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A NEW CURVE ALGEBRAICALLY BUT NOT RATIONALLY UNIFORMIZED

BY RADICALS.

GIAN PIETRO PIROLA, CECILIA RIZZI, ENRICO SCHLESINGER

Abstract. We give a new example of a curve C algebraically, but not rationally, uniformized by
radicals. This means that C has no map onto P

1 with solvable Galois group, while there exists
a curve C′ that maps onto C and has a finite morphism to P

1 with solvable Galois group. We
construct such a curve C of genus 9 in the second symmetric product of a general curve of genus
2. It is also an example of a genus 9 curve that does not satisfy condition S(4, 2, 9) of Abramovich
and Harris.

Introduction

Every smooth projective complex curve C arises as a branched covering of the projective line
P

1, and its function field is a finite extension of the rational field C(x). However, it is a difficult
problem to find a method for classifying all possible covering maps C → P

1. As explained by M.
Fried in [8], Zariski tackled this problem for the general curve of genus g (here and in the rest of
this paper general means outside a countable union of closed subvarieties). In particular, in [21]
Zariski proves what he regarded as the analogue for curves of Abel’s theorem on the nonsolvability
by radicals of a general algebraic equation of degree ≥ 5: the general curve C of genus g > 6 is not
a covering of P

1 with solvable Galois group. Zariski then goes on and speculates that it would still
be possible, though unlikely, that there exist a finite covering C ′ → C with C ′ representable as a
solvable covering of P

1. This problem has no analogue in the Galois theory of algebraic equations,
because of the many different ways a curve can be viewed as a covering of P

1.
To fix the terminology, the Galois group of a branched covering C → C0 of smooth curves is the

Galois group of the Galois closure of the finite field extension C(C)/C(C0); it coincides with the
monodromy group of the unramified covering obtained removing the branch divisor from C0. We say
the covering is solvable if its Galois group is solvable [13, 17]. A curve C is rationally uniformized by
radicals if there exists a solvable covering map C → P

1, and is algebraically uniformized by radicals
is there exists a finite covering C ′ → C with C ′ rationally uniformized by radicals. Zariski’s theorem
then says that the general curve of genus g > 6 is not rationally uniformized by radicals, and his
question is whether C might still be algebraically uniformized by radicals. It is not obvious that the
two notions are really distinct: the first example of a curve that is algebraically, but not rationally,
uniformized by radicals was given in [18] building on work of Debarre and Fahlaoui [6]. In this
paper we give a new example. We feel that it is of utmost importance to investigate new examples
to enhance our understanding of the difficult problem of describing the possible representations of
the general curve C of genus g as a covering of P

1. Let us recall that in recent years there has been
a lot of research concerning Galois groups of coverings C → B when the genus of C is fixed: see
for example [12] and its list of references. In particular, it is now known that in the moduli space
of genus g curves the locus of curves that are rationally uniformized by radicals is contained in a
proper Zariski closed subset [16, Theorem 1.6] and [11, Theorem 2.4].

Debarre and Fahlaoui were motivated by a related problem posed by Abramovich and Harris [1],
who formulated the statement:
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STATEMENT S(d, h, g): Suppose C ′ → C is a nonconstant map of smooth curves with C of genus
g. If C ′ admits a map of degree d or less to a curve of genus h or less, then so does C.

Abramovich and Harris noted that S(d, 0, g) is true for elementary reasons, proved S(2, 1, g),
S(3, 1, g) and S(4, 1, g) for g 6= 7, and showed that S(3, 2, 5) is false. Thus they asked for which
values of d, h and g the statement holds. In [6] it is shown that S(4, 1, 7) is false, and in [18] we
showed that the curve of genus 7 providing the counterexample is algebraically, but not rationally,
uniformized by radicals. Debarre and Fahlaoui construct their example C on the second symmetric
product Sym2(E) of an elliptic curve. It is clear by their construction that C has a covering C ′ that
admits a map of degree 4 or less to E; in particular, C is algebraically uniformized by radicals. The
key step in disproving S(4, 1, 7) in [6] is to show that C has no 4 : 1 map to P

1, and from this we
were able to deduce in [18] that C is not rationally uniformized by radicals.

In this paper we show the existence of curves of genus 9 that are algebraically, but not rationally,
uniformized by radicals, and that provide counterexamples to S(4, 2, 9). We construct such curves
in a linear system |C| on the second symmetric product X = Sym2(Y ) of a curve of genus 2. The
hard part of the proof again consists in showing the general curve in |C| has no g1

4 . The technique
we use is different from that of [6] and comes from an idea of Tyurin [20]. Roughly, the idea is
to consider in the Hilbert scheme Hilb4(X) the set S of all divisors appearing in a g1

4 of a curve
in the family |C|, and to bound the dimension of this set in order to show the general curve in
|C| cannot contain such a divisor. To find such a bound, one blows down the canonical divisor of
X = Sym2(Y ) to obtain the Jacobian surface S of Y , and then notes that the fibers of the Abel sum
map Hilb4(S) → Alb(S) = S are symplectic varieties [3]. The set S is contained in such a fiber and,
being rationally connected, must lie in a Lagrangian subvariety. This provides the desired bound
for the dimension of S.

The paper is structured as follows. In Section 1 we introduce the notation and terminology, and
state some well known results we will use in the paper. In Section 2 we construct the family of
curves that will eventually provide the example we are looking for, and show it has dimension ten.
In Section 3, which is the technical heart of the paper, we show that a general curve C in our family
has no g1

4 . In Section 4 we show by a dimension count that a general curve C in a ten dimensional
family of genus nine curves cannot be a covering of P

1 of degree d ≥ 5 with a primitive and solvable
Galois group. Putting together the results of these two sections in Section 5 we conclude that C is
not rationally uniformized by radicals. On the other hand, by construction every curve in the family
is algebraically uniformized by radicals, and we therefore obtain examples of genus 9 curves that are
algebraically, but not rationally uniformized by radicals.

1. Notation and Preliminary Results

In this section we collect some well known facts that we will use in the sequel of the paper. We
begin recalling the cohomology of divisors of small degree on a curve of genus 2.

Proposition 1.1. Let Y be a smooth irreducible projective complex curve of genus 2, and let B be
a divisor on Y . Denote by p 7→ p′ the hyperelliptic involution on Y , so that q = p′ if and only if
p + q is a canonical divisor KY on Y . Then

i) if deg(B) = 2, then h0(Y,OY (B)) = 2 if B is a canonical divisor, h0(Y,OY (B)) = 1
otherwise.

ii) if deg(B) = 3, then B is nonspecial, h0(Y,OY (B)) = 2, and
a) either B ∼ KY + p, in which case p is a base point of |B|;
b) or B − KY is not effective, in which case |B| has no base points, and φB : Y → P

1 is
a morphism of degree 3.

iii) if deg(B) = 4, then B is nonspecial, the linear series |B| is base point free and defines a
morphism φB : Y → P

2. Furthermore:
a) either B ∼ 2KY , in which case φB is the hyperelliptic involution Y → P

1 followed by
the 2-uple embedding P

1 → P
2; in particular, every effective divisor in |2KY | is the sum

p + p′ + q + q′ of two canonical divisors;
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b) or B ∼ KY + p + q where q 6= p′, in which case φB : Y → P
2 is birational onto a plane

quartic curve, which has a node if p 6= q or a cusp if p = q; φB separates any pair of
points of Y except for the pair (p, q).

We will construct our example on the second symmetric product X = Sym2(Y ) of a curve of genus

two Y . The surface X has irregularity q(X) = g(Y ) = 2 and geometric genus pg(X) =
(

g(Y )
2

)

= 1,
hence χ(OX) = 0.

We identify points of X with degree 2 effective divisors p + q on Y . The quotient map

π : Y × Y −→ X, π(p, q) = p + q

exhibits X as the quotient of Y × Y by the involution σ(p, q) = (q, p). Let ∆̃ denote the diagonal

in Y × Y , and let ∆ = π(∆̃) = {2p : p ∈ Y }. The map π is a double cover ramified along ∆, so
that π∗OY ×Y = OX ⊕ L−1 where L a line bundle satisfying L⊗ 2 = OX(∆). In particular ∆

2 is an

integral divisor class on X, and π∗(∆
2 ) = ∆̃.

Given a point p ∈ Y , we denote by Hp the curve

Hp = {p + q ∈ X | q ∈ Y } ⊂ X.

One knows that the canonical divisors of Y and X are related as follows: if p + p′ is a canonical
divisor on Y , then the canonical divisor of X is KX ∼ Hp + Hp′ − ∆

2 .

Another way to look at X is via the natural map X = Div(2)(Y ) → Pic(2)(Y ), which exhibits X
as the blow up of the Jacobian variety Pic(2)(Y ) at the point corresponding to the canonical divisor
KY . The exceptional divisor E ∼= P

1 is therefore the unique effective canonical divisor on X. In
particular, E ∼ Hp + Hp′ − ∆

2 .

Any divisor B =
∑

p np p on Y gives rise to a divisor α(B) =
∑

p npHp on X. The map Pic(Y ) →

Pic(X) induced by α is injective, and in fact Pic(X) contains a subgroup isomorphic to α(Pic(Y ))⊕
Z[E]. Furthermore, a divisor on X is numerically equivalent to zero if and only if it is linearly
equivalent to a divisor of the form α(B) =

∑

p npHp with
∑

np = 0.

When Y has general moduli, the endomorphism ring of the Jacobian variety Jac(Y ) is Z generated
by the identity [14], and from this it follows Pic(X) = α(Pic(Y )) ⊕ Z[E].

One can easily compute the cohomology of the divisors OX(α(B)):

Proposition 1.2. Let B =
∑

p np p be a divisor on Y , and let α(B) =
∑

p npHp be the correspond-

ing divisor on X. Then α(B) is effective if and only if B is effective. Furthermore

i) If deg(B) = 1 and B = p is effective, then

h0(X,OX(Hp)) = h1(X,OX(Hp)) = 1, h2(X,OX(Hp)) = 0

ii) if deg(B) = 2 and B ∼ KY , then

h0(X,OX(α(B))) = 3, h1(X,OX(α(B))) = 2, h2(X,OX(α(B))) = 0

iii) if deg(B) = 2 and B ≁ KY , then

h0(X,OX(α(B))) = 1, h1(X,OX(α(B))) = h2(X,OX(α(B))) = 0

iv) if deg(B) = b ≥ 3, then

h0(X,OX(α(B))) =
1

2
b(b − 1), h1(X,OX(α(B))) = h2(X,OX(α(B))) = 0

Let N1(X) denote the Néron-Severi group of X (divisors modulo numerical equivalence for which
we use the symbol ≡). We denote by H the class of Hp in N1(X), while we keep using the symbols
∆ and E for the classes of ∆ and E in N1(X). From the above description of Pic(X) we see that
N1(X) contains the subgroup

Z[H] ⊕ Z[E]

and N1(X) = Z[H] ⊕ Z[E] when Y has general moduli. Note that

H2 = 1 H · E = 1 E2 = −1.
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Proposition 1.3. In the Néron-Severi group of X

• some positive multiple of an integral class aH − bE is effective if and only if a ≥ 0 and
a ≥ 2b.

• an integral class aH − bE is ample (respectively nef) if and only if a > −b and a > 3b
(respectively a ≥ −b and a ≥ 3b).

Proof. The first statement follows from the fact that H is ample and the two effective curves ∆ ≡
4H − 2E and E have negative self-intersection.

To check the second statement, let R1 ≡ H + E and R2 ≡ 3H − E ≡ H + ∆
2 . Then R1.E =

R2.∆ = 0. Since H is ample, it follows that R1 and R2 are nef but not ample. ¤

2. A Ten Dimensional Family of Genus Nine Curves

In this section we construct a 10 dimensional family of curves of genus 9 whose general member
we will eventually show to be algebraically but not rationally uniformized by radicals. We keep the
notation we introduced in the previous section for divisors on the surface X = Sym2(Y ), where Y
denotes a smooth projective curve of genus 2. We begin by showing the existence of smooth genus
9 curves numerically equivalent to 3H + E on X.

Proposition 2.1. Let L be a divisor on X numerically equivalent to 3H + E. Then

h0(OX(L)) = 6, h1(OX(L)) = h2(OX(L)) = 0.

Furthermore:

• the linear system |L| is base point free, and defines a morphism φL : X → P
5 that maps X

birationally onto its image.
• the general curve C ∈ |L| is smooth and irreducible; the genus of such a curve C is g(C) = 9

and its self-intersection is C2 = 14.

Proof. Any divisor numerically equivalent to 3H is ample, hence h1(OX(L)) = h2(OX(L)) = 0 by
Kodaira vanishing theorem. Therefore

h0(OX(L)) = χ(OX(L)) =
1

2
(L − KX).L + χOX = 6.

Since L ≡ KX + 3H and H is ample, it follows from Reider’s Theorem [19] that |L| is base point
free, hence the generic curve C ∈ |L| is smooth (the ground field is C). Also L itself is ample, hence
any curve in |L| is (numerically) connected (cf. [9] Ex. 13 p. 24).

We need to check that φL is birational onto its image. The divisor L is linearly equivalent to
E + α(B0) where B0 is a divisor of degree 3 on Y , thus OX(L) ∼= OX(E + Hp + Hq + Hr) where
(p, q, r) are three points of Y .

By [19], Remark 1.2.2, if two points of X are not separated by |L|, then there is a curve F
numerically equivalent to H passing through the two points. By Proposition 1.2 F = Hx for some
x ∈ Y . We will now show that for every x the linear system |L| separates all but one pair of points
of Hx, unless OY (p + q + r) ∼= OY (x + KY ) so that x is the unique base point of OY (p + q + r).
This shows that φL is one to one on X except on an at most one dimensional locus, and concludes
the proof.

From the exact sequence

0 → OX(L − Hx) → OX(L) → OHx
(L) → 0

we see every section of OHx
(L) arises from a section of OX(L) because H1(OX(L − Hx)) = 0 by

Kodaira vanishing. Thus it is enough to show that OHx
(L) separates all but a pair of points of Hx

if x is not a base point of OY (p + q + r).
Thus we assume x is not a base point of OY (p + q + r), and we can then take p, q and r distinct

from x. The restriction OHx
(L) of L to the curve Hx

∼= Y is OY (x′ + p + q + r), where x′ is the
conjugate point of x so that x + x′ ∼ KY . If we had x′ + p + q + r ∼ 2KY , then p + q + r ∼ x + KY

contradicting the assumption that x is not a base point of OY (p+q +r). Thus x′ +p+q +r ∼ 2KY ,
and thus OHx

(L) separates all but one pair of points of Hx by Proposition 1.1. ¤
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We outline now the standard arguments that allow one to compute the dimension of the family
of genus 9 curves C arising as in the previous proposition.

Proposition 2.2. In the moduli space of curve of genus 9 there is a 10 dimensional family of curves
whose general member is a curve C numerically equivalent to 3H + E on a surface X = Sym2(Y ),
where Y is a general curve of genus 2.

Proof. Let f : Y → B be a smooth family of genus two curves such that the associated moduli map
B → M2 is generically finite and dominant, and let

p : X = Y ×B Y/S2 → B

be the corresponding family of symmetric products.
Consider the relative Hilbert scheme H = Hilb(X/B). We fix a closed point b ∈ B, and let

X = Xb and Y = Yb. Then the fiber Hb is the Hilbert scheme Hilb(X).
Fix a smooth curve C ≡ 3H +E on X. Since H1(OX(C)) = 0, the Hilbert schemes H and Hb are

smooth at the point [C] corresponding to C, and there exists an exact sequence of tangent spaces

0 → T[C]Hb → T[C]H → TbB → 0.

Claim If α : Hb → M9 denotes the moduli map, its differential

dα : T[C]Hb
∼= H0(C,OC(C)) → T[C]Mb

∼= H1(C, TC)

is injective

Since the kernel of dα is (a quotient of) H0(TX |C), it is enough to show the latter group vanishes.
For this, we look at the blow up map ρ : X → S = Pic2(Y ) ∼= Jac(Y ). Restricting the exact
sequence

0 → TX → ρ∗TS
∼= OX ⊕OX → Nρ

∼= OE(−E) ∼= OP1(1) → 0

to the curves C one obtains a new exact sequence

0 → TX |C → (ρ∗TS)|C ∼= O⊕2
C → OZ → 0

where Z is the length 2 zero dimensional intersection of C and E. One checks

H0((ρ∗TS)|C) → H0(OZ)

is an isomorphism, hence its kernel H0(TX |C) vanishes, proving the claim.
Now let β : H → Mb denote the moduli map on the relative Hilbert scheme. Then dβ induces a

map TbB ∼= H1(TY ) → Coker(dα). Now observe that

Coker(dα) ∼= H1(TC)/Im(H0(OC(C)) →֒ H1((TX)|C)

Thus we obtain a map

φ : TbB ∼= H1(TY ) → H1((TX)|C).

Assume for the moment that φ is injective. Then dβ : T[C]H → T[C]Mb is injective, and this
proves the proposition because

h0(OC(C)) + h1(TY ) = 7 + 3 = 10.

To show φ is injective, notice that it factors through the map ψ : H1(TY ) → H1(TX) that
associates to a in infinitesimal deformation of Y the corresponding deformation of X. The map ψ is
injective: identifying Y with the diagonal ∆ ⊂ X, we see the kernel of ψ is contained in the kernel
of H1(T∆) → H1((TX)|∆), hence in H0(O∆(∆)). The latter group vanishes, hence ψ is injective.

Finally, φ is obtained composing ψ with

H1(TX) → H1((TX)|C)

whose kernel is H1(TX(−C)). This cohomology group is contained in H1(OX(−C)⊕2), which van-
ishes because OX(C) is ample. Thus φ : H1(TY ) → H1((TX)|C) is injective, and this concludes the
proof. ¤
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3. The General Curve in the Family has no g1
4

This section contains the main technical difficulty of the paper, which is to prove that the general
curve in our family of genus 9 curves has no g1

4 . To be more precise, recall that the Jacobian of
a general smooth projective curve is simple [14]. Therefore, if Y is a general curve of genus 2, the
Néron Severi group of X = Sym2(Y ) is generated by the classes of H and E. If this is the case and
L is a divisor on X numerically equivalent to 3H + E, we will show that in the linear system |L|
there is an open dense subset of smooth curves that have no g1

4 . Before we can prove this, we need
to establish the fact that these curves have no map onto a non rational curve.

Proposition 3.1. Suppose Y is a smooth projective curve of genus 2 whose Jacobian is simple,
and let X = Sym2(Y ). Suppose L is a divisor on X numerically equivalent to 3H + E, and C is a
general curve in the linear system |L|. If D is a smooth curve for which there is a finite morphism
C → D of degree d ≥ 2, then D is rational.

Proof. Suppose f : C → D is a finite morphism of smooth curves of degree d ≥ 2. By [4, Theorem
1.1] the Jacobian of C satisfies

End(Jac(C)) = Z × End(Alb(X)) = Z × End(Jac(Y ))

Since End(Jac(Y )) = Z, the abelian subvarieties of Jac(C) have dimension 0, 2, 7 or 9. It follows
that, if D is not rational and d ≥ 2, then g(D) = 2 and there is an isogeny φ : Jac(Y ) → Jac(D)
which factors through the map Jac(C) → Jac(D) induced by f .

Let C0 be the inverse image of C in Jac(Y ) under the map Jac(Y ) → Jac(C). Since φ : Jac(Y ) →
Jac(D) is étale, so is its restriction ψ : C0 → D. But ψ factors through f : C → D, thus f is étale.

The family of genus 9 curves that are étale covers of a genus two curve has dimension 3 = dimM2.
On the other hand, C varies in |L| ∼= P

5, and |L| that by the proof of (2.2) maps with zero dimensional
fibers to the moduli space M9. Therefore the general C ∈ |L| is not an étale cover of a genus two
curve, finishing the proof of the lemma. ¤

Theorem 3.2. Suppose Y is a smooth projective curve of genus 2 whose Jacobian is simple, and let
X = Sym2(Y ). Suppose L is a divisor on X numerically equivalent to 3H + E, and C is a general
curve in the linear system |L|. Then C has no g1

4.

Proof. Suppose by way of contradiction that the general curve in |L| has gonality d ≤ 4, and therefore
has a base point free g1

d with 2 ≤ d ≤ 4. We distinguish two cases, according to whether the g1
d is

unique or not.

Case 1 Assume first the general curve C in the family has a unique g1
d.

The natural map X = Sym2(Y ) → Pic2(Y ) identifies X with the blow up of the abelian surface
S = Jac(Y ) at the origin, and E is the exceptional divisor. By a theorem of Fogarty’s [7] the Hilbert
scheme H = Hilbd(S) parametrizing zero dimensional subschemes of S of length d is a smooth and
irreducible projective variety of dimension 2d. We will identify a zero dimensional subscheme Z of
S that does not contain the origin 0S , with its preimage in X. Then it makes sense to look at the
incidence variety

{

(C,Z) ∈ |L| × H : C is smooth, , 0S /∈ Z, Z ⊆ C, h0(C,OC(Z)) ≥ 2
}

.

Let W be an irreducible component of this locus that maps dominantly to |L|, and let π1 and π2

be the two projections of W on |L| and H respectively. Since the general curve in |L| has a unique
g1

d, the map π1 is dominant and its general fiber is a rational curve. Therefore W is a rationally
connected variety of dimension 6 [10, 5].

Now look at the Abel sum map

α : H = Hilbd(S) → Alb(S) = S.

Since W is rationally connected, the image π2(W ) of W in H must be contained in a fiber K of α.
The fiber K is a symplectic variety of dimension 2(d − 1)- see [3] . The pull back of the symplectic
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form to W vanishes because W is rationally connected, hence π2(W ) is a Lagrangian subvariety of
K. Therefore

dimπ2(W ) ≤
1

2
dimK = d − 1,

and the generic fiber of π2 has dimension at least 7 − d.
By Proposition 2.1 the linear system |L| defines a morphism φ : X → P

5 that maps X birationally
onto its image. Note that P

5 is the dual projective space of |L| ∼= P(H0(X,L)). For a closed
subscheme V ⊂ X, we let |L(−V )| ∼= P(H0(X, L ⊗ IV )) denote the linear system of curves in |L|
that contain V . Then the linear span of φ(V ) in P

5 is the subspace dual to |L(−V )|; the dimension
of the linear span of φ(V ) is therefore 4 − dim |L(−V )|.

Now let (C, Z) be a point of W . Then |L(−Z)| contains the fiber π−1
2 (Z), hence

dim |L(−Z)| ≥ dim(π−1
2 (Z)) ≥ 7 − d.

It follows that the image φ(Z) of Z in P
5 is contained in a linear space of dimension d − 3. Since

d ≤ 4, this says that φ(Z) is contained in a line. Since φ is birational, for Z general the linear span
of φ(Z) will be a line, hence d = 4, and dim |L(−Z)| = 3. Since dim(π−1

2 (Z)) ≥ 3, we conclude that
dim(π−1

2 (Z)) = 3 for a general Z in π2(W ), and therefore the general curve C in |L(−Z)| belongs to
π−1

2 (Z), that is, h0(OC(Z)) ≥ 2. By semicontinuity, h0(OC(Z)) ≥ 2 for every smooth C in |L(−Z)|.
For a point a ∈ X define

B0
a = {x ∈ X : there exists Z ∈ π2(W ) such that a, x ∈ Z

and h0OC(Z) ≥ 2 for every smooth C in |L(−Z)|
}

.

and let Ba denote the closure of B0
a in X. For a general choice of a, the dimension of Ba is one.

To see this, let Wa denote the set of pairs (C,Z) in W for which a ∈ Z. Then Wa has dimension 4
because π1 maps Wa generically onto |L(−a)| ∼= P

4, with zero dimensional fibers as there is a unique
divisor in the g1

4 of C that contains a. Since the general fiber of π2 : Wa → H has dimension 3, the
image of Wa in the Hilbert scheme is a curve T . Therefore the restriction UT to T of the universal
family over H is also a curve, and so is Ba which is the closure of the projection in X of UT with
the point a removed.

We claim that, for a general C0 ∈ |L(−a)|,

Ba.C0 = ma + x1 + x2 + x3

where Z0 = a + x1 + x2 + x3 is the unique element of the g1
4 of C0 that contains a, and m ≥ 0.

Indeed, since C0 is general in |L(−a)|, it is smooth and it does not contain any of the finitely many
points of Ba −B0

a except perhaps a. So, if x ∈ Ba ∩C0 \ {a}, there is Z ∈ π2(W ) such that a, x ∈ Z
and h0OC(Z) ≥ 2 for every smooth C ∈ |L(−Z)|. Now

3 ≤ dim |L(−Z)| = dim |L − (a + x)|

hence |L(−Z)| = |L − (a + x)| and C0 ∈ |L(−Z)|. Then h0OC0
(Z) ≥ 2, and Z = Z0 because there

is a unique divisor in the g1
4 of C0 that contains a. In particular, x ∈ {x1, x2, x3} proving our claim.

The claim implies that the intersection of φ(Ba) with a general hyperplane of P
5 through φ(a) is

contained in a line: the hyperplane corresponds to C0, and the line is the linear span of φ(Z0). It
follows that φ(Ba) is contained in a P

2 through φ(a), hence

dim |L(−Ba)| ≥ 2

We conclude that Ba and C − Ba are effective, with h0OX(C − Ba) ≥ 3. Now we use the
fact that the Néron Severi group of X is generated by E and H. Since Ba moves with a, we see
Ba 6= E, 2E. On the other hand, C − Ba can’t be numerically equivalent to H + 2E, H + E or
H because h0OX(C − Ba) ≥ 3. It then follows from Proposition 1.3 that C − Ba is numerically
equivalent to either 2H or 2H + E, so that either Ba ≡ H or Ba ≡ H + E.

Suppose Ba ≡ H. Then Ba is one of the curves Hp (with p ∈ Y ). As Ba.C = H.C = 4, the g1
4

on C is |HC |, where HC = Hp.C. Now look at the exact sequence

0 → OX(Hp − C) → OX(Hp) → OC(HC) → 0
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Now C − H ≡ 2H + E = 2H + KX is ample by 1.3, hence H1OX(Hp − C) = 0, therefore
h0(C,OC(HC)) = 1, so HC cannot be a pencil, and this case does not occur.

Suppose now Ba ≡ H + E, that is, Ba = Hp + E for some p ∈ Y . Then

Ba.C = (H + E).C = 4 + 2 = 6

contains the g1
4 , hence h0((Hp + E)C) ≥ 2. But from the exact sequence

0 → OX(Hp + E − C) → OX(Hp + E) → OC((H + E)C) → 0

one obtains a contradiction as above (note that h0(OX(Hp+E)) = χ(OX(Hp+E)) because Hp+E =
Hp + KX , and χ(OX(Hp + E)) = 1

2 (H + E).H = 1).

Case 2 Suppose now the general C ∈ |L| has more than one g1
d. Then d = 4 because an hyperelliptic

curve has a unique g1
2 , and a trigonal curve of genus g > 4 has a unique g1

3 . So suppose the general
C ∈ |L| has gonality 4 and has two distinct g1

4 . The two g1
4 define a morphism

ψ : C → Q = P
1 × P

1

of degree e onto a a divisor B of type (4/e, 4/e) on Q. We cannot have e = 4, as otherwise B ∼= P
1

and the two linear series coincide. If e = 2, then B cannot be rational because C is not hyperelliptic.
But B cannot be an elliptic curve because C does not have morphism to curves of genus 1 by
Proposition 3.1. Hence e = 1 and ψ : C → B is birational.

Since B has arithmetic genus 9, the map ψ is an isomorphism. Thus B ∼= C is a smooth curve of
type (4, 4) on Q = P

1 × P
1. We will show that this is not possible by proving that: (a) the curve

C has a base point free complete g2
8 that defines a map φ : C → P

2 that is not 4 : 1 onto its image;
(b) the only base point free and complete g2

8 on a divisor B of type (4, 4) on Q are |OB(2, 0)| and
|OB(0, 2)|, and these define 4 : 1 maps.

We now show a general C in |L| has a complete and base point free g2
8 that defines a morphism

g : C → P
2 that is not 4 : 1 onto its image. Recall X is the blow up of the abelian surface

S = Jac(Y ) ∼= Pic2(Y ) at the origin 0S
∼= OY (KY ). Given a point p in Y we denote by θp the theta

divisor

θp = {OY (p + y) | y ∈ Y }.

If p+p′ = KY , the divisor θp +θp′ is symmetric with respect to the involution of the abelian surface,
and defines a morphism S → P

3 whose image is a quartic Kummer surface T . The pull back of
θp + θp′ to X is the divisor Hp + Hp′ + 2E, which therefore defines a 2 : 1 morphism X → P

3 whose
image is the Kummer surface T . This morphism maps C birationally onto its image in T because
C has no 2 : 1 morphism to a curve, as it is not hyperelliptic and does not have any morphism of
degree d ≥ 2 onto a nonrational curve.

Next we project the Kummer surface from the node that is the image of 0S
∼= OY (KY ): this

amounts to consider the morphism X → P
2 defined by Hp+Hp′ (one can check h0 (X,OX (Hp + Hp′))

= 3 using Proposition 1.2.ii). This projection is a degree 2 morphism γ : T → P
2. Since C maps

birationally onto its image in T , the restriction g : C → P
2 of γ to C is either birational or 2 : 1

onto its image, in any case is not 4 : 1.
To finish, observe that g∗(OP2(1)) is the line bundle corresponding to the divisor (Hp + Hp′) |C .

We claim (Hp + Hp′) |C moves in a complete g2
8 on C. To compute OC (Hp + Hp′) |C , we recall

h0 (X,OX (Hp + Hp′)) = 3 and look at the exact sequence

0 → OX (Hp + Hp′ − C) → OX (Hp + Hp′) → OC ((Hp + Hp′) |C) → 0

Since C − Hp − Hp′ ≡ H + E is big and nef by 1.3, the H0 and H1 of Hp + Hp′ − C vanish, hence

h0 (C,OC ((Hp + Hp′) |C)) = 3.

Summing up we have found a complete g2
8 on C that defines a morphism g : C → P

2 that is not
4 : 1 onto its image.

To complete the proof, we need to show that, if B is a smooth divisor of type (4, 4) on the quadric
surface Q ⊂ P

3, then the only base point free and complete g2
8 on B are |OB(2, 0)| and |OB(0, 2)|.
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So let δ be an effective divisor of degree 8 on B such that |δ| is a complete and base point free g2
8 .

Then h0(B,OB(δ)) = 3 and we may assume that δ consists of 8 distinct points.
By Riemann-Roch

h0(B,OB(KB − δ)) = 3 + deg(KB − δ) + 1 − g(B) = 3

Since B is a divisor of type (4, 4), by adjunction KB = 2H, where OB(H) = OB(1, 1). Therefore
OB(KB − δ) = Iδ,B(2H), and

h0(Q, Iδ,Q(2, 2)) = h0(B, Iδ,B(2H)) = 3

because H0(Q, IB,Q) = H1(Q, IB,Q) = 0. Thus we see that the linear system

D = |OQ(2, 2) − δ|

cut out on Q by quadric surfaces containing δ has projective dimension 2.
If the linear system D had no fixed component, then two general elements in the linear system

would meet properly in a zero dimensional scheme of degree 8 containing δ, hence equal to δ. Thus
δ would be a complete intersection of three quadrics in P

3, contradicting h0(Q, Iδ,Q(2, 2)) = 3. Thus
D has a fixed curve, say D. We write δ = α + β where α consists of those points of δ that are in the
support of D.

Case a: D is a line, with respect to the embedding of Q in P
3 by OQ(1, 1), say of type (0, 1).

Then the linear system D is, up to removing D, the linear system

|OQ(2, 1) − β|

Observe that β cannot contain 3 collinear points, otherwise the line through them would be
contained in the fixed component of D. Similarly, if β had 4 points in a plane Π, then there would
be a fixed component of D contained in Π and different from D, which is absurd.

Since D is a line and α ⊂ D ∩ B, there are at most four points in α, so β contains at least
4 points P1, P2 P3 and P4. As β has no 3 collinear points, and no 4 coplanar points, the points
Pi impose independent conditions on |OQ(2, 1)|: a divisor of type (2, 1) containing only the first
three points is given by a conic through P1, P2, and P3, plus a line not containing P4. Then
dimD ≤ dim |OQ(2, 1)| − 4 = 1, a contradiction.

Thus this case does not occur.

Case b: D is a plane section of Q, that is a divisor of type (1, 1).

Then the linear system D is, up to removing D, the linear system

|OQ(1, 1) − β|

Since D has projective dimension 2, we see that β consists of at most one point. If β = P had
degree one, then α would have degree 7 besides being contained in the plane of D. Thus

h0(B,O(α)) ≥ h0(B,OB(1, 1)) − 1 = 3

But α ≤ δ and h0(B,OB(δ)) = 3 by assumption, so the unique point of β is a base point of δ,
contradicting the fact that δ is base point free. Thus β is empty. But then δ = α is a plane section,
and this is also a contradiction because h0(B,OB(1, 1)) = 4. Thus this case also does not occur.

Case c: D has degree 3 and arithmetic genus 0, that is, it is a divisor of type (2, 1) or (1, 2).

Suppose that D has type (1, 2). Then the linear system D is, up to removing D, the linear system

|OQ(1, 0) − β|

Since |OQ(1, 0)| has projective dimension 1, this case does not occur.

Case d: D has degree 2 and arithmetic genus −1, that is, it is a divisor of type (2, 0) or (0, 2).

Suppose that D has type (0, 2). Note that D is either the disjoint union of two lines of type (0, 1),
or a double structure on a line of type (0, 1).
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The the linear system D is, up to removing D, the linear system

|OQ(2, 0) − β|

Since |OQ(2, 0)| has projective dimension 2 and no base points, β is the zero divisor. Thus δ = α is
contained in the fixed curve D. We know that at most four points of δ are collinear, because δ lies
on the curve B which has type (4, 4). Therefore the only possibility is that D is the union of two
lines L1 and L2 of type (0, 1), and δ = B.D. Therefore OB(δ) ∼= OB(0, 2) (or OB(δ) ∼= OB(2, 0) if
D has type (2, 0)).

There are no other possibilities for D, because it is contained properly in a divisor of type
(2, 2). Thus we have proven that the only complete and base point free g2

8 ’s on B are OB(2, 0) and
OB(0, 2). ¤

4. Number of Moduli of Genus 9 Primitive and Solvable Coverings of the

Projective Line

In this section we show that, if C is a general curve in a 10 dimensional family of smooth curves
of genus 9, then a finite map f : C −→ P

1 that has a primitive and solvable Galois group has degree
at most 4 (the Galois group is primitive when f cannot be factored nontrivially). The proof is based
on a counting argument due to Zariski [21].

Given a finite morphism f : C −→ C0 of smooth curves, we denote by b(q) the multiplicity of a
branch point q of f in the branch divisor.

Theorem 4.1 (Zariski, see [18, Proposition 3.1]). Let f : C −→ C0 be a degree d primitive solvable
covering of curves. Then there exists a prime p such that d = pk, and for every branch point q of f
the multiplicity b(q) is bounded by the formula:

b(q) ≥
pk − pk−1

2
.

Moreover, if p = 2 and d − 1 is prime, then b(q) ≥ 2k−1 − 1.

We recall Zariski’s argument. Let Sd = Aut(Ω), where Ω is a set of d elements. Fix x ∈ Ω
and consider a primitive solvable subgroup G of Sd. It is well known that G has only one minimal
normal subgroup A, which is an elementary abelian p-group for some prime p. Moreover, G is the
semidirect product G = [A] ·Gx, where Gx denotes the stabilizer of x in G. Since the action of A on
Ω is regular, the cardinality of A is equal to d = pk for some k ≥ 1. Furthermore, identifying Ω with
the vector space A, the group G acts as a subgroup of the group Aff(A) of affinities of A. Hence an
element g ∈ G, not equal to the identity 1G, has at most pk−1 fixed points. To each branch point q
the monodromy representation associates an element g ∈ G whose action on Ω has d − b(q) orbits.
Hence b(q) ≥ d−n

2 where n is the number of fixed points of g.

Proposition 4.2. Let C be an irreducible family of curves of genus 9 whose general curve is a degree
d primitive and solvable covering of P

1. Then the dimension of C is at most 9 unless d ≤ 5.

Proof. Consider a family C of curves C of genus 9 such that the general curve C admits a degree d
primitive solvable covering of P

1 with r distinct branch points, each with multiplicity at least m.
By the Riemann Hurwitz formula the degree of the branch divisor B of the covering f : C → P

1 is
16+2d. If f has exactly r distinct branch points, each with multiplicity at least m, then deg(B) ≥ rm,
therefore

r ≤
16 + 2d

m
The dimension of C is then at most

r − 3 ≤
16 + 2d

m
− 3.

By (4.1) d = pk and

m ≥
pk − pk−1

2
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Thus

dim C ≤ 4
8 + pk

pk − pk−1
− 3 =

32

pk−1(p − 1)
+

4

1 − 1/p
− 3.

This shows dim C ≤ 9 unless d ≤ 5 or d = 8. But when d = 8 we can use the better estimate
m ≥ 2k−1 − 1 = 3 to conclude dim C < 8. ¤

Proposition 4.3. If C is a general curve in a 10 dimensional family of smooth genus 9 curves,
then there is no degree 5 covering C → P

1 with a primitive solvable Galois group.

Proof. Let f : C → P
1 be a degree 5 primitive and solvable covering. By Riemann-Hurwitz the

branch divisor Bf has degree 26. By (4.1) every branch point q has multiplicity b(q) ≥ 2, hence the
number r of distinct branch points has to be ≤ 13.
The Hurwitz scheme of coverings of P

1 having r distinct branch points has dimension r−3. Thus, if C
varies in a family of dimension ≥ 10, the only possibility is that r = 13 and b(q) = 2 for every branch
point q. Let G ⊂ S5 be the Galois group of f . In the Galois group, for any branch point qi ∈ Bf ,
there is an associated cycle gi ∈ G with 3 = d − b(qi) orbits. Furthermore by Zariski’s argument
the cycle gi has at most one fixed point, so it must be (12)(34) up to conjugation. Moreover, the
product of the cycles gi is the identity of the Galois group.

(1)

13
∏

i=1

gi = 1G.

As explained after Theorem 4.1, the group G is contained in the group of affinities of Z5, which
is a semidirect product [Z5] · Z4. Therefore there is an induced map φ : G → Z4. Since gi has order
2, it can’t be contained in the kernel of φ, so φ(gi) is the unique element h = [2] of order 2 in Z4.

Then φ(
∏13

i=1 gi) is also equal to h, contradicting (1). ¤

5. Proof of the Main Result

In this section we collect all the previous results to show that the general curve of the family
constructed in section 2 is algebraically, but non rationally, uniformized by radicals.

Theorem 5.1. Let C be the family of smooth genus 9 curves C for which there exists a genus 2
curve Y such that C ⊂ X = Sym2(Y ) and the class of C in the Néron-Severi group of X is 3H +E.
Then a general curve in C is algebraically, but non rationally, uniformized by radicals, and provides
a counterexample to Statement S(4, 2, 9) of [1].

Proof. To see that a curve C in the family is algebraically uniformized by radicals is easy. Since
C ⊂ X = Sym2(Y ) and C ≡ 3H + E, for every point p ∈ Y the curve C intersects the divisor
Hp ⊂ X in a scheme of length 4. We define a map φ : Y −→ Sym4(C) sending a point p ∈ Y to
Hp · C. Then as in [18, Proposition 5.1 ] we deduce there is a smooth curve C ′ that covers C and
admits a morphism C ′ → Y of degree ≤ 4.

We now have to prove show that a general C in our family is not rationally uniformized by radicals,
that is, there does not exist a finite map C −→ P

1 with solvable Galois group. In particular, C,
contrary to its covering C ′, does not admit a nonconstant map of degree 4 or less to a curve of genus
2 or less, and thus provides a counterexample to S(4, 2, 9).

Suppose by way of contradiction there is C −→ P
1 with solvable Galois group. Then we can

factor it as

C
f

−→ C0

ց ւ g
P

1

where f is a covering of degree d ≥ 2 with a primitive and solvable Galois group (the Galois group is
primitive when f cannot be factored). Since C does not cover any non rational curve by Proposition
3.1, the curve C0 is rational, and we are reduced to show there does not exist a finite map C −→ P

1

with primitive and solvable Galois group. By the dimension count of Propositions 4.2 and 4.3 any
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such map would have degree d ≤ 4. But by Theorem 3.2 there are no morphisms C → P
1 of degree

d ≤ 4. Thus the proof is complete.
¤
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