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Generi uniqueness of minimizer forBlake & Zisserman funtionalTommaso Boellari - Frano TomarelliPolitenio di Milano - Dipartimento di Matematia "Franeso Brioshi"November 5, 2010ABSTRACT: Blake-Zisserman funtional F g�;� ahieves a �niteminimum for any pair of real numbers �, � suh that 0 < � �� � 2� and any g 2 L2(0; 1).Uniqueness of minimizer does not hold in general. Nevertheless,in the 1D ase uniqueness of minimizer is a generi property forF g�;� in the sense that it holds true for almost all gray levels datag and parameters �, �: we prove that, whenever �� =2 Q , theminimizer is unique for any g belonging to a GÆ subset of L2(0; 1)dependent on � and �.Contents1 Introdution 12 Euler equations 43 Notation and preliminary results 64 An auxiliary variational problem 345 CW struture of the set of data with vanishing exess fE = 0g 376 CW struture of the set fE = 0g \ fE = 0g of all data exhibiting non uniqueness ofminimizer with same ardinality of singular sets and di�erent arrangement 417 Proof of the main theorem 608 Appendix A: CW omplexes and Transversality 681 IntrodutionImage segmentation plays an important role in omputer vision and in theunderstanding of biologial vision. The �rst variational model for image seg-mentation was proposed by D.Mumford & J.Shah [21℄, [22℄ and studied by1



several authors ([16℄, [17℄, [18℄, [20℄). Blake & Zisserman showed some inon-venient related to Mumford & Shah approah and introdued an alternativeway ([3℄) to translate image segmentation task into a variational formulationwhih atually is a free gradient disontinuity problem. Blake & Zissermanapproah was studied in [5℄, [6℄, [7℄, [8℄, [9℄, [10℄, [13℄, [12℄, [15℄.Here we fous the question of uniqueness restriting the analysis to the 1dimensional Blake & Zisserman funtional F g�;� de�ned as follows.Given g 2 L2(0; 1), �; � 2 R and u 2 H2 we set F g�;� : H2 ! [0;+1)F g�;�(u) = Z 10 j�u(x)j2 dx+Z 10 ju(x)� g(x)j2 dx+� ℄ (Su)+� ℄ (S _unSu). (1.1)Here and in the sequel for all u 2 L2(0; 1), _u denotes the absolutely ontin-uous part of the distributional derivative u0 of u, �u denotes the absolutelyontinuous part of ( _u)0, Su � (0; 1) denotes the approximate disontinuity set([1℄) of u and S _u � (0; 1) the approximate disontinuity set of _u, H2 denotesthe set of v 2 L2(0; 1) suh that Sv and S _v are �nite sets and v 2 H2(I) forany interval I � (0; 1)n (Sv[S _v), eventually ℄ denotes the ounting measure.We will all singular set of u the set Su [ S _u. We setmg(�; �) = inffF g�;�(u) 8u 2 H2g,argminF g�;� = fu 2 H2 : F g�;�(u) = mg(�; �)g.We reall that argminF g�;� 6= ; whenever the two following onditions aresatis�ed ([15℄): 0 < � � � � 2� (1.2)g 2 L2(0; 1). (1.3)Nevertheless minimizers are not unique in general. In [4℄ Setion 3 we exhibitexamples of g 2 L2(0; 1) and �, � ful�lling (1.2) suh that F g�;� has morethan one minimizer (see Counterexample 3.1, 3.2, 3.3 of [4℄). Moreover wegive an example of a non empty open subset N � L2(0; 1) suh that forany g 2 N there are � and � satisfying (1.2) and ℄ (argminF g�;�) � 2 (seeCounterexample 3.4 of [4℄). Anyway mg(�; �) ontinuously depends on g, �,� ([4℄, Theorem. 2.3).The main result of this paper is the following:Theorem 1.1 For any � and � with 0 < � � � � 2� and �� =2 Q , there is aGÆ set (ountable intersetion of dense open sets) E�;� � L2(0; 1) suh thatfor any g 2 E�;� we have ℄ (argminF g�;�) = 1.2



As usual we denote by GÆ the intersetion of at most ountably many denseopen sets. Sine the omplement in L2(0; 1) of a GÆ subset and the omple-ment in R2 of the set f(�; �) 2 R2 : �=� =2 Qg are sets of �rst ategory,Theorem 1.1 says that uniqueness for minimizers of F g�;� is a generi property.The whole piture we obtain about generi uniqueness and ounterexamplesis oherent with the presene of instable patterns, eah of them orrespond-ing to a bifuration of optimal segmentation under variation of parameters:this fat is natural sine suitable ombinations of alfa and beta are relatedto ontrast threshold, rease detetion, \luminane sensitivity", resistane tonoise and double-edge detetion (see [BZ℄).The absolutely ontinuous part of funtional (1.1) will be denoted byFg(u) = Z 10 j�u(x)j2 dx+ Z 10 ju(x)� g(x)j2 dx. (1.4)Uniqueness of solution and its oinidene with the datum are shown in aseof pieewise aÆne datum g, under suitable smallness assumption on �, �(Lemma 3.7). In the general ase the disussion about uniqueness of min-imizers is outlined as follows. We identify partitions fqigQi=0 of the interval(0; 1) with vetors q = (qi)Qi=1 suh that 0 < q1 < ::: < qQ < 1. In ase of apartition assoiated to a singular set (fqigQi=0 = Su[S _u) the vetor q is alledloation of the singular set and the ordered attribute of belonging to Su orS _u is alled quality (see De�nition 3.1). Theorem 3.2 states that if u is aminimizer of F g�;� then it is the unique minimizer of F g�;�(w) among w in H2ful�lling Sw = Su and S _w = S _u; Euler equations (realled in Theorem 2.1)may lak uniqueness (see Counterexamples 3.1-3.4 in [4℄), moreover even with�xed singular set the whole system of Euler equations is overdetermined. Forthese reasons we introdue Problem 3.3, related to a seletion of Euler equa-tions, where we presribe two parameters (still alled loation and quality,see (3.3)) assoiated to suitable transition onditions: this is motivated bythe fat that in ase of minimizers the two notions of loation and quality forfuntion and Problem 3.3 oinide). Theorems 3.8, 3.9, 3.11 prove that sys-tem (3.2) has unique solution b whih depends linearly on g and has energyFg(b) quadrati on g. Theorem 3.14 shows analyti dependene of energy(1.4) with respet to loation of singular set (varying on open ells of CWstruture indued by pieewise aÆne datum g). Lemma 3.19 shows ontinu-ous dependene for solution b of Problem 3.3 with respet to perturbationsof the singular set of a pieewise aÆne datum g. In Setion 4 we introduetwo auxiliary problems: Problem 4.2, whih is equivalent to minimization offuntional (1.1) in ase of ontinuous pieewise aÆne datum g, and Problem4.4 whih is related to a di�erent seletion of Euler equations, in suh a waythat ommon solutions of Problems 3.3 and 4.4 ful�ll the whole system of3



Euler equations (i)-(iv),(vi) in Theorem 2.1. In Setion 5 we introdue theexess funtional E whih vanishes only on ommon solutions of both Prob-lems 3.3 and 4.4; by exploiting this tool, for suitable integers m and n, wede�ne subsets of Rm � Rn measuring how many pairs (g; t) exist suh thatg is a ontinuous pieewise aÆne funtion with no more than m reases andt 2 Rn is the ordered singular set of a solution of Problem 4.2 with datumg: we prove (Theorem 5.4) that these subsets are �nite CW omplexes ofdimension m. In Setion 6 we prove that the set of all aÆne data related tosuitably re�ned partitions and exhibiting non uniqueness of minimizer withdi�erent arrangement and same presribed ardinality of singular set has nullm dimensional Lebesgue measure (Theorem 6.4) where m = Q+ 2 and Q isthe ardinality of the partition.In Setion 7 the main result (Theorem 1.1) is dedued as a onsequene ofthe following intermediate laim (Theorem 7.2): for any �, � ful�lling (1.2)and �=� irrational, the set of data g with uniqueness of minimizer for F g�;�is dense in L2. Theorem 7.2 is ahieved by exploiting several tehnial stepsproven in Setions 3 - 7: the idea is to show that, for suÆiently �ne parti-tions q = (qi)Qi=1 of (0; 1), the set of ontinuous pieewise linear funtions gassoiated to q suh that F g�;� has more than one minimizer is small; heresmall means that its (Q + 2)-dimensional Lebesgue measure is zero, afteridenti�ation of ontinuous pieewise linear funtions assoiated to the par-tition q and the eulidean spae RQ+2 .We emphasize that, with ontinuous pieewise aÆne datum g, jump andrease points of minimizers are not neessarily loalized among those of g(see Setion 4 of [4℄): hene the tehniques used for proving the generiuniqueness for Mumford-Shah funtional in [2℄ annot be applied to Blake-Zisserman funtional. For this reason we follow a di�erent strategy, by are-fully exploiting some intersetion properties between real analyti varieties.2 Euler equationsIn this setion we reall the whole set of Euler equations and the omplianeidentity for minimizers of the funtional F g�;� (Theorems 2.1, 2.1 of [4℄). Forthe multidimensional situation (n � 2) we refer to [7℄, [10℄ and [12℄.Theorem 2.1 (Euler equations) If (1.2) and (1.3) hold true then every
4



u whih minimizes (1.1) in H2 is also a solution of the following system:8>>>>>>><>>>>>>>:
(i) u0000 + u = g on (0; 1) n (S _u [ Su)(ii) �u+ = �u� = 0 on S _u [ Su [ f0; 1g(iii) ...u+ = ...u� = 0 on Su [ f0; 1g(iv) ...u+ = ...u� on S _u(v) 12(u+ + u�) = g on Su \ fontinuity points of ggIn (ii) and (iii) we onventionally set �u�(0) = �u+(1) = 0 = ...u+(1) = ...u�(0).If, in addition to (1.2) and (1.3), g is ontinuous pieewise aÆne then(iii),(iv) improve as follows(vi) ...u+ = ...u� = 0 on (Su [ S _u [ f0; 1g) n S _gIf, in addition to (1.2) and (1.3), � = � then (iii),(iv) improve as follows(vii) ...u+ = ...u� = 0 on Su [ S _u [ f0; 1g .By summarizing:(viii) �u 2 H2(0; 1) and (�u)00 + u = g in D0(0; 1).Proof. Properties (i)-(v), (vii), (viii) are proven in [4℄ Setion 2 Theorem2.1. Property (vi) is a straightforward onsequene of (iii) and of (3.24)whih will be proved in Lemma 3.18. �Theorem 2.2 (Compliane identity) Assume (1.2) and (1.3). Then wehave, for any u 2 H2 ful�lling the Euler equations (i)-(iv) of Theorem 2.1:Fg(u) = Z 10 (g2 � gu) dx, Z 10 j�uj2 dx = Z 10 (gu� u2) dx (2.1)and F g�;�(u) = Z 10 (g2 � gu) dx + � ℄ (Su) + � ℄ (S _u n Su). (2.2)In partiular any u minimizingF g�;� over H2 ful�lls (2.1) and (2.2).Theorem 2.3 For any possibly disontinuous pieewise aÆne funtion gwith Sg [ S _g 6= ? we introdue the subset S[g℄ of H2 as follows:v 2 S[g℄ if and only if, either(i)( ℄ (S _v n Sv) < ℄ (S _g n Sg)℄ (Sv) < ℄ (Sg) + ℄ (S _g n Sg)� ℄ (S _v n Sv) ,5



or (ii)( ℄ (Sv) < ℄ (Sg)℄ (S _v n Sv) < ℄ (S _g n Sg) + 2(℄ (Sg)� ℄ (Sv)).Then S[g℄ 6= ? and infv2S[g℄Fg(v) > 0. (2.3)These results are proven in [4℄ Setion 2.3 Notation and preliminary resultsIn this setion we �x the notation used throughout the following setions inthe proof of generi uniqueness and show some preliminary results.Ln denotes the n-dimensional Lebesgue measure on Rn . For any x 2 Rnand r > 0 let Br(x) = fy 2 Rn : jy � xj < rg, for any A;B � Rn letdist(A;B) = inf fja� bj a 2 A; b 2 Bg, �A denotes the topologial bound-ary of A. We denote by L2(0; 1) the spae of all measurable square integrablereal valued funtions and by Su � (0; 1) the approximate disontinuity set ofu whenever u 2 L2(0; 1); we setHk(a; b) = fv 2 L2(a; b) : v(h) 2 L2(a; b); 0 � h � kg,H2 = fv 2 L2 : Sv[S _v is �nite, v 2 H2(I) 8 interval I � (0; 1)n(Sv[S _v))g.For any u 2 H2 we all jump points the elements of Su � (0; 1) and reasepoints the elements of (S _u n Su) � (0; 1).Let 
j; be the set of all �j+j � orderings of j+  distint points in (0; 1) suhthat j among them are (undistinguished jump points) marked with J, and among them are (undistinguished rease points) marked with C: for any� 2 
j;, T = j+ , and l = 1; :::;T, we set �l = J if the l-th point is a jumppoint, �l = C if the l-th point is a rease point, moreover we set �0 = J and�T+1 = J by onvention.In this way eah element of u 2 H2 with j jump points and  rease pointssingles out exatly one element of 
j;, while several funtions inH2 (with thesame ordering of jumps and reases) may orrespond to one single elementof 
j;.We are interested in elements ofH2 with �xed numbers j of jump points and of rease points whose loation is free in (0; 1): for any integer T (representingthe sum T = j+ ) we introdue the open onneted subset AT of (0; 1)T asAT = ft = (t1; :::; tT) 2 (0; 1)T : t1 < ::: < tTg.6



AT is identi�ed in a natural way with the set of partitions of (0; 1) withardinality T. Abusing notation, whenever needed, we write a 2 t to meana 2 ftigTi=1 while t0 = 0, tT+1 = 1 are always understood.We observe that eah u 2 H2 uniquely de�nes a pair(t; �) = (t(u); �(u)) 2 A℄ (Su[S _u) � 
℄ (Su);℄ (SunS _u)suh thatSu [ S _u = t = ftl(u)g℄ (Su[S _u)l=1and tl(u) is a rease point if �l(u) = C and a jump point if �l(u) = J.De�nition 3.1 For any funtion u 2 H2 we all:� loation of u: the vetor t = t(u) 2 AT assoiated to Su [ S _u,� quality of u: the element � = �(u) 2 
j; desribing the ordered kind ofsingularity assoiated to Su [ S _u,� arrangement of u: the pair (t(u); �(u)) loation of u and quality of u.At �rst we deal with minimizers of F g�;� with exatly j jump points and rease points with presribed arrangement. Then we will examine andi-date minimizers having arrangement ompatible with (possibly di�erent) apresribed arrangement.Theorem 3.2 Assume u 2 argminF g�;�. De�neH2u = fv 2 H2 : t(v) = t(u); �(v) = �(u)g,then uniqueness hold true on H2u:argminv2H2u F g�;� = fug.Moreover, for any �xed w 2 H2 with Sw � Su and S _w � Su [ S _u there isa onvex neighborhood U = U(w) of 0 in R suh that the Euler equations(i)-(iv) of Theorem 2.1 are not satis�ed by any u+ �w with � 2 U n f0g.Proof. If w 2 H2 and Sw * Su or S _w * Su [ S _u then u + �w =2 H2u for any� 2 R n f0g.In order to perform variations in H2u we have to test only funtions w 2 H2with Sw � Su and S _w � Su [ S _u. Fix a w ful�lling these properties, thenthere is a �nite (possibly empty) set P = P (w) � R n f0g suh thatu+ �w =2 H2u 8� 2 P7



beause of possible anellations in S _u+� _w [ Su+�w. Nevertheless 0 =2 P andu+ �w 2 H2u 8� in the open set R n P .Set '(�) = Fg(u+�w). Fg is stritly onvex inH2, hene ' is stritly onvexin R, hene ' is stritly onvex in the maximal open interval U = U(w) ofR nP ontaining 0. Then 0 belongs to the interior of U , hene 0 is the uniqueminimum point of ' in R n P , sayFg(u) = min�2RnPFg(u+ �w) = min�2RnP'(�) = '(0).Sine u 2 argminF g�;� andF g�;�(u+ �w) = Fg(u+ �w) + � ℄ (Su) + � ℄ (S _u n Su) 8� 2 R n Pthenmin�2RnPF g�;�(u+ �w) = min�2RnP ('(�) + � ℄ (Su) + � ℄ (S _u n Su)) = F g�;�(u),and the �rst part of the thesis is ahieved.For any �xed w 2 H2u let P = P (w) and U = U(w) be de�ned as above and� 2 R n P : then  (�) := F g�;�(u + �w) = '(�) + � ℄ (Su) + � ℄ (S _u n Su) forany � 2 R n P sine ℄ (Su+�w) = ℄ (Su) and ℄ (S _u+� _w n Su+�w) = ℄ (S _u n Su)for any � 2 R n P .The previous argument entails that  is stritly onvex in U = U(w) and (�) has unique strit minimizer at � = 0 with respet to U hene there are�nite values of  0�(�) 6= 0 8� 2 U n f0g. (3.1)From (3.1) we dedue the seond part of the thesis. Arguing by ontradition,we assume that for some �xed w 2 H2u and � 2 U(w) n f0g the funtionu + �w ful�lls the Euler equations (i)-(iv) of Theorem 2.1. Then u + �w 2H4((0; 1) n (Su [ S _u)) and by labelling tl, l = 1; :::;T, the ordered �nite setSu [ S _u, and t0 = 0, tT+1 = 1, we dedue the existene of  0(�): 0(�) = dd� �R 10 (�u(x) + � �w(x))2 dx + R 10 (u(x) + �w(x)� g(x))2 dx� =2 R 10 ��u(x) + � �w(x)� �w(x) dx+ 2 R 10 �u(x) + �w(x)� g(x)�w(x) dx =�2 R 10 �...u (x) + �...w(x)� _w(x) dx+ 2 R 10 �u(x) + �w(x)� g(x)�w(x) dx+TPl=0���u(tl+1) + � �w(tl+1)� _w(tl+1)� ��u(tl) + � �w(tl)� _w(tl)� =8



2 R 10 �....u (x) + �....w (x)�w(x) dx+ 2 R 10 �u(x) + �w(x)� g(x)�w(x) dx+��u�(1) + � �w�(1)� _w�(1)� ��u+(0) + � �w+(0)� _w+(0)+Xt2Su[S _u���u�(t) + � �w�(t)� _w�(t)� ��u+(t) + � �w+(t)� _w+(t)�+� TPl=0��...u (tl+1) + �...w(tl+1)�w(tl+1)� �...u (tl) + �...w(tl)�w(tl)� =2 R 10 �(....u (x) + �....w (x)) + (u(x) + �w(x))� g(x)�w(x) dx+��u�(1) + � �w�(1)� _w�(1)� ��u+(0) + � �w+(0)� _w+(0)+Xt2Su[S _u���u�(t) + � �w�(t)� _w�(t)� ��u+(t) + � �w+(t)� _w+(t)�+�...u+(0) + �...w+(0)�w+(0)� �...u�(1) + �...w�(1)�w�(1)+Xt2Su[S _u��...u+(t) + �...w+(t)�w+(t)� �...u�(t) + �...w�(t)�w�(t)�.Sine u+�w satis�es the Euler equations (i)-(iv) of Theorem 2.1, by substi-tution in the above identity we obtain the existene of  0(�) for the hosen� 2 U n f0g and  0(�) = 0, whih ontradits (3.1). �We introdue and study the following auxiliary problem in order to overomethe possible lak of uniqueness of the solutions of Euler equations.Problem 3.3 Given T; j;  2 f0; 1; 2; :::g, T = j + , t 2AT, � 2 
j; andg 2 L2(0; 1), �nd b 2 H2(0; 1) s.t. b = bl on (tl; tl+1) where(i) b0000l + bl = g on (tl; tl+1) for l = 0; 1; :::;T(ii) b00l (tl) = b00l (tl+1) = 0 for l = 0; 1; :::;T(iii) b000l (tl) = 0 if l = 0 or (�l = J, l 2 f1; :::;Tg)(iv) b000l (tl+1) = 0 if l = T or (�l+1 = J, l 2 f1; :::;Tg)(v) b000l�1(tl) = b000l (tl) if l 2 f1; :::;Tg and �l = C(vi) bl�1(tl) = bl(tl) if l 2 f1; :::;Tg and �l = C
9>>>>>>>>>=>>>>>>>>>; (3.2)

t and � are alled respetively loation and quality of Problem 3.3. (3.3)We emphasize that any solution b of Problem 3.3 is neither fored to havea jump at tl when �l = J, nor to have a rease when �l = C (though thismay happen at some or every tl). Nevertheless loation and quality of thesolution b are ompatible with loation and quality of Problem 3.3 in thefollowing sense: t(b) � t, Sb � fti : �i = Jg and S_b n Sb � fti : �i = Cg.9



For any hoie of t 2AT and of � 2 
j; with j+  = T, Problem 3.3 amountsfor T + 1 fourth order O.D.E.s linked by 4(T + 1) boundary onditions: infat (ii) ontains 2(T+1) onditions, (iii) and (iv) together ontains 2(j+1)onditions, (v) and (vi) together ontains 2 onditions. Problem 3.3 is notlinear in t, nevertheless b has a nie dependene on t as we will show inTheorem 3.14.A priori it is not obvious wether Problem 3.3 has a solution or not for anyhoie of g, �, t. Anyway for any �xed � 2 
j; and g 2 L2(0; 1) we will show(Lemma 3.6) the existene and the uniqueness of a solution for suÆientlymany hoies of t 2 AT in order to ontinue the analysis (atually for anyt 2AT by Theorem 3.8).Remark 3.4 Obviously system (3.2) splits in several unoupled systems ateah point tl suh that �l = J. Coupling do at only at eah tl s.t. �l = CWe show that the di�erential system (3.2) an be replaed by an algebrailinear system whose blok struture is fully desribed by the following pre-liminary lemma where the unoupling of (3.2) at points of quality J (jump)is emphasized: the related deomposition (3.5) of b will be exploited withseveral di�erent hoies of dl in Lemmas 3.11, 3.19, 3.20.Lemma 3.5 Fix T; j;  2 f0; 1; 2; :::g, T = j+, t 2AT, � 2 
j;, g 2 L2(0; 1)and a solution dl ofd0000l + dl = g on (tl; tl+1) for any l 2 f0; :::;Tg. (3.4)Then: T+ 1 � ℄ (Sb [ S_b [ f0; 1g) and1. any solution of Problem 3.3, if it exists, has the formbl = dl + 4Xi=1l;iwi 8l 2 f0; :::;Tg (3.5)wherew1 = exp(�x=p2) os(x=p2) w2 = exp(x=p2) os(x=p2)w3 = exp(�x=p2) sin(x=p2) w4 = exp(x=p2) sin(x=p2) (3.6)are four linearly independent solutions of the homogeneous equation w0000+w =0 and l;i are real numbers suh that2.  = (0;1; 0;2; 0;3; 0;4; :::; l;i; :::; T;1; T;2; T;3; T;4) 2 R4(T+1) is the solu-tion of a linear system U  = a (3.7)10



obtained by evaluating some derivatives of the sum (3.5) at (T + 2) pointsf0; t1; :::; tT; 1g assoiated to partition t;3. a = a[g; t; �℄ 2 R4(T+1) depends on t; � and on g (only through dl) andhas the form
a4l+i=8>>>>>><>>>>>>:

d000l (tl)� d000l�1(tl) if i = 1 and �l = C�d000l (tl) if i = 1 and �l = J�d00l (tl) if i = 2,�d00l (tl+1) if i = 3,dl+1(tl+1)� dl(tl+1) if i = 4 and �l+1 = C�d000l (tl+1) if i = 4 and �l+1 = J 8l 2 f0; :::;Tg; (3.8)
4. U = U[t; �℄ is a 4(T+1)� 4(T+1) matrix depending only on � and on tthrough values of fwi; w00i ; w000i g4i=1 at t (U is a real analyti funtion of t forany �). Moreover U is a square blok diagonal matrix: eah square blok Ul1 ;l2(related to an unoupled subsystem) is identi�ed by two onseutive jumppoints tl1 , tl2 and possible intermediated reases (reall that �0 = �T+1 = J)l1; l2 2 f0; :::; T + 1g : � �l1 = �l2 = J�l = C for l 2 fl1 + 1; :::; l2 � 1g,so that eah square blok Ul1 ;l2 of U takes the form

Ul1 ;l2[t; �℄ =
� � � �� � � �� � � �A� � � � � � � �� � � � � � � �� � � �� � � �B1� � � � � � � �� � � � � � � �� � � �� � � �B2

� � � � � � � �� � � � � � � �� � � �� � � �Bl2�l1�1� � � �Z?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

(3.9)
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where A = w0001 (tl1) w0002 (tl1) w0003 (tl1) w0004 (tl1)w001(tl1) w002(tl1) w003(tl1) w004(tl1)w001(tl1+1) w002(tl1+1) w003(tl1+1) w004(tl1+1)Bj =w1(tl1+j) w2(tl1+j) w3(tl1+j) w4(tl1+j) �w1(tl1+j) �w2(tl1+j) �w3(tl1+j) �w4(tl1+j)w0001 (tl1+j) w0002 (tl1+j) w0003 (tl1+j) w0004 (tl1+j) �w0001 (tl1+j) �w0002 (tl1+j) �w0003 (tl1+j) �w0004 (tl1+j)w001(tl1+j) w002(tl1+j) w003(tl1+j) w004(tl1+j)w001(tl1+j+1) w002(tl1+j+1) w003(tl1+j+1) w004(tl1+j+1)for j 2 f1; :::; l2 � l1 � 1gZ = w0001 (tl2) w0002 (tl2) w0003 (tl2) w0004 (tl2) .Proof. Claim about ardinality of singular set and Statement 1 are straight-forward. Statement 2-4 are dedued by evaluation of (3.2)(ii�vi) as follows.Condition (3.2)(ii) gives4Pi=1l;iw00i (tl) = �d00l (tl), 4Pi=1l;iw00i (tl+1) = �d00l (tl+1) 8l 2 f0; :::;Tg.Conditions (3.2)(iii) and (3.2)(iv) give8>><>>: 4Pi=1l;iw000i (tl) = �d000l (tl) if l = 0 or (�l = J, l 2 f1; :::;Tg)4Pi=1l;iw000i (tl+1) = �d000l (tl+1) if l = T or (�l+1 = J, l 2 f1; :::;Tg).Condition (3.2)(v) givesd000l�1(tl) + 4Xi=1l�1;iw000i (tl)� d000l (tl) + 4Xi=1l;iw000i (tl)! = 0if l 2 f1; :::;Tg and �l = C,hene4Xi=1l�1;iw000i (tl)� 4Xi=1l;iw000i (tl) = d000l (tl)�d000l�1(tl) if l 2 f1; :::;Tg and �l = C.12



Condition (3.2)(vi) gives4Xi=1l�1;iwi(tl)� 4Xi=1l;iwi(tl) = dl(tl)�dl�1(tl) if l 2 f1; :::;Tg and �l = C. �Lemma 3.6 For any T; j;  2 f0; 1; 2; :::g, T = j + , � 2 
j; and g 2L2(0; 1), the setft 2 AT : Problem 3.3 is uniquely solvablegis independent of g.Then we an de�neA[�℄ = ft 2 AT : Problem 3.3 is uniquely solvableg.For any j,  and � 2 
j; the set A[�℄ is an open set.Moreover( for every g 2 L2(0; 1), �, � with (1.2) and u 2 argminF g�;�,we have t(u) 2 A[�(u)℄. (3.10)In partiularA[�(u)℄ 6= ? 8g 2 L2(0; 1), �, � with (1.2) and u 2 argminF g�;�. (3.11)Proof. Fix g, �, t suh that Problem 3.3 has a solution. We hoose d =(d0; :::; dT) of Lemma 3.5 as a �xed partiular solution of the di�erentialequations (3:2:i) (without imposing (3:2:ii)-(3:2:vi)) as follows:e.g. d0000 + d = g on (0; 1); d(0) = d0(0) = d00(0) = d000(0) = 0 (3.12)in partiular d0000l + dl = g on (tl; tl+1) for l = 0; 1; :::;T. (3.13)Problem 3.3 is uniquely solvable for any g if and only if the matrix U[t; �℄of Lemma 3.5 is an invertible matrix. Then A[�℄ is an open subset of ATsine A[�℄ = ft 2 AT : det(U[t; �℄) 6= 0g. Condition det(U) 6= 0 doesnot depends on g sine wi solve the homogeneous equation. Hene A[�℄ isindependent of g.Eventually we show (3.10) and (3.11).For any g 2 L2(0; 1) and u 2 argminF g�;� (whih is a non empty set) thent(u) 2 A[�(u)℄, we de�ne bl = u on (tl; tl+1) for any l = 0; :::;T. By Eulerequations (i)-(iv) of Theorem 2.1, we obtain a solution of Problem 3.3 with� = �(u) and t = t(u). One � = �(u) and t = t(u) are �xed as above,13



uniqueness property would fail if and only if U[t; �℄ is not invertible; in thisase all solutions of Problem 3.3 ould be expressed as followsu + � TPl=0 4Pi=1 el;iwi �(tl;tl+1)8� 2 R; 8e = (el;i)l;i 2 R4(T+1) with U e = 0. 9>=>; (3.14)But (3.14) would be a violation of the last statement of Theorem 3.2: in fatwi in C1, i = 1; :::; 4 entail that u+ � TPl=0 4Pi=1el;iwi�(tl;tl+1) 2 H2u for any � in asmall neighborhood of 0 2 R. �Lemma 3.7 For any pieewise aÆne (possibly disontinuous) funtion g9Æ > 0: argminF g�;� = fgg 8�; � s.t. (1.2) and � ℄ (Sg) + � ℄ (S _g n Sg) < Æ.Proof. Set j = ℄ (Sg),  = ℄ (S _g n Sg). For any v 2 H2, by setting s = ℄ (Sv)and p = ℄ (S _v n Sv), at least one of the following (mutually exlusive) �veases may our:1) � s � jp �  2) � p < s � j+ � p 3) � p < s < j+ � p4) � s < jp � + 2(j� s) 5) � s < jp < + 2(j� s)(in fat either s � j or s < j ; if s � j then either s � j+ �p (and this alwaysours if p � ) or s < j +  � p ; if s < j then only one among ases 4 and5 may our). We show that F g�;�(v) > F g�;�(g) for any �, � satisfying (1.2)and v 2 H2, v 6= g in eah one of the �ve ases.Case 1) then F g�;�(v) > F g�;�(g) sine Fg(v) > 0 = Fg(g) and � s + � p �� j+ � .Case 2) F g�;�(v) > F g�;�(g) , sine Fg(v) > 0 heneF g�;�(v) = Fg(v) + � s + � p > � j+ � � � p+ � p =� j+ � + (�� �) (� p) � � j+ �  = F g�;�(g).Case 4) F g�;�(v) > F g�;�(g) , sine Fg(v) > 0 heneF g�;�(v) = Fg(v) + � s + � p > � s + �  + 2� j� 2� s =� j+ � + (2� � �) (j� s) � � j+ �  = F g�;�(g).14



About ases 3) and 5) we observe that Sg [ S _g 6= ?, then by Theorem 2.30 < Æ = minfFg(v) : v 2 H2 belonging to ases 3 and 5g,hene in 3) and 5), for any �, � satisfying (1.2) and, in addition, so smallthat � j+ �  < Æ, we have F g�;�(v) > F g�;�(g) for any v in ases 3) and 5). �We know that the set A[�℄ is never empty, now we show its oinidene withthe whole AT: by exploiting the property that A[�℄ is independent on thedatum g, we hoose pieewise aÆne g with quality � for Sg [ S _g, then weprove that g itself is the unique minimizer for F g�;� provided � and � aresuitably small.Theorem 3.8 Problem 3.3 admits unique solution, that is A[�℄ = AT forany T; j;  2 f0; 1; 2; :::g, T = j+ , t 2 AT, � 2 
j; and g 2 L2(0; 1).Proof. Fix j;  2 f0; 1; 2; :::g, � 2 
j; and t 2 AT. By Lemma 3.6, A[�℄is independent of g. Then in the de�nition of A[�℄ we hoose a pieewiseaÆne (possibly disontinuous) g suh that �(g) = � and t(g) = t. Lemma3.7 together with Theorem 2.1 and the seond laim in Theorem 3.2 entailthat, for any �xed �, t and pieewise aÆne g, Problem 3.3 admits a uniquesolution: in fat any solution di�erent from g must be of the form (3.14)with g plugged in plae of u and a suitable hoie e� 6= 0 plugged in plaeof �; then g + � TPl=0 4Pi=1 el;i wi �(tl ;tl+1) would be a solution for any � 2 R bylinearity of onditions (3.3:ii)-(3.3:vi) whih ontradits the seond statementof Theorem 3.2. �Theorem 3.9 If we �x a pieewise aÆne (possibly disontinuous) funtion gand label its loation by q = Sg[S _g and its quality by � = �(g), then Problem3.3 with data q, � and g admits g itself as unique solution: g = b[g;q; �℄.The same property holds true for Problem 3.3 with any data eq, e�, g suth thatthe arrangement (Sg [ S _g; �(g)) is ompatible with (eq; e�) i.e.: Sg [ S _g � eqand qualities e� and �(g) oinides on ommon points.Proof. The fat that g is a solution is trivial sine �g � 0. Uniqueness state-ment follows by Theorem 2.1, Lemma 3.7 and the fat that Euler equationsare independent on �, �. �Theorem 3.8 allow the introdution of the following basi notation aboutsolution of Problem 3.3 and its related energy.De�nition 3.10 For any T; j;  2 f0; 1; 2; :::g, T = j + , t 2 AT, � 2 
j;and g 2 L2(0; 1), set 15



1. b = b[g; t; �℄ is the unique funtion b = b(x) 2 H2 pieewise de�nedby the solutions fbl = bl[g; t; �℄ 2 H2(tl; tl+1)gTl=0 of Problem 3.3. Thedependene on right hand side g, loation t and quality � will be droppedwhenever there is no risk of onfusion. For any l 2 f0; :::;Tg we denoteby b0l; b00l ; :::; b(r)l the �rst , seond, ..., r-th distributional derivative in(tl; tl+1) of bl with respet to x. Notie that b0l = _bl, b00l = �bl, ..., but band b00 may be di�erent from _b and �b due to singular part at tl.2. F(g; t; �) is the absolutely ontinuous part Fg of F g�;� evaluated at b[g; t; �℄:F(g; t; �) = Fg(b[g; t; �℄), (3.15)F(�; �; �) : L2(0; 1)� AT ! R.In the following proposition we list some properties of b and F.Theorem 3.11 Fix T; j;  2 f0; 1; 2; :::g, T = j+  and � 2 
j;, then1. the map g 7! b(g; t; �) is linear in g 2 L2(0; 1) for any t 2 AT,in partiular g � 0 entails b � 0;the map g 7! F(g; t; �) is 2-homogeneous with respet to g 2 L2(0; 1)for any t 2 AT;2. the map bl(�; t; �) : L2(0; 1)! H2(tl; tl+1), say g 7! bl(g; t; �)is ontinuous from L2(0; 1) to H2(tl; tl+1) where both spaes are endowedwith the strong topology, for any t 2 AT and l = 0; :::;T;the map bl(�; �; �) : L2(0; 1)� AT ! L1(0; 1), say (g; t) 7! bl(g; t; �)is ontinuous from L2(0; 1) times AT endowed with the produt topology(strong L2(0; 1) times Eulidean topology of RT) to L1(0; 1) endowedwith the strong topology;3. the map F(�; �; �) : L2(0; 1)� AT ! Ris ontinuous on L2(0; 1) times AT endowed with the produt topology(strong L2(0; 1) times Eulidean topology of RT);4. for any g 2 L2(0; 1) and u 2 argminF g�;�, if u has j jump points, rease points and quality �, the funtion t 7�! F(g; t; �) ahieves itsminimum with respet to t in Ak at t(u) = (t1(u); :::; tk(u)). MoreoverSu = ftl(u) : �l = Jg, S _u n Su = ftl(u) : �l = Cg, and b = u is theonly admissible minimizer of F in H2u.
16



Proof. Statement 1 follows by linearity in g of resolvent operator for Problem3.3 with presribed arrangement (t; �), by (3.2.(i)) and ompliane identity(Theorem 2.2).Choose d = (d0; :::; dT) ful�lling (3.12), hene (3.4) is trivially ful�lled andd 2 H4(0; 1) � C3(0; 1), the map g 7�! d is linear ontinuous from L2(0; 1)to H4(0; 1) and well de�ned by Theorem 3.8.The funtion b takes the form (3.5) with  = U�1a, (3.8), (3.9) hold trueand both invertible matrix U and vetor a are analyti funtions of t sineall entries of U and a are linear funtions of wi(tl), w00i (tl) and w000i (tl); henestatement 2 holds true.Statement 3 follows by statement 2 andF(g; t; �) = TXl=0 Z tl+1tl ����(�bl[g; t; �℄(x)���2 + j(bl[g; t; �℄(x)� g(x)j2� dx.Statement 4 follows by Theorems 2.1 and 3.2. �In Setions 3,4,5 and 6 we denote by q = (qi)Qi=1 the loation (and by fqigQi=1the related partition) assoiated to rease points S _g of ontinuous pieewiseaÆne datum g and we denote by t = (ti)Ti=1 the loation assoiated to thesingular set Sv [ S _v of the ompeting funtions v 2 H2. The loation t ofsingular set of solution of Problem 3.3 and the loation q (singular set ofthe datum) may be di�erent. Abusing notation, whenever needed, we writex 2 q to mean x 2 fqigQi=1, while q0 = 0, qQ+1 = 1 are always understood.Eah loation q = (qi)Qi=1 indues a deomposition of [0; 1℄T in ubes, this nat-urally gives to [0; 1℄T a �nite CW omplex struture. For any d 2 f1; :::;Tg,a d-dimensional open ell W of [0; 1℄T is a d-dimensional open fae of a ubedQk=1[qik ; qik+1℄, a 0-dimensional open ell W of [0; 1℄T is a point (qi1 ; :::; qiT).For any i; d 2 f1; :::;Tg, any t 2 [0; 1℄T, and any d-dimensional open ell Wof [0; 1℄T, we say that ti is a free oordinate in W if and only if ti =2 q for anyt 2 W . Clearly a 0-dimensional ell of [0; 1℄T has no free oordinates.The set AT � [0; 1℄T is an open subset of a �nite CW omplex, with an abuseof language we introdue the following de�nition.De�nition 3.12 Whenever U is an open d-dimensional ell of [0; 1℄T suhthat U \AT 6= ;, we all d-dimensional open ell of the CW struture induedon AT by [0; 1℄T also the set W = U \ AT.The free oordinates of W = U \AT are exatly the same free oordinates ofU but they may have di�erent range when W $ U .A short summary of what is needed to know about CW omplexes an befound in the Appendix A. 17



Fig.1 provides a simple low dimensional visualization of ells in AT.

qi qi+1 qi+2 qi+3 qi+4qiqi+1
qi+2qi+3qi+4

0
�a

b
 d

Figure 1a: 0 ell, no free oordinates;b: 1 ell, t1 free oordinate, qi < t1 < qi+1;: 2 ell, t1, t2 free oordinates, qi < t1 < qi+1, qi+3 < t2 < qi+4;d: 2 ell (abusing language), t1, t2 free oordinates.For any loation q = (qi)Qi=1 we identify the spae RQ+2 with the spae A qof ontinuous pieewise aÆne funtions g with rease points at q. Preiselyfor any g = (g0; g1; :::; gQ+1) 2 RQ+2 the identi�ation between the vetorparameter g and the funtion g 2 L2(0; 1) is given by:8>>><>>>: g(x) = Q+1Pi=1 (gi(x� qi�1) + zi�1)�[qi�1;qi)(x) wherez0 = g0zl = gl(ql � ql�1) + zl�1 for l 2 f1; :::;Qg. (3.16)Notie that (3.16) indues a linear and injetive identi�ation between gand g, hene A q is a vetor spae of dimension Q + 2:q 2 AQ , g 2 RQ+2 , g 2 A q ' RQ+2 . (3.17)Restritions of F(�; �; �) and b(r)l (�; �; �) to A q �AT play a fundamental role inthe following: the restrition of both F and of b(r)l to A q�AT an be onsidered18



as funtions de�ned on RQ+2 � AT through the identi�ation between A qand RQ+2desribed by (3.16) and (3.17). Atually (abusing notation) wespeialize De�nition 3.10 when g belongs to A q , as follows.De�nition 3.13 For any Q;T; j;  2 f0; 1; 2; :::g, T = j+ , t 2 AT, q 2 AQ,� 2 
j; and g 2 RQ+2 , de�neb(�; �; �) : RQ+2 � AT ! L2(0; 1) by b[g; t; �℄(x) = b[g; t; �℄(x) (3.18)F(�; �; �) : RQ+2 � AT ! R by F(g; t; �) = F(g; t; �) (3.19)where the right-hand sides are given by De�nition 3.10 and g 2 A q is asso-iated by (3.16) and (3.17) to vetor g and singular set loation q.We are going to show that both (3.18) and (3.19) are polynomials in g withoeÆients whih are ontinuous funtions of t 2 AT and their restritionsto RQ+2 �W are real analyti funtions of g and tl for any open ell W ofthe CW struture indued by q on AT and any tl free oordinate in the openell W .Theorem 3.14 Fix T; j;  2 f0; 1; 2; :::g, T = j+  and � 2 
j;, then1. The map g 7! b[g; t; �℄(x) is a linear funtion of Q+ 2 variables g forany t 2 AT;the map g 7! F(g; t; �) is a 2-homogeneous polynomial of Q+2 variables(the oordinates gi of g 2 RQ+2);2. for any Q; r 2 f0; 1; 2; :::g, q 2 AQ and any open ell W of the CWstruture indued by q on AT, the restritions to A q �W of b(r)l andof F (e.g. funtions (3.18) and (3.19)) are real analyti funtions of gand tj where tj is a free oordinate of the open ell W .Proof. Statement 1 follows by Theorem 3.11(1) and identi�ations (3.16)and (3.17). Statement 2 follows by the same argument used in the proofof point 2 of Theorem 3.11 and the simple remark that the map g 7�! dappearing in the proof is real analyti in the free oordinates of W wheneverg 2 A q . �Theorem 3.14 allows us to introdue the following notation.De�nition 3.15 For any Q;T; j;  2 f0; 1; 2; :::g, T = j+ , t 2 AT, q 2 AQ,� 2 
j; and f ; g;h 2 RQ+2 , referring to (3.16), (3.17) and De�nition 3.13,set �F�f = lim"!0F(g + "f ; t; �)� F(g; t; �)" (3.20)19



and �b(r)l�f = lim"!0b(r)l (g + "f ; t; �)� b(r)l (g; t; �)" , (3.21)moreover, for any open ell W of the CW struture indued by q on AT, andany a free oordinate ti of W we denote by �F�ti and by �b(r)l�ti the diretionalderivatives of F and of b(r)l with respet to the free oordinate ti of t.We are going to evaluate several derivatives of F.Lemma 3.16 For any Q;T; j;  2 f0; 1; 2:::g, T = j + , t 2 AT, q 2 AQ,� 2 
j; and f ; g;h 2 RQ+2, referring to (3.16),(3.17) and De�nition 3.13,the expliit representation of mixed diretional derivatives with respet to the�rst variable is:�2F(g; t; �)�f�h =2 Z 10 �b[f; t; !℄(x)�b[g; t; �℄(x) + (b[f; t; �℄(x)� f(x))(b[g; t; �℄(x)� g(x)) dx.Proof. Sine bl[g; t; �℄ and b00l [g; t; �℄ are linear in g and b00l = �bl in (tl; tl+1)then the following equalities hold true: �g�f = f and�(bl[g; t; �℄� g)�f = bl[f; t; �℄� f , �(bl[g; t; �℄� g)�h = bl[h; t; �℄� h,��bl[g; t; �℄�f = �bl[f; t; �℄, ��bl[g; t; �℄�h = �bl[h; t; �℄,�2�bl[g; t; �℄�f�h � �2(bl[g; t; �℄� g)�f�h � 0.By Theorem 3.14(2), derivatives with respet to f , h ommute with theintegration in x. Then�2F(g; t; �)�f�h = TXl=0 Z tl+1tl �2�f�h�(�bl[g; t; �℄(x))2+(bl[g; t; �℄(x)� g(x))2� dx= 2 TXl=0 Z tl+1tl ��2�bl[g; t; �℄�f�h b00l [g; t℄ + ��bl[g; t; �℄�f ��bl[g; t; �℄�h +�2(bl[g; t; �℄� g)�f�h (bl[g; t; �℄� g) + �(bl[g; t; !℄� g)�f �(bl[g; t; �℄� g)�h � dx =2 Z 10 �b[f; t; �℄�b[h; t; �℄ + (b[f; t; �℄� f)(b[h; t; �℄� h) dx. �20



Lemma 3.17 Fix Q;T; j; ; d2 f0; 1; 2; :::g, Q � d > 0, T= j + , t 2 AT,q 2 AQ, � 2 
j;, any open d-ell W of the CW struture indued by q onAT, and any free oordinate ti of W .Then the derivative of F with respet to ti exists in W � AT due to Theorem3.14, moreover referring to (3.16), (3.17) and De�nition 3.13, for any g 2 A qwe have�F(g; t; �)�ti = (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))�2b000i (ti)(b0i(ti)� b0i�1(ti)), (3.22)where b000i (ti) = b000i�1(ti) is understood.Proof. The variables g, t and ! in the argument of b(r)l are understood.We exploit the fats: g and g depend on q but not on t ; ��b0l�ti�0 = �b00l�tithank to Theorem 3.14(2); the integrand b[g; t; �℄(x) analytially depends onfree oordinate ti by Theorem 3.14(2), hene ��ti ommutes with integration;Theorem 2.1(i)-(iv).�F(g; t; �)�ti = ��ti TXl=0 Z tl+1tl �(b00l )2 + (bl � g)2� dx! =(b00i�1(ti))2 + (bi�1(ti)� g(ti))2 � (b00i (ti))2 � (bi(ti)� g(ti))2+ 2 TXl=0 Z tl+1tl �b00l �b00l�ti + (bl � g)�bl�ti� dx= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))+ 2 TXl=0 � Z tl+1tl b000l �b0l�ti dx + �b00l �b0l�ti �tl+1tl + Z tl+1tl (bl � g)�bl�ti dx!= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))+ 2 TXl=0 Z tl+1tl (b0000l + bl � g)�bl�ti dx� "b000l �bl�ti #tl+1tl !
= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))� 2 TXl=0"b000l �bl�ti#tl+1tl= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))�2 TXl=0�b000l (tl+1)�bl�ti (tl+1)� b000l (tl)�bl�ti (tl)� =
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= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))�2 TXl=1�b000l�1(tl)�bl�1�ti (tl)� b000l (tl)�bl�ti (tl)�= (bi�1(ti)� bi(ti))(bi�1(ti) + bi(ti)� 2g(ti))�2 TXl=1 b000l (tl)��bl�1�ti (tl)� �bl�ti (tl)�.If !l = J then b000l�1(tl) = b000l (tl) = 0.If !l = C we de�ne the funtion t 7! 'l(t) = bl�1(tl) � bl(tl); notie that'l(t) � 0 for any t due to (3.2.(vi)). By performing arefully derivative ofbl[g; t; �℄(x), sine � (bi(ti)) =�ti = b0i(ti) + (�bi=�ti) (ti) we get0 = �'l�ti (t) = ( �bl�1�ti (tl)� �bl�ti (tl) if l 6= i�bi�1�ti (ti)� �bi�ti (ti) + b0i�1(ti)� b0i(ti) if l = i.by substitution we get (3.22). �Lemma 3.18 For any Q 2 f0; 1; 2; :::g, q 2 AQ, g 2 A q and u 2 argminF g�;�,we have: 12(u+(t) + u�(t)) = g(t) for any t 2 Su (3.23)and ...u�(t) = 0 for any t 2 S _u n S _g (3.24)Proof. By Euler equations (i)-(iv) of Theorem 2.1 u is a solution of Problem3.3, F(g; �; �(u)) ahieves its minimum at t(u) and � (F(g; t(u); �(u))) =�ti =0. Then by (3.2.(iii)), (3.22) we dedue (3.23) when ti 2 Su (property alreadyproven in a di�erent way in Theorem 2.1(v)); bi(ti) = bi�1(ti), b0i(ti) = b0i�1(ti)and (3.22) entails (3.24) when ti 2 S _u n (Su [ S _g). �In the following tehnial lemma we show that for any loation t and quality!, if g is ontinuous pieewise aÆne with either only one ramp or only onejump (suh that Sg [ S _g is ontained in ftigTi=0 and has quality ompatiblewith !) and h is a ontinuous ramp having singular set lose to the singularset of g, then the solution b[h; t; !℄ of Problem 3.3 with data h, t and ! islose to g in the pieewise C3 lagrangian norm.Lemma 3.19 Fix T; j; ; l1; l2; k 2 f0; 1; 2; :::g, T = j + , t 2 AT, ! 2 
j;suh that l1 < l2; 0 � l1 � k � l2 � T+ 1,22



!l1 = !l2 = J; !l = C 8l 2 fl1 + 1; :::; l2 � 1g.We study perturbations of loation t and quality ! of singular set for twokinds of datum g in Problem 3.3:either g(x) = x� tktk+1 � tk�[tk;tk+1℄(x) + �(tk+1;1℄(x) for k 6= l1; l2 (3.25)that is
//xtk tk+1

OOy1 lllllllllll

gor g(x) = �(tk ;1℄(x) for k = l1; l2 (3.26)that is
//xtk

OOy1 gPerturbation of datum is hosen as followsh(x)=h[r; s℄(x)= x� rs� r �[r;s℄(x)+�(s;1℄(x) with � tk�r<s� tk+1 if k 6= l1; l2,tl1�r<s� tl2 if k = l1; l2.Then there is C > 0 depending only on t s.t. (referring to De�nition 3.10):if k 6= l1; l2, then3Xa=0  dadxa (bl[h; t; !℄� g)L1(tl;tl+1) + jb000l [h; t; !℄(tl)j �C (jr � tkj+ js� tk+1j) for 0 � l � T, (3.27)��b0l[h; t; !℄(tl)� b0l�1[h; t; !℄(tl)�� �� C (jr � tkj+ js� tk+1j) if l =2 fk; k + 1gC if l 2 fk; k + 1g, (3.28)the map (r; s) 7! b000k [h[r; s℄; t; !℄(tk) is analyti, (3.29)the map (r; s) 7! b000k [h[r; s℄; t; !℄(tk) is not identially zeroon f(r; s) 2 [tk; tk+1℄� [tk; tk+1℄ : r < sgand vanishes of order 1 as (r; s) ! (tk; tk+1); (3.30)if k = l1; l2, then3Xa=0  dadxa (bl[h; t; !℄� g)L1(tl;tl+1) + jb000l [h; t; !℄(tl)j �C (jr � tkj+ js� tkj) for 0 � l � T, (3.31)23



��b0l[h; t; !℄(tl)� b0l�1[h; t; !℄(tl)�� �C (jr � tkj+ js� tkj) if l 2 fl1 + 1; :::; l2 � 1g. (3.32)�We emphasize that g = b[g; t; !℄ holds true in the above statement (due toTheorem 3.9), hene (3.27) and (3.31) express also ontinuous dependene ofb with respet to the perturbation h, i.e.kbl[h; t; !℄� bl[g; t; !℄kL1(tl;tl+1) � C (jr � tkj+ js� tk+1j) .Proof. The following three pitures represent the three admissible ases fordatum g together with the assoiated perturbations h
//xtk r s tk+1

OOy1 lllllllllll

h g for k 6= l1; l2,
//xtl1 r s tl2

OOy1 h g for k = l1, //xtl1 r s tl2
OOy1 h g for k = l2.The unique solution of the Cauhy problemu0000 + u = g on (x1; x2), u(x1) = u0(x1) = u00(x1) = u000(x1) = 0an be represented through u(x) = R xx1 W (x� y)g(y) dy whereW (x) = p24 (w1(x)� w2(t) + w3(x) + w4(x)) = +1Xi=0 (�1)i(3 + 4i)!x3+4i, (3.33)w1 = exp(�x=p2) os(x=p2) w2 = exp(x=p2) os(x=p2)w3 = exp(�x=p2) sin(x=p2) w4 = exp(x=p2) sin(x=p2). (3.34)We set j = k if k < l2, j = k � 1 if k = l2. Then, by g00 = 0 on [tl; tl+1℄ forany l = 0; :::;T and Remark 3.9, we de�ne dl bydl[h; t; !℄(x) = 8><>: 0 8x 2 [tl; tl+1℄ if l < j,g(x)+ R xtj W (x� y)(h(y)� g(y)) dy 8x 2 [tj ; tj+1℄ if l = j,1 8x 2 [tl; tl+1℄ if l > j. (3.35)If b solves Problem 3.3 with data t, ! and h then dl ful�lls (3.4) of Lemma3.5. We hoose deomposition (3.5) with this hoie of dl. We denote by24



d(a)l and W (a) the a-th distributional derivative in (tl; tl+1) of dl and of Wrespetively. For a = 1; 2; 3 we haved(a)j [h; t; !℄(x) =Z xtj W (a)(x�y)(h(y)�g(y)) dy+( 1= (tk+1 � tk) if k 6= l1; l2 and a = 10 if k = l1; l2 or a 6= 1.For a = 0; 1; 2; 3 we estimate ���R xtj W (a)(x� y)(h(y)� g(y)) dy��� uniformly onx 2 (tj; tj+1). To this aim we observe that maxa=f0;1;2;3g W (a)L1(0;1) < +1.If k 6= l1; l2, by (3.35), g0 = (tk+1 � tk)�1 and g00 = g000 = 0 in [tk; tk+1℄ we getkh� gkL1(0;1) � max fr � tk; tk+1 � sgtk+1 � tk ,then we an hoose C0 = C0(t;W ) +1 suh thatkh� gkL1(0;1) � C0 (jr � tkj+ js� tk+1j) ,jdk[h; t; !℄(x)� g(x)j � C0 (jr � tkj+ js� tk+1j) ,���d0k[h; t; !℄(x)� 1tk+1�tk ��� � C0 (jr � tkj+ js� tk+1j) ,���d(a)k [h; t; !℄(x)��� � C0 (jr � tkj+ js� tk+1j) for a = 2; 3. (3.36)If k = l1 or k = l2 we have kh� gkL1(0;1) = 1, spt(h�g) � [tl1 ; s℄[[r; tl2 ℄ thenby (3.35), in [tl1 ; tl2 ℄ we have either g = 0 or g = 1 and g0 = g00 = g000 = 0,and we an hoose C1 = C1(t;W ) < +1 suh that�����Z xtj jW (x� y)(h(y)� g(y))j dy����� � C1 (jr � tkj+ js� tkj) ,jdj[h; t; !℄(x)� g(x)j � C1 (jr � tkj+ js� tkj) ,���d(a)j [h; t; !℄(x)��� � C1 (jr � tkj+ js� tkj) for a = 1; 2; 3. (3.37)Sine !l1 = !l2 = J, by Remark 3.4 system (3.2) splits into three separatesystems whih give b on [0; tl1℄, on [tl1 ; tl2 ℄ and on [tl2 ; 1℄ respetively. Sineh = 0 on [0; tl1 ℄ we have b = 0 on [0; tl1 ℄, sine h = 1 on [tl2 ; 1℄ we have b = 1on [tl2 ; 1℄, then we have to study b only on the interval [tl1 ; tl2℄ that is thesubsystem V  = � (3.38)25



of system (3.7) orresponding to the 4(l2 � l1) � 4(l2 � l1) square diagonalblok V = Ul1 ;l2 of the matrix U of Lemma 3.5.Hene, by denoting k�k the Eulidean norm in R4(l2�l1), (3.3), (3.36) and(3.37) entail the existene of a positive onstant C2 = C2(t;W ) < +1 suhthat k�[h; t; !℄k � � C2 (jr � tkj+ js� tk+1j) if k 6= l1; l2C2 (jr � tkj+ js� tkj) if k = l1; l2then there is C3 = C3(t; wi) < +1 (sine  = V�1 � and the matrix Vdepends only on �xed data t and wi) suh thatk[h; t; !℄k = � C3 (jr � tkj+ js� tk+1j) if k 6= l1; l2C3 (jr � tkj+ js� tkj) if k = l1; l2.Statements (3.27), (3.28), (3.31), (3.32) follow. We are left to prove (3.29),(3.30). For any l = 0; :::;T hoose dl and bl as in (3.35), (3.5).The vetor � is an analyti funtion of (r; s) sine (3.8) entails that � dependson (r; s) only through d(a)k (tk) and d(a)k (tk+1) for a = 0; 1; 2; 3, hene  =V�1 � is an analyti funtion of (r; s). Moreover, for a = 0; 1; 2; 3:d(a)k [h[r; s℄; t; !℄(tk) = 0,d(a)k [h[r; s℄; t; !℄(tk+1) = Z tk+1tk W (a)(tk+1 � y)h[r; s℄(y) dy =Z sr W (a)(tk+1 � y)y � rs� r dy + Z tk+1s W (a)(tk+1 � y) dy.This identities together with (3.5) proves (3.29). We prove (3.30) �rst byshowing that the partial derivative of b000k [h[r; s℄; t; !℄(tk) with respet to r isnot identially zero, then exploiting b000k [h[tk; tk+1℄; t; !℄ = h000[tk; tk+1℄+(tk) =0 due to bk = h[tk; tk+1℄ on (tk; tk+1) and h[tk; tk+1℄ is linear on (tk; tk+1).To this aim we set '(x) = x�tk+1(tk+1�tk)2�(tk ;tk+1)(x) and laim��r b000k [h[r; s℄; t; !℄(tk)����r=tk; s=tk+1 = b000k ['; t; !℄(tk). (3.39)By assuming (3.39) and arguing by ontradition assume b000k ['; t; !℄(tk) = 0.By (3:2:v) and tk rease point for b['; t; !℄ we get b000k�1['; t; !℄(tk) = 0. Heneg = 0 in [tk; tk+1℄ and Theorem 3.9 together entail� bk�1['; t; !℄(x) = 0 x 2 (tk�1; tk),bk['; t; !℄(x) = ' x 2 (tk; tk+1).26



But '+(tk) = �1=(tk+1� tk) entails b000k ['; t; !℄(tk) 6= 0, then by (3.39) we get(3.30).Now we prove the laimed equality (3.39). To this aim we prove:��r�[h[r; s℄; t; !℄����r=tk; s=tk+1 = �['; t; !℄ . (3.40)By substituting r = tk, s = tk+1 in��rd(a)k [h[r; s℄; t; !℄(tk+1) =��r�Z sr W (a)(tk+1 � y)y � rs� r dy + Z tk+1s W (a)(tk+1 � y) dy� =Z sr W (a)(tk+1 � y) y � s(s� r)2dywe get��rd(a)k [h[tk; tk+1℄; t; !℄(tk+1) = Z tk+1tk W (a)(tk+1�y)'(y)dy = d(a)k ['; t; !℄(tk+1).(3.41)We have d(a)k [h[r; s℄; t; !℄(tk) = 0 for a = 0; 2; 3 then��rd(a)k [h[r; s℄; t; !℄(tk)����r=tk ; s=tk+1 = 0 for a = 0; 2; 3. (3.42)Equality (3.40) follows by (3.41) for any entry of �[h[r; s℄; t; !℄ of type1) d000k+1[h[r; s℄; t; !℄(tk+1)� d000k [h[r; s℄; t; !℄(tk+1) = �d000k [h[r; s℄; t; !℄(tk+1)2) �d00k [h[r; s℄; t; !℄(tk+1)3) dk+1[h[r; s℄; t; !℄(tk+1)� dk[h[r; s℄; t; !℄(tk+1) = 1� dk[h[r; s℄; t; !℄(tk+1), 9>>>>=>>>>; (3.43)for any other entry (3.40) is a trivial onsequene of (3.42) sine both sidesof the equality are zero.By (3.40),  = V�1 � and V independent of r, s��r[h[r; s℄; t; !℄����r=tk; s=tk+1 = ['; t; !℄. (3.44)
27



Eventually by (3.5), (3.42), (3.44) and d000k ['; t; !℄(tk) = 0 we have��r b000k [h[r; s℄; t; !℄(tk)��r=tk ; s=tk+1 =��rd00k[h[r; s℄; t; !℄(tk)��r=tk; s=tk+1 + 4Pi=1 ��rk;i[h[r; s℄; t; !℄(tk)��r=tk; s=tk+1 ...wi(tk)= 4Pi=1k;i['; t; !℄(tk)...wi(tk) = b000k ['; t; !℄(tk),say (3.39). �In the following lemma we show that for suitable step datum �(a;1℄ with jumpin the interval (tk; tk+1) the value bk[�(a;1℄; t; !℄(tk) is not zero.Lemma 3.20 Fix T;m; n 2 f0; 1; 2; :::g, T = m + n, et 2 AT and ! 2 
m;n.For any k 2 f1; :::;Tg we set #k : [etk;etk+1℄! R by#k(a) = bk[�(a;1℄;et; !℄(etk) 8a 2 [etk;etk+1℄,where b = b[�(a;1℄;et; !℄ is the unique solution of Problem 3.3. Then1. #k is an analyti funtion with respet to a 2 (etk;etk+1) and is ontinuouswith respet to a 2 [etk;etk+1℄,2. for any " 2 �0; dist(et; �AT)� there is a 2 (etk + ";etk+1 � ") suh that#k(a) 6= 0. Here �AT is the topologial boundary of AT in RT .Proof. Throughout the proof we write # in plae of #k sine k is �xed.Referring to (3.33) we de�ne dl bydl[�(a;1℄;et; !℄(x) = 8<: 0 8x 2 [etl;etl+1℄ if l < k,R xetl W (x� y)�(a;1℄(y) dy 8x 2 [etk;etk+1℄ if l = k,1 8x 2 [etl;etl+1℄ if l > k,hene dl ful�lls (3.4) and we hoose the deomposition (3.5) of b[�(a;1℄;et; !℄related to this hoie of dl.By Lemma 3.5 and Theorem 3.8 it is enough to prove that both d(r)l [�(a;1℄;et; !℄(etl)and d(r)l [�(a;1℄;et; !℄(etl+1) are analyti funtions of a on (etk;etk+1) and ontin-uous funtions of a on [etk;etk+1℄, r = 0; 1; 2; 3. If l 6= k then this fat isstraightforward, if l = k then this fat follows by diret omputation:d(r)k [�(a;1℄;et; !℄(etk) = 0, d(r)k [�(a;1℄;et; !℄(etk+1) = Z etk+1a W (r)(etk+1 � y) dy.28



Then statement 1 is proven.Statement 2 will follow by the �rst statement if we show that#(etk) 6= 0, (3.45)sine (3.45) together with statement 1 entails that the analyti funtion #may have only isolated zeros in (etk;etk+1).If !k = J then by Theorem 3.9 #(etk) = bk[�(etk ;1℄;et; !℄(etk) = �(etk ;1℄(etk+) = 1.If !k = C then the following longer analysis is required to show (3.45).By realling the onvention !0 = !T+1 = J we denote by l1, l2 the uniquepair of integers ful�lling( 0 � l1 < k < l2 � T+ 1,!l1 = !l2 = J, !l = C 8l 2 fl1 + 1; :::; l2 � 1g,we de�ne a 4(l2 � l1)-dimensional row vetor v byvl = ( wi(tk) if l = 4 (k � 1� l1) + i for i = 1; :::; 4,0 otherwise (say l 6= 4 (k � 1� l1) + i). (3.46)Notie that v has only four non trivial entries oinident with the left halfof the �rst line of blok Bk�l1 .We make a new hoie of dl bydl[�(etk ;1℄;et; !℄(x) = ( 0 if l < k1 if l � k 8x 2 [etl;etl+1℄, (3.47)hene dl ful�lls (3.4) and we hoose the deomposition (3.5) of b[�(a;1℄;et; !℄with this hoie of dl.Sine !l1 = !l2 = J by Remark 3.4 system (3.2) splits into three separatesystems whih give b on [0;etl1℄, on [etl1 ;etl2 ℄ and on [etl2 ; 1℄ respetively. Sineh = 0 on [0;etl1 ℄ we have b � 0 on [0;etl1℄, sine h = 1 on [etl2 ; 1℄ we haveb � 1 on [etl2 ; 1℄, then, by Lemma 3.5, we have to study b only on the interval[etl1 ;etl2 ℄ that is the subsystem V  = � (3.48)of system (3.7) orresponding to the diagonal blok V def= Ul1 ;l2 of U (see(3.8),(3.9)) with bl = dl + 4Pi=1l;iwi and dl de�ned by (3.47). System (3.48)is an algebrai system: 4(l2 � l1) algebrai equations, 4(l2 � l1) unknowns29



 = (l;i) 2 R4(l2�l1) with l = 1; :::; (l2 � l1 + 1) and i = 1; :::; 4; the matrixV = V[et; !℄ = [Vi;j ℄4(l2�l1)i;j=1 is invertible by Lemma 3.5 and Theorem 3.8; here� = �[�(etk ;1℄; t; !℄ replaes a in (3.8) with �l = al+4l1 .Vetor � has only one non zero entry i.e.�4(k�l1) = dk[�(etk ;1℄;et; !℄(etk)� dk�1[�(etk;1℄;et; !℄(etk) = 1. (3.49)Arguing by ontradition assume that #(etk) = bk[�(etk ;1℄;et; !℄(etk) = 0. Thenby !k = C, (3.5) and (3.47) we dedue that the unique solution  of (3.48) ful-�lls the following relationship, where the ommon dependene on [�(etk ;1℄;et; !℄is always understood:0 = bk(etk) = bk�1(etk) = dk�1(etk) + 4Xi=1k�1;iwi(etk) = 4Xi=1k�1;iwi(etk) (3.50)Hene, due to (3.46), (3.48) and (3.50), the (4(l2� l1)+1) dimensional vetor[;�1℄, ful�lls the linear system� V �v 0 � � �1 � = 0. (3.51)Equation (3.51) entails det � V �v 0 � = 0 then, sine det(V) 6= 0, v 6= 0, and� has only one non zero omponent given by (3.49), we getv an be uniquely written as a non trivial linear ombination ofthe 4(k � l1)� 1 rows of V di�erent from the 4(k � l1)-th rowwhose oeÆient vetor is denoted by �: vl = Pj 6=4(k�l1) �j Vj;l . (3.52)We onsider two possibilities for oeÆient �4(k�l1)+1 (related to the rowbelow the one with unique non trivial omponent of �): both possibilitiesleads to a ontradition.� If �4(k�l1)+1 6= 0 we hoose a 4(l2 � l1 � k) square matrix by seleting4(l2 � k) square diagonal SE blok of (3.9) and deomposing it as follows:u2 = � V4(k�l1 )+1;4(k�l1)+1 � � � V4(k�l1 )+1;4(l2�l1) �U2 = 266664 V4(k�l1 )+2;4(k�l1)+1 � � � V4(k�l1 )+2;4(l2�l1)� �� �� �V4(l2�l1);4(k�l1)+1 � � � V4(l2�l1);4(l2�l1)
377775 .30



By (3.46) we have � v4(k�l1)+1 � � � v4(l2�l1) � = 0, hene (3.52) entails0 = det � �4(k�l1)+1 u2U2 � = �4(k�l1)+1 det � u2U2 � . (3.53)Sine � u2U2 � is the NW square diagonal blok of the invertible matrix ofoeÆients of the linear system (3:2:ii)-(3:2:vi) obtained by solving Problem3.3 on the interval [etk; 1℄ with arrangement data as follows:8><>: S = T� k, j = 0,  = St suh that tl = etl+k 8l 2 f1; :::; Sg� suh that �l = !l+k 8l 2 f1; :::; Sg.Then Lemma 3.5 and Theorem 3.8 entail det � u2U2 � 6= 0 ontraditing (3.53).� If �4(k�l1)+1 = 0 we hoose a 4(k� l1) square blok by taking the 4(k� l1)square diagonal NW blok of (3.9) and deomposing it as follows:U1 = 266664 V1;1 � � � V1;4(k�l1 )� �� �� �V4(k�l1 )�1;1 � � � V4(k�l1 )�1;4(k�l1)
377775u1 = � V4(k�l1 );1 � � � V4(k�l1 );4(k�l1) � .De�nition (3.46) entailsu1 = � v1 � � � v4(k�l1) � 6= 0, � v4(k�l1)+1 � � � v4(l2�l1) � = 0:Hene properties det(V) 6= 0 and (3.52) entail thatu1 an be uniquely written as a non triviallinear ombination of the rows of U1 . (3.54)hene (3.54) entails det � U1u1 � = 0. (3.55)Though � U1u1 � is a square NW blok of V, equation (3.55) does not entailan immediate ontradition with det(V) 6= 0, sine V is not a square blok31



diagonal matrix with NW minor given by � U1u1 �.We onsider a symmetri arrangement of reases in [etk; 2etk � etl1 ℄:8>>><>>>: (i) S = 2(k � l1)� 1,  = S, j = 0(ii) t suh that tl = � etl+l1 if l = 0; :::; k � l12etk � et2k�l1�l if l = k � l1 + 1; :::;S+ 1,(iii) � suh that �l = C for any l = 1; :::;S, (3.56)and the following di�erential problem with arrangement (3.56)(i) z0000l + zl = g on (tl; tl+1) for l = 0; 1; :::; S(ii) z00l (tl) = z00l (tl+1) = 0 for l = 0; 1; :::; S(iii) z000l (tl) = 0 for l = 0; 1; :::; S(iv) z000l (tl+1) = 0 for l = 0; 1; :::; S(v) z000l�1(tl) = z000l (tl) for l = 0; 1; :::; S(vi) zl�1(tl) = zl(tl) for l = 0; 1; :::; S,
9>>>>>>>>>=>>>>>>>>>; (3.57)

we also denote by W = W [t; �℄ = [W i;j ℄4(S+1)i;j=1 the invertible matrix of oeÆ-ients of the algebrai linear system related to (3.57) by the same onstrutionmade in Lemma 3.5.If the arrangement of (t; �) ful�lls (3.56) we get the following identity for the4(k � l1) square diagonal NW blok of W :� U1u1 � = 266664 W 1;1 � � � W 1;4(k�l1 )� �� �W 4(k�l1 )�1;1 � � � W 4(k�l1 )�1;4(k�l1)W 4(k�l1 );1 � � � W 4(k�l1 );4(k�l1)
377775 .We selet the 4(S � l1 � k + 1) SE square diagonal blok and substitute its�rst row with the one above, by setting:m = � W 4(k�l1 );4(k�l1)+1 � � � W 4(k�l1 );4(S+1) �M = 266664 W 4(k�l1 )+2;4(k�l1)+1 � � � W 4(k�l1 )+2;4(S+1)� �� �� �W 4(S�l1 );4(k�l1)+1 � � � W 4(S+1);4(S+1)
377775 .
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Theorem 3.8 applied to Problem (3.57) entails det (W ) 6= 0 then, by (3.55),m is not a linear ombination of the rows of M that isdet � mM � 6= 0. (3.58)We introdue the two following problemsGiven f 2 L2(etl1 ;etk) �nd ' suh that(i) '0000l + 'l = f on (tl; tl+1) for l = 0; :::; k � l1 � 1(ii) '00l (tl) = '00l (tl+1) = 0 for l = 0; :::; k � l1 � 1(iii) '000l1(t0) = 0(iv) '000l�1(tl) = '000l (tl) for l = 1; :::; k � l1 � 1(v) 'k�l1�1(tk�l1) = 0(vi) 'l�1(tl) = 'l(tl) for l = 1; :::; k � l1 � 1 .
9>>>>>>>>>=>>>>>>>>>; (3.59)

Given h 2 L2(etk; 2etk � etl1) �nd  suh that(i)  0000l +  l = h on (tl; tl+1) for l = k � l1; :::; S(ii)  00l (tl) =  00l (tl+1) = 0 for l = k � l1; :::; S(iii)  000S (tS+1) = 0(iv)  000l�1(tl) =  000l (tl) for l = k � l1 + 1; :::; S(v)  k�l1(tk�l1) = 0(vi)  l�1(tl) =  l(tl) for l = k � l1 + 1; :::; S.
9>>>>>>>>>=>>>>>>>>>; (3.60)

Problems (3.59) (3.60) are slight modi�ation of Problem 3.2 and their so-lutions have the same value at etk = tk�l1: if l = k � l1 then (v) reads'k�l1�1(etk) = 0 =  k�l1(etk). Notie that matries � U1u1 � and V play thesame role respetively in Problems 3.59 and 3.3 while matries � mM � andV play the same role respetively in Problems 3.60 and 3.3. Then8>>>>>>><>>>>>>>:
existene and uniqueness of solutionsof Problem 3.59 depends only on � U1u1 � ,existene and uniqueness of solutionsof Problem 3.60 depends only on � mM � . (3.61)
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Consider the aÆne map � : [etl1 ;etk℄! [etk; 2etk � etl1 ℄ de�ned by �(t) = 2etk � t.Observe that any solution ' of Problem 3.59 with datum f gives a solution (t) = '(��1(t)) of Problem 3.60 with datum h = f(��1(t)), and that anysolution  of Problem 3.60 with datum h gives a solution '(t) =  (�(t)) ofProblem 3.59 with datum f = h(�(t)). By (3.61) either � U1u1 � and � mM �are both non singular, or � U1u1 � and � mM � are both singular, hene thereis a ontradition between (3.55) and (3.58). �4 An auxiliary variational problemWe have already notied that jump and rease points of argminF g�;� are notneessarily loalized among those of g even if it is a ontinuous and pieewiseaÆne funtion (see Setion 4 of [4℄). In this setion we develop some tehnialtools enabling us to overome this diÆulty. At �rst we introdue a problemwhih is equivalent to the minimization of Blake-Zisserman funtional in aseof ontinuous pieewise aÆne datum g.De�nition 4.1 For any Q 2 f0; 1; 2; :::g and q = (qi)Qi=1 2 AQ letKq = f u 2 H2 : �u(t+) = �u(t�) = 0 8t 2 Su [ S _u and...u (t+) = ...u (t�) = 0 8t 2 (Su [ S _u) n fqigQi=1 g.Problem 4.2 Given Q 2 f0; 1; 2; :::g, q 2 AQ, g 2 L2(0; 1) and �, � satis-fying (1.2), minimize the funtional F g�;� on Kq.Remark 4.3 If g 2 A q (ontinuous pieewise aÆne funtion with reasepoints at q) in addition to usual assumptions (1.2) and (1.3), then the setof solutions of Problem 4.2 oinide with the set of minimizers of Blake-Zisserman funtional F g�;� with the same data �, �, g. This is true beauseF g�;� admits minimizers over H2 and they must belong to Kq due to (ii) and(vi), of Theorem 2.1.Motivated by this remark, from now on, we fous the multipliity of solu-tions of Problem 4.2. We introdue the following problem in order to studyelements of Kq \ argminF g�;� having loation and quality ompatible withsuitable loation and quality a priori presribed with at most j jump pointsand  rease points. Analysis made in Setion 3 and Remark 4.3 suggest tolook for solutions  of the following problem.34



Problem 4.4 Given Q;T; j;  2 f0; 1; 2; :::g, T = j + , t 2AT, q 2 AQ,� 2 
j; and g 2 L2(0; 1), �nd  2 H2(0; 1) s.t.  = l on (tl; tl+1) where(i) 0000l + l = g on (tl; tl+1) for l = 0; 1; :::;T(ii) 00l (tl) = 00l (tl+1) = 0 for l = 0; 1; :::;T(iii) 000l (tl) = 0 if either l = 0, or l = 1; :::;T s.t. �l = J,or l = 1; :::;T s.t. tl =2 q(iv) 000l (tl+1) = 0 if either l = T, or l = 1; :::;T s.t. �l+1 = J,or l = 1; :::;T s.t. tl+1 =2 q(v) 000l�1(tl) = 000l (tl) if l = 1; :::;T and �l = C and tl 2 q(vi) l�1(tl) = l(tl) if l = 1; :::;T and �l = C and tl 2 q
9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>; (4.1)

t and � are alled respetively loation and quality of Problem 4.4. (4.2)We emphasize that  ould be disontinuous at some tl if �l = C and tl =2 q.Theorem 4.5 For any Q;T; j;  2 f0; 1; 2; :::g, T = j + , q 2 AQ, t 2 AT,� 2 
j; and g 2 L2(0; 1), Problem 4.4 admits unique solution.Proof. Consider the quality ! de�ned by !l = �l if tl 2 q and !l = Jotherwise. Problem 4.4 is equivalent to Problem 3.3 with datum g, quality! and loation t, then the thesis follows by Theorem 3.8. �Remark 4.6 Loation and quality of the solution  of Problem 4.4 are om-patible with loation and quality (4.2) of Problem 4.4, sayS � fti : �i = Jg, S _ n S � fti : �i = Cg.Remark 4.7 We notie that, when g 2 A q , the relationship between Problem4.2 and Problem 4.4 is analogous to relationship between minimization ofF g�;� and Problem 3.3: any solution u of Problem 4.2 solves Problem 4.4 withthe same loation t = t(u) and quality � = �(u).De�nition 4.8 For any Q;T; j;  2 f0; 1; 2; :::g, T = j+ , t 2 AT, q 2 AQ,� 2 
j; and g 2 L2(0; 1), set:1.  = [g; t;q; �℄ is the unique funtion  = (x) 2 H2 pieewise de�nedby the solutions fl = l[g; t;q; �℄ 2 H2(tl; tl+1)gTl=0 of system (4.1).Parameters g, t, q, � will be dropped whenever there is no risk ofonfusion. For any l 2 f0; :::;Tg we denote by 0l; 00l ; :::; (r)l the �rst,seond, ..., r-th distributional derivative in (tl; tl+1) of l with respetto x. Notie that 0l = _l, 00l = �l, ..., but 0 and 00 may be di�erentfrom _ and � due to singular part at tl.35



2. F(g; t;q; �) is the absolutely ontinuous part Fg of F g�;� evaluated atthe solution [g; t;q; �℄ of Problem 4.4F(g; t;q; �) = Fg([g; t;q; �℄) (4.3)F(�; �;q; �) : L2(0; 1)� AT ! R3. If in addition g is ontinuous pieewise aÆne with loation q (i.e. g 2A q) and the vetor g is assoiated to g by (3.16) and (3.17), set:(�; �;q; �) : RQ+2 � AT ! L2(0; 1) by[g; t;q; �℄(x) = [g; t;q; �℄(x) (4.4)F(�; �;q; �) : RQ+2 � AT ! R by F(g; t;q; �) = F(g; t;q; �). (4.5)We emphasize that De�nition 3.10 and De�nition 3.13 depends on the loa-tion and quality of Problem 3.3 while De�nition 4.8 depends not only on theloation and quality (4.2) of Problem 4.4 but also on vetor q (oinidentwith loation of g in ase 3).Proposition 4.9 Fix Q;T; j; ; r 2 f0; 1; 2; :::g, T = j + , q 2 AQ and� 2 
j;, then:1. the map g 7! (g; t;q; �) is linear in g 2 L2(0; 1) for any t 2 AT,in partiular g � 0 entails  � 0;the map g 7! F(g; t;q; �) is ontinuous and 2-homogeneous with respetto g 2 L2(0; 1) for any t 2 AT;2. for any pieewise aÆne funtion g 2 A q and any solution u of Problem4.4 suh that u has j jump points,  rease points and quality �, themap t 7�! F(g; t;q; �) ahieves its minimum with respet to t in AT att(u) = (t1(u); :::; tT(u)). Moreover Su = ftl(u) : �l = Jg, S _u n Su =ftl(u) : �l = Cg and  = u is the unique minimizer of F in H2u;3. for any pieewise aÆne funtion g the funtion  = g solves Problem4.4 with data g, t = t(g), q = q(g) and � = �(g);4. for any open ell W of the CW struture indued by q on AT, therestrition to A q �W of (r)l [�; �;q; �℄(tl) and of (r)l [�; �;q; �℄(tl+1) (e.g.evaluations at tl, tl+1 of funtions (4.4) and their r-th derivatives withrespet to x) are real analyti funtions of g and tj where tj is a freeoordinate of the open ell W ; 36



5. for any open ell W of the CW struture indued by q on AT, therestrition to A q�W of F(�; �;q; �) (e.g. funtion (4.5)) is real analytifuntions of g and tj where tj is a free oordinate of the open ell W .Proof. Consider the quality ! de�ned by !l = J if tl =2 q and !l = �lotherwise. Sine F(�; �;q; �) is the restrition of F(�; �; !) to L2(0; 1)�AT and(r)[�; �;q; �℄ = b(r)[�; �; !℄ the proposition follows from the analogous resultsabout F and b: Theorem 3.11, Lemma 3.7, Theorem 3.14. �5 CW struture of the set of data with vanishing ex-ess fE = 0gWe introdue the exess funtional E to represent the deviation realized bysolution of Problem 4.4 from (expeted for minimizers) vanishing values ofsuitable weights. Exess E is given in De�nition 5.1 in suh a way that theset fE = 0g selet all data for Problem 3.3 whose related solution ful�lls thewhole set of Euler onditions (i)-(vi) of Theorem 2.1.Euler onditions (i)-(vi) of Theorem 2.1 altogether form an overdetermineddi�erential system: for this reason we introdued Problems 3.3 and 4.4 (eahof them ontains only part of these onditions) and showed that both haveunique solution for any hoie of the arrangement. If the evaluation of theexess E on the solution  of Problem 4.4 vanishes then  is also a solutionof Problem 3.3, more preisely suh  ful�lls all Euler onditions (i)-(vi).De�nition 5.1 For any Q;T; j;  2 f0; 1; 2; :::g, T = j+ , t 2 AT, q 2 AQ,� 2 
j;, and g 2 A q we de�ne E : A q � AT � AQ � 
j; ! RT byE(g; t;q; �) = �E1(g; t;q; �); :::; ET(g; t;q; �)�whereEl(g; t;q; �) = 8<: l�1[g; t;q; �℄(tl) + l[g; t;q; �℄(tl)� 2g(tl) if �l = J and tl =2 q,l[g; t;q; �℄(tl)� l�1[g; t;q; �℄(tl) if �l = C,0 otherwise,and  = [g; t;q; �℄ is the solution of Problem 4.4.Notie that if W is a ell of the CW struture indued on AT by q and tl isnot a free oordinate of W , then tl 2 q. Sine tl 2 q entails either �l = C orEl = 0 we getEl = 0 8l suh that tl is not a free oordinate of the ell W . (5.1)37



Notie that Proposition 4.9(4) entails (via identi�ations (3.16) and (3.17)between g 2 A q and g 2 RQ+2) that the restrition of the funtion E(�; �;q; �)to A q �W is an analyti funtion of g, t, for any open d-dimensional ellW � AT of the CW deomposition indued on AT by q. Moreover, referringto De�nition 4.1, (3.23) together with Theorem 2.1(vi) entailE(g; t(u);q; �(u)) = 0 8g; 8u 2 argminF g�;� � Kq. (5.2)In this setion (still referring to identi�ations (3.16) and (3.17) betweeng 2 A q and g 2 RQ+2) we study the CW struture of the setfE = 0g := f(g; t) 2 A q �W : E(g; t;q; �) = 0g (5.3)in a small neighborhood of a �xed pointet 2 AT when the loation q appearingin the de�nition of E is suitably �ne. Toward this aim we introdue thede�nition of exhaustive sequene of partitions where, as usual, we identifypartitions with vetors.De�nition 5.2 A sequene of partitions fqmgm�0 is alled exhaustive ifqm � qm+1 for any m � 0, [m�0qm is dense in (0; 1).Lemma 5.3 Fix T; j;  2 f0; 1; 2; :::g, T = j+ , et 2 AT and � 2 
j;. Then9" 2 (0; dist(et; �AT)=2) s.t. for all exhaustive sequene of partitions fqmgm�09m : 8m > m8l 2 f1; :::;Tg 9i = i(l), 9qi := qi(l) 2 qm suh that[qi�1; qi℄ � (tl; tl+1) 8t : ���t�et���RT < " (5.4)and, by setting jh(x) = (x� qj�1)�[qj�1;qj ℄(x) + (qj � qj�1)�(qj ;1℄(x) for anyj 2 f1; :::;Qm + 1g and Qm = dim qm, we havel[h; t;qm; �℄=h0+Qm+1Xj=1 l[jh; t;qm; �℄hj 8h2A qm , 8l2f1; :::;Tg, (5.5)say the solution l[jh; t;qm; �℄ of Problem 4.4 is the oeÆient of hj (throughthe identi�ations between h 2 A qm and h 2 RQm+2, see (3.16), (3.17)) inthe linear ombination (5.5) representing l, andk[i(l)h; t;qm; �℄ � 0 if k < l and (�l = J or tl =2 qm), (5.6)l[i(l)h; t;qm; �℄(tl) 6= 0. (5.7)38



Proof. Statement (5.4) follows from De�nition 5.2.Statement (5.5) follows by Proposition 4.9(1) via identi�ation (3.16) whihnow reads as follows8><>: z0 = h0, zl = hl(ql � ql�1) + zl�1,h(x) = Qm+1Pj=1 (hj(x� qj�1) + zj�1)�[qj�1;qj)(x) = Qm+1Pj=0 jh hj . (5.8)Statement (5.6) follows by (4.1) and Proposition 4.9(1).Referring to Problem 3.3, we de�ne b!l : (etl;etl+1) ! R byb!l (a) = bl[�(a;1);et; !℄(etl).Lemma 3.20 entails that b!l is a (not identially zero) real analyti funtionwith respet to a 2 (etl;etl+1) for any ! 2 
T = Sm+n=T
m;n.Sine 
T is a �nite set we have that S!2
Tfx 2 (etl;etl+1) : b!l (x) = 0g is adisrete set hene we an hooseal 2 (etl;etl+1) : b!l (al) 6= 0 8! 2 
T.Continuity of bl[�(al;1); t; !℄(tl) with respet to tl (Theorem 3.11(2)) entails9; "l > 0: ��bl[�(al;1); t; !℄(tl)�� >  8! 2 
T; 8t 2 AT : ���t�et��� < 2"l.For any a; b 2 [0; 1℄ with a < b, seth(x) = x� ab� a �[a;b℄(x) + �(b;1℄(x),Continuity of bl[g; t; !℄(tl) with respet to g (Theorem 3.11(2)) entails, forthe same "l hoosen before,9Æ > 0 : 8<: dist(al; ftlgT+1l=0 ) > Æ 8t 2 AT; ���t�et��� < "l,j bl[h; t; !℄(tl)j > 2 8a; b 2 (al � Æ; al + Æ).By exploiting linearity of bl[g; t; !℄(tl) with respet to g (Theorem 3.11(1))we have for any l9"l; Æ > 0 : 8<: dist(al; ftlgT+1l=0 ) > Æ 8t 2 AT; ���t�et��� < "l,j bl[(b� a)h; t; !℄(tl)j > 2(b� a) 8a; b 2 (al � Æ; al + Æ). (5.9)39



For any l 2 f1; :::;Tg �x "l and Æ as in (5.9), then by (5.4) we an hooseindex ml suh that partition qml in the given sequene has omponents qi�1,qi 2 (al � Æ; al + Æ) and set" = min f"l 8l 2 f1; :::;Tgg > 0; m = max fml 8l 2 f1; :::;Tgg < +1.For any m � m and t�etRT < ", de�ne ! by !l = �l if tl 2 q and !l = Jotherwise. Sine l[ih; t;qm; �℄ = bl[ih; t; !℄, thesis (5.7) follows by applying(5.9) to bl[ih; t; !℄. �Theorem 5.4 Fix T; j;  2 f0; 1; 2; :::g, T = j+ , et 2 AT, � 2 
j;. Then8" s.t. 0 < " < 12dist(et; � AT) and 8 exhaustive family of partitions fqmgm�09em suh that: for any qm with m � em and any open d-dimensional ells Wof the CW struture indued by qm on AT with W � B(et; "), the setT := fE = 0g \ (A qm �W ) = f(g; t) 2 A qm �W : E(g; t;qm; �) = 0gis a �nite CW omplex of dimension at most Qm +2 (where Qm = dim qm).The higher skeleton of T loally is the graph of an analyti funtion.Proof. The restrition of E to A q �W is an analyti funtion then its zeroset T = fE = 0g \ (A q �W ) is a semi-analyti set ontained in A q �W ,hene T has a CW struture by Theorem 8.5.Choose " and em as in Lemma 5.3, denote Qm and qm shortly by Q andq = (qi)Qi=1 and denote by flrgdr=1 the free oordinates of the d-dimensionalell W .Even without assuming E = 0, by (5.1) we have to onsider the intersetionof sets fEl = 0g only over indexes lr related to free oordinates of W : sine0� \l =2flrgdr=1fEl = 0g1A \ (A q �W ) = A q �Wwe have to study only � dTr=1fElr = 0g� \ (A q �W ).Hene we are left to study the analyti funtion J : RQ+2 �W ! Rd de�nedby J(g; t) = (Elr(g; t;q; �))dr=1 through the identi�ation (3.16) and (3.17)between g and g.By Lemma 5.3 there are points qlr�1; qlr 2 (tlr ; tlr+1), r 2 f1; :::; dg suhthat the maps rh(x) = (x� qlr�1)�[qlr�1;qlr ℄(x) + (qlr � qlr�1)�(qlr ;1℄(x) ful�lls(5.6), (5.7), hene rh are Q+ 2 linearly independent funtions in A q .If rh 2 RQ+2 (r = 1; :::; d) are the vetors related to rh through (3.16) and40



(3.17), then frhg is a set of Q+ 2 independent vetors.Moreover the matrix  �Jlr0�(rh)!dr;r0=1 (5.10)is an invertible d � d matrix for any (g; t) 2 RQ+2 �W � RQ+2 � Rd : infat by De�nition 5.1, (5.5), (5.8) we have �Jlr0�(rh) = �Elr0�(rh) = lr0 [rh; t;q; �℄(tlr0),hene the matrix (5.10) is a lower triangular matrix with diagonal given bythe vetor �lr [rh; t;q; �℄(tlr)�dr=1whose entries are all non zero by (5.7).So the matrix �J�h has always maximal rank and, by the Impliit FuntionTheorem, fJ = 0g = � dTr=1fElr = 0g� \ A q �W has dimension Q + 2 andloally is the graph of an analyti funtion. �6 CW struture of the set fE = 0g \ fE = 0g of alldata exhibiting non uniqueness of minimizer withsame ardinality of singular sets and di�erent ar-rangementThe main result of this setion is Theorem 6.4 whih measures how manytriplets (g; t; �) 2 Rm � Rn � Rn exist where g is assoiated by (3.16) and(3.17) to a ontinuous pieewise aÆne funtion g with no more thanm reasesand t, � are the ordered singular sets of two di�erent (when possible) so-lutions of Problem 4.2 with same ardinality n of singular set but di�erentarrangement1 : we prove that the projetion on the �rst omponent (in Rm)of the whole set of suh triplets has zero m dimensional Lebesgue measure.We introdue two additional exess funtionals E and E to represent thedeviation of suitable weights evaluated on the solution of Problem 4.4 from(expeted for minimizers) vanishing values. The de�nition is built in suh away that fE = 0g\fE = 0g is the set of all data exhibiting non uniqueness ofminimizer with di�erent arrangement and same ardinality of singular sets.De�nition 6.1 For any Q;T; j;  2 f0; 1; 2; :::g, T = j + , q 2 AQ, �; e� 2
j;, open ell W � AT � AT s.t. W = W0 �W1 with W0, W1 open ells of1together with the same arrangement we would have uniqueness by Remark 4.3, The-orem 2.1 and Theorem 3.8 41



the CW struture indued by q on AT and any (g; t; � ) 2 A q �W , referringto De�nitions 4.8(2) and 5.1, we de�ne:� E : A q �W � AQ � 
j; � 
j; ! R,suh that E(g; t; � ;q; �; e�) = F(g; t;q; �)� F(g; � ;q; e�);� E : A q �W � AQ � 
j; � 
j; ! R2T ,suh that E(g; t; � ;q; �; e�) = �E(g; t;q; �); E(g; � ;q; e�)�:E(g; t; � ;q; �; e�) = 0 means that both  = (g; t;q; �) and e = (g; � ;q; e�)have the same energy Fg.E(g; t; � ;q; �; e�) = 0 entails that both  = (g; t;q; �) and e = (g; � ;q; e�)solve not only Problem 4.2 but also Problem 3.3:b(g; t; �) = , b(g; t; e�) = e,Fg() = F(g; t;q; �) = F(g; t; �), Fg(e) = F(g; � ;q; e�) = F(g; t; e�).Notie that the existene of two di�erent u1, u2 minimizingF g�;� with (t; �) ar-rangement of u1 and (� ; e�) arrangement of u2 would entail E(g; t; � ;q; �; e�) =0 and E(g; t; � ;q; �; e�) = 0.In Lemma 6.2 we evaluate the di�erene F(g; t; !) � F(g; � ; e!) when twodi�erent minimizers of F g�;� exhibit l2 � l1 onseutive rease points withthe same loation between two jumps with the same loation: by approxi-mating these rease points and the two jump points with suitable ramps weprove that the ontribution of suh interval to the above energy di�ereneis di�erent from zero almost everywhere in a non empty neighborhood ofthe diagonal t = � (reall that suh energy di�erene must vanish on thediagonal).In Lemma 6.3 and Theorem 6.4, for any ell W and any pair of qualities �,e�, we study the CW struture (indued on AT � AT by q) of the setfE = 0g \ fE = 0g :=f(g; t; �) 2 A q �W : E(g; t; � ;q; �; e�) = 0; E(g; t; � ;q; �; e�) = 0g (6.1)in a small neighborhood of a �xed point (et; e� ) 2 AT�AT when the partitionq appearing in De�nition 6.1 is suitably �ne.Lemma 6.2 Fix T;m; n; em;en; l1; l2; �1; �2 2 f0; 1; 2; :::g, T = m+n = em+en >0, 0 � l1; l2; �1; �2 � T + 1, (et; e� ) 2 AT � AT, ! 2 
m;n, e! 2 
em;en. Assumethat l2 � l1 = �2 � �1 > 0, (6.2)42



etl1+i�1 = e� �1+i�1 i = 1; :::; l2 � l1 + 1, (6.3)!l1 = !l2 = e!�1 = e!�2 = J, !l1+i = e!�1+i = C i = 1; :::; l2�l1�1. (6.4)We insert suitable points fxkg between ommon loations; de�ne an estimate' of fxkg proximity to the given partition et; then de�ne a distane  fromoinidene of fxkg and ftlg and from ollapse of onseutive pairs in fxkg:d = l2 � l1 + 1,X = fx = (xk)2dk=1 2 (0; 1)2d : etl1+i�1 < x2i�1 < x2i < etl1+i i = 1; :::; d� 2,etl2�1 < x2d�3 < x2d�2 < x2d�1 < x2d < etl2g,'(x) = max �fx2i�1 � etl1+i�1; etl1+i � x2igd�1i=2 [ fx2 � etl1 ;etl2 � x2d�1g�, (x) = min �fdist(fxkg2dk=1; fetlgT+1l=0 )g [ fx2i � x2i�1gdi=1�.Then9Æ = Æ(et; e� ) > 0 and a losed set P � X with empty interior in R2d :8x2XnP with  (x)<minfdist(et; � AT);dist(e� ; � AT))g and '(x) < Æ9" = "(x;et; e� ) 2 (0;  (x)=2) s.t.8x 2 (X n P ) \B(x; ")8(t; � ) 2 B(et; ")�B(e� ; ") with (tl1 ; tl1+1; :::; tl2) 6= (��1 ; ��1+1; :::; ��2)9i 2 f1; :::; dg s.t. F(ih; t; !)� F(ih; � ; e!) 6= 0,
9>>>>>>>>>>=>>>>>>>>>>; (6.5)

where we refer to De�nition 3.10 of F and ih is the ramp de�ned for byih(x) = ih[x2i�1; x2i℄(x) = x� x2i�1x2i � x2i�1�[x2i�1;x2i℄(x) + �(x2i;1℄(x) x2 [0; 1℄. (6.6)Proof. There are four possible types of hoies for l1, l2 ful�lling (6.2):1 � l1 < l2 � T, then set 8>><>>: r1 = �1 = l1,r2 = �2 = l2,s = d,� = 1, � = d, (6.7)
0 = l1 < l2 � T, then set 8>><>>: r1 = �1 = 1,r2 = �2 = l2,s = d� 1,� = 2, � = d, (6.8)

1 � l1 < l2 = T+ 1, then set 8>><>>: r1 = �1 = l1,r2 = �2 = T,s = d� 1,� = 1, � = d� 1, (6.9)43



l1 = 0, l2 = T+ 1, then set 8>><>>: r1 = �1 = 1,r2 = �2 = T,s = d� 2,� = 2, � = d� 1. (6.10)Aording to De�nition 3.10 ih approahes either a ramp or a jump when'(x) ! 0+ as skethed below, i = 1; :::; d:
etl1x1 x2 etl1+1
ss

nn

etl1+i�1x2i�1 x2i etl1+i
mm 11

etl2x2dx2d�1x2d�2x2d�3etl2�1
nn 00

..
,,

De�ne the vetor funtion L : X � AT � AT ! Rs byL(x; t; � ) = �F(ih; t; !)� F(ih; � ; e!)��i=�. (6.11)Atually the dependene of L on t and � is restrited to omponents (tr1 ; :::; tr2)and (��1 ; :::; ��2) alone whenever ���t�et��� <  (x) and j� � e� j <  (x) in fat by(6.4) and Remark 3.4, we know that: system (3.2) with data t, !, ih splitsinto three unoupled systems related to intervals [0; tl1 ℄, [tl1 ; tl2 ℄, [tl2 ; 1℄; sys-tem (3.2) with data � , e!, ih splits into three unoupled systems on [0; ��1 ℄,on [��1 ; ��2 ℄ and on [��2 ; 1℄; b[ih; t; !℄ = b[ih; � ; e!℄ on [0; tl1 ℄ [ [tl2 ; 1℄.By denoting with j�j the Eulidean norm we de�ne:� the set Z � R2T byZ = �(t1; :::; tT; �1; :::; �T) : tl = 0 for l 6= r1; :::; r2,�l = 0 for l 6= �1; :::; �2	and the orthogonal projetion onto Z, pr : R2T ! Z;� the set �x � Z � AT � AT by�x = �(pr(t; � )) : ���t�et��� <  (x), j� � e� j <  (x),tr1+i = ��1+i for i = 0; :::; s� 1	 8x 2 X;� the open set Yx � Z � AT � AT byYx = �(pr(t; � )) : ���t�et��� <  (x) and j� � e� j <  (x)	 8x 2 X;
44



� the open set Y � X � Z � X � AT � AT byY = �(x; pr(t; �)) : x 2 X, ���t�et��� <  (x), j� � e� j <  (x)	 �X � Yx � X � Z.We study the restrition of L to Y .By Theorems 3.8 and 3.14(2)(t; � ) 7�! L(x; t; � ) is a real analyti funtionof free oordinates Yx for any x 2 X.We state a laim about Jaobian matrixDL =�L=�(t; � ) = (�L=�t; �L=�� ),where abusing notation �(t; � ) stands for �z with z 2 Z, say we take intoaount only the derivatives with respet to tl with l = r1; :::; r2 and to �lwith l = �1; :::; �2:9Æ = Æ(et; e� ) > 0 and a losed semi-analyti set P � R2d s.t.dim (P ) � 2d� 1, hene with empty interior in R2d ,8x 2 X n P and '(x) < Æ; rank (DL(x; pr(et; e� ))) = s. 9=; (6.12)The matrix DL(x; pr(et; e� )) has s row and 2s olumns suh that the �rst solumns do not depend on � and the seond s olumns do not depend on t,we denote by M = M(x;et) = �L=�t the square matrix given by the �rst solumns of DL(x; pr(et; e� )). Reall that s = l2� l1+1 in ase (6.7), s = l2� l1in ases (6.8), (6.9), s = l2 � l1 � 1 in ase (6.10). We study in detail thebehaviour of the entries of M in ases (6.7)-(6.10) when '(x) ! 0+. Byexploiting identity (3.22), (3.2:(iii)), (3.2:(iv)) and (3.2:(vi)) we analyze M .Entries of type Mi;i (diagonal entries).We study Mi;i = �F�tr1+i�1 (ih;et; !).If i = 1 and (6.7) or (6.9) our (�M1;1 in ases (6.8), (6.10)), thenM1;1 = �b2r1 [1h;et; !℄(etr1) and M1;1 ! �1 when '(x)! 0+. (6.13)In fat 1h(etr1) = 0, br1�1[1h;et; !℄(etr1) = 0 by Remark 3.4 and b000r1 [1h;et; !℄(etr1) =0 sine etr1 has quality J. Moreover data h = 1h[x1; x2℄ and g = �[etr1 ;1℄ inLemma 3.19, estimate (3.31) and g(etr1) = 1 entail M1;1(x;et) ! �1 when'(x)! 0+.If i = f2; :::; d� 1g thenMi;i = �2b000r1+i�1[ih;et; !℄(etr1+i�1)�(b0r1+i�1[ih;et; !℄(etr1+i�1)� b0r1+i�2[ih;et; !℄(etr1+i�1))and Mi;i ! 0 of order 1 when '(x)! 0+. (6.14)45



In fat br1+i�2[ih;et; !℄(etr1+i�1) = br1+i�1[ih;et; !℄(etr1+i�1) sine etr1+i�1 hasquality C . Moreover if we hose t = et, g = ih[etr1+i�1;etr1+i℄, g(etr1+i) = 1,h = ih[x2i�1; x2i℄ and (r; s) = (x2i�1; x2i) in Lemma 3.19, then (3.30), estimate(3.27) and vanishing set properties of non onstant analyti funtions allowus to de�ne the following sets for i = 2; :::; d� 1,Pi = npairs (x2i�1; x2i) : etr1+i�1 < x2i�1 < x2i < etr1+i , Mi;i(x;et) = 0o .(6.15)Sets Pi ful�ll the following properties:Pi is a losed semi-analyti set ontained in R2 and dim (Pi) � 1. (6.16)Then Mi;i(x;et)! 0 of order 1 when '(x)! 0+.If i = d and (6.7) or (6.8) our (�Md;d in ases (6.9), (6.10)), thenMd;d = (br2�1[dh;et; !℄(etr2)� 1)2 and Md;d ! 1 when '(x)! 0+.(6.17)In fat dh(etr2) = 1, br2 [dh;et; !℄(etr2) = 1 by Remark 3.4 and b000r2 [dh;et; !℄(etr2) =0 sine etr2 has quality J. Moreover data h = dh[x2d�1; x2d℄ and g = �[etr2 ;1℄ inLemma 3.19 and estimate (3.31) entail Md;d(x;et)! 1 when '(x)! 0+.So far we have all the estimates whih are needed about main diagonal, sineindex i runs respetively from 1 to d in ase (6.7), from 2 to d in ase (6.8),from 1 to d� 1 in ase (6.9), from 2 to d� 1 in ase (6.10).Entries of type Mi;i+1 (entries just above the diagonal).We study Mi;i+1 = �F�tr1+i (ih;et; !).If i = f�; :::; d� 1g thenMi;i+1 = �2b000r1+i[ih;et; !℄(etr1+i)�(b0r1+i[ih;et; !℄(etr1+i)� b0r1+i�1[ih;et; !℄(etr1+i))and Mi;i+1 ! 0 of order 1 when '(x)! 0+. (6.18)In fat br1+i�1[ih;et; !℄(etr1+i) = br1+i[ih;et; !℄(etr1+i) sine etr1+i has quality C.Moreover data h = ih[x2i�1; x2i℄ and g = ih[etr1+i�1;etr1+i℄ in Lemma 3.19,(3.30) and estimate (3.27) entailMi;i+1(x;et)! 0 of order 1 when '(x)! 0+.If i = d� 1 and (6.7) or (6.8) our, thenMd�1;d = (br2�1[d�1h;et; !℄(etr2)� 1)2 andMd�1;d ! 0 of order at least 2 when '(x)! 0+. (6.19)46



In fat we have d�1h(etr2) = 1, br2 [d�1h;et; !℄(etr2) = 1 by Remark 3.4 andb000r2 [d�1h;et; !℄(etr2) = 0 sine etr2 has quality J. Moreover data h = ih[x2i�1; x2i℄and g = ih[etr2�1;etr2 ℄ in Lemma 3.19 and estimate (3.31) entailsMd�1;d(x;et)!0 of order at least 2 when '(x)! 0+.Entries of type Mi;j with (i; j) 6= (i; i); (i; i+ 1).We study Mi;j = �F�tr1+j�1 (ih;et; !).If etr1+j�1 has quality C thenMi;j = �2b000r1+j�1[ih;et; !℄(etr1+j�1)�(b0r1+j�1[ih;et; !℄(etr1+j�1)� b0r1+j�2[ih;et; !℄(etr1+j�1))and Mi;j ! 0 of order at least 2 when '(x)! 0+. (6.20)In fat br1+j�1[ih;et; !℄(etr1+i�1) = br1+j�2[ih;et; !℄(etr1+j�1) = 0 sine etr1+j�1has quality C. Moreover data h = ih[x2i�1; x2i℄ and g = ih[etr1+i�1;etr1+i℄ inLemma 3.19 and estimates (3.27) and (3.31) entail Mi;j(x;et)! 0 of order atleast 2 when '(x)! 0+.If etr1+j�1 has quality J thenMi;j = (br1+j�2[ih;et; !℄(etr1+j�1)� br1+j�1[ih;et; !℄(etr1+j�1))�(br1+j�2[ih;et; !℄(etr1+j�1) + br1+j�1[ih;et; !℄(etr1+j�1)� 2ih(etr1+j�1))and Mi;j(x;et)! 0 of order at least 2 when '(x)! 0+. (6.21)In fat b000r1+j�1[ih;et; !℄(etr1+j�1) = 0 sine etr1+j�1 has quality J. Moreoverdata h = ih[x2i�1; x2i℄ and g = ih[etr1+i�1;etr1+i℄ in Lemma 3.19 and estimates(3.27) and (3.31) entail Mi;j(x;et) ! 0 of order at least 2 when '(x) ! 0+.Referring to (6.15), and setting by onvention P1 = Pd = ; in all ases(6.7)-(6.10) we de�ne P � R2d as followsP = d[i=1 R2 � :::� Pi � :::� R2"i-th position . (6.22)The set P is ontained in R2d : atually P is the union of d� 2 semi-analytisets sine the �rst and the last one are empty. By denoting S the groupof permutations of s elements and referring to (6.7)-(6.10), we exploit thestandard formula det(M(x;et)) = Xp2S sgn(p) �Yi=�Mi;p(i), (6.23)47



where � � � = s� 1 is equal to respetively d� 1, d� 2, d� 3 in ases (6.7),(6.8) and (6.9), (6.10).We summarize (6.13)-(6.21) as follows: produt �Qi=�Mi;i is an in�nitesimal as'(x)! 0+ of order respetively (s� 2) _ 0, (s� 1) _ 0, s _ 0 in ases (6.7),(6.8) and (6.9), (6.10); all other produts are of order at least s + 1. Thendet(M(x;et)) tends to 0 of the same order than �Qi=�Mi;i. The laim (6.12)follows by (6.16), (6.22).For �xed x 2 X nP onsider the following hoies in De�nition 8.9: M = Yx,V = Rs , N = f0g, f de�ned by f(t; � ) = L(x; t; � ) with (t; � ) 2 Yx. Thendim(M) = 2s, dim(N ) = 0, rank(DL) = s by (6.12), hene projetionpr(et; e� ) is a regular point of f for x 2 X n P with '(x) < Æ. By Theorem8.10, f�1(0) is an analyti manifold ontaining the diagonal set �x andontained in the open set Yx. Sine � (Yx) \ �B(et;  (x)=2)�B(e� ;  (x)=2)�is the empty set we onlude that f�1(N ) \ �B(et; ")� B(e� ; ")� = �x \�B(et; ")� B(e� ; ")� for suitable " 2 (0;  (x)=2). �Lemma 6.3 Fix T; j;  2 f0; 1; 2; :::g, T = j +  > 0, (et; e� ) 2 AT � AT and�; e� 2 
j;.8" s.t. 0 < " < 12 minndist(et; � AT); dist(e� ; � AT)o and any exhaustive fam-ily of partitions fqmgm�0, qm of ardinality Qm, �x:a d-dimensional ell W =W0 �W1 � B(et; ")� B(e� ; ")of the CW struture indued on AT � AT by qm; (6.24)ftl�gL0�=1, f���gL1�=1 respetively denote free oordinates of W0, W1; (6.25)(t; � ) 2 W with t 6= � if � = e�; (6.26)L = ℄ �ftl�gL0�=1 [ f���gL1�=1� � L0 + L1; (6.27)E(g; t; � ;qm; �; e�) = F(g; t;qm; �)� F(g; � ;qm; e�) 8g 2 A qm . (6.28)Then there is m � em (where em is the integer de�ned in Theorem 5.4) s.t. forany qm with m > m there are at least L + 1 independent vetors f�hgL+1�=1 �RQm+2, identi�ed with L+1 funtions in A qm by (3.16) and (3.17), suh that� �E�(�h)�L+1�=1 � RQm+2 is a set of L + 1 independent vetors (6.29)48



or, equivalently,dim0� span  � �E�(�h)�L+1�=1!!?1A = Qm+2�(L+1) = Qm�L+1. (6.30)Here E is de�ned by (6.28) and, analogously to De�nition 3.15 of derivative�F�g , we set �F�g = lim"!0F(f + "g; t; �)� F(f ; t; �)" . (6.31)Proof. First we introdue some notation. Let� �; � �:L2(0; 1)�L2(0; 1)!Rbe the positive de�nite bilinear map given by� u; v � = Z 10 �u(x)�v(x) + u(x)v(x) dx. (6.32)Let 
T = Sm+n=T
m;n and denote by ! the elements of 
T � 
T.Fix ! = (!; e!) 2 
T � 
T, ! 2 
m;n and e! 2 
em;en, and setF! (g; t;� ) = F(g; t;!)� F(g; � ; e!) 8(g; t;� ) 2 L2(0; 1)� AT � AT, (6.33)T = fetl : !l = Jg, T = fe�l : e!l = Jg, (6.34)T [ T [ f0; 1g = (�r)�+1r=0, 0 = �0 < ::: < �r < �r+1 < ::: < ��+1 = 1, (6.35)R = f r 2 f0; :::; �+ 1g : �r 2 (T \ T ) [ f0; 1g g . (6.36)Any �r with r 2 R is alled double point, we will study intervals [�r; �s℄ where�r and �s are two onseutive double points (notie that there are at leasttwo double points in any ase: 0 and 1). Now the proof splits into two steps.Step 1 - As a �rst step we prove the following laim.For any interval [�r; �s℄, with �r, �s onseutive double points,there are ontinuous pieewise aÆne maps figgs�ri=1 in [0; 1℄suh that, by setting (only in this step)bi = b[ig; t; !℄ and bi = b[ig; � ; e!℄,the following square matrix M is invertibleM = �� bi � ig; bk � kg � �� bi � ig; bk � kg � �s�ri; k=1.
9>>>>>>>=>>>>>>>; (6.37)

Proof of statement (6.37) depends on the nature of the interval [�r; �s℄. As-sume �r = etlr = e��r and �s = etls = e��s then we distinguish between threedi�erent types of intervals, desribing all possible on�gurations.49



Type 1 intervals: Intervals [�r; �s℄ ful�lling all the following three onditions8><>: ls � lr = �s � �retlr+i�1 = e��r+i�1 8i 2 f1; :::ls � lr + 1g!lr+i = e!�r+i = C 8i 2 f1; :::ls � lr � 1g 9>=>; . (6.38)Type 1 intervals [�r; �s℄ look as follows
______ ______

______ ______

etlr
e��rJ

etls
e��sJ

etlr+1
e��r+1C etlr+2

e��r+2C etls�1
e��s�1CType 2 intervals: Intervals [�r; �s℄ ontaining at least one jump point in tor � , hene ful�lling s� r > 1. Eah type 2 interval belongs to at least oneof the two following kinds: either

______ ______

______ ______

etlr
e��rJ

etls
e��sJ

etlr+aJ
or

______ ______

______ ______

etlr
e��rJ

etls
e��sJe��r+bJCrease points are not drawn in the two �gures above, however they ould bepresent possibly not oupled or in di�erent number for ! and e!.Type 3 intervals: Intervals [�r; �s℄ ful�lling s�r = 1, say without jumps in[�r; �s℄, and not ful�lling all onditions (6.38). Type 3 intervals [�r; �s℄ lookas follows

______ ______

______ ______
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Proof of (6.37) in ase of type 1 intervals. In this ase r� s = 1 henethe matrix M is a salar.Lemma 6.2 applied with data T, m, n, em, en, !, e! given by the pair !, l1 = lr,l2 = ls, �1 = �r, �2 = �s entails the existene ofX = X!;r, P = P!;r, x = !;rx, Æ = Æ!;r, " = "!;r (6.39)ful�lling9Æ!;r > 0 and a losed set P!;r � X!;r with empty interior in R2d s.t.8 !;rx 2 X!;r n P!;r with (  ( !;rx ) < min fdist(et; � AT); dist(e� ; � AT))g,'( !;rx ) < Æ9"!;r 2 (0;  (x)=2) s.t.8 !;rx 2 (X!;r n P!;r) \ B(!;rx; "!;r)8(t; � ) 2 B(et; "!;r)� B(e� ; "!;r) with (tl1 ; tl1+1; :::; tl2) 6= (��1 ; ��1+1; :::; ��2)9i 2 f1; :::; dg s.t. F(ih; t; !)� F(ih; � ; e!) 6= 0,We plug ig(x) = x� x2i�1x2i � x2i�1�[x2i�2;x2i℄(x) + �(x2i;1℄(x)in (6.37). Due to (6.32), i�g � 0 in [0; 1℄, with the hoie ig = ih in (6.6),(6.5) of Lemma 6.2 entailsM = �F(1g; t; !)� F(1g; � ; e!)� 6= 0,say M is a matrix of order 1 = s� r with non zero determinant.Proof of (6.37) in ase of type 2 intervals. In this ase s� r � 2, wesetY = fy = (yi)s�ri=1 2 [0; 1℄s�r : yi 2 (�r+i�1; �r+i℄ 8i 2 f1; :::; s� rg,e (y) = min �fdist(yi; fetl; e�lgT+1l=0 )gs�ri=1 [ fdist(yi; yk)gs�ri 6=k=1�.We denote by M (y; t; � ) the symmetri matrix M de�ned in (6.37) with thehoies ig = �[yi;1℄ i 2 f1; :::; s� rg.By Theorems 3.11(2), 3.14(2) matrix M (y; t; � ) is a ontinuous funtion onY � AT � AT where the topology of Y is indued by [0; 1℄s�r.We denote by M � the matrix M (y; t; � ) evaluated at y = (�r+1; :::; �s�r�1; ys�r),t = et, � = e� . We laim thatM � is non singular. (6.40)51



Sine M (y;et; e� ) is ontinuous on Y , if (6.40) holds true, then we get9 > 0; 9 !;ry=(!;ry1; :::; !;rys�r)2Y with f!;ryigs�ri=1 \ fetl; e�lgT+1l=0 =;suh that ���det(M (! ;ry;et; e� ))��� > ,then, referring to De�nition (6.37) of M , e (!;ry) > 0, Theorem 3.11(2) andTheorem 3.19 entail9"!;r 2 (0; e (!;ry)2 ) suh that the matrix M (y; t; � ) is invertible8(t; � ) 2 B(et; "!;r)� B(e� ; "!;r),8 partition q and set figgs�ri=1 � A q of ramp funtions withig(x) = ( 0 if x � !;ryi � "!;r,1 if x � !;ryi + "!;r.
9>>>>>>>=>>>>>>>; (6.41)

Eventually we prove laim (6.40) by showing that M � is a blok diagonalmatrix and that eah blok has non zero determinant.The matrix M = M (y; t; � ) de�ned in (6.37) is symmetri and for any i; k 2f1; :::; s� rg with i < k we have( ℄ (spt (bi � ig) \ spt (bk � kg)) � 1 if [yi; yk℄ \ T 6= ;,℄ (spt (bi � ig) \ spt (bk � kg)) � 1 if [yi; yk℄ \ T 6= ;, (6.42)then ( (i) � bi � ig; bk � kg � = 0 if [yi; yk℄ \ T 6= ;,(ii) � bi � ig; bk � kg � = 0 if [yi; yk℄ \ T 6= ;, (6.43)heneM i;k = 0 if both [yi; yk℄ \ T 6= ; and [yi; yk℄ \ T 6= ; hold true. (6.44)By (6.44) we haveM i;k = 0 entails Ma;b = 0 for a � i and b � k (6.45)and(M � )i;i+1 = 0 for all i suh that(�r+i 2 T and �r+i+1 2 T ) or (�r+i 2 T and �r+i+1 2 T ), (6.46)then M � is a square blok diagonal matrix where eah blok M e0e belongs toexatly one kind among the following four ones:52



B.1 e � e0 < s�r, �r+e�1; �r+e0+1 2 T and �r+i 2 T nT for any i 2 fe; :::; e0g;B.2 e � e0 < s�r, �r+e�1; �r+e0+1 2 T and �r+i 2 T nT for any i 2 fe; :::; e0g;B.3 e � e0 = s� r, �r+e�1 2 T and �r+i 2 T nT for any i 2 fe; :::; s� r� 1g;B.4 e � e0 = s� r, �r+e�1 2 T and �r+i 2 T nT for any i 2 fe; :::; s� r�1g.By (6.43.(ii)), B.1 bloks have the form M e0e = �� bi � ig; bk � kg � �e0i;k=e.The bilinear map (6.32) is positively de�ned and fbi � igge0i=e � L2(0; 1) areindependent vetors sine figge0i=e are, then det(M e0e ) 6= 0.By (6.43.(i)), B.2 bloks have the form M e0e = ��� bi� ig; bk� kg � �e0i;k=e.The bilinear map (6.32) is positively de�ned and fbi � igge0i=e � L2(0; 1) areindependent vetors sine figge0i=e are, then det(M e0e ) 6= 0.Type B.3 bloks have the formM s�re = �� bi � ig; bk � kg � � � bi � ig; bk � kg � �s�ri;k=ewhere � bi � ig; bk � kg �= 0 whenever (i; k) 6= (s� r; s� r).Let M s�re = N s�re � E , whereN s�re = 266664 � be � eg; be � eg � � � � � be � eg; bs�r � s�rg �� �� �� �� bs�r � s�rg; be � eg � � � � � bs�r � s�rg; bs�r � s�rg �
377775E=[Ei;k℄s�ri;k=e , Ei;k=( 0 if (i; k) 6=(s� r; s� r),�bs�r�s�rg; bs�r�s�rg� if (i; k)=(s� r; s� r).The same argument used for B.1 bloks proves that N s�re is an invertiblematrix. Moreover E ! 0 as ys�r ! �s�1, sine s�rg ! �[�s�r;1℄ in L2(0; 1),hene Theorem 3.11(2) entails b! �[�s�r;1℄ in H2(�l; �l+1) 8l.Then any type B.3 blok M s�re = N s�re � E is an invertible matrix.Type B.4 bloks have the formM s�re = �� bi � ig; bk � kg � �� bi � ig; bk � kg � �s�ri;k=ewhere � bi � ig; bk � kg �= 0 whenever (i; k) 6= (s� r; s� r).Let M s�re = �N s�re + bE where N s�re is de�ned like N s�re with � bi� ig; bk�kg � replaed by � bi � ig; bk � kg � and bE is de�ned like E with �bs�r � s�rg; bs�r � s�rg � replaed by � bs�r � s�rg; bs�r � s�rg �.So we an repeat the same analysis we performed on type B.3 bloks.Proof of (6.37) in ase of type 3 intervals. In this ase setZ = fz = (z1; z2) 2 [�r; �s℄2; z1 < z2g,53



b (z) = min �fdist(fz1; z1g; fetl; e�lgT+1l=0 )g [ fdist(z1; z2)g�.We label by M (z; t; � ) the matrix M de�ned in (6.37) with the hoieg(x) = x� z1z2 � z1�[z1;z2℄(x) + �[z2;1℄(x) z = (z1; z2) 2 Z.Atually the matrix M (z; t; � ) is a salar whose value is a ontinuous funtionon Z�AT�AT, where the topology of Z is indued by [0; 1℄2, due to Theorems3.11(2), 3.14(2).Sine [�r; �s℄ is a type 3 interval and s� r = 1, then at least one among thefollowing two possibilities holds true:(1) 9l 2 f1; :::;Tg : e�l 2 [�r; �s℄ n (fetlgT+1l=0 [ T ),(2) 9l 2 f1; :::;Tg : etl 2 [�r; �s℄ n (fe�lgT+1l=0 [ T ).We examine only possibility (1) sine the other one is analogous.We evaluate M (z; t; � ) at: z = (e�l; z2), t = et, � = e� , with z2 2 (e�l; e�l+1)Sine 8<: limz2!e�l+1 � b� g; b� g � = 0 (by Theorem 3.9)limz2!e�l+1 � b� g; b� g � > 0,Theorem 3.11(2) entails M ((e�l ; z2);et; e� ) 6= 0 for any z2 lose enough to e�l+1:Sine M (z;et; e� ) is ontinuous on Z we get9  > 0; 9 !;rz = ( !;rz1; !;rz2 )with f !;rz1; !;rz2 g \ fetl; e�lgT+1l=0 = ;suh that ���M ( ! ;rz;et; e� )��� > .Then, by de�nition (6.37) of M , b ( !;rz ) > 0, Theorem 3.11(2) and Theorem3.19 we get9"!;r 2 (0; b (!;rz )2 ) suh that jM (z; t; � )j > 28(t; � ) 2 B(et; "!;r)�B(e� ; "!;r), 8z 2 B( !;rz; "!;r ). ) (6.47)So far the laim (6.37) is proven.Step 2 - To ahieve the onlusion we exploit Step 1. First we hoose" = min f"!;r : ! 2 
T � 
T; r 2 Rg > 0. (6.48)54



We onsider m suh that qm has at least two distint points in eah one ofthe following intervals( !;rx2i�1 � "; !;rx2i�1 + " ); ( !;rx2i � "; !;rx2i + " ) 8 !;rx (Type 1),( !;ryi � "; !;ryi + " ) 8 !;ry (Type 2),( !;rz2i�1 � "; !;rz2i�1 + " ); ( !;rz2i � "; !;rz2i + " ) 8 !;rz (Type 3),where we refer respetively to (6.39), (6.41), (6.47) for di�erent interval types(only for types whih are present, aording to arrangements t and � ).Obviously the same property holds true for any qm with m � m.To any ellW = W0�W1 ful�lling (6.24) with " given by (6.48), we assoiatethe following qualities ! and e!:!l = ( �l if tl is not a free oordinate of W0J otherwisee!l = ( e�l if tl is not a free oordinate of W1J otherwise,and denote respetively by m, n the number of J, C in quality ! and respe-tively by em, en the number of J, C in quality e!.Then the ordered sequene (�r)Lr=1 of jump points (related to !, e!) is �xedand for any (t; � ) 2 W : by referring to De�nition 6.1 and (6.33), we getE(�; �; �;qm; �; e�) = F! (�; �; �) where ! = (!; e!).By the same proedure used in Step 1 we hoose f�ggL+1�=1 assoiated to !, e!:we notie that the vetors f�ggL+1�=1 are linearly independent by onstrution.We exploit [�; �;qm; �℄ = b[�; �; !℄, [�; �;qm; e�℄ = b[�; �; e!℄ and apply Lemma3.16 to obtain the following identity between square matriesM = 12 �2F! (g; t; �)�(�g) �(�g0)!L+1�;�0=1 .There is an uniform estimate in the hoies of "!;r (in ase of type 1 intervalsby Lemma 6.2; in ase of type 2 interval by (6.41); in ase of type 3 intervalby (6.47)). By summarizing:"!;r < 12 minn (!;rx); e (!;ry); b (!;rz)o .Hene M is a blok diagonal matrix where eah blok is related to an intervalof type either 1 or 2 or 3. Moreover M turns out to be a onstant matrix55



one t and � are �xed, due to (6.33) and Theorem 3.14.By Step 1 eah blok is an invertible matrix so that the whole matrix M isinvertible. This implies that the normal vetors to the L + 1 hyperplanesdetermined by f�F! (g;t;� )�(�g) = 0gL+1�=1 are independent. �Theorem 6.4 Fix T; j;  2 f0; 1; 2; :::g, T = j+  > 0, (et; e� ) 2 AT �AT and�; e� 2 
j;.For any " s.t. 0 < " < 12 min ndist(et; � AT); dist(e� ; � AT)o and any exhaus-tive family of partitions fqmgm�0, qm of ardinality Qm, there is m :for any qm with m > m, any d = 0; :::; 2T and any open d-dimensionalell W � B(et; ") � B(e� ; ") s.t. W = W0 � W1 where W0 � B(et; ") andW1 � B(e� ; ") open ells of the CW struture indued by qm on AT, if E andE are the maps of De�nition 6.1, we have8<: LQm+2�pr [A qm ℄ �fE = 0g \ fE = 0g�� = 0 if � 6= e�LQm+2� pr [A qm ℄ �(fE=0g\fE=0g) n (A qm�� [AT℄)�� = 0 if � = e�,where � [AT℄=f(t; � )2AT�AT : t = �g andpr [A qm ℄ :A qm�AT�AT!A qm is the projetion on the omponent A qm :pr [A qm ℄ (g; t; � ) = g, 8g 2 RQm+2. (6.49)Proof. Choose " and m as in Lemma 6.3. Fix m > m.Parameters qm, �, e� are now �xed: for this reason they are omitted whenwriting the variables of E and E in the following. As usual we set Qm =dim qm and the identi�ation between A qm and RQm+2 through (3.16) and(3.17) will be always understood. We denote by (tl1; :::; tld0 ; � �1 ; :::; � �d1 ) thefree oordinates of W . We setJ = (El1 ; :::;Eld0 ;ET+�1; :::;ET+�d1 )T = f(g; t; � ) 2 A qm � AT � AT : E(g; t; �) = 0g.We emphasize thatS � A qm �W , dim(A qm �W ) = Qm + 2 + d, Hdim(S)(S) > 0,sine S is at most ountable union of analyti graphs; here Hd denotes d-dimensional Hausdor� measure and dim(S) denotes the geometri dimensionof S whih is oinident with the Hausdor� measure of S.By applying �rst (5.1) and Theorem 5.4 to W0 and to W1 we have:T \ (A qm �W ) = f(g; t; � ) 2 A qm �W : J(g; t; � ) = 0g;56



T \ (A qm �W ) is a semi-analyti set ontained in A qm �W and the higherorder skeleton (De�nition 5.3 of [23℄ or De�nition 8.1 in the Appendix) S ofT \ (A qm �W ) has dimension at most Qm + 2 .If dim(S) < Qm + 2 then the theorem follows.If dim(S) = Qm+2 then we an show a ontradition by a three steps proof.Step 1 - We prove the following statement.If we set Z = f(g; t; � ) 2 S : det(DWJ)(g; t; � ) = 0gwhere DWJ is the di�erential of J with respet to free oordinatesof d-ell W ,then LQm+2(pr [A qm ℄ (Z)) = 0.Theorem 5.4 entails that the higher order skeleton S is a ountable union ofgraphs of analyti funtions F : A ! B where A and B are onneted opensets, A � U �W , B � V and U ;V � A qm are independent linear subspaesof dimension Qm + 2� d and d respetively, we also hoose A and B so thatS \ (A� B) is onneted.For any hoie of F, A, B as above we prove:LQm+2(pr [A qm ℄ (Z \ (A�B))) = 0. (6.50)By denoting pr[U ℄ : U �W ! U the projetion on U we an say(g; t; � ) 2 Z\ (A�B) () 8><>: (g; t; � ) 2 (A�B),g = (pr[U ℄(g);F(pr[U ℄(g); t; �)),det(DWF)(pr[U ℄(g); t; � ) = 0. 9>=>; (6.51)We examine two possibilities aording to the fat that det(DWJ) is identi-ally zero or not on S \ (A� B).If det(DWJ)� 0 on S \ (A � B) then det(DWF)� 0 on A sine, by Dini'sTheorem, (DWF)(h; w) = ((DVJ)(h;F(h; w); w))�1((DWJ)(h;F(h; w); w)).By (6.51) pr [A qm ℄ (Z \ (A� B)) is the image of the funtion G : A! A qmde�ned by G(h; w) = (h;F(h; w)). Hene Theorem 2.71 in [1℄ together withDG lower blok triangular matrix entailLQm+2(pr [A qm ℄ (Z \ (A�B))) = ZA j det(DG)j dh dw =ZA j det(DU pr[U ℄)j j det(DW F)j dh dw = 0, (6.52)hene (6.50) holds true.If det(DWJ) 6� 0 on S\(A�B) then the semi analyti set fdet(DWF) = 0g is57



a losed subset of A with higher order skeleton of dimension at most Qm+1:this follows by Dini's Theorem and (6.51) sine S \ (A� B) is onneted.By A � U �W and dimW = d, we getZ \ (A�B) = f(h;F(h; t; � ); t; � ) (h; t; � ) 2 fdet(DWF) = 0g � U �W0�W1gis a semi-analyti subset of S \ (A�B) of dimension at most Qm + 1, hene(6.50) holds true.Step 2 - We prove the following statement.Referring to (3.16), (3.17), (6.31), we denote the di�erentialof E with respet to g 2 RQm+2 by DA qm E and set( Y = �(g; t; � ) 2 S: (DA qm E)(g; t; � ) = 0	 if � 6= e�,Y = �(g; t; � ) 2 S n D: (DA qm E)(g; t; � ) = 0	 if � = e�.Then Y is ontained in a semi-analyti set whose higherorder skeleton has dimension stritly less than Qm + 2. (6.53)
We introdue Vr as the intersetion with the ellW of all (2T�r)-dimensionaldiagonal hyperplanes, say:Rr = fr � f1; :::;Tg � f1; :::;Tg : ℄ (r) = rg 8r 2 f0; :::;Tg,Vr;r = f(t; � ) 2 AT � AT : ti = �k 8(i; k) 2 rg 8r 2 f0; :::;Tg 8r 2Rr,Vr =  � [r2RrVr;r� n � [s>r;s2RsVs;s�! \W 8r 2 f0; :::;Tg.Notie thatR0 = f;g, V0 = W n � Ss>r;s2RsVs;s�,Vr;r is a semi-analyti set ontained in AT � AT,Vr is a real analyti manifold ontained in W 8r 2 f1; :::;Tg,VT = � [AT℄ , Vr \ Vs = ; if r 6= s, W = TSr=0Vr.Now �x any r 2 f0; :::;Tg, with restrition r 6= T if � = e�, and denoteby L the dimension of Vr: L � minf2T � r; dg. Lemma 6.3 entails theexistene (for any (t; � ) 2 Vr) of at least L + 1 vetors f�hgL+1�=1 � A qm s.t.K(t;� ) = L+1T�=1f�E(g;t;� )�(�h) = 0g is a (Qm+1�L)-dimensional subspae of A qm . Then58



the set Kr = S(t;� )2VrK(t;� ) is a semi-analyti set with higher order skeleton ofdimension stritly less than Qm + 2, moreoverY \ (A qm � Vr) � Kr � S \ (A qm � Vr).Eventually (6.53) follows by8>>><>>>: Y � TSr=0�Y \ (A qm � Vr)� if � 6= e�Y � T�1Sr=0�Y \ (A qm � Vr)� if � = e�.Step 3 - By Step 1 and Step 2 we are left to prove the following statement.We set bS = ( S n (Z [ Y ) if � 6= e�S n ((�[A qm ℄�W ) [ Z [ Y ) if � = e� , then8<: LQm+2�pr [A qm ℄ �fE = 0g \ bS�� = 0 if � 6= e�LQm+2�pr [A qm ℄ �(fE = 0g \ bS)�� = 0 if � = e�.Sine S is semi-analyti, there is a overing C of bS de�ned as follows� Any element of C is the produt of a onneted open subset N of A qmby a onneted open subset U of W ,� For any N �U 2 C there is an analyti funtion � : N �U ! Rd with(N�U)\bS = f�=0g, moreover det(DW�)(g; t; �) 6=0 on bS by Step 1.The di�erential of map (E;�) : N � U ! Rd+1 is a (Qm + 2 + d) � (d + 1)tensor with the following struture:D(E;�) = " DA qmE DWEDA qm� DW� # .We laim that the rank of the matrix D(E;�) is 2T+ 1 on bS. In fat:� det(DW�)(g; t; � ) 6= 0 on bS;� (DWE)(g; t; �) = 0 for any (g; t; � ) 2 bS, sine Lemma 3.17 holds trueand E(g; t; �) = 0 entails that the right hand side of (3.22) vanisheson bS; 59



� there is at least a oordinate hj with �E(g;t;� )�(jh) 6= 0 for any (g; t; � ) 2 bS,thanks to Step 2.Hene, by Theorem 12.17 in [23℄, (realled in the Appendix A: Theorem8.10) the set f(E;�) = 0g has o-dimension at least d + 1 in N � U , that isdimension stritly less than Qm + 2. �7 Proof of the main theoremThis setion is devoted to prove Theorem 1.1.In Lemma 7.1 we show a ompatness property about loations of minimizersvalid when data �, �, g, ful�ll the assumption that all related minimizershave the same ardinality of both jumps and reases (with possibly di�erentquality of singular set). In Theorem 7.2 we prove the existene of a denseset of ontinuous pieewise aÆne data leading to uniqueness. Eventually wededue Theorem 1.1.Lemma 7.1 Fix T; j;  2 f0; 1; 2; :::g, T = j+ , � 2 
j; , g 2 L2 and setT �g = ft(u) 2 AT : 9u 2 argminF g�;� with �(u) = �g,Rj; = �h 2 L2 : 8w 2 argminF h�;� ℄ (Sw) = j; ℄ (S _w n Sw) = 	 .Assume T �g 6= ;, ℄ (Su) = j and ℄ (S _unSu) =  8u 2 argminF g�;� . (7.1)Then:1. g 2 Rj;;2. the set T �g of loations of F g�;� minimizers with quality � is a ompatsubset of the open set AT, hene dist(T �g ; � AT) > 0;3. for any neighborhood A of T �g ontained in AT there is an L2-neighborhoodV of g suh thatt(u) 2 A for any u 2 argminF h�;� with �(u) = � and h 2 V \Rj;.Proof. The �rst point is a restatement of (7.1). Now we prove 2 and 3.For any �xed hoie of sequenes ftng � T �g , fung � argminF g�;� suh thattn = t(un), we have F g�;�(un) = mg(�; �) and fung satis�es the hypotheses ofTheorem 2.5(1) in [4℄. Then there is u1 2 H2 suh that, up to subsequenes,un ! u1 strongly in L1, u1 2 argminF g�;�, and ftn = t(un)g tends tot1 = t(u1). Atually t1 2 AT in fat if i 6= l then sequenes ftn;ig,ftn;lg annot have the same limit point without ontradition with (7.1) and60



Theorem 2.5(3) in [4℄. The number of reases is preserved. Obviously theordering (say the quality) is preserved too, then the seond statement isproven.The third statement holds true whenever g is an isolated point of Rj; sineg 2 Rj;. If g is not an isolated point of Rj; we argue by ontradition byassuming the existene of a neighborhood U of T �g suh that for any n thereis gn 2 Rj; with kg � gnkL2 < 1n and un 2 argminF gn�;� with �(un) = � andt(un) =2 U .The sequene fung satis�es the hypotheses of Theorem 2.5(1) in [4℄ then upto subsequenes there is u1 with un ! u1 strongly in L1, and by Theorem2.5(3) in [4℄ the sequene ftn = t(un)g tends to t1 = t(u1) =2 U .We have that F g�;�(un) ! mg�;� sine:��F g�;�(un)�mg(�; �)�� � ��F g�;�(un)� F gn�;�(un)��+ jmgn(�; �)�mg(�; �)jand the �rst term in the right-hand side goes to zero by plugging (2.12) of[4℄ in��F g�;�(un)� F gn�;�(un)�� = ��kun � gk2L2 � kun � gnk2L2�� == hg � gn; g + gn � 2uniL2 � kg + gn � 2unkL2 kg � gnkL2 ,while the seond term in the right-hand side goes to zero by (2.14) of [4℄.Moreover �(u1) = � (sine otherwise we get a ontradition with (7.1) andTheorem 2.5(1) in [4℄); by lower semi-ontinuity (Theorem 2.5(2) in [4℄) wehave F g�;�(u1)=mg(�; �). Then t(u1)2T �g �U ontraditing t(u1) =2U . �Theorem 7.2 Assume (1.2) and �=� =2 Q .Then there is A�;� dense in L2(0; 1) suh that℄ (argminF h�;�) = 1 8h 2 A�;� , (7.2)A�;� � fontinuous pieewise aÆne funtions in [0; 1℄g. (7.3)Proof. It is enough proving:for any ontinuous pieewise linear funtion g 2 L2(0; 1) and " > 0there is a ontinuous pieewise linear funtion f 2 L2(0; 1) s.t.kf � gkL2 < ", ℄ (argminF f�;�) = 1. 9>=>; (7.4)We �x g 2 L2(0; 1) ontinuous pieewise linear. By (2.15) of [4℄ we know:9K 2 N 9U = ff 2 L2(0; 1) : kf � gkL2 < "g s.t.℄ (Su [ S _u) � K 8u 2 argminF h�;�, 8h 2 U . (7.5)61



So the number of possible pairs (℄ (Su); ℄ (S _u nSu)) with u 2 argminF h�;� andh 2 U is �nite, say less then K(K+ 1)=2. Proof of (7.4) splits in �ve steps.Step 1 - We exploit �=� =2 Q to show the following laim.LetH = H(j;ej; ;e) = �h 2 U : 9u; v 2 argminF h�;� with ℄ (Su) = j, ℄ (Sv) =ej℄ (S _u n Su) = , ℄ (S _v n Sv) = e, (j; ) 6= (ej;e), j+  � K, ej+e � K	.Then LQ+2(H \ A q) = 0 8Q 2 N 8q 2 AQ with Q = dim q.Set T = j+ , eT =ej+e. Choose � 2 
j;, e� 2 
ej;e and, referring to De�nition3.10, onsider the funtion E(�; �; e�) : A q ! R de�ned byE(h; �; e�) = inft2AT F(h; t; �) � inf�2AeT F(h; � ; e�) 8h 2 Aq.By Theorem 3.11(3) F(h; t; �) and F(h; � ; e�) are non negative ontinuousfuntions with respet to h, t and � . Then maps h 7! inft2AT F(h; t; �) andh 7! inf�2AeT F(h; � ; e�) are Borel funtions from A q to R, sine they are in�mumof ontinuous funtions, hene h 7! E(h; �; e�) is a Borel funtion of h 2 A q �=RQ+2 .TheneH def= [�;e� nh 2 A q : E(h; �; e�) = � (ej� j) + � (e� )o is a Borel subset of A q .Sine( E(th; �; e�) = t2E(h; �; e�) 8t 2 R, by Theorem 3.11(1),� (ej� j) + � (e� ) 6= 0 8j;ej; ;e 2 N , (j; ) 6= (ej;e), sine �=� =2 Q ,we dedue nt 2 R : th 2 eHo = f�1; 1g 8h 2 eH n f0g. (7.6)Sine eH is a Borel subset of A q �= RQ+2 and (7.6) holds true thenLQ+2( eH) = Z eH dx == ZS Q+1 �Z(0;+1) � eH (�;#) �Q+1 d�� d�(#) = ZS Q+1 0 d�(#) = 0.Sine H \ A q � eH we have LQ+2(H \ A q) = 0.62



Step 2 - Referring to (7.5) we introdue the set bH (of data g admitting atleast two minimizers with di�erent arrangements) and its omplement in U :bH = [(j;)6=(ej;e)H(j;ej; ;e), V =U n bH. (7.7)By (7.5) bH is the union of a �nite number of sets, then we dedue by Step 1LQ+2( bH \ A q) = 0, LQ+2(V \ A q) = LQ+2(U \ A q) 8q 2 AQ. (7.8)By (7.5) and (7.8) there are only the two following possibilities:either 9h 2 V : ℄ (argminF h�;�) = 1, (7.9)or 8>><>>:℄(argminF h�;�) > 1 8h 2 V and℄(Su)=℄(Sv), ℄(S _unSu)=℄(S _vnSv) 8h2V , 8u; v2argminF h�;� ,0 < ℄ ((Su [ S _u) = ℄ ((Sv [ S _v) � K 8h2V , 8u; v2argminF h�;� . (7.10)If (7.9) ours then laim (7.4) trivially follows.We show by steps 3,4,5 that (7.10) entails a ontradition.Step 3 - We prove the following laim.If (7.10) ours then there arej; ;T 2 f0; :::;Kg, T = j+  � K, �; e� 2 
j;,a ompat subset K0 � AT � AT,a subset �0 � V ,an exhaustive family of partitions fq0m = (q1; q2;:::; qQ0m)gm,suh that8><>: S _g � q00, Sg = ;,LQ0m+2(�0 \ A q0m ) > 0 8m 2 f0; 1; :::g,(t(u); t(v)) 2 K0 8h 2 �0, 8u; v 2 argminF h�;� : �(u) = �, �(v) = e�.In order to prove the laim, we introdue the following notation:Æ(q) = max fql+1 � ql : l 2 f0; :::;Qgg 8q = (ql)Ql=1 2 AQ 8Q 2 f0; 1; :::g,P= fq : S _g � qg,and, for any m; n 2 f0; 1; :::g with m+ n � K and any !; e! 2 
m;n, we set:V (m; n; !; e!) = fh 2 V : 9u; v 2 argminF h�;� s.t. u 6= v, �(u) = !, �(v) = e!g,63



P(m; n; !; e!) = fq 2 P : LQ+2(V (m; n; !; e!) \ A q) > 0g,Z = f(m; n; !; e!) : 8Æ > 0 9q 2 P(m; n; !; e!) and Æ(q) < Æg.We have that Z is a �nite non empty set sine: the number of quadruples(m; n; !; e!) with m+n � K and !; e! 2 
m;n is �nite; Sm;n;!;e!V (m; n; !; e!) = V ;for any Æ > 0 the subset of the elements q 2 P with Æ(q) < Æ is in�nite;LQ+2(V \ A q) = LQ+2(U \ A q) > 0 for any q 2 P by (7.8).We label the elements of the �nite set Z i.e. Z = fzr = (mr; nr; !r; e!r)gNr=1.We set V0 = U , for r � 1, if Vr�1 \ V (zr) = ; then we set (rh;Tr ; Vr) =(;; ;; Vr�1), otherwise we hoose rh 2 Vr�1 \ V (zr) and observe that Lemma7.1 entails the existene of a ompat neighborhood Tr of T !rh � T e!rh and aneighborhood Vr � Vr�1 of rh suh that (t(u); t(v)) 2 Tr 8h 2 Vr \ V (zr),8u; v 2 argminF h�;� with �(u) = !r, �(v) = e!r.Among all triplets onstruted above we onsider the olletion of the oneswhose �rst two entries are not empty and relabel suh triplets f(sh;Ts; Vs)gMs=1with M � N . Summarizing we have8>>>>>>>>>>><>>>>>>>>>>>:
(i) sh 2 V (zs) � L2(0; 1), Ts is a pair of loations,(ii) sh 2 Vs open set in L2, Vs � Vs�1 � U ,(iii) Ts � AT �AT is a ompat neighborhood of T!rsh � T e!sshwhere T!h is de�ned in Lemma 7.1,(iv) (t(u); t(v)) 2 Ts 8h 2 Vs \ V (zs), 8u; v 2 argminF h�;� s.t.�(u) = !s, �(v) = e!s. (7.11)

For any (m; n; !; e!) =2 Z there is Æ = Æ(m; n; !; e!) > 0 suh thatfq 2 P(m; n; !; e!) : Æ(q) < Æg = ;.Let Æ0 = min fÆ(m; n; !; e!) : (m; n; !; e!) =2 Z, m+ n � K, !; e! 2 
m;ng > 0.For any �xed exhaustive family fqjgj�0 � P with Æ(q0) < Æ0, by V � U ,(7.8) and de�nition of P and Z, we haveLQj +2 � bH [ [(m;n;!;e!)=2ZV (m; n; !; e!)� \ A qj! = 0 8j,hene by (7.8)LQj +2� [z=(m;n;!;e!)2ZV (z) \ A qj � = LQj +2(U \ A qj ) > 0 8j ,64



then, sine VN is an open set of L2 and VN � U ,LQj +2�VN \ [z2ZV (z) \ A qj � = LQj +2(VN \ A qj ) > 0 8j .Sine Z is a non empty and �nite set there is zr = (mr; nr; !r; e!r) 2 Z anda subsequene fq0mgm � fqjgj suh that Tr 6= ; and LQ0m+2(VN \ V (zr) \A q0m ) > 0 for any m. We selet j = mr,  = nr, � = !r, e� = e!r, K0 = Tr and�0 = VN \ V (zr).Step 4 - We prove the following laim (whih is an iteration of Step 3).If (7.10) ours then there are T; j;  2 f0; :::;Kg, T = j+ , �; e� 2 
j; anda family F = f'i = (Ki;�i; fqimgm)gi2N of triplets whereKi is a non empty ompat subset of AT � AT � R2T ,�i is a subset of V ,fqimgmis an exhaustive sequene of partitions (Qim = ℄ (qim)),suh that, for any i 2 N,8>>>><>>>>: Sg = ;, S _g � qi0 and fqimgm is a subsequene of fqi�1m gm,Ki � Ki�1, diam(Ki) � 12diam(Ki�1) and �i � �i�1,LQim+2(�i \ A qim ) > 0 8m 2 f0; 1; :::g,(t(u); t(v)) 2 Ki 8h 2 �i, 8u; v 2 argminF h�;� : �(u) = �, �(v) = e�.We argue by indution. Step 3 is the starting point: we set '0 = (K0;�0; fq0mgm).Then, by assuming that the family F is de�ned up to index i, we show howto de�ne 'i+1 = (Ki+1;�i+1; fqi+1m gm).Choose a �nite overing fKi;kgNk=1 ofKi by ompat subsets with diam(Ki;k) �diam(Ki)=2, the hoie is possible sine Ki is ompat by indution.For any k 2 f1; :::; Ng set�i;k = fh 2 �i : 9u; v 2 argminF h�;� with u 6= v, (t(u); t(v)) 2 Ki;kg:Sine LQim+2(�i \ A qim ) > 0 8m by indution,9 a sequene fkmgm with values in f1; :::; Ng :LQim+2(�i;km \ A qim ) > 0 8m. (7.12)Hene there is k 2 f1; :::; Ng and a subsequene fmngn suh that kmn = k 8n.We de�ne 'i+1 as follows: Ki+1 = Ki;k, �i+1 = �i;k, fqi+1m gm = fqimngn.65



Step 5 - We exploit Step 4 and Theorem 6.4 to show that (7.10) annothold true (as was laimed at the end of Step 2).By the onstrution in Step 4, Ti Ki 6= ;: preisely Ti Ki is a single point. Sowe an set (et; e� ) = Ti Ki. Then we hoose: T, j, , �, e� as in Step 4; " as inTheorem 6.4; j suh that Kj � B(et; "=2)�B(e� ; "=2); m (large enough) suhthat the CW struture indued by qjm on AT � AT (is so �ne that) providesa ompat neighborhood K of Kj where K � B(et; ") � B(e� ; ") and K is aunion of ells of the CW struture indued by qjm.For the sake of simpliity we drop the indexes j and m and we write q, Qinstead of qjm, Qj in the following.For any d 2 f0; :::;minf2T; 2Kgg we setfCd;lgLl=1 the �nite set of all d-dimensional open ells of K, L = L(d),�d;l = fh 2 �j \ A qjm : 9u; v 2 argminF h�;� s.t.�(u) = �, �(v) = e�, (t(u); t(v)) 2 Cd;lg.FormfCd;lgd;l is a �nite set of ells, LQ+2(�j \ A q) > 0 and �j \ A qjm � Sd;l�d;l,we dedue: there is a pair (d; l) suh that LQ+2(�d;l) > 0.On the other hand we prove that LQ+2(�d;l) = 0 obtaining the ontradition.By referring to De�nition 6.1, (6.1) and (6.49) we sete� = ( pr[A q ℄(fE = 0g \ fE = 0g) if � 6= e�,pr[A q ℄�(fE = 0g \ fE = 0g) n (A q � � [AT℄)� if � = e�,where �[AT℄ = f(t; � ) 2 AT � AT : t = �g.The hoie W = Cd;l in Theorem 6.4 entails LQ+2(e�) = 0. We laim:�d;l � e�. (7.13)To prove (7.13) we hoose h 2 �d;l and u; v 2 argminF h�;� with u 6= v,�(u) = � and �(v) = e�; then, referring to identi�ation (3.16) and (3.17),we have(h; t(u); t(v)) 2 ( fE = 0g \ fE = 0g if � 6= e�fE = 0g \ fE = 0g) n (A q � � [AT℄) if � = e�,sine,by referring to De�nition 4.8(1): u = [h; t(u);q; �℄ and v = [h; t(v);q; e�℄;66



by (7.10): ℄ (Su) = ℄ (Sv), ℄ (S _unSu) = ℄ (S _v nSv), E(h; t(u); t(v);q; �;e�)=0;by u;v2argminF h�;� and Theorems 2.1, 4.5: E(h;t(u);t(v);q;�;e�)=0;by Theorem 3.8 sine we have hosen u 6= v: t(u) 6= t(v) if � = e�.Then (7.13) is proven and, sine LQ+2(e�) = 0 we dedue LQ+2(�d;l) = 0,e.g. a ontradition with (7.10). �Proof of Theorem 1.1. We �x �; � ful�lling (1.2) and �=� =2 Q . Then wehoose A�;� as in Theorem 7.2. We de�ne the funtion H : L2 ! [0;+1) byH(g) = supfku� vkL1 u; v 2 argminF g�;�g 8g 2 L2(0; 1).Sine ℄ �argminF g�;�� = 1 for any g 2 A�;�, we getA�;� � �g 2 L2(0; 1) : ℄ �argminF g�;�� = 1	 = H�1(0) == �g 2 L2(0; 1) : H(g) = 0	 = \n2N �g 2 L2(0; 1) : H(g) < 1=n	 .We laim8n Vn=H�1([0; 1=n)) is an L2-neighborhood of dense set H�1(0)�A�;� , (7.14)i.e.: 8n 9Un open sets in L2(0; 1), Un ds� L2(0; 1), A�;� � Un � Vn.Then Theorem 1.1 is a onsequene of (7.14) by settingE�;� = H�1(0) = Tn Vn � Tn Un.We prove (7.14) by showing thatH is ontinuous at any g 2 H�1(0). Arguingby ontradition assume that there are " > 0, f s.t. H(f) = 0 and a familyffngn � L2 with fn !L2 f and H(fn) > ". Then for any n we an hooseun; vn 2 argminF fn�;� suh that kun � vnkL1 > ". (7.15)By Young inequality and (2.12),(2.13) of [4℄F f�;�(un) = F fn�;�(un) + kun � fk2L2 � kun � fnk2L2 �� mfn(�; �) + 2 kfnk2L2 + 2 kfk2L2 � 4 kfnk2L2 + 2 kfk2L2 � C,in the same way we get F f�;�(vn) � C.By mfn(�; �) def= min F fn�;� = F fn�;�(un) = F fn�;�(vn),and property (2.14) in [4℄ we get F fn�;�(un)! mf (�; �), F fn�;�(vn)! mf(�; �)then by Theorem 2.5(1) in [4℄, up to subsequenes, we have un !L1 u 2 H2and vn !L1 v 2 H2 with u; v 2 argminF f�;�. Sine ℄ �argminF f�;�� = 1 wehave u = v, then kun � vnkL1 ! 0 whih is in ontradition with (7.15). �67



8 Appendix A: CW omplexes and TransversalityHere follows a short summary of the notions about CW omplexes whih areneeded in this paper.Let I = [0; 1℄. For any n 2 f0; 1; 2; :::g we de�ne In to be the losed unitn-ube if n > 0 and the origin if n = 0, we also de�ne (0; 1)n to be the openunit n-ube if n > 0 and the origin if n = 0, we denote by �In the topologialboundary of In if n > 0 and set �I0 = ?.De�nition 8.1 A CW omplex X is the diret limit of a sequene fXng1n=�1of topologial spaes de�ned indutively as follows:� X�1 = ;,� a family of ontinuous maps ffn� : �In� ! Xn�1g�2�n alled gluingmaps,� Xn obtained from the following diagram:F�2�n In� F�2�n �In� fn
//oo Xn�1by push-out F�2�n In�

((PPPPPPPPPPPPPPP

F�2�n �In� fn
//oo Xn�1

wwooooooooooooooooXnwhere F denotes the disjoint union of spaes and the left arrow repre-sents the injetive embedding and fn = F�2�nfn� .The subspaes Xn are alled n-skeleta, for n = �1; 0; 1; :::.A CW omplex X is �nite of dimension n if �n is a �nite set for any n,�n 6= ; and �n = ; whenever n > n. In suh ase Xn is alled higherskeleton and Xn = Xn for any n � n.Notie that, by push-out, eah gluing funtion fn� : �In� ! Xn�1 extends to aontinuous funtion gn� : In� ! Xn whih is an homeomorphism on the openn-ube In� n �In� . 68



De�nition 8.2 A n-ell of a CW omplex X is the image of a n-ube In�through gn�, an open n-ell of X is the image of an open n-ube In� n �In�through gn� .We emphasize that the De�nitions 8.1 and 8.2 above refers to ubes insteadof balls, nevertheless they are equivalent to De�nition 5.3 in [23℄.The following result due to Lojasiewiz (see [19℄) desribes a very large lassof spaes whih are CW omplexes.De�nition 8.3 Consider a real analyti manifold M and a subset S �M .We all S a semi-analyti set if and only if for any x0 2 S there is a neigh-borhood V of x0 and a �nite set ffj : V ! Rg of analyti funtions suh thatS \ V is a �nite union of �nite intersetions of sets of typefx : fj(x) > 0g , fx : fj(x) = 0g .De�nition 8.4 Consider an aÆne spae spae X, a real analyti manifoldY and a subset S � X � Y . We all S a partially semi algebrai set withrespet to X if and only if for any y0 2 Y there are:� a neighborhood U of y0� a �nite set ffj : X � U ! Rg of analyti funtions whih are polyno-mials in x for any �xed y 2 Us.t. S \ (X � U) is a �nite union of �nite intersetions of sets of typefx : fj(x) > 0g , fx : fj(x) = 0g .Theorem 8.5 (Lojasiewiz [19℄) Consider a real analyti manifold Y anda loally �nite olletion fBlgl2� of semi-analyti sets of Y s.t. Bl � Y forany l 2 �.Then there exist an aÆne spae X, a loally �nite sympliial omplex K anda homeomorphism f : jKj ! Y suh that:1. jKj is a subspae of X;2. the set f(x; f(x)) x 2 jKj � X � Y g is partially semi-algebrai withrespet to X (see De�nition 8.4);3. f(j�j) is an analyti sub-manifold of M and the restrition of f toj�j � jKj is an analyti isomorphism for any simplex � 2 K;69



4. f(j�j) � Bl or f(j�j) �M nBl for any simplex � 2 K, l 2 �.Here jKj denotes the geometri realization of the sympliial omplex K andj�j denotes the geometri realization of the simplex � 2 K.Example 8.6 Theorem 8.5 provides many examples of CW omplexes: thesemi analyti sets and the semi-algebrai sets.In this paper we are also interested in a very partiular type of CW omplexeswhere ells are ubes and gluing maps are identities on boundaries, as in thease of the whole olletion of (T+ 2) dimensional retangles lying in AT ofthe CW struture indued on [0; 1℄T by vetors of type q.Example 8.7 Consider the spaeX = �(x; y) 2 R2 : (0 � x � 1 and y = 0) or (x = 0 and 0 � y � 1)	 .This spae is a 1-dimensional CW omplex with X0 = f(0; 0); (0; 1); (1; 0)g,X1 = X; �0 = f1; 2; 3g, f 01 ; f 02 ; f 03 : �I0 ! ; = X�1; �1 = f1; 2g, f 1� :f0; 1g ! X0 given by f 11 (0) = (0; 0), f 11 (1) = (1; 0), f 12 (0) = (0; 0), f 12 (1) =(0; 1).Cells of X are the following: (0; 0), (0; 1), (1; 0) the three 0-ells; [0; 1℄�f0g,f0g � [0; 1℄ the two 1-ells.Geometri realization of X is the olletion X0 [X1 � R2 .Example 8.8 Consider the spaeX = �(x; y) 2 R2 : �0�x� 13 and 13�y�1� or �0�x� 23 and 23�y�1�� .This spae is a 2-dimensional CW omplex with skeleta:X0 = �(0; 13); (0; 23); (0; 1); (13 ; 13); (13 ; 23); (13 ; 1); (23 ; 23); (23 ; 1)	 ,X1 = �f0; 13g � [13 ; 1℄� [ �f23g � [23 ; 1℄� [ �[0; 23 ℄� f23 ; 1g� [ �[0; 13 ℄� f13g� ,X2 = X;and gluing maps:�0 = f1; :::; 8g, f 0� : �I0 ! ; = X�1;�1 = f1; :::; 10g, f 1� : �I1 ! X0 whose images are points given byf 11 (0) = (0; 13), f 11 (1) = (13 ; 13), f 12 (0) = (0; 23), f 12 (1) = (13 ; 23),f 13 (0) = (0; 1), f 13 (1) = (13 ; 1), f 14 (0) = (13 ; 23), f 14 (1) = (23 ; 23),f 15 (0) = (13 ; 1), f 15 (1) = (23 ; 1), f 16 (0) = (0; 13), f 16 (1) = (0; 23),f 17 (0) = (0; 23), f 17 (1) = (23 ; 1), f 18 (0) = (13 ; 13), f 18 (1) = (13 ; 23),f 19 (0) = (13 ; 23), f 19 (1) = (23 ; 1), f 110(0) = (23 ; 23), f 110(1) = (23 ; 1);70



�2 = f1; 2; 3g, f 2� : �I2 ! X1 given byf 2�(x; y) = (13x; 13y) +8><>: (0; 23) if � = 1,(0; 13) if � = 2,(13 ; 23); if � = 3. (x; y) 2 �I2We reall from [23℄ the de�nition of transversality and Theorem 12.17.De�nition 8.9 Let M, V be C1 manifolds with �M = ;, f 2 C1(M;V),N be a C1 sub-manifold of V.We say that f is transverse regular to N at x 2 f�1(N ) ifDf(x) (�(M)x) + �(N )y = �(V)ywhere Df(x) is the di�erential of f at x and �(Z)z is the tangent spae toZ at point z.In this ase we say that x is a regular point for f .Theorem 8.10 (Switzer [23℄) LetM, V be C1 manifolds, f 2 C1(M;V),N be a C1 sub-manifold of V.Suppose �M = ;, dim N +dim M� dim V � 0 and f transverse regular toN at any x 2 f�1(N ), then f�1(N ) is a sub-manifold of M andodim f�1(N ) = odimNthat is dim M� dim f�1(N ) = dim V � dim NTheorem 8.10 is applied when N is a single point (hene dim f�1(N ) =dim M � dim V) in the proof of Lemma 6.2 and, in its general form, ofTheorem 5.4 and of Theorem 6.4.Referenes[1℄ L. Ambrosio, N. Fuso, D. Pallara, Funtions of Bounded Variation andFree Disontinuity Problems, Oxford Mathematial Monographs, TheClarendon Press Oxford University Press, New York, 2000.[2℄ M. Amar, V. De Cio, The uniqueness as a generi property for someone dimensional segmentation problems, Rend. Sem. Univ. Padova, 88(1992), 151-173.[3℄ A. Blake, A. Zisserman, Visual Reonstrution, The MIT Press, Cam-bridge, Massahussets (1987). 71
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