ≤ α < N − 4, by multiples of the function

uα(x) = |x|−α
2 − |x|

4−N+
√

N2−α2+2α(N−4)
2 .

Notice that also for α ≥ N − 4 the functions uα solve (6) in B \ {0}, however, they fail to have finite
energy since they do not belong to H2(B). When α = 0, one has h(0) = 0 and δ1(0) = N , thus (12)

Figure 1: The relationship between d1(h) = δ1(α(h)) and h in (12).

reduces to (3). When α = N −4, (12) becomes a Hardy-Rellich inequality with a boundary remainder
term, as established in the following

Corollary 4. For every u ∈ H2 ∩ H1
0 (B) we have

∫

B
|∆u|2 dx ≥ N2(N − 4)2

16

∫

B

u2

|x|4 dx +
4 +

√
2N2 − 8N + 16

2

∫

∂B
u2

ν dS

and the boundary constant is the best possible.
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3 Biharmonic problems under Steklov boundary conditions

In the sequel, when we need to specify the nonlinearity involved in (5), in place of (Gλ) we will refer
to problems:

(Eλ)

{
∆2u = λeu, u ≥ 0 in Ω

u = ∆u − duν = 0 on ∂Ω,

(Pλ)

{
∆2u = λ(1 + u)p, u ≥ 0 in Ω

u = ∆u − duν = 0 on ∂Ω,

(Γλ)





∆2u =
λ

(1 − u)γ
, 0 ≤ u ≤ 1 in Ω

u = ∆u − duν = 0 on ∂Ω.

Actually, for λ 6= 0 the solutions are strictly positive.

3.1 Results in general domains

Throughout this section we assume that

Ω ⊂ R
N , (N ≥ 2) is a bounded domain with smooth boundary,

0 ≤ d < d0,

with d0 as in (3). When Ω = B, this assumption can be relaxed to d < N .
Let Hd(Ω) denote the space H2 ∩ H1

0 (Ω) endowed with the scalar product

(u, v) :=

∫

Ω
∆u∆v dx − d

∫

∂Ω
uνvν dS.

By (3) this scalar product induces a norm on H2 ∩ H1
0 (Ω) which is equivalent to the norm ‖∆ · ‖2.

We also introduce the space

Xd :=
{
ϕ ∈ C4(Ω); ϕ = ∆ϕ − dϕν = 0 on ∂Ω

}

and give some definitions.

Definition 5. The function u ∈ L1(Ω) is a solution to (Gλ) if u ≥ 0 a.e., g(u) ∈ L1(Ω) and

∫

Ω
u ∆2ϕ dx = λ

∫

Ω
g(u)ϕ dx ∀ϕ ∈ Xd.

For problem (Γλ) we also require u ≤ 1. Solutions to (Gλ) which belong to Hd(Ω) are called energy

solutions. If uλ is a solution to (Gλ) such that for any other solution uλ to (Gλ) one has

uλ(x) ≤ uλ(x) for a.e. x ∈ Ω

then we say that uλ is the minimal solution of (Gλ).
Moreover, a solution u to (Eλ) or (Pλ) is said to be regular if u ∈ L∞(Ω), singular if u 6∈ L∞(Ω).
A solution u to (Γλ) is said to be regular if ‖u‖∞ < 1, singular if ‖u‖∞ = 1.
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By elliptic regularity, it follows that regular solutions are smooth and solve (Gλ) in the classical sense.
Formally, the first eigenvalue µ1 of the linearized operator ∆2−λ g′(uλ), at a solution uλ to (Gλ) such
that g′(uλ) ∈ L1(Ω), has the following variational characterization

µ1(λ) := inf
ϕ∈Xd\{0}

∫
Ω |∆ϕ|2 dx − d

∫
∂Ω ϕ2

ν dS − λ
∫
Ω g′(uλ) ϕ2 dx∫

Ω ϕ2 dx
.

Note that it may happen that µ1(λ) = −∞ although this will not occur in the “interesting cases”
where uλ is regular or not too singular.
We have the following

Theorem 6. There exists λ∗ = λ∗(Ω) > 0 such that for 0 < λ < λ∗, problems (Eλ) and (Γλ) have
a minimal regular solution uλ which is positive and stable, namely µ1(λ) > 0. Moreover, for almost
every x ∈ Ω there exists

u∗(x) := lim
λրλ∗

uλ(x) (13)

which is an energy solution when λ = λ∗. For λ > λ∗, there are no solutions.

Remark 7. By arguing as in [24, Theorem 1], one can show that the same statements hold for (Pλ)
provided Ω = B: here a major difficulty is to establish that

λ∗ = sup {λ ≥ 0 : (Pλ) possesses a classical solution} ,

which so far seems to be unknown in general domains.

The condition µ1(λ) > 0 yields a strong stability of minimal solutions. In some cases, this can be
relaxed. We call a solution uλ to (Gλ) weakly stable if g′(uλ) ∈ L1(Ω) and µ1(λ) ≥ 0, i.e.

∫

Ω
|∆ϕ|2 dx − d

∫

∂Ω
ϕ2

ν dS ≥ λ

∫

Ω
g′(uλ) ϕ2 dx ∀ϕ ∈ Xd. (14)

Condition (14) enables us to characterize singular energy solutions. This will be the key ingredient
to study the regularity of the extremal solution u∗ for problem (Gλ) and to determine the critical
dimension.

Theorem 8. Let u∗ be the extremal solution to (Eλ) or (Γλ), as given by (13). Then, we have:

(i) u∗ is weakly stable;

(ii) if u∗ is regular, then it is the unique solution for λ = λ∗;

(iii) if uλ ∈ Hd(Ω) is a singular weakly stable solution for some λ ∈ (0, λ∗], then λ = λ∗ and u∗ is
singular.

These statements hold for (Pλ) provided Ω = B.

We expect the solution to (Gλ∗) to be unique (even in weak sense) although a full proof of this fact in
general domains Ω seems not trivial. When Ω = B, one can argue as in [18] and obtain uniqueness for
(Gλ∗), with the restriction 1 < p ≤ 2 or p ≥ 3 for (Pλ) since the arguments in [18] use the positivity
of giv. However, the same arguments seem not to extend to general domains since one would need to
know the location of the singularities of the solutions.
If uλ is the minimal solution, by Theorem 6, g′(uλ) ∈ L∞(Ω) and (14) can be extended to any
ϕ ∈ Hd(Ω). On the other hand, if uλ = u∗ and it is singular, Theorem 8-(i) ensures that it is weakly
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stable, so that the right hand side in (14) is finite and, by density arguments, one has that (14)
holds for all ϕ in the energy class Hd(Ω). This is an evidence that u∗ cannot be “too singular” since
otherwise g′(uλ) ϕ2 6∈ L1(Ω) for some ϕ ∈ Hd(Ω). The results obtained in the ball, see Section 3.2,
suggest that g′(u∗) ∼ C

|x|4 as x → 0, the point where u∗ becomes singular.

The regularity issue in low dimensions is a consequence of embedding results and it is summarized in

Theorem 9. The following regularity results hold:

(i) If 2 ≤ N ≤ 4, then any energy solution to (Eλ) is regular.

(ii) If N = 2 and γ > 2 or N = 3 and γ ≥ 6, then any energy solution to (Γλ) is regular. Moreover,
if 2 ≤ N ≤ 4 and γ ≥ 2 then the extremal solution u∗ to (Γλ∗) is regular.

(iii) If 2 ≤ N ≤ 4 or N ≥ 5 and p ≤ N+4
N−4 , then any energy solution to (Pλ) is regular.

We conclude this section by observing that under the assumptions of Theorem 9, besides the minimal
solution, for all λ ∈ (0, λ∗) there exists a mountain pass solution, which can be obtained by arguing
as in [16, 22]. The critical case p = N+4

N−4 for (Pλ) needs a particular attention, see [31].

3.2 Results in the ball

Throughout this section we take Ω = B. It is worth to compare some features of problem (Gλ) with
the corresponding problem under Dirichlet boundary conditions which is the limiting case of (Gλ) as
d → −∞, namely

(G∞
λ )

{
∆2u = λg(u) in B

u = uν = 0 on ∂B

where λ ≥ 0 and g is as in (5).

We start by comparing the extremal parameters of problems (Gλ) and (G∞
λ ).

Theorem 10. Let d < N in (Gλ) and assume that λ∗(d) and λ∗
∞ are the extremal parameters of

problems (Gλ) and (G∞
λ ) respectively. The map d 7→ λ∗(d) is non increasing. In particular,

λ∗(d) ≤ λ∗
∞ for any d ∈ (−∞, N).

The monotonicity of the map d 7→ λ∗(d) is reached by means of comparison arguments which are
strictly connected with the validity of the positivity preserving property of the operator ∆2 under
Steklov boundary conditions. When Ω = B the positivity preserving property holds for any d < N ,
whereas for general domains Ω, it holds only for restricted values of d, see [30].
Let us now make precise what we mean by critical dimension.

Definition 11. We say that N∗
d ∈ N is the critical dimension for problem (Gλ) (resp. N∗

∞ for problem
(G∞

λ )) if, for every N < N∗
d (resp. N < N∗

∞), the extremal solution u∗ is regular, whereas for N ≥ N∗
d

(resp. N ≥ N∗
∞) the extremal solution is singular.

The critical dimension for (Gλ) depends on d and one would like to have the exact value of N∗
d for

any d. This seems out of reach at the moment and, for each nonlinearity in (5), we fix d = d∗, where

d∗ :=
v′′(1) + (N − 1)v′(1)

v′(1)

and v = v(r) is the unique entire singular (sign-changing) solution of the corresponding equation in
R

N which vanishes on ∂B. This choice allows explicit computations and simplifies some arguments.

7



Since the asymptotic behavior of singular solutions is independent of d, we believe that similar results
hold for any d; see Lemmata 24, 27 and 30. In the following we set N∗ := N∗

d∗ and we complement
the statements (i), (ii) and (iii) of Theorem 9 with the regularity results in large dimensions.

Theorem 12. Consider problem (Eλ) and let d = d∗ := N − 2.

(i) If 5 ≤ N ≤ 13, then λ∗ > 8(N − 2)(N − 4) and the extremal solution is regular.

(ii) If N ≥ 14, then λ∗ = 8(N − 2)(N − 4) and the extremal solution is singular and given by
u∗(x) = −4 log |x|.

Remark 13. Theorem 12 yields the critical dimension for problem (Eλ), namely N∗ = 14. We recall
that from [3, 18, 42] one has N∗

∞ = 13.

To deal with (Γλ), for all γ ≥ 2 we introduce the integer number

N∗(γ) := min

{
N ∈ N : N ≥

√
89γ2 + 54γ + 1 + 17γ + 3

2(γ + 1)

}
.

Notice that γ 7→ N∗(γ) is increasing and 10 ≤ N∗(γ) ≤ 14, for all γ ≥ 2. Furthermore, we set

λN,γ :=
8

(γ + 1)4
(γ − 1)((N − 2)γ + N + 2)((N − 4)γ + N). (15)

Theorem 14. Consider problem (Γλ) and let d = d∗(γ) := N − 2(γ−1)
γ+1 .

(i) If 5 ≤ N ≤ N∗(γ) − 1 and γ ≥ 3, then λ∗ > λN,γ and the extremal solution is regular.

(ii) If N ≥ N∗(γ), then λ∗ = λN,γ and the extremal solution is singular and given by u∗(x) =

1 − |x|
4

γ+1 .

Remark 15. It is shown in [15] the critical dimension N∗
∞(2) = 9 for (Γ∞

λ ) in the case γ = 2.
Theorem 14 allows to conjecture that N∗(2) = 10.

We conclude with the positive power case. In [28], for N ≥ 13, a limiting value for p is defined, namely

pc(N) ∈
(

N+4
N−4 , +∞

)
which is the unique solution of the equation:

4 pc

pc − 1

(
4

pc − 1
+ 2

)(
N − 2 − 4

pc − 1

)(
N − 4 − 4

pc − 1

)
=

N2(N − 4)2

16
.

If N ≥ 13 and p < pc, the extremal solution of (P∞
λ ) is regular, see [25, Theorem 3]. Thus it is natural

to conjecture that N∗
∞ = 13. This suggests to take p > pc in what follows. Since 33 > pc(N) for all

N ≥ 13, we fix p = 33. In fact, by numerical evidence we expect that statements (i) and (ii) below
hold true for all p > pc.

Theorem 16. Consider problem (Pλ). Let p = 33 and d = d∗(33) := N − 17
8 .

(i) If 5 ≤ N ≤ 13, then λ∗ > 1088N2−6800N+9537
4096 and the extremal solution is regular.

(ii) If N ≥ 14, then λ∗ = 1088N2−6800N+9537
4096 and the extremal solution is singular and given by

u∗(x) = |x|− 1
8 − 1.
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Theorem 16 tells that N∗(33) = 14 and numerical computations seem to show that the same holds
whenever p is sufficiently large. Together with Remarks 13 and 15, this supports the following intrigu-
ing

Conjecture:

N∗ = N∗
∞ + 1.

Clearly, this conjecture strongly depends on the nonlinearity involved in (Gλ). How general can we
take g? If the conjecture were true, it would be a further reason to consider d∗ as a special parameter.

4 Proof of Theorem 2

We first briefly sketch the proof of Proposition 1, referring to the literature for the details. Recalling

(2), we deduce that for 0 ≤ h < N2(N−4)2

16 the functional

I(u) :=

∫

Ω
|∆u|2 dx − h

∫

Ω

u2

|x|4 dx u ∈ H2 ∩ H1
0 (Ω)

is coercive. Furthermore, I is bounded from below and weakly lower semicontinuous. Thus, the
existence of a minimizer for I on the manifold

M :=

{
u ∈ H2 ∩ H1

0 (Ω) :

∫

∂Ω
u2

ν dS = 1

}

follows by compactness of the map u ∈ H2(Ω) 7→ uν |∂Ω ∈ L2(∂Ω). The Euler-Lagrange equation
related to I is given by (6) with d = d1(h).
Concerning the positivity of a minimizer, one may argue as in [8, Lemma 16]. Uniqueness of the
minimizer up to a multiple, then follows arguing by contradiction. To show that uh is the only
eigenfunction not changing sign one may follow [23, Lemma 2.2].

Finally, if the infimum in (8) were achieved in the borderline case h = N2(N−4)2

16 , then there would
exists a positive strictly superharmonic function u ∈ H2 ∩ H1

0 (Ω) which solves problem (6) with

h = N2(N−4)2

16 and d = d1(
N2(N−4)2

16 ). Let BR be a ball of radius 0 < R < 1 centered at the origin and
such that BR ⊂ Ω. For any δ > 1 consider the function

ϕδ(x) := |x|−(N−4)/2(log(1/|x|))−δ/2.

Then ϕδ ∈ H2(BR) and, arguing as in [1, Theorem 2.2], by letting δ → 1+ one finds that

u(x) ≥ mϕ1(x) a.e. in BR′ ,

a contradiction since
∫
BR′

ϕ2
1

|x|4 dx = +∞, while
∫
Ω

u2

|x|4 dx is finite by (2).

The first statements of Theorem 2 are straightforward consequences of Proposition 1. The only part

to be proved is the positivity of d1(hN ) in strictly starshaped domains Ω, where hN = N2(N−4)2

16 .
For all h < hN let uh be the unique superharmonic minimizer for d1(h) satisfying

∫

Ω
|∆uh|2 dx = 1.

Then, the sequence {uh} is bounded in H2 ∩ H1
0 (Ω) and, up to a subsequence,

∃u ∈ H2 ∩ H1
0 (Ω) s.t. uh ⇀ u.
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In order to prove that
d1(hN ) > 0, (16)

we argue by contradiction. We prove the following

Lemma 17. If d1(hN ) = 0, then lim
h→hN

d1(h) = 0 and u = 0.

Proof. By assumption we know that for all ε > 0 there exists uε ∈ H2 ∩ H1
0 (Ω) \ H2

0 (Ω) such that

∫
Ω |∆uε|2 dx − hN

∫
Ω

u2
ε

|x|4 dx
∫
∂Ω (uε)2ν dS

< ε.

Then, for all h < hN we have

0 < d1(h) ≤
∫
Ω |∆uε|2 dx − hN

∫
Ω

u2
ε

|x|4 dx
∫
∂Ω (uε)2ν dS

+ (hN − h)

∫
Ω

u2
ε

|x|4 dx
∫
∂Ω (uε)2ν dS

< ε + Cε(hN − h).

By letting h → hN we obtain that
lim

h→hN

d1(h) ≤ ε

which proves the first statement by arbitrariness of ε.
Let h < hN . By using u as test function in (7) we obtain

∫

Ω
∆uh∆u dx − d1(h)

∫

∂Ω
(uh)ν uν dS = h

∫

Ω

uhu

|x|4 dx .

Then, by letting h → hN (and recalling that d1(h) = o(1)) we infer that

∫

Ω
|∆u|2 dx = hN

∫

Ω

u2

|x|4 dx .

Since the Hardy inequality (1) is strict for u 6= 0, this implies u = 0.

Lemma 17 shows that if (16) is false, then

uh ⇀ 0 ,

∫

∂Ω
(uh)2ν dS → 0 , as h → hN ,

the latter following from compactness of the map u ∈ H2(Ω) 7→ uν |∂Ω ∈ L2(∂Ω). Let us set

εh :=

∫

∂Ω
(uh)2ν dS ,

so that
εh = o(1) as h → hN .

Using this notation we have

o(1) = d1(h) =
1 − h

∫
Ω

u2
h

|x|4 dx

εh
≥

1 − hN

∫
Ω

u2
h

|x|4 dx

εh
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so that, by using (2), we infer ∫

Ω

u2
h

|x|2 dx = o(εh). (17)

Therefore, using (7) and integrating twice by parts, we get

o(εh) =

∫

Ω

u2
h

|x|2 dx =

∫

Ω
(|x|2uh)

uh

|x|4 dx =
1

h

∫

Ω
(|x|2uh) ∆2uh dx

=
1

h

∫

Ω
∆(|x|2uh) ∆uh dx − 1

h

∫

∂Ω
|x|2∆uh(uh)ν dS

=
1

h

∫

Ω
∆uh

(
2Nuh + 4x · ∇uh + |x|2∆uh

)
dx + o(εh)

where, in the last step, we used Lemma 17 and the estimate

0 <
d1(h)

h

∫

∂Ω
|x|2(uh)2ν dS ≤ d1(h)εh

h
max
∂Ω

|x|2 = o(εh).

A further integration by parts shows that

∫

Ω
∆uh (x · ∇uh) dx =

N − 2

2

∫

Ω
|∇uh|2 dx +

1

2

∫

∂Ω
(x · ν)(uh)2ν dS,

see e.g. [40, formula (1.3)]. Therefore, using

∫

Ω
|∇uh|2 dx = −

∫

Ω
uh∆uh dx,

we find

o(εh) = 4

∫

Ω
uh∆uh dx +

∫

Ω
|x|2|∆uh|2 dx + 2

∫

∂Ω
(x · ν)(uh)2ν dS. (18)

Note that, since uh is positive and superharmonic, uh∆uh < 0 in Ω. However, by Young’s inequality,
for any δ > 0 we have the following estimate

∣∣∣∣
∫

Ω
uh∆uh dx

∣∣∣∣ =
∫

Ω

|uh|
|x| |x| |∆uh| dx ≤ δ

∫

Ω
|x|2|∆uh|2 dx +

1

4δ

∫

Ω

|uh|2
|x|2 dx.

By inserting this estimate (with δ = 1/8) into (18) and recalling (17) yields

o(εh) ≥
∫

Ω
|x|2|∆uh|2 dx + 4

∫

∂Ω
(x · ν)(uh)2ν dS.

Since Ω is strictly starshaped, we have min∂Ω(x · ν) = γ > 0 so that the latter estimate gives

o(εh) ≥ 4γ

∫

∂Ω
(uh)2ν dS = 4γεh,

a contradiction.
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5 Proof of Theorem 3 and Corollary 4

From Proposition 1 we know that, up to multiples, the first eigenfunction of problem (6) is unique.
Since Ω = B, we infer that it must be a radial function (otherwise by exploiting the invariance by
rotations, we would contradict uniqueness). We are so led to seek radial solutions of (6). By setting
|x| = r ∈ [0, 1), this conveys in considering the following boundary eigenvalue problem:

uiv +
2(N − 1)

r
u′′′ +

(N − 1)(N − 3)

r2
u′′ − (N − 1)(N − 3)

r3
u′ =

h(α)u

r4
(19)

u(1) = u′′(1) + (N − 1 − d)u′(1) = 0, (20)

with h(α) as in (10). Looking for power type solutions u(r) = rβ , we are led to annihilating the
polynomial

β 7→ β4 + 2(N − 4)β3 + (N2 − 10N + 20)β2 − 2(N2 − 6N + 8)β − h(α)

which admits the following real roots:

β1 = −α

2
, β2 = 4 − N +

α

2
, β3 =

4 − N − γN (α)

2
, β4 =

4 − N + γN (α)

2

where γN (α) :=
√

N2 − α2 + 2α(N − 4). Therefore, the solutions of (19) are given by

u(r) = c1r
−α

2 + c2 r4−N+α
2 + c3r

4−N−γN (α)

2 + c4r
4−N+γN (α)

2

for any ci ∈ R and α ∈ [0, N − 4]. Since we are interested in solutions belonging to H2 ∩ H1
0 (B),

necessarily c2 = c3 = 0, whereas r−
α
2 ∈ H2 ∩ H1

0 (B) if and only if 0 ≤ α < N − 4. For every

0 ≤ α ≤ N − 4, we have γN (α) ≥ N , so that the function r
4−N+γN (α)

2 belongs to H2 ∩ H1
0 (B) for any

α in this range.
On the other hand, by imposing the first condition in (20), we get c1 = −c4 and the candidate
eigenfunction is, up to a multiplicative constant,

uα(x) = |x|−α
2 − |x|

4−N+γN (α)

2

which satisfies the second boundary condition in (20) provided d = δ1(α) = N−α+γN (α)
2 , see (11).

We conclude by observing that from Proposition 1, the unique positive eigenfunction of problem (6)
is the one corresponding to the first eigenvalue d1(h) = δ1(α(h)).

6 Proofs of the results in general domains

Let us first recall from [8] the following positivity preserving property

Lemma 18. Let 0 ≤ d < d0, with d0 as in (3), and let u ∈ L1(Ω) be a solution of





∆2u = f in Ω

u = 0 on ∂Ω

∆u − duν = 0 on ∂Ω,

where f ∈ L1(Ω) is such that f ≥ 0 a.e. Then u ≥ 0 a.e. in Ω. Moreover, one has either u ≡ 0 or
u > 0 a.e. in Ω and uν < 0 on ∂Ω.
If Ω = B the same results hold for any d < N .
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Proof. The statement in Lemma 18 is slightly stronger than [8, Lemma 18] where it is assumed that
u, f ∈ L2(Ω). However, the case u ∈ L1(Ω) can be covered by means of an approximation argument,
see [3, 9]. Note that uν is well-defined on ∂Ω in view of L1-elliptic regularity, see [6].

Next we prove a weak version of Lemma 18.

Lemma 19. Let 0 ≤ d < d0 and v ∈ Hd(Ω) be such that (v, ϕ) ≥ 0 for all ϕ ∈ Hd(Ω), ϕ ≥ 0. Then,
v ≥ 0 a.e. in Ω.

Proof. Integrating twice by parts the inequality
∫

Ω
∆v∆ϕ dx − d

∫

∂Ω
vνϕν dS ≥ 0 ∀ϕ ∈ C4(Ω) ∩Hd(Ω)

one obtains ∫

Ω
v∆2ϕ dx +

∫

∂Ω
vν [∆ϕ − dϕν ] dS ≥ 0 ∀ϕ ∈ C4(Ω) ∩Hd(Ω). (21)

Let η ∈ C∞
c (Ω), η ≥ 0 and let ϕ̃ be the unique classical solution to





∆2ϕ̃ = η in Ω

ϕ̃ = 0 on ∂Ω

∆ϕ̃ − dϕ̃ν = 0 on ∂Ω.

By Lemma 18, one has ϕ̃ ≥ 0 and thus we can take ϕ̃ as a test function in (21) to get
∫

Ω
vη dx ≥ 0

for all η ∈ C∞
c (Ω), η ≥ 0, which yields the claim.

In the following we say that uλ ∈ L1(Ω) is a super-solution of (Gλ) if g(uλ) ∈ L1(Ω) and
∫

Ω
uλ∆2ϕ dx ≥ λ

∫

Ω
g(uλ)ϕ dx ∀ϕ ∈ Xd , ϕ ≥ 0. (22)

We have

Lemma 20. Let uλ ∈ Hd(Ω) be a weakly stable energy solution of (Gλ), then
∫

Ω
∆uλ∆ϕ dx − d

∫

∂Ω
(uλ)νϕν dS = λ

∫

Ω
g(uλ)ϕ dx ∀ϕ ∈ Hd(Ω).

Let vλ ∈ Hd(Ω) be an energy super-solution of (Gλ), then
∫

Ω
∆vλ∆ϕ dx − d

∫

∂Ω
(vλ)νϕν dS ≥ λ

∫

Ω
g(vλ) ϕ dx ∀ϕ ∈ Hd(Ω) , ϕ ≥ 0.

Proof. By definition, g(uλ) ∈ L1(Ω) and
∫

Ω
uλ∆2ϕ dx = λ

∫

Ω
g(uλ)ϕ dx ∀ϕ ∈ Xd. (23)

Furthermore, uλ ∈ Hd(Ω) is weakly stable so that g′(uλ) ∈ L1(Ω) and, by Fatou’s Lemma combined
with a density argument, we get

∫

Ω
|∆ϕ|2 dx − d

∫

∂Ω
ϕ2

ν dS ≥ λ

∫

Ω
g′(uλ) ϕ2 dx ∀ϕ ∈ Hd(Ω). (24)

13



On the other hand, for any ϕ ∈ Hd(Ω), there exist {ϕn}n ⊂ Xd such that ϕn → ϕ in Hd(Ω). Then,
inequality (24), written with ϕn − ϕ as test function, yields

∫

Ω
g′(uλ) (ϕn − ϕ)2 dx → 0. (25)

We claim that there exists Cλ > 0 finite, such that
∣∣∣∣
∫

Ω
g(uλ) ϕn dx −

∫

Ω
g(uλ)ϕ dx

∣∣∣∣ ≤ Cλ

(∫

Ω
g′(uλ) (ϕn − ϕ)2 dx

)1/2

. (26)

We postpone the proof of (26) to the end. Combining (26) with (25), we deduce that
∫
Ω g(uλ) ϕn dx →∫

Ω g(uλ) ϕ dx. On the other hand, integrating by parts the left hand side of (23), written with ϕn as
test function, we get

∫

Ω
∆uλ∆ϕn dx − d

∫

∂Ω
(uλ)ν(ϕn)ν dS = λ

∫

Ω
g(uλ) ϕn dx

and the statement follows by letting n → +∞.

Proof of (26). We observe that for (Eλ) there holds g(s) = g′(s), for (Pλ) there holds g(s) = (1/p)(1+
s)g′(s) and for (Γλ) there holds g(s) = (1/γ)(1 − s)g′(s). By this, for (Eλ) we get

∣∣∣∣
∫

Ω
g(uλ)ϕn dx −

∫

Ω
g(uλ) ϕ dx

∣∣∣∣ =
∣∣∣∣
∫

Ω
g′(uλ) (ϕn − ϕ) dx

∣∣∣∣

≤
(∫

Ω
g′(uλ) dx

)1/2(∫

Ω
g′(uλ) (ϕn − ϕ)2 dx

)1/2

=: Cλ

(∫

Ω
g′(uλ) (ϕn − ϕ)2 dx

)1/2

.

For (Pλ) we get
∣∣∣∣
∫

Ω
g(uλ) ϕn dx −

∫

Ω
g(uλ) ϕ dx

∣∣∣∣ =
1

p

∣∣∣∣
∫

Ω
(1 + uλ)g′(uλ) (ϕn − ϕ) dx

∣∣∣∣

≤ 1

p

(∫

Ω
(1 + uλ)2g′(uλ) dx

)1/2(∫

Ω
g′(uλ) (ϕn − ϕ)2 dx

)1/2

=: Cλ

(∫

Ω
g′(uλ) (ϕn − ϕ)2 dx

)1/2

.

For (Γλ) we get
∣∣∣∣
∫

Ω
g(uλ) ϕn dx −

∫

Ω
g(uλ) ϕ dx

∣∣∣∣ =
1

γ

∣∣∣∣
∫

Ω
(1 − uλ)g′(uλ) (ϕn − ϕ) dx

∣∣∣∣

≤ 1

γ

(∫

Ω
(1 − uλ)2g′(uλ) dx

)1/2(∫

Ω
g′(uλ) (ϕn − ϕ)2 dx

)1/2

=: Cλ

(∫

Ω
g′(uλ) (ϕn − ϕ)2 dx

)1/2

.

It turns out that Cλ is always finite because g′(uλ) ∈ L1(Ω) and, by (24),
∫
Ω u2

λ g′(uλ) dx < ∞.
If vλ ∈ Hd(Ω) is an energy super-solution, again, a density argument combined with Fatou’s Lemma
enables us to use test functions ϕ ∈ Hd(Ω) in (22) and obtain the statement.
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Now, we prove a comparison principle.

Proposition 21. Let u, U ∈ Hd(Ω) be such that u is a weakly stable energy solution of (Gλ) and U
is an energy super-solution of (Gλ). Then, u(x) ≤ U(x) a.e. in Ω.

Proof. Set v := u − U . By means of the Moreau decomposition in dual cones for the biharmonic
operator (see [27]), there exist v1, v2 ∈ Hd(Ω) such that v = v1 + v2 with v1 ≥ 0 and v1 ⊥ v2,
(v2, ϕ) ≤ 0 for all ϕ ∈ Hd(Ω), ϕ ≥ 0. In particular, from Lemma 19 we get v2 ≤ 0 and eventually
v1 ≥ v. Notice that, by Lemma 20, for ϕ ∈ Hd(Ω), ϕ ≥ 0 we have

∫

Ω
∆v∆ϕ dx − d

∫

∂Ω
vνϕν dS ≤ λ

∫

Ω
[g(u) − g(U)]ϕ dx. (27)

By testing (27) with ϕ = v1 and exploiting the stability assumption together with the orthogonality
condition (v1, v2) = 0, we get

λ

∫

Ω
g′(u)v2

1 dx ≤
∫

Ω
|∆v1|2 dx − d

∫

∂Ω
(v1)

2
ν dS

=

∫

Ω
∆v∆v1 dx − d

∫

∂Ω
vν(v1)ν dS

≤ λ

∫

Ω
[g(u) − g(U)] v1 dx .

Since v1 ≥ v, we obtain

0 ≤
∫

Ω

[
g(u) − g(U) − (u − U)g′(u)

]
v1 dx. (28)

Moreover, by convexity of the map s 7→ g(s), the right hand side in (28) is non positive, thus we
conclude v1 = 0 and the claim follows.

Next we show that the set of λ’s for which the problem admits a regular solution is an interval.

Lemma 22. Let uλ be a solution of (Eλ) (resp. (Γλ)) for λ < λ∗. Then, for all 0 < ε ≤ 1, problem
(E(1−ε)λ) (resp. (Γ(1−ε)λ)) possesses a regular solution. The statement holds for (Pλ) provided Ω = B.

Proof. It can be achieved buying the line of [3, 13, 24] where the result was established respectively
for exponential, singular and power types nonlinearities under Dirichlet boundary conditions. Those
arguments, though delicate, are not affected by changing the boundary conditions. The key-ingredient
being the positivity preserving property which is here ensured by Lemma 18.

Proof of Theorem 6. For any ε > 0, consider the problem

{
∆2u = ε in Ω
u = ∆u − duν = 0 on ∂Ω ,

which admits a classical solution u ∈ Xd(Ω) and, provided ε is small, we may assume ‖u‖∞ < 1.
Taking λ = ε/g(‖u‖∞), one has that u is a super-solution of problem (Gλ) for any λ ∈ (0, λ). From
u one builds up a super-solution to (Gλ) for λ sufficiently small and since u = 0 is a sub-solution,
the method of sub- super-solutions yields a classical solution to (Gλ) which can be exploited to start
a monotone iteration scheme to obtain the first claim; see [8, Theorem 6, Lemma 21] for (Eλ) and
[13, Proposition 2.1] for (Γλ). Positivity follows from Lemma 18 whereas the stability is achieved by
means of the comparison principle provided by Proposition 21, see also [3, Proposition 37] where it
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is explained why super-solutions are needed in the statement of Proposition 21. The proof that the
extremal function u∗, as defined in (13), solves (Gλ∗) and lies in Hd(Ω) can be achieved as in [8,
Lemma 22]. Now let

λ∗ := sup {λ ≥ 0 : (Eλ) resp. (Γλ) possesses a regular solution}
λ∗ := sup {λ ≥ 0 : (Eλ) resp. (Γλ) possesses a solution} .

The nonexistence of solutions for λ > λ∗ follows by establishing that λ∗ = λ∗. On one hand one has
λ∗ ≤ λ∗, on the other hand if λ∗ < λ∗ by means of Lemma 22 we contradict the definition of λ∗; thus,
necessarily λ∗ = λ∗.

Proof of Theorem 8. Being u∗ the pointwise limit of minimal solutions, by (13) we conclude that u∗

is weakly stable. To show that (Eλ∗) and (Γλ∗) admit a unique solution when u∗ is regular, it suffices
to argue as in the proof of [3, Lemma 2.6]. Hence, statements (i) and (ii) are verified.
For statement (iii), assume by contradiction that for λ < λ∗ there exists a singular solution uλ ∈ Hd(Ω)
which is weakly stable. In this case, since there exists a minimal regular solution uλ, Proposition 21
would yield uλ ≡ uλ, a contradiction as uλ is assumed to be singular. Therefore λ = λ∗. In turn, by
statement (ii), this also implies that u∗ is singular.
The restriction Ω = B for problem (Pλ), is essentially due to the fact that, in this case, the regularity
of the minimal solution is missing for general Ω, see Lemma 22.

Proof of Theorem 9. For 2 ≤ N ≤ 4, statements (i) and (iii) follow by embedding theorems and
elliptic regularity. Also (iii), for N ≥ 5 and p ≤ N+4

N−4 , uses the same arguments but first one has to
show that if u is an energy solution of (Pλ), then u ∈ Lq(Ω) for all 1 ≤ q < ∞. This can be achieved
by the Moser iteration technique, as in [46, Lemma B2] and [10].
For (Γλ) the regularity statement follows if we show that ‖u‖∞ < 1. Suppose by contradiction that
there exists an energy solution such that u(x0) = 1. Then, by definition of energy solution we have
that u ∈ H2(Ω) →֒ C0,α(Ω), by Sobolev’s embedding, where α = 1/2 when N = 3 and α ∈ (0, 1) when
N = 2. As a consequence we have

∞ >

∫

Ω

1

(1 − u)γ
dx ≥

∫

Ω

C

|x0 − x|αγ
dx

and the last integral diverges as αγ ≥ N . Using also the stability property in Theorem 8, one can
prove in a similar fashion the regularity of the extremal solution, see [26].

7 Proofs of the results in the ball

7.1 Proof of Theorem 10

From Lemma 18 we know that, for d < N , nontrivial solutions of (Gλ) are strictly positive in B
with normal derivative strictly negative on the boundary. Let uλ be the minimal (regular) solution
corresponding to some d = d < N . For ε > 0, consider the function Uε(x) = uλ(x) + ε(|x|2 − 1). We
have that Uε|∂B = 0. Then we consider the ratio

R(ε) :=
∆Uε(x)

(Uε(x))ν
=

d c + 2Nε

c + 2ε
, x ∈ ∂B,

where c := (uλ)ν < 0 on ∂B. We have R(0) = d and R′(ε) = 2 c(N−d)
(c+2ε)2

< 0. This means that, for every

d̂ < d there exists ε̂ ∈ (0,−c/2) such that Uε̂ satisfies the Steklov conditions for d = d̂ := R(ε̂). Since,
for every d̂ ∈ (−∞, d) and for every λ ∈ (0, λ∗(d)) we have

∆2Uε̂ = λg(uλ) ≥ λg(uε̂) in B,
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Uε̂ is a super-solution for problem (Gλ). By the sub- super-solutions method, this implies

λ∗(d̂) ≥ λ∗(d).

Since Dirichlet boundary conditions are the limit case of Steklov boundary conditions, the last state-
ment follows by letting d̂ → −∞.

7.2 Proof of Theorem 12

The iterative method which yields Theorem 6 implies that, when Ω = B, the minimal solution uλ is
radially symmetric, as well as u∗ by (13). Thus we are reduced to study the radial problem:

uiv(r) +
2(N − 1)

r
u′′′(r) +

(N − 1)(N − 3)

r2
u′′(r) − (N − 1)(N − 3)

r3
u′(r) = λ eu(r), r ∈ (0, 1].

Performing the change of variable t := log r and setting v(t) = u(et) + 4t, we end up with the
autonomous equation

viv(t)+2(N −4) v′′′(t)+(N2−10N +20) v′′(t)−2(N −2)(N −4) v′(t) = λ ev(t)−λN , t ∈ (−∞, 0],
(29)

where
λN := 8(N − 2)(N − 4). (30)

We state a result essentially obtained in different steps in [2, 3, 24, 27, 28]; however for the sake of
completeness we recall the main lines of the proof.

Lemma 23. If us is a radial singular solution of the equation in (Eλs
), then the corresponding function

vs satisfies
lim

t→−∞
v(k)
s (t) = 0, for k = 1, 2, 3, 4 (31)

and

lim
t→−∞

vs(t) = log
λN

λs
, (32)

with λN as in (30).

Proof. The proof consists of four steps.

Step 1: if v solves (29) and limt→−∞ v(s) := γ exists, then either γ = −∞ or γ = log λN

λ .

By means of iterated integrations of (29), one gets rid of the case −∞ < γ 6= log λN

λ . Then, to exclude
the case γ = +∞, one may apply the test function method developed by Mitidieri-Pohožaev [41], see
[28] for the details.

Step 2: if v solves (29), then λev − λN is bounded.
We argue by contradiction: assume that the statement of Step 2 does not hold, then by Step 1 we
deduce that

lim inf
t→−∞

v(t) < lim sup
t→−∞

v(t) = +∞.

Hence, there exists a sequence of negative numbers {tk}k≥0 such that tk → −∞, v′(tk) = 0 and
v(tk) = γk, where limk→∞ γk = +∞. Following an idea of [24, Lemma 1], let us define the sequence
vk(t) := v(t − tk), t ∈ (−∞, tk). Since the functions vk satisfy equation (29) for every k ≥ 0, the
functions wk(x) = vk(log |x|) − 4 log |x| − vk(2tk) + 8tk solve the problems





∆2wk = λevk(2tk)−8tkewk in BRk

wk = 0 on ∂BRk

(wk)ν = −4 e−2tk on ∂BRk
,

17



where BRk
is the ball having radius Rk := e2tk . The rescaling zk(x) := wk(R|x|) solve





∆2zk = λevk(2tk)ezk in B
zk = 0 on ∂B
(zk)ν = −4 on ∂B.

We have so determined a super-solution for a Dirichlet boundary value problem having parameter
λk = λevk(2tk) → +∞, as k → +∞. This implies the existence of a solution for every λ > 0,
contradicting the results of [3, Theorem 3].

Step 3: if us is a radial singular solution of the equation in (Eλ), then

∫ 0

−∞
|v′s(τ)|2 dτ < +∞,

∫ 0

−∞
|v′′s (τ)|2 dτ < +∞,

∫ 0

−∞
|v′′′s (τ)|2 dτ < +∞,

∫ 0

−∞
|viv

s (τ)|2 dτ < +∞ ,

∫ 0

−∞
|λse

vs(τ) − λN |2 dτ < +∞.

The proof of the finiteness of the above four integrals follows by arguing as in [2, Lemma 9].

Step 4: conclusion.
From Step 3 we deduce that (31) and (32) hold up to a subsequence. By repeating, with minor
changes, the same argument of [28, Proposition 7] one may check that the desired limits hold, see also
[3, Theorem 6].

For the proof of Step 3 above one needs to define the energy function associated to (29), namely

E(t) :=
1

2
|v′′(t)|2 − (N2 − 10N + 20)

2
|v′(t)|2 + λ ev(t) − λN v(t).

This is also used in the proof of the next statement, which is the key ingredient to get Theorem 12.
Notice that here we require just one boundary condition.

Lemma 24. Let λN be as in (30). If us is a singular radial solution of

{
∆2u = λs eu in B
u = 0 on ∂B,

then

lim
|x|→0

(us(x) + 4 log |x|) = log
λN

λs
. (33)

Furthermore,

(a) if λs ≤ λN , then us(x) + 4 log |x| ≤ log λN

λs
;

(b) if λs ≥ λN , then us(x) + 4 log |x| ≥ log λN

λs
.

Proof. Notice that (33) comes from (32). On the other hand, inserting λs and vs into the function E,
by (31) and (32) we get that

lim
t→−∞

E(t) = f

(
log

λN

λs

)
, (34)
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where f(τ) := λs eτ − λN τ . Moreover, we observe that (a) and (b), written in terms of vs, become

(a) vs(t) ≤ log
λN

λs
if λs ≤ λN , (b) vs(t) ≥ log

λN

λs
if λs ≥ λN .

We prove (a), the proof of (b) is similar. Let λs ≤ λN and assume by contradiction that (a) does not
hold. Then, by (32) and vs(0) = 0 we infer that there exists t0 ∈ (−∞, 0) such that v′s(t0) = 0 and
vs(t0) > log λN

λs
. Hence,

E(t0) =
1

2
|v′′s (t0)|2 + f(vs(t0)) ≥ f(vs(t0)).

Exploiting (34), (29) and integrating by parts one gets

E(t0) − f

(
log

λN

λs

)
=

∫ t0

−∞
E′(τ) dτ

= −2(N − 4)

∫ t0

−∞
|v′′(τ)|2 dτ − 2(N − 2)(N − 4)

∫ t0

−∞
|v′(τ)|2 dτ ≤ 0,

that is,

E(t0) ≤ f

(
log

λN

λs

)
< f(vs(t0)).

The last inequality comes from the fact that f has a unique minimum point at τ = log λN

λs
. This gives

a contradiction and proves (a).

We may now characterize explicitly singular solutions.

Lemma 25. Let d = d∗ := N − 2 and λN be as in (30). If us is a singular radial solution to (Eλs
)

with d = d∗, then
λs = λN and us(x) = −4 log |x|.

Proof. Let
Ws(x) := us(x) + 4 log |x|,

then Ws solves the problem




∆2Ws =
1

|x|4
(
λse

Ws − λN

)
in B

Ws = ∆Ws − d∗(Ws)ν = 0 on ∂B.

Suppose first that (a) of Lemma 24 holds, then

λse
Ws − λN ≤ 0.

Therefore, since d∗ ∈ (0, N), by Lemma 18 we infer that Ws < 0 in B, a contradiction to (33). In a
similar fashion we also handle the case (b) and we conclude that, necessarily, λs = λN and Ws = 0.

Proof of Theorem 12. By Lemma 25, the unique singular radial solution of problem (Eλ), when d = d∗,
is us(x) = −4 log |x| corresponding to λ = λN . Therefore, u∗ is singular if and only if u∗ = us. Since
eus = 1

|x|4 , us is weakly stable if

∫

B
|∆ϕ|2 dx − d∗

∫

∂B
ϕ2

ν dS ≥ λN

∫

B

ϕ2

|x|4 dx ∀ϕ ∈ Hd(B), (35)
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see (14).

If 5 ≤ N ≤ 9, since d∗ < δ1(N − 4) and λN > N2(N−4)2

16 , we infer that (35) cannot hold, otherwise
we would contradict the optimality of the Hardy-Rellich constant, see also Figure 1. Hence, us is not
weakly stable and does not coincide with u∗, in view of Theorem 8-(i).
If N ≥ 10, then d∗ ∈ (δ1(N − 4), N) and (12) implies

∫

B
|∆ϕ|2 dx − d∗

∫

∂B
ϕ2

ν dS ≥ h(2
√

N − 2)

∫

B

ϕ2

|x|4 dx ∀ϕ ∈ Hd(B). (36)

To establish when h(2
√

N − 2) ≥ λN , is equivalent to solving

(
√

N − 2 + 2)(
√

N − 2 + 2 − N)(
√

N − 2 + 4 − N) ≥ 8
√

N − 2 (N − 4).

Setting s :=
√

N − 2 and requiring s >
√

2, the above inequality holds if and only if N ≥ 17+
√

89
2 , that

is, if N ≥ 14. In this case, (36) implies (35) so that us is weakly stable and u∗ is singular by Theorem
8-(iii). Then, as already noticed above, u∗ = us.
If 10 ≤ N ≤ 13 we have h(2

√
N − 2) < λN and, since by Theorem 3 the equality in (36) is achieved,

(35) does not hold. Hence, u∗ 6= us by Theorem 8-(i) and u∗ is regular.

7.3 Proof of Theorem 14

Consider the equation in (Γλ) in radial coordinates r = |x| ∈ (0, 1]. Inspired by [28] we make the
change of variable

v(t) = e
4t

γ+1 (1 − u(et)), t ∈ (−∞, 0],

so that the equation in (Γλ) becomes the following autonomous equation:

viv(t) + K3 v′′′(t) + K2 v′′(t) + K1 v′(t) − λN,γ v(t) = − λ

vγ(t)
, (37)

with λN,γ as in (15). The constants Ki, i = 1, 2, 3, are explicitly given by

K1 = 2

[
128

(γ + 1)3
+

48(N − 4)

(γ + 1)2
+

4(N2 − 10N + 20)

γ + 1
− (N − 2)(N − 4)

]
, (38)

K2 =
96

(γ + 1)2
+

24(N − 4)

γ + 1
+ N2 − 10N + 20, (39)

K3 = 2

[
8

γ + 1
+ N − 4

]
. (40)

For N ≥ 5, K2 > 0 and K3 > 0 whereas K1 < 0 (independently of N) as long as γ ≥ 3. To (37) we
associate the energy function

E(t) := − λs

(1 − γ)vγ−1
s (t)

+
λN,γ

2
v2
s(t) −

K2

2
|v′s(t)|2 +

1

2
|v′′s (t)|2. (41)

By following the line in the proof of Lemma 23 (with the advantage that here solutions stay a priori
bounded), one obtains
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Lemma 26. If γ ≥ 3 and us is a singular solution to the equation in (Γλs
), then the corresponding

function vs satisfies

lim
t→−∞

v(k)
s (t) = 0, for k = 1, 2, 3, 4 (42)

lim
t→−∞

vs(t) =

(
λ

λN,γ

) 1
γ+1

, (43)

with λN,γ as in (15).

We are now able to state the counterpart of Lemma 24 for (Γλ):

Lemma 27. Let λN,γ be as in (15). If γ ≥ 3 and us is a singular radial solution to





∆2u = λs
1

(1 − u)γ
in B

u = 0 on ∂B,

then

lim
|x|→0

[
us(x) − 1 +

(
λs

λN,γ

) 1
γ+1

|x|
4

γ+1

]
= 0 (44)

and the following hold:

(a) if λs ≤ λN,γ, then us(x) ≤ 1 −
(

λs

λN,γ

) 1
γ+1 |x|

4
γ+1 ;

(b) if λs ≥ λN,γ, then us(x) ≥ 1 −
(

λs

λN,γ

) 1
γ+1 |x|

4
γ+1 .

Proof. Notice that (43) yields (44). In order to prove (a) and (b) we use the energy function (41)
written for v = vs. By (42) and (43) one has

lim
t→−∞

E(t) = f

(
λs

λN,γ

)

where

f(τ) = − λs

1 − γ
τ1−γ +

λN,γ

2
τ2.

We prove (a) since (b) is similar. Let λs ≤ λN , in terms of vs, (a) reads

vs ≥
(

λs

λN,γ

) 1
γ+1

.

Then, by (43) an vs(0) = 1 we infer that there exists t0 ∈ (−∞, 0) such that v′s(t0) = 0 and v(t0) <

(λs/λN,γ)1/γ+1. In particular, we have both

E(t0) ≥ f(vs(t0))

and, by integrating by parts and exploiting (37),

E(t0) − f

((
λs

λN,γ

)1/(γ+1)
)

=

∫ t0

−∞
E′(τ) dτ = −K3

∫ t0

−∞
|v′′(τ)|2 dτ + K1

∫ t0

−∞
|v′(τ)|2 dτ ≤ 0
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thanks to the fact that K3 > 0 and K1 < 0. We infer that

E(t0) ≤ f

((
λs

λN,γ

)1/(γ+1)
)

< f(vs(t0))

since the function f possesses a unique minimum at τ =
(

λs

λN,γ

)1/(γ+1)
, a contradiction.

By Lemma 27 we deduce the following

Lemma 28. Let d∗(γ) := N − 2(γ−1)
γ+1 and λN,γ be as in (15). If us is a singular radial solution to

(Γλs
) with γ ≥ 3 and d = d∗(γ), then

λs = λN,γ and us(x) = 1 − |x|
4

γ+1 .

Proof. By setting

Ws(x) := us(x) −
(

λs

λN,γ

)1/(γ+1) (
1 − |x|

4
γ+1

)
,

the proof may be achieved following the line of that of Lemma 25.

Proof of Theorem 14. By Lemma 28, the extremal solution u∗ to (Γλ) with d = d∗(γ) is singular if
and only if u∗ = us and λ = λN,γ . Since 1

(1−us)γ+1 = 1
|x|4 , us is weakly stable if

∫

B
|∆ϕ|2 dx − d∗(γ)

∫

∂B
ϕ2

ν dS ≥ γ λN,γ

∫

B

ϕ2

|x|4 dx ∀ϕ ∈ Hd(B).

Let

F (γ) :=
2(
√

3γ2 − 2γ + 3 + 3γ − 1)

γ + 1
,

the map γ 7→ F (γ) is strictly increasing and F (γ) → 2(3 +
√

3) ≃ 9.4 as γ → +∞.

If 5 ≤ N ≤ F (γ), since d∗(γ) < δ1(N − 4) and λN,γ > N2(N−4)2

16 , we immediately conclude that us is
not weakly stable, see also the proof of Theorem 12.
If N ≥ F (γ), then δ1(N − 4) < d∗(γ) < N and Theorem 3 implies

∫

B
|∆ϕ|2 dx − d∗(γ)

∫

∂B
ϕ2

ν dS ≥ h(α∗)
∫

B

ϕ2

|x|4 dx ∀ϕ ∈ Hd(B),

where

α∗ :=
2

γ + 1

[√
N(γ2 − 1) − 2(γ − 1)2 + 4 − 2

]

from which we get

h(α∗) =
1

(γ + 1)4

(√
N(γ2 − 1) − 2(γ − 1)2 + 4 − 2

)

×
(√

N(γ2 − 1) − 2(γ − 1)2 + 4 + 2γ
)

×
(√

N(γ2 − 1) − 2(γ − 1)2 + 4 + 2γ − Nγ − N
)

×
(√

N(γ2 − 1) − 2(γ − 1)2 + 4 + 4γ + 2 − Nγ − N
)

.
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Therefore, when N ≥ F (γ), us is weakly stable provided

h(α∗) ≥ γλN,γ ,

which holds as long as

N ≥
√

89γ2 + 54γ + 1 + 17γ + 3

2(γ + 1)
> F (γ).

The map γ 7→
√

89γ2+54γ+1+17γ+3

2(γ+1) is strictly increasing and bounded from above by 14. Setting N∗(γ)
as in the statement, in view of Theorem 8, the above computations yield the thesis. See the proof of
Theorem 12 for more details.

7.4 Proof of Theorem 16

The first part of the proof is performed for general p > 1. We make the choice p = 33 just at the end
to simplify the computations.

By setting v(t) = e
− 4t

p−1 (u(et) + 1), the radial version of (Pλ) reads

viv(t) + K3 v′′′(t) + K2 v′′(t) − K1 v′(t) + λN,p v(t) = λ vp, (45)

where t ∈ (−∞, 0] and

λN,p := −λN,γ |γ=−p, (46)

with λN,γ as defined in (15). For the definition of the constants Ki, i = 1, 2, 3 see (38), (39) and (40)
by means of the substitution γ = −p. For the sake of the proof, it is sufficient to know that K1 < 0
and K3 > 0. The energy function associated to (45) is

E(t) :=
λ

p + 1
vp+1(t) − λN,p

2
v2(t) − K2

2
|v′(t)|2 +

1

2
|v′′(t)|2, t ∈ (−∞, 0].

Now we recall [24, Theorem 4] obtained by studying the dynamical system associated to (45) under
Dirichlet boundary conditions. Since the proof does not directly involve the boundary conditions, the
result still holds in our case.

Lemma 29. If us is a radial singular solution of the equation in (Pλs
), then the corresponding function

vs is such that
lim

t→−∞
v(k)
s (t) = 0, for k = 1, 2, 3, 4

and

lim
t→−∞

vp−1
s (t) =

λN,p

λs
,

with λN,p as in (46).

The next step are suitable properties of singular solutions vanishing on ∂B.

Lemma 30. Let λN,p be as in (46). If us is a singular radial solution of
{

∆2u = λs (1 + u)p in B
u = 0 on ∂B,

then

lim
|x|→0

(
us(x) −

(
λN,p

λs

) 1
p−1

|x|−
4

p−1 + 1

)
= 0

and the following hold
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(a) if λs ≤ λN,p, then us(x) ≤
(

λN,p

λs

) 1
p−1

|x|−
4

p−1 − 1;

(b) if λs ≥ λN,p, then us(x) ≥
(

λN,p

λs

) 1
p−1

|x|−
4

p−1 − 1.

Furthermore, if us is a singular radial solution of (Pλs
) with d = d∗(p) := N − 2 p+1

p−1 , then

λs = λN,p and us(x) = |x|−
4

p−1 − 1.

Proof. The proof follows the line of that of Lemmata 24 and 25. With respect to Lemma 24, the main

difference is that here, inserting vs(t) = e
− 4t

p−1 (us(e
t) + 1) into the energy function E, one has

lim
t→−∞

E(t) = f

((
λN,p

λs

) 1
p−1

)
,

where f(τ) := λs

p+1 τp+1 − λN,p

2 τ2. Then, Lemma 29 and the fact that the function f , for τ > 0, has

a unique minimum point at τ =
(

λN,p

λs

) 1
p−1

, allow to repeat with minor changes the arguments in the

proof of Lemma 24. Lemma 25 can be adapted to this case by setting

Ws(x) := us(x) −
(

λn,p

λs

)1/(p−1) (
|x|−

4
p−1 − 1

)
.

Proof of Theorem 16. Fix p = 33, by Lemma 30 the extremal solution u∗ of (Pλ) with d = d∗(33) =
N − 17

8 is singular if and only if

u∗(x) = us(x) = |x|− 1
8 − 1 and λ = λN,33 =

1088N2 − 6800N + 9537

4096
.

Since (1 + us)
32 = 1

|x|4 , us is weakly stable if

∫

B
|∆ϕ|2 dx − d∗(33)

∫

∂B
ϕ2

ν dS ≥ 33 λN,33

∫

B

ϕ2

|x|4 dx ∀ϕ ∈ Hd(B).

When 5 ≤ N ≤ 9, then d∗(33) < δ1(N − 4) and λN,33 > N2(N−4)2

16 , hence the same arguments applied
in the proof of Theorem 12 show that us is not weakly stable.
If N ≥ 10, then d∗(33) ∈ (δ1(N − 4), N) and Theorem 3 implies

∫

B
|∆ϕ|2 dx − d∗(33)

∫

∂B
ϕ2

ν dS ≥ h(α33)

∫

B

ϕ2

|x|4 dx ∀ϕ ∈ Hd(B),

where α33 := 1+
√

272N−577
8 . To establish when h(α33) ≥ 33 λN,33 is equivalent to check the inequality

(
√

272N − 577 + 1)(
√

272N − 577 + 33)

× (
√

272N − 577 + 33 − 16N)(
√

272N − 577 + 65 − 16N)

≥ 528(1088N2 − 6800N + 9537).
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Putting s :=
√

272N − 577, we come to study the sign of the function

φ(s) = s6 − 3590s4 + 1505353s2 − 1501764, s ≥
√

511.

Some computations show that, for s ≥
√

511, φ(s) has a unique zero at s0 =

√
3589+

√
6873865
2 and it is

positive for s ≥ s0. In terms of N , this means that the desired inequality is satisfied for N ≥ 14 and,
in turn, that us is weakly stable if and only if N ≥ 14. Then we conclude by invoking Theorem 8 as
explained in the proof of Theorem 12.
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