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Abstract

In this paper we introduce a generalization of theta series in the context of the slice mono-
genic function theory in Rn+1 where me make use of the so-called ∗-exponential function in a
hypercomplex variable. Together with the Eisenstein and Poincaré series that we introduced
in a previous paper, the theta series construction in this paper completes the fundament of
the basic theory of modular forms in the slice monogenic setting. We introduce a suitable
generalized Poisson summation formula in this framework and we apply an properly adapted
Fourier transform. As a direct application we prove a transformation formula for slice mono-
genic theta series. Then we introduce a family of conjugated theta functions. These are used
to construct a slice monogenic generalization of the third power of the Dedekind eta function
and of the modular discriminant. We also investigate their transformation behavior. Finally,
we show that these theta series are special solutions to a generalization of the heat equation
associated with the slice derivative. We round off by discussing the monogenic case.

Keywords: slice monogenic functions, generalized exponential functions, generalized theta se-
ries, theta transformation formula, theta functions, generalized quasi-modular forms
Mathematical Review Classification numbers: 30G35, 11F04

1 Introduction

There are several different ways to generalize classical complex function theory together with
its related toolkit for tackling classical applications in the two-dimensional framework to higher
dimensional settings. One possibility is offered by complex analysis in several complex vari-
ables. Another important line of investigation considers functions that take values in (non-
commutative) Clifford algebras.
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In classical Clifford analysis one considers null solutions to the higher dimensional generalized
Cauchy-Riemann operator, see for instance [7, 30]. The associated functions are often called
monogenic functions or hyperholomorphic functions. Their related function theory provides a
lot of powerful tools like a Cauchy integral formula to successfully tackle many boundary value
problems of harmonic functions in higher dimensional Euclidean spaces.

Additionally, up from the 1990s one also started to intensively consider versions of the
Cauchy-Riemann or Dirac operator equipped with the hyperbolic metric [34], and more generally,
classes of holomorphic Cliffordian functions which all satisfy a homogeneous or an inhomogeneous
Weinstein type equation [15]. The latter function classes can also be related to eigensolutions
of the Laplace-Beltrami operator.

Apart from these versions of monogenic function theories, more recently, a rapidly growing
attention has also been paid to the class of slice hyperholomorphic functions, see for instance
[3, 12, 13, 27], which has become a counterpart theory to the above mentioned function theories.
Slice hyperholomorphic functions offer different applications to operator theory, in particular
to spectral theory for several operators as well as to quaternionic operators. See for example
[3, 13].

In this paper we deal with slice monogenic functions, namely with slice hyperholomorphic
functions with values in a Clifford algebra, which were introduced in [14]. The quaternionic case
has been studied and introduced before, see [28]. For more details, see again the aforementioned
books.

Both monogenic and slice monogenic function theories are natural generalizations of classical
complex function theory but they are quite different from each other. Possible relations between
the two theories were developed in the context of the Fueter-Sce mapping theorem, cf. [24,
35, 37]. The Fueter-Sce mapping allows us to construct monogenic functions starting from
holomorphic functions and its inversion [11] generates slice monogenic functions from axially
monogenic functions.

In our previous paper [10] we described the invariance behavior of slice monogenic functions
under arithmetic subgroups of the Ahlfors-Vahlen group that take axially symmetric domains
into each other. We also explained how one can construct slice monogenic Eisenstein and
Poincaré series that serve as examples of slice monogenic modular forms on these arithmetic
groups.

This also provides a nice analogy to similar constructions in higher dimensional function
theories in Clifford algebras, in which one also could successfully introduce monogenic and more
in general holomorphic Cliffordian Eisenstein and Poincaré series, cf. [15, 31]. These in turn
could also be connected to particular Maaß forms on the Ahlfors-Vahlen group, [15, 20].

While in complex analysis of one and several complex variables there also exists the possibility
to construct modular forms by theta series and theta functions (see for example [32, 22, 23, 38]), a
similar analogue of theta series could not be introduced in the classical Clifford analysis setting
so far. A main obstacle consisted in the fact, that one was not able to find an appropriate
monogenic generalization of the exponential function that on the one hand should be periodic
and that additionally should have the property exp(z + w) = exp(z) exp(w) at the same time.
In general, monogenic functions do not remain monogenic when forming their product. This is
consequence of the non-commutativity.

Now, the great advantage of the slice monogenic function theory consists in the fact that one
has a product construction in terms of the so-called ∗-product which elegantly compensates the
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non-commutativity by a suitable construction that amazingly respects slice monogenicity. This
additional product structure admits the construction of the so-called ∗-exponential function, cf.
[5, 12].

In this paper we use this ∗-exponential function to introduce two kinds of generalizations of
the theta series in the context of slice monogenic function theory in Rn+1. Together with the
Eisenstein and Poincaré series that we introduced in [10], the theta series constructions in this
paper nicely complete the fundament of the basic theory of modular forms in the classical slice
monogenic setting. We first show that each of these two series actually converges on an axially
symmetric domain that canonically generalizes upper half-plane to the slice monogenic setting
in higher dimensions.

We introduce a properly adapted generalized Poisson summation for the slice monogenic
framework. To this end, we consider an intrinsic Fourier transform.

As a direct application we are in position to prove a transformation formula for slice mono-
genic theta series relating the theta series at a point x ∈ Rn+1 with its value at the inverted point
±x−1. Additionally to their invariance under the inversion (up to a scaling factor) these series
also exhibit a periodicity (either radial or translation periodicity) in the paravector variable.
In this sense, the slice monogenic theta series are quasi-modular forms with respect to these
transformations.

Furthermore, we introduce a family of conjugated theta functions and study their transfor-
mation behavior. These functions then in turn serve as building blocks to construct further
examples of slice monogenic quasi-modular forms in terms of the star product of slice mono-
genic functions. In particular, we use them to introduce a slice monogenic generalization of the
modular discriminant. This provides a key ingredient for further research in the development of
the basic theory of automorphic forms in the slice monogenic context.

Next we also show that these theta series are solutions to a generalization of the heat equa-
tion associated to the slice derivative, hence providing us also with an application to partial
differential equations.

Finally, we use the Fueter-Sce theorem to introduce the monogenic generalization of the
theta series and prove a transformation formula in the quaternionic setting. The transformation
behavior however is much more complicated than in the slice monogenic setting, involving a sum
of several terms and derivatives.

As a future perspective we hope that the new constructions given in this paper will enable
us to tackle a series of number theoretical problems arising recently in the context of generalized
theta series, functions and integrals. Particularly harmonic theta series and applications to
generalized error functions currently represent an important topic of interest in the number
theory community, see for example [2, 18, 25], just to mention a few of an impressively large
amount of papers that have appeared over years in this direction. In this sense we hope that the
toolkit of slice monogenic function theory could also provide us with some input for the further
development in the future.

2 Preliminaries

In this section we introduce some preliminary results on Möbius transformations in Rn+1 and
recall the related analyticity concepts within classes of Clifford algebra valued monogenic and
slice monogenic functions.
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2.1 Basics on Clifford algebras and notations

A basis for the real Clifford algebra Rn, considered as a vector space, is given by the element
e∅ = 1, the canonical basis elements e1, e2, . . . , en which satisfy eiej + ejei = −2δij , as well as
all their possible products e1, e2, . . . , en, e1e2, . . . , e1en, . . . , en−1en, . . . , e1e2 · · · en. In compact
form, the set containing the products is described by {eA | A ⊆ {1, . . . , n}} where e∅ = 1. Thus,
an arbitrary element of Rn has the form a =

∑
A⊆{1,...,n}

aAeA with real components aA. Here we

have set eA := el1 · · · elr where A = (l1, . . . , lr) is a multi-index and the integers l1, . . . , lr satisfy
1 ≤ l1 < · · · < lr ≤ n. Next we introduce the Clifford conjugation by a :=

∑
A

aAeA where

eA = elr · · · el1 , ej = −ej , j = 0, . . . , n, e∅ = e∅ = 1.

Furthermore, the Clifford reversion is defined by ã :=
∑
A

aAẽA where

ẽA = elr · · · el1 , ẽj = ej , j = 1, . . . , n, ẽ∅ = e∅ = 1.

We also have ã =
∑

A(−1)|A|(|A|−1)/2aAeA. Furthermore, we consider the main involution defined
by

eA
′ = el1

′ · · · elr ′, ej ′ = −ej , j = 1, . . . , n, e∅
′ = e∅ = 1.

One has the relation a = ã′ = ã′.
We will identify the set of paravectors, i.e. elements of the form x0 + x1e1 + · · · + xnen

with elements in the Euclidean space Rn+1 by the isomorphism x0 + x1e1 + · · · + xnen 7→
(x0, x1, . . . , xn). We use the set

Sn−1 = {ω = a1e1 + · · ·+ anen : a2
1 + . . .+ a2

n = 1}

which can be identified with a sphere in the reduced vector space Rn and whose elements ω all
satisfy ω2 = −1. In the complex case addressed by n = 1 this set simply reduces to the discrete
set {e1,−e1}. As soon as n > 1 this set gets a connected sphere.

The norm ‖x‖ of a paravector x is ‖x‖ =

(
n∑
i=0

x2
i

)1/2

namely the usual Euclidean norm. This

norm can be extended to a pseudo-norm on the whole Clifford algebra by defining ‖a‖ :=√∑
A |aA|2. Each non-zero paravector is invertible with inverse x−1 = x

‖x‖2 .

2.2 Möbius transformations in Rn+1

As it is broadly well-known, in dimension n ≥ 3 the set of conformal maps coincides with that of
Möbius transformations. Using Clifford algebras, Möbius transformations can be written very

elegantly in terms of the action of (2 × 2) Clifford algebra valued matrices

(
a b
c d

)
whose

coefficients satisfy special conditions which will be listed below. The associated group is the
general Ahlfors-Vahlen group, cf. [1, 19].

Definition 2.1. The group GAV (Rn+1) is the set of matrices

(
a b
c d

)
equipped with the prod-

uct of matrices, whose coefficients a, b, c, d ∈ Rn satisfy the so-called Ahlfors-Vahlen conditions:

(i) a, b, c, d are products of paravectors from Rn+1 (including 0);

(ii) ad̃− bc̃ ∈ R \ {0};
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(iii) ab̃, cd̃ ∈ Rn+1 .

Following for example [19], Möbius transformations are defined as action of GAV (Rn+1) on
Rn+1 by ((

a b
c d

)
, x

)
7→M〈x〉 = (ax+ b)(cx+ d)−1 ∈ Rn+1.

In the case where a, b, c, d are products of vectors from Rn the associated group GAV (Rn)
acts transitively on right half-space x0 > 0, or, respectively, the group GAV (R ⊕ Rn−1) acts
transitively on upper half-space xn > 0.

Following [19] and others, the whole group GAV (Rn+1) can be generated by four different
types of matrices each inducing particularly elementary translations, the Kelvin inversion, ro-
tations and dilatations. For details we also refer the interested reader to our recent paper [10]
which treats particular applications to the slice monogenic framework.

2.3 Two classes of hypercomplex functions

In this subsection we briefly recall two different basic concepts that generalize holomorphic
function theory to higher dimensional real vector spaces. Concretely speaking, we look at
Clifford algebra valued monogenic functions and at Clifford algebra valued slice monogenic
functions; the latter function class stands in the main focus of this paper. We briefly explain
the connections between these two function classes as well as some of their important properties
concerning this paper. In particular, we recall Fueter’s theorem that provides us with a key
link between holomorphic and slice monogenic functions including a constructive method to
obtain slice monogenic functions from holomorphic ones. We start by recalling the definition of
monogenic functions, cf. for instance [7, 30]:

Monogenic functions. Let U ⊆ Rn+1 be an open set. Then a real differentiable function
f : U → Rn+1 that satisfies Df = 0 (respectively fD = 0), where D := ∂

∂x0
+ e1

∂
∂x1

+ · · · +
en

∂
∂xn

is the generalized Cauchy-Riemann operator, is called left monogenic (respectively right
monogenic), see [7, 30]. Due to the non-commutativity of Rn+1 for n > 1, the two classes of
functions do not coincide. However f is left monogenic if and only if f̃ is right monogenic. The
generalized Cauchy-Riemann operator factorizes the Euclidean Laplacian ∆ =

∑n
j=0

∂2

∂x2j
, since

DD̄ = D̄D = ∆. Every real component of a monogenic function hence is harmonic.
An important property of the D-operator is its quasi-invariance under Möbius transforma-

tions acting on the complete Euclidean space Rn+1.

Theorem 2.2. (cf. [36]). Let M ∈ GAV (Rn+1) and let f be a left monogenic function in the
variable y = M〈x〉 = (ax+ b)(cx+ d)−1. Then

g(x) :=
c̃x+ d

‖cx+ d‖n+1
f(M〈x〉) (1)

is left monogenic in the variable x for any M ∈ GAV (Rn+1).

Notice that the transformation (1) is up to a constant the most general transformation that
sends a monogenic function again to a monogenic one by applying a Möbius transformation in
the argument. It requires the particular exponent n+ 1 in the expression of the denominator.
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Slice monogenic functions.

As we mentioned in the Introduction, the class of slice monogenic functions is also widely
studied nowadays, see for example the aforementioned books and the references therein for more
details.

Definition 2.3. Let U be an open set in Rn+1, f : U → Rn. Let ω ∈ Sn−1 and let fω be the
restriction of f to the complex plane Cω = {u+ ωv, | u, v ∈ R}. We say that f is a (left) slice
monogenic function if for every ω ∈ Sn−1

Dωfω(u+ ωv) :=
1

2

(
∂

∂u
+ ω

∂

∂v

)
fω(u+ ωv) = 0, (2)

for u+ ωv ∈ U . The set of slice monogenic functions on U is denoted by SM(U).

Slice monogenic functions such that f : U ∩ Cω → Cω for all I ∈ Cω are called intrinsic.
For our purposes, it is convenient to put restrictions on the open sets U that may be considered,
namely we shall consider axially symmetric sets. Let ω0 ∈ Sn−1. U is axially symmetric if
u+ω0v ∈ U implies that u+ωv ∈ U holds for all ω ∈ U . Moreover, a domain U is called a slice
domain, if U ∩ Cω is connected for all ω ∈ U .

As it is well known, on axially symmetric slice domains a function is slice monogenic in the
standard sense if and only if it of the form f(u+ ωv) = α(u, v) + ωβ(u, v), cf. [14].
So, we consider the following adapted definition, see [29]:

Definition 2.4. Let U ⊆ Rn+1 be an axially symmetric domain, let D ⊆ R2 be an open set such
that u + ωv ∈ U whenever (u, v) ∈ D and let f : U → Rn. The function f is a slice function
if there exist two functions α, β : D ⊆ R2 → Rn satisfying the following even-odd conditions
α(u, v) = α(u,−v), β(u, v) = −β(u,−v) such that

f(u+ ωv) = α(u, v) + ωβ(u, v). (3)

If, in addition, the functions α and β are differentiable and satisfy the Cauchy-Riemann system{
∂uα− ∂vβ = 0
∂uβ + ∂vα = 0

(4)

the function f is called slice monogenic. The class of slice monogenic functions defined on U
will be denoted by SM(U).

We note that slice monogenic intrinsic functions are characterized by the condition that α
and β are real-valued functions.
More generally, let U be an axially symmetric open set. Furthermore, let f : U → Rn be a
function of the form f(u+ωv) = α(u, v)+ωβ(u, v) with α(u, v) = α(u,−v), β(u, v) = −β(u,−v).
We say that the slice function f belongs to the class Ck on U if α, β belong to the class Ck on
D.

As in the monogenic case, the pointwise multiplication of two slice monogenic functions
does not give a slice monogenic function in general. However, in the slice monogenic context
it is possible to define a suitable product, called the ∗-product, which is an inner operation
in the set of slice monogenic functions. It is defined as follows. Let U ⊆ Rn+1 be an axially
symmetric and let f, g ∈ SM(U) with f(z) = f(u+ωv) = α(u, v)+ωβ(u, v), g(z) = g(u+ωv) =
γ(u, v) + ωδ(u, v). Then one defines, see [13, 29]

(f ∗g)(z) = (f ∗g)(u+ωv) = (α(u, v)γ(u, v)−β(u, v)δ(u, v))+ω(β(u, v)γ(u, v)+α(u, v)δ(u, v)).
(5)
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This multiplication coincides with the standard notion of multiplication of two polynomials
or of two converging power series in a non-commutative ring, see [21]. Specifically, if f(z) =∑

k≥0 z
kak and g(z) =

∑
k≥0 z

kbk, then

(f ∗ g)(z) =
∑
n≥0

zn

(
n∑
k=0

akbn−k

)
.

It is also possible to define an inverse with respect to the ∗-product. For further information on
slice monogenic functions we refer the reader to [13]. We note that the definition in (5) works,
more in general, for slice functions (see [29]).

Remark 2.5. As we discussed in the Introduction, the class of slice monogenic functions and
the class of monogenic functions can be related.

Let U be an axially symmetric open set in Rn+1 and let f be slice monogenic in U . By the
Fueter-Sce mapping theorem, the function ∆n−1/2f is monogenic, see [11]. To be more precise,
∆n−1/2f is axially monogenic. Given an axially monogenic function f̆ , it makes sense to ask
whether it is possible to construct a so-called Fueter primitive, that is a slice monogenic function
f such that ∆n−1/2f = f̆ . The answer is positive and the construction of the Fueter primitive
is given in [11]. This result can be further generalized to monogenic functions.

2.4 Möbius transformations preserving axial symmetry

In this section we briefly recall which concrete subgroup of Möbius transformations leaves the
axial symmetry property of a set invariant. The direct analogue of the general Ahlfors-Vahlen
group in this particular context is the set stabilizer of the x0-axis. The latter is generated by
the inversion, dilations, translations in the x0-direction only, and by modified rotations. From
[10] we recall:

Definition 2.6. The group GRAV (Rn+1) is defined by

GRAV (Rn+1) :=

〈(
1 b
0 1

)
,

(
a 0
0 a−1

)
,

(
0 1
−1 0

)
,

(
λ 0
0 λ−1

)〉
. (6)

where b ∈ R, a ∈ Sn−1 and λ ∈ R\{0}.

Proposition 2.7. (See [10], Prop. 2.13) The elements in the group GRAV (Rn+1) take axially
symmetric sets into axially symmetric sets.

Remark 2.8. Notice that the other transformations, for example rotations not preserving the
real axis, are clearly not preserving the axial symmetry of a set.

In this context the natural analogue of the special Ahlfors-Vahlen group, consisting of the
sense-preserving matrices, is the group

SRAV (Rn+1) := {M ∈ GRAV (Rn+1) | det(M) = 1}

which is generated only by the first three types of matrices listed in (6). Dilations are not
needed.
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Remark 2.9. A crucial question for the topic of our paper is to understand what are the
appropriate generalizations of upper half-space in the axial symmetric setting. Let us write
naively a paravector x = x0 + e1x1 + . . . + enxn from Rn+1 \ R in the form x = x0 + ωr with
ω = x

‖x‖ , x0 ∈ R, r > 0.
One possible generalization of complex upper half-plane in the slice monogenic setting is the

set
H :=

⋃
ω∈Sn−1

C+
ω = Rn+1\R.

Here, by C+
ω we mean the complex upper half-plane associated to the imaginary unit ω and

where the x0-axis is excluded. By construction, the groups GRAV (Rn+1) and SRAV (Rn+1)
leave H invariant. In particular, this set is invariant under the usual translations x 7→ x + b,
b ∈ R.

We note that while working in H given a function of the form (3), there is no need to impose
the even-odd conditions on α and β, since v > 0.

Another axially symmetric domain that can be considered is the right half-space

Hr := {x ∈ Rn+1 | x0 > 0},

which can also be seen as Hr =
⋃
ω∈Sn−1 Crω = {x = x0 + ωy | x0 > 0, y ∈ R} where

Crω = {z = x0 + ωy ∈ Cω | x0 > 0}. This half-space is also axially symmetric with respect
to the x0-axis. But note that translations of the form x 7→ x + b with b ∈ R do not leave Hr

invariant.

Next we want to understand what are the analogues of the ordinary translations in the Hr

setting.

An important axial symmetric transformation that leaves the set Hr invariant is radial
periodicity in the reduced 1-vector variable x := x1e1 + · · · + xnen. As we already pointed
out, any element x ∈ Rn+1 can be written in polar form x = x0 + rω where r > 0 and where
ω := x1e1+···+xnen

(x21+···+x2n)1/2
. This representation is not unique when x ∈ R since x = x0 + 0 · ω for any

ω ∈ Sn−1.
For any x ∈ H we shall also write x = x0 +ωr, thus identifying it with x0, ω, r i.e. identifying

H with R× Sn−1 × R+.

Remark 2.10. Motivated by [6] and other papers, in H we can consider the notion of radial
periodicity also in the slice monogenic setting. A function f slice monogenic function in the
variable x = x0 + x1e1 + · · · + xnen = x0 + rω, x ∈ H, r > 0, is called radial periodic in its
vector part with period T > 0 if it satisfies f(x0 + rω) = f(x0 + (r + T )ω) for all r > 0.

In the complex case radial periodicity in the reduced variable (which is the imaginary vari-
able) is nothing else than ordinary one-fold periodicity in the imaginary variable. Actually in
the complex case the consideration of the right half-space z = x + iy with x > 0 and upper
half-space z = x + iy with y > 0 is identical. In higher dimensions the geometry is different.
In C (n = 1) the set Sn−1 reduced to two isolated points i and −i. If n > 1 then Sn−1 is a
connected set. Therefore, H and Hr are essentially different sets.

3 Slice monogenic exponentials

A crucial aim of this paper is to introduce an appropriate generalization of the famous theta
series from the classical complex analysis setting to the slice monogenic setting in a real vector
space of general dimension n+ 1, attached to a general n+ 1-dimensional lattice.
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To this end we will also be in need of the definition of a suitable exponential function and to
define the composition of the exponential function with some slice monogenic functions f . To
proceed in this direction let f(x) be a function that is slice monogenic on the whole Rn+1, namely
an entire slice monogenic function. Following [12], which is based on [26], one can consider, at
least formally, the series ∑

k≥0

1

k!
(f(x))∗k. (7)

We have:

Proposition 3.1. The series (7) converges uniformly over the compact sets of Rn+1 and defines
a slice monogenic function.

Proof. The proof of the first statement is immediate since, for any fixed compact set C in Rn+1

and setting MC = maxC |f(x)|, we have∣∣∣∣∣∣
∑
k≥0

1

k!
(f(x))∗k

∣∣∣∣∣∣ ≤
∑
k≥0

(2n+1)kMk
C

k!
<∞.

To prove the second part, we use the fact that f(x) is a slice monogenic function and, by
its definition, so is (f(x))∗k, i.e. (f(u + ωv)))∗k = αk(u, v) + ωβk(u, v), with (αk, βk) which
form an even-odd pair satisfying the Cauchy-Riemann system. By fixing a basis of the Clifford
algebra Rn+1 we can write αk =

∑n+1
|A|=0 αk,AeA, βk =

∑n+1
|A|=0 βk,AeA, with the pairs (αk,A, βk,A)

satisfying the Cauchy-Riemann system, namely αk,A+ωβk,A are holomorphic for all multi-indices
A. We deduce that ∑

k≥0

1

k!
(f(x))∗k =

∑
k≥0

1

k!

n+1∑
|A|=0

(αk,A + ωβk,A)eA

converges to a function satisfying the Cauchy-Riemann system and so it is slice monogenic (see
Definition 2.3).

The definition of the ∗-exponential and the proposition can obviously be considered on axially
symmetric open sets U ⊆ Rn+1 (see also [5]):

Definition 3.2. Let U ⊆ Rn+1 be an axially symmetric open set. We set

exp∗(f(x)) =
∑
k≥0

1

k!
(f(x))∗k, (8)

and we call this function ∗-exponential.

In particular, when f(x) = a+ xb, a, b ∈ Rn+1, we have

exp∗(a+ xb) =
∑
k≥0

1

k!
(a+ xb)∗k =

∑
k≥0

1

k!

m∑
k=0

(
m

k

)
xm−kakbm−k.

Remark 3.3. Definition 3.2 implies that when f is an intrinsic function, then exp∗(f) = exp(f)
the classical exponential function.

In the quaternionic case, the properties of the ∗-exponential function have been studied in
[5], where the authors carefully discuss, in particular, in which cases the equality exp∗(f + g) =
exp∗(f)∗exp∗(g) holds, see Theorem 4.14 in [5]. We follow the lines of the proof of that theorem
to prove the result below which is enough for our purposes.
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Theorem 3.4. Let f, g ∈ SM(Rn+1) be commuting with respect to the ∗-product. Then

exp∗(f + g) = exp∗(f) ∗ exp∗(g). (9)

Proof. By definition and using the fact that f ∗ g = g ∗ f we have:

exp∗(f + g) =

∞∑
n=0

1

n!
(f + g)∗n

=
∞∑
n=0

1

n!

∑
k≤n

(
n

k

)
f∗k ∗ g∗(n−k)

=

∞∑
n=0

∑
k≤n

1

k!(n− k)!
f∗k ∗ g∗(n−k)

=

∞∑
k=0

∑
n≥k

1

k!
f∗k ∗ 1

(n− k)!
g∗(n−k)

=
∞∑
k=0

1

k!
f∗k ∗

∞∑
m=0

1

m!
g∗m

and the statement follows.

4 Slice monogenic theta series and their transformation formula

4.1 Definition and convergence

In the sequel, let L ⊂ Rn+1 be an arbitrary (n+ 1)-dimensional lattice from Rn+1, namely

L = {q = m0Q0 + · · ·+mnQn | m0, . . . ,mn ∈ Z}

where Q0, . . . ,Qn are R-linearly independent elements in Rn+1 and |q|2 ∈ N0 = N ∪ {0}, for all
q ∈ L. A general element q in the lattice L can be written with respect to the canonical basis
of Rn+1 as q =

∑n
i=0 eiqi. As it is very well-known, see for instance [16], the determinant of

the lattice L is defined as the determinant of the Gram matrix (L)lm built by the Euclidean

Rn+1-inner products of the lattice generators, i.e.
n∑
i=0

QliQmi.

The dual lattice also called reciprocal lattice of L will be denote by L] and is explicitly
defined by

L] = {y ∈ Rn+1 | x0y0 + · · ·xnyn ∈ Z for all x = x0 +

n∑
i=1

xiei ∈ L}.

Every lattice satisfies det(L]) = 1
det(L) . Note that a lattice L is integral if and only if L ⊆ L]. A

lattice is called unimodular if L] = L which is equivalent to | det(L)| = 1.
The slice monogenic ∗-exponential function is appropriate to serve as building blocks for

the construction of slice monogenic theta series and and a properly on Rn+1 intrinsicly defined
Fourier transform serves as fundamental tool to establish their functional equation. We may
introduce theta series in two ways, one associated with H and the another one associated with
Hr. We start by discussing the model H. In this framework we introduce:
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Definition 4.1. (Slice monogenic theta series associated with H)
Let x ∈ H = {x = x0 +x1e1 + · · ·+xnen = x0 +x | x 6= 0} written as x = x0 +rω with r > 0 and
ω = x

||x|| . Let w ∈ Rn+1 be of the form w =
∑n

i=0 ei(ui + viω) =
∑n

i=0 eiwi, ui, vi ∈ R, where

ω := x
‖x‖ . The slice monogenic theta series attached to L with characteristic w (depending on

ω) is defined by

ΘL(x,w) :=
∑
q∈L

exp∗

(
(π|q|2x+ 2π < q,w >)

x

‖x‖

)
, (10)

where exp∗ is the ∗-exponential function defined by (8) and where < q,w >=
n∑
i=0

qiwi is a

Cω-valued bilinear form.

Remark 4.2. We point out that < q,w > is a bilinear form, but it is not a hermitian inner
product. Moreover, we note that one can also define < q,w > as < q,w >= q′Iw′T , where
q′ = (q0, . . . , qn) ∈ Rn+1, w′ = (w0, . . . , wn) ∈ Cn+1

ω , I is the n + 1-dimensional unit matrix,
moreover one could replace I by a matrix S symmetric and positive definite with real entries,
since a general lattice L can be obtained by AZn+1 with an invertible matrix A.

Remark 4.3. Note that < w,w >=
∑n

i=0w
2
i so it does not coincide with |w|2. On the other

hand, < q, q >=
∑n

i=0 q
2
i = |q|2 since qi ∈ R, i = 0, . . . , n.

Proposition 4.4. The series ΘL(x,w) converges normally on H × (Cn+1
ω )

Proof. We note that H has no intersection with the x0-axis, since H = (Rn+1) \ R · 1. Thus,

as before, we write x = x0 + ωr ∈ H, and w =
n∑
i=0

eiwi where each wi ∈ Cω attached to the

specific ω := x
‖x‖ , i.e. wi = ui + viω with ui ∈ R and vi > 0 for all i = 0, . . . , n. Note that

in contrast to the several complex variable case the second variable w actually belongs to Rn+1

since Cn+1
ω ⊂ Rn+1, so it is intrinsically contained in Rn+1. We point out, one more time, that

ω = ω(x), and so also w, depend thus on the choice of x, in contrast to the classical complex
case.

Let us next consider the functions f(x) = xπ|q|2 x
‖x‖ , g(x) = 2π < q,w > x

‖x‖ . First we note
that

f(x0 + ωr) = (x0 + ωr)π|q|2ω, g(x0 + ωr) = 2π < q,w > ω.

The restrictions f|H+(Rn+1)∩Cω
, g|H+(Rn+1)∩Cω

are in the kernel of the Cauchy-Riemann operator
1/2(∂x0 +ω∂r) and so they are slice monogenic. In particular, g is locally constant (constant on
every Cω). For any fixed ω ∈ Sn+1, both the functions have coefficients in the complex plane
Cω, ω = x/‖x‖. Thus thus they are commuting with respect to the ∗- product so (9) holds.
This is crucial. Applying the Clifford norm introduced in Section 2 we get

‖ΘL(x,w)‖ ≤ 1 +
∑

q∈L\{0}

∥∥∥ exp∗(π|q|2(x0 + ωr)ω + 2π〈q, w〉ω)
∥∥∥ (11)
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Now, again in the Clifford norm we have∥∥∥ exp∗

(
πω(|q|2(x0 + rω) + 2

n∑
i=0

qiwi)
)∥∥∥

=
∥∥∥ exp∗

(
πω(|q|2(x0 + rω) + 2

n∑
i=0

qi(ui + viω))
)∥∥∥

=
∥∥∥ exp∗

(
πω(|q|2x0 + 2

n∑
i=0

qiui)− π(|q|2r + 2
n∑
i=0

qivi)
)∥∥∥

=
∥∥∥ exp∗(πω(|q|2x0 + 2

n∑
i=0

qiui))
∥∥∥ · e−π(|q|2r+2

n∑
i=0

qivi)
,

where we explicitly use the commutation property of the ∗-exponential in Theorem 3.4. Now,
in view of the Euler formula, which follows by the definition (8) of ∗-exponential, we also have

in our case that ‖ exp∗(πω(|q|2x0 + 2
n∑
i=0

qiui))‖ = 1, because |q|2x0 + 2
n∑
i=0

qiui is real-valued.

Now, consider w (for any fixed ω) in a compact set covered by a ball of radius ≤ r. About
the exponent of the second term we can now say that

|q|2r + 2
n∑
i=0

qivi ≥
1

2
|q|2r ≥ 1

2
|q|2r0

holds for a fixed real positive r0 ≤ r, excepted for finitely many lattice points q.
So, the whole series can be majorized by a multidimensional convergent geometric series of

the form ∑
q∈L

(e−
1
2
πr0)|q|

2

which in the particular case where |q|2 ∈ N0 can also be directly expressed in terms of classical
geometric series. In the other cases, one can consider b|q|2c where b·c denotes the floor function.

Notice that the presence of the imaginary unit ω with ω2 = −1 is crucial here for this whole
argumentation.

Remark 4.5. To perform our calculations on the right hand side of (11), it is crucial that in
the exponential exp∗(α(x0 + ωr)ω′) the multiplications of two imaginary units ω and ω′ (which
coincide) gives a real number. If ω′ is any imaginary unit which does not belong to Cω then we
do not obtain any real part.

Let us now turn to the appropriate definition of the theta series in the setting of the right
half-space Hr = {x = x0 + x ∈ Rn+1 | x0 > 0}. We recall that ω := x

‖x‖ when x 6= 0 and
x = x0 + ωr ∈ Cω while this representation is not unique when x ∈ R since x = x0 + 0 · ω for
any ω ∈ Sn−1.

Definition 4.6. (Slice monogenic theta series associated with right half-space Hr)
Let x ∈ Hr and w ∈ Rn+1 be of the form w =

∑n
i=0 eiwi =

∑n
i=0 ei(ui + viω), ui, vi ∈ R, where

ω := x
‖x‖ if x 6∈ R or ω is any element in Sn−1 if x ∈ R.

Then the slice monogenic theta series associated with Hr attached to L with characteristic
w (depending on ω) is defined by

Θr
L(x,w) :=

∑
q∈L

exp∗(−π|q|2x+ 2π < q,w > ω). (12)
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The convergence proof on Hr can be done in formal analogy to the one presented for H. For
completeness we present it in detail:

Proposition 4.7. The series Θr
L(x,w) converges normally on Hr × (Cn+1

ω ).

Proof. We have

‖Θr
L(x,w)‖ ≤

∑
q∈L

∥∥∥ exp∗(−π|q|2(x0 + rω) + 2π(

n∑
i=0

qi(ui + viω)ω)
∥∥∥

=
∥∥∥ exp(−π|q|2x0 − 2π

n∑
i=0

qivi)
∥∥∥ · ∥∥∥ exp((−π|q|2r + 2π(

n∑
i=0

qiui))ω)
∥∥∥︸ ︷︷ ︸

=1

= e
−π(|q|2x0+2

n∑
i=0

qivi)
.

Now, considering w in a compact set for any fixed ω, we can again argue that for except of
finitely many q we can estimate

|q|2 + 2
n∑
i=0

qivi ≥
1

2
|q|2x0 ≥

1

2
|q|2X0

for a positive X0 ≤ x0. So the series can be majorized by the multidimensional geometric series∑
q∈L

(e−
1
2
πX0)|q|

2
and so it converges.

Remark 4.8. Alternatively one might think to define a hypercomplex theta series in the fol-
lowing four ways but below we explain why these alternative definitions cannot work in the slice
monogenic setting.

1. Choose a k ∈ {1, . . . , n} and define

θ(x,w) =
∑
q∈L

exp∗(π|q|2xek + 2πek < q,w >)

Problem: This series convergence on the space H+ := {x ∈ Rn+1 | xk > 0}, but this is
not axially symmetric with respect to the real line, so we cannot apply the classical tools
in slice monogenic analysis.

2. One may define

θ(x,w) =
∑
q∈L

exp∗(π|q|2xi+ 2πi < q,w >)

where i is the imaginary unit of the complexified Clifford algebra Cn = Rn ⊗R C.
Problem: How to define slice monogenicity in Cn and to cope with the convergence domain
(we do not have a direction in which the function exponentially decreases since xi does
not have a nonzero real part).

3. In the same spirit we can consider

θ(x,w) =
∑
q∈L

exp∗(π|q|2xe0 + 2πe0 < q,w >)

with an extra element e0 outside the space Rn, see [9]. But, as in the previous case, also
here the convergence property is spoiled and we do not get an exponential decrease on a
domain that is axially symmetric.
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4. We now define
θ(x,w) =

∑
q∈L

exp∗(−π|q|2x+ 2πek < q,w >)

Problem: The expression exp(2π < q, q >) that will appear in the quadratic extension in
the theta transformation formula is not equal to 1, so the quadratic extension that will be
applied in the transformation formula will not work; see the comment in the proof of the
transformation formula in the next section.

Remark 4.9. Our definition fits canonically with the definition of Poincaré series that we
worked out in our previous paper [10] to which we refer for the notations. For any positive
integer N ≥ 3 the slice monogenic Poincaré series is defined by

P (x) =
∑

M :Γ∞RAV [N ]\ΓRAV [N ]

(cx+ d)−1F (M〈x〉),

where F (x) := exp∗(xω).

4.2 Poisson summation and the transformation law

In this subsection we give a proof for the theta transformation formula in the slice monogenic
setting. The interested reader may consult Freitag’s book [23] for the complex case version of the
result. Due to a number of important peculiarities that have been used in the two appropriate
definitions of the theta series, as well as special properties of the ∗-exponential function, we can
prove a transformation formula also in the slice monogenic case. First we prove the formula in
the setting of H = Rn+1\R =

⋃
ω∈Sn−1 C+

ω . In this context it is important to note that since
C+
ω is simply connected for any ω ∈ Sn−1 we can uniquely select one specific branch of the root

x
n+1
2 (being the same for all ω ∈ Sn−1) so that all the expressions appearing in the following

statement are well-defined.

Theorem 4.10. (Theta transformation formula in the setting of H).
For all x ∈ H and all w ∈ Rn+1 of the form w =

∑n
i=0 eiwi =

∑n
i=0 ei(ui + viω), ui, vi ∈ R,

where ω := x
‖x‖ we have the following generalization of the Jacobian theta series identity for the

slice monogenic setting:∑
q∈L

exp∗

(
π < q + w, q + w > x

x

‖x‖

)
=
(
xω−1

)−(n+1)/2
∗ | det(L)|ΘL](−x−1, w).

In particular for w = 0 we have

θL(x) =
(
xω−1

)−(n+1)/2
∗ | det(L)|θL](−x−1).

Here, | det(L)| = | det(Q0, . . . ,Qn)| = vol(R ⊕ Rn/L) and θL(x) := ΘL(x, 0) is the theta-null
function.

Proof. Consider the following auxiliary function:

fx(w) = f(w, x) :=
∑
q∈L

exp∗

(
π < q + w, q + w > x

x

‖x‖

)
.

It is slice monogenic in x by its definition. Per construction we have fx(w + l) = fx(w) for all
l ∈ L, so f is L-periodic and we also note that f belongs to the class C2 and that the expression
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is integrable over Rn+1. We can write, using < q+w, q+w >= 〈q, q〉+ 2〈q, w〉+ 〈w,w〉 and the
fact that all the summand have coefficients in Cω:

f(w, x) =
∑
q∈L

exp∗(π < q + w, q + w > (x0 + ωr)ω) =
∑
q∈L]

aq(x) exp(2π〈q, w〉ω),

where aq(x) is Cω-valued and slice monogenic. We note that f(w, x) is a multivariate Fourier-
type series in the complex plane Cω with the commuting property:

aq(x) = |det(L)|
∫

[0,1]n+1

f(w, x) exp(−2π〈q, w〉ω)du (13)

= |det(L)|
∫

[0,1]n+1

exp(−2π〈q, w〉ω)f(w, x)du,

where w = u + ωv. The expression aq(x) in formula (13) is the Fourier transform Fω(f)
performed on the complex plane Cω where ω ∈ Sn−1 (and it is fixed by x that here works as
a parameter). It is the classical Fourier transform where the imaginary unit i of the complex
numbers is here replaced by ω. The ω ∈ Sn−1 is an element in the algebra and this is what makes
the Fourier transform fully intrinsic (compare with Remark 4.8, point 2). Since the function
f(w, x) exp(−2π〈q, w〉ω) is slice monogenic and so, if x = x0 + ωr it is in the kernel of the
Cauchy-Riemann operator of the complex plane Cω, the equality

f(w, x)e−2π〈q,w〉ω = e−2π〈q,w〉ωf(w, x)

leads to

aq(x) = |det(L)|
∫

[0,1]n+1

f(w, x)e−2π〈q,w〉ωdu

= |det(L)|
∫

[0,1]n+1

∑
q∈L

exp∗(π < q + w, q + w > (x0 + ωr)ω) exp(−2π〈q, w〉ω)du.

Due to the normal convergence of the series, see Proposition 4.4, one may interchange the
integration process with the summation process so that the latter expression can be rewritten
as:

aq(x) = | det(L)|
∑
q∈L

∫
[0,1]n+1

exp(−2π〈q, w〉ω) exp∗(π < q + w, q + w > (x0 + ωr)ω)du.

Next we apply a linear change of variable of the form w 7→ w−q, leaving the differential invariant.
This leads to

aq(x0 + ωr) = | det(L)|
∑
q∈L

∫
[0,1]n+1−q

exp(−2π〈q, w − q〉ω) exp∗(π(
n∑
i=0

w2
i )(x0 + ωr)ω)du

= | det(L)|
∑
q∈L

∫
[0,1]n+1−q

exp(−2π〈q, w〉ω) e2π〈q,q〉ω︸ ︷︷ ︸
=1

exp∗(π(
n∑
i=0

w2
i )(x0 + ωr)ω)du

= |det(L)|
∑
q∈L

∫
[0,1]n+1−q

exp(−2π〈q, w〉ω) exp∗(π(
n∑
i=0

w2
i )(x0 + ωr)ω)du.

To apply this argument it was important (see Remark 3.9 Point 3) that ω is present in the
definition, to make exp(2π < q, q > ω) = 1 Without the ω this would not be true. Moreover it is
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crucial that |q|2 ∈ N0. Note also that, although the standard exp(−2π〈q, w〉ω) is in fact equal to
exp∗(−2π〈q, w〉ω), for the computations below we need to compute the ∗-product and thus we use
the first notations to emphasise that we work in the slice monogenic setting. Next, we note that
the functions f(x) = −2π〈q, w〉ω = −2π〈q, w〉 x

‖x‖ and g(x) = π(
∑n

i=0w
2
i )xω = π(

∑n
i=0w

2
i )x

x
‖x‖

are commuting with respect to the ∗-product so, by Theorem 3.4, we have

exp∗(−2π〈q, w〉ω) exp∗(π(
n∑
i=0

w2
i )(x0 + ωr)ω)

= exp∗(−2π〈q, w〉ω) ∗ exp∗(π(
n∑
i=0

w2
i )(x0 + ωr)ω)

= exp∗((π(x0 + ωr)(
n∑
i=0

w2
i )− 2π〈q, w〉)ω)

= exp∗(πx((

n∑
i=0

w2
i )− 2(x0 + ωr)−1〈q, w〉)ω)

Hence we get

aq(x0 + ωr) = | det(L)|
∫

]−∞,+∞[n+1

exp∗(πx((
n∑
i=0

w2
i )− 2x−1〈q, w〉)ω)du0 · · · dun

= | det(L)|
∫

]−∞,+∞[n+1

exp∗(πx((
n∑
i=0

w2
i )− 2x−1〈q, w〉+ x−2|q|2 − x−2|q|2)ω)du0 · · · dun

= | det(L)| exp∗(−πx−1|q|2ω)

∫
]−∞,+∞[n+1

exp∗(πx((
n∑
i=0

w2
i )− 2x−1〈q, w〉+ x−2|q|2)ω)du0 · · · dun

= | det(L)| exp∗(−πx−1|q|2ω)

×
∫

]−∞,+∞[n+1

exp∗(πx(

n∑
i=0

w2
i − 2x−1

n∑
i=0

qiwi + x−2
n∑
i=0

q2
i )ω)du0 · · · dun.

Notice here that x is a general paravector from Rn+1\R, so we here really deal with a hyper-
complex expression. Next, the latter expression can be written as

aq(x0 + ωr) = | det(L)| exp∗(−πx−1|q|2ω)×

(
n∏
i=0

+∞∫
−∞

exp∗(πx(w2
i − 2x−1qiwi + x−2q2

i )ω)dui

)
.

(14)
Now put x = rω, x0 = 0. Then the latter equation becomes

aq = | det(L)| exp∗(−π(rω)−1|q|2ω)×
n∏
i=0

( +∞∫
−∞

exp∗(πrω(w2
i +

2

r
ωqiwi −

1

r2
q2
i )ω)dui

)
.

Let us now decompose each wi ∈ Cω in the form

wi = ui + viω.
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Using this decomposition we can rewrite each term

wi − x−1qi = wi +
1

r
ωqi

in the form ui + viω + 1
rωqi for all i = 0, . . . , n. If we choose the ω-part of each wi in the way

vi = −1
r qi then the expression ti := wi + 1

rωqi turn out to be real positive. So we can rewrite
each term

(w2
i +

2

r
ωqiwi −

1

r2
qi)

2 = (wi +
1

r
ωqi)

2 =: t2i

with a positive real parameter ti > 0. So the expression for the Fourier coefficient can be
re-expressed as

aq = | det(L)| exp∗(−π(rω)−1|q|2ω)×

(
n∏
i=0

+∞∫
−∞

exp((πrωt2i )ω)dti

)

= |det(L)| exp∗(−π(rω)−1|q|2ω)×

(
n∏
i=0

+∞∫
−∞

exp(−πrt2i )dti

)
.

= |det(L)| exp∗(−π(rω)−1|q|2ω)
1

r
n+1
2

.

So, for x = ωr we have obtained that∑
q∈L

eπ<q+w,q+w>(ωr)ω = r−(n+1)/2|det(L)|
∑
q∈L]

eπ|q|
2(−r)−1ω+2π〈q,w〉ω.

In view of x = rω we may identify r by xω−1. In order to proceed further, we need to apply now
a particular argument from slice monogenic function theory. The particular identity theorem
for slice monogenic functions from [4] allows us to conclude from the previous line that we can
then substitute rω by x0 + rω so that actually∑
q∈L

exp∗(π < q + w, q + w > xω) = (xω−1)−(n+1)/2∗|det(L)|
∑
q∈L]

exp(π|q|2(−x)−1ω + 2π〈q, w〉ω)

is true for all x ∈ H. It is clear that the left hand-side is slice monogenic. Also the right hand-
side is slice monogenic by construction. The version of the identity theorem from [4] allows us
to conclude the equality. We actually may observe that the ∗-product on the right-hand side is
not necessary, hence we omit it in all that follows.

Note further that particularly, putting θL(x) := ΘL(x, 0), we get

θL(x) = |det(L)|(xω−1)−(n+1)/2θL](−x−1).

This completes the proof.

We recall that in the case of a general lattice we could alternatively also re-define < q +
w, q+w > as (q+w)′S(q+w) where S is an (n+1)x(n+1) positive symmetric matrix with real

entries. In the case S = I one then again obtains < q+w, q+w >=
n∑
i=0

(qi +wi)
2 =

n∑
i=0

(q+w)2
i .

In the setting of the right half-space we may establish by similar lines of arguments
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Theorem 4.11. (Theta transformation formula in the setting of Hr).
For all x ∈ Hr = {z ∈ Rn+1 | x0 > 0} and all w ∈ Cωn+1 where ω := x

‖x‖ if x 6∈ R and where ω

can be chosen freely if x ∈ R>0 we have that∑
q∈L

exp∗(−π < q + w, q + w > x) = x−(n+1)/2|det(L)|Θr
L](x

−1, w),

and particularly for w = 0 we have, setting θrL(x) := Θr
L(x, 0), θrL(x) = x−(n+1)/2|det(L)|θr

L](x
−1).

Note that to ensure the invariance of the right half-space Hr we have to consider as suggested
by A. Krieg in [33] the modified inversion x 7→ x−1, because the usual Kelvin inversion x 7→ −x−1

does not preserve Hr.

Proof. In this setting we now define analogously

fx(w) = f(w, x) :=
∑
q∈L

exp∗(−π < q + w, q + w > x).

Again here we have f(w + l) = f(w) for all l ∈ L, so also f can be expanded in a Fourier series
of the form

∑
q∈L]

aq(x) exp(2π < q,w > ω) with aq(x) = | det(L)|
∫

[0,1]n+1

f(w, x)e−2π<q,w>ω. By

applying the same argumentation with the shift w 7→ w− q as in Theorem 4.10 we get using the
decomposition w = u+ ωv:

aq(x) = | det(L)|
∑
q∈L

∫
[0,1]n+1−q

exp(−2π < q,w > ω) exp∗(−π(

n∑
i=0

w2
i )(x0 + rω))du.

Now in the setting of Hr the exponential expressions can be rewritten in the form

exp∗(−π(x0 + ωr)(
n∑
i=0

w2
i )− 2π < q,w > ω)

= exp∗(−π(x0 + ωr)
( n∑
i=0

w2
i + 2(x0 + rω)−1 < q,w > ω

)
)

= exp∗(−πx
( n∑
i=0

+2x−1 < q,w > ω
)

)

= exp∗(πx
( n∑
i=0

−2x−1 < q,w > ω
)
ω2)

= exp∗(πx
( n∑
i=0

w2
i − 2x−1 < q,w > ω + x−2|q|2 − x−2|q|2

)
ω2)

= exp∗(πx(x−2|q|2)ω2) exp(πx
( n∑
i=0

w2
i − 2x−1 < q,w > ω − x−2|q|2

)
ω2)

= exp∗(−π(x−1|q|2)) exp(πx
( n∑
i=0

w2
i − 2x−1 < q,w > ω + (xω)−2|q|2

)
ω2).

Now take again x = rω. Then we can again adjust the v-part of w such that w2
i −2(rω)−1qiwiω+

r−2|q|2 is a real positive entity that can be identified by t2i with ti ∈ R. So, finally one may
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obtain in this setting that

aq(rω) = exp∗(−π((rω)−1|q|2))

∫
]−∞,+∞[n+1

exp(−πrωt2)dt = exp∗(−π((rω)−1|q|2))(
1

rω
)n+1,

from which the stated identity follows after the application of the version of the identity theorem
presented in [13, 14].

Remark 4.12. Note that in the monogenic setting, in general the transformation

F (x) :=
x

|x|a
f(−x−1)

only preserves the monogenicity property if particularly a = n+ 1. Now in the slice monogenic
case the expression

(xω−1)−(n+1)/2f(−x−1)

remains slice monogenic for any integer n. This allows us to associate to every lattice a slice
monogenic theta series. A monogenic or k-hypermonogenic automorphic form with a transforma-
tion behavior of the form f(x) = (xω−1)−(n+1)/2f(−x−1) can probably not be found. Among all
existing hypercomplex function theories the slice monogenic setting seems to be the only setting
in which the construction of direct generalizations of theta series is possible. Notice also that the
identity theorem offered by the theory of slice monogenic functions is much stronger than the
identity theorem of monogenic functions. In the slice monogenic setting the coincidence of func-
tion values of two functions along one line already yields the identity over the whole space while
in monogenic function theory one requires the coincidence on an n-dimensional submanifold.

An interesting question arises around the periodicity of the theta series. While the slice
monogenic theta series Θ(x,w) associated with H = Rn+1\R are 1-fold periodic in x with
respect to the x0-part, in association with its version for the right half-space Hr we do not have
the usual periodicity but a radial periodicity in the reduced vector part x1e1 + · · ·+ xnen. This
will be explained in the following proposition. More precisely, we can say

Proposition 4.13. (Periodicity properties). Both theta series ΘL(x,w) and Θr
L(x,w) are n+1-

fold periodic with respect to the lattice L in the second variable w; we have

ΘL(x,w + l) = ΘL(x,w) for all l ∈ L.

and
Θr
L(x,w + l) = Θr

L(x,w) for all l ∈ L.

Furthermore, ΘL(x,w) satisfies ΘL(x+ 2, w) = ΘL(x,w) for all x,w.
Writing the reduced vector part of x in polar form, i.e. writing x = x0 + rω where as usual

ω := x
‖x‖ with a positive r > 0, then for the other kind of theta series Θr

L(x,w) we observe the
following radial periodicity concerning the first variable of the form

Θr
L(x0 + rω,w) = Θr

L(x0 + (r + 2)ω,w).

To the proof, one observes the L-periodicity in the variable w by a direct rearrangement
argument. In the case of ΘL(x,w) the periodicity in the x0-direction is also readily seen from
its definition.

The radial periodicity in the reduced vector part of the first variable of Θr
L(x,w) is inherited

by the radial periodic property of the slice monogenic ∗-exponential function exp∗.
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Remark 4.14. In summary, our slice monogenic theta series are examples of 1-fold-periodic
or radially periodic quasi-modular forms on H or Hr , respectively. They are quasi-invariant
under the inversion x 7→ −x−1, or the modified inversion x 7→ x−1 up to the automorphic

factor

(
x
(

x
‖x‖

)−1
)−n+1

2

or x−
n+1
2 , respectively, and exhibit the above stated periodic or radially

periodic behavior, respectively. The slice monogenic Eisenstein and Poincaré series that we
discussed in [10] were also quasi-invariant under the inversion (but with a different automorphy
factor) and they were invariant under translations in the x0-direction like the theta series in the
context of H.

4.3 The conjugated theta functions

For simplicity we now focus on the setting of H from now on. All results presented in the sequel
can be directly translated to the setting of Hr when replacing the correspondent theta functions.

As previously introduced, we defined the slice monogenic theta-null function associated to
an n+ 1-dimensional lattice L as

θ(x) := ΘL(x, 0) =
∑
q∈L

exp∗

(
π|q|2x x

‖x‖

)
,

where we consider the same conditions on L as in the beginning of Section 4.1. In particular we
assumed that |q|2 ∈ N0 which means that L is supposed to be integral. To leave it simple we
furthermore assume that L is unimodular in all that follows in this subsection and the following
one. We could perform the following considerations more generally, but then one has to use the
dual lattice. In the case of unimodularity we simply have L] = L.

Now we introduce the following conjugated theta functions and study their invariance be-
havior. In turn these functions can be used as building blocks to construct slice monogenic
quasi-modular forms.

To introduce them, consider a system of representatives denoted by V(1
2L/L) of the quotient

lattice 1
2L/L. A canonical choice is to take these representatives out of the set

{m0Q0 + . . .+mnQn} with 0 ≤ m0 < 1, mi ∈
{

0,
1

2

}
, i = 0, . . . , n.

For a fixed element q̃ ∈ V(1
2L/L) we define the first conjugated theta function θ̃q̃(x) as

θ̃q̃(x) := ΘL(x, q̃)

=
∑
q∈L

exp∗((π|q|2x+ 2π〈q, q̃〉)ω)

=
∑
q∈L

exp∗(π|q|2xω · e2π〈q,q̃〉ω)

=
∑
q∈L

χ(q) exp∗(π|q|2xω),

where

χ(q) =

{
1 , if |q|2 even
−1 , if |q|2 odd

The definition of the second conjugated theta function
˜̃
θq̃(x) is formally motivated by the theta

transformation formula that we proved in the previous subsection.
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We have ∑
q∈L

expπ<q+w,q+w>xω∗ = (xω−1)∗−
n+1
2 |det(L)|ΘL(−x−1, w).

Notice that in contrast to the classical complex case, we cannot choose w completely freely,
because in our case w = w(x) since we have to choose w ∈ Cn+1

ω . However, making nevertheless
formally the substitution w = q̃ with q̃ ∈ V(1

2L/L) motivates the definition:

˜̃
θq̃(x) :=

∑
q∈L

eπ|q+q̃|
2xω.

By construction this function then satisfies the relation:

˜̃
θq̃(x) = (xω−1)−

n+1
2 |det(L)|θ̃q̃(−x−1). (15)

If we replace x by −x−1 in equation (15) then we also get

˜̃
θq̃(−x−1) = (−x−1ω−1)−

n+1
2 | det(L)|θ̃q̃(x)

which is equivalent to

θ̃q̃(x) = (x−1(−ω−1))
n+1
2

1

|det(L|)
˜̃
θq̃(−x−1).

So, we arrived at

θ̃q̃(x) = (xω−1)−
n+1
2

1

|det(L|)
˜̃
θq̃(−x−1). (16)

We end this subsection by giving the following more general definition of the conjugated theta
functions (where we involve the general parameter w, which however in contrast to the classical
complex variable case is fixely related to ω depending on x).

Definition 4.15. Let L be a general (n+ 1) dimensional integral lattice in Rn+1.
For all x ∈ H and w ∈ Cn+1

ω we define

Θ̃L(x,w) =
∑
q∈L

χ(q) exp∗(π|q|2xωe2π〈q,w〉ω)

and
˜̃ΘL(x,w) =

∑
q∈ 1

2
L\L

exp∗(π|q|2xω)e2π〈q,w〉ω

where

χ(q) =

{
1 , if |q|2 even
−1 , if |q|2 odd

Notice that whenever |q|2 is even then we have eπ|q|
2ω = 1. If |q|2 is odd then eπ|q|

2ω = −1.

For w = 0 we re-obtain the particular conjugated theta functions θ̃q̃(z) and
˜̃
θq̃(z).

Proof. In view of |χ(q)| = 1 we can majorize the series Θ̃L(x,w) by the series of the moduli of
the theta series ΘL(x,w). Concretely speaking, we have

‖Θ̃L(x,w)‖ ≤
∑
q∈L
‖ exp∗(π|q|2xω) · e2π〈q,w〉ω‖ ≤ C <∞,
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for any pair (x,w) belonging to a compact subset of H × Cn+1
ω where we use the convergence

argument applied in Proposition 4.4.

Similarly, we may argue that ˜̃ΘL(x,w) converges normally on H × Cnω, since this series is
majorized by the theta series

Θ 1
2
L(x,w) =

∑
q∈ 1

2
L

exp∗(π|q|2xωe2π〈q,w〉ω)

which is nothing else than the slice monogenic theta series for the larger lattice 1
2L. This series

over the larger lattice is still convergent according to the statement of Proposition 4.4, because
it guarantees the convergence for any arbitrary n + 1-dimensional lattice, so in particular for
1
2L.

4.4 Slice monogenic generalization of the Dedekind eta function and the
modular discriminant

In this section, we apply the slice monogenic conjugated theta functions that we defined in the
previous section to introduce a slice monogenic generalization of the third power of the Dedekind
η-function and a generalization of the modular discriminant ∆ which also represented a central
missing piece in the hypercomplex setting of automorphic forms.

Definition 4.16. Let x ∈ H and L be an n + 1-dimensional unimodular lattice. Furthermore,
fix a representative q̃ from 1

2L/L.
Now we define the function

η̃q̃(x) := θ(x) ∗ θ̃q̃(x) ∗ ˜̃
θq̃(x), (17)

where ∗ again is the star product of slice monogenic functions.

This function generalizes up to a constant the third power of the Dedekind eta function which
is a quasi-modular form of weight 1/2. In our case we shall see that η̃q̃(x) is a slice monogenic

quasi-modular form of weight 3(n+1)
2 . More precisely we will show:

Theorem 4.17. Let L be an n+ 1-dimensional unimodular lattice in Rn+1 and q̃ be a represen-
tative from 1

2L/L. Then the above defined function η̃q̃(x) satisfies for each x ∈ H the following
transformation formula

η̃q̃(x) = (xω−1)−
3(n+1)

2 |det(L)|η̃q̃(−x−1). (18)

Proof. To show this transformation behavior we apply the transformation formulas (15) and
(16) in the definition (17). Precisely speaking, we have

η̃q̃(x) = θ(x) ∗ θ̃q̃(x) ∗ ˜̃
θq̃(x)

= (xω−1)−
n+1
2 |det(L)|θ(−x−1)

∗(xω−1)−
n+1
2

1

|det(L)|
˜̃
θq̃(−x−1)

∗(xω−1)−
n+1
2 | det(L)|θ̃q̃(−x−1)

= (xω−1)−
3(n+1)

2 |det(L)|
(
θ(−x−1) ∗ ˜̃

θq̃(−x−1) ∗ θ̃q̃(−x−1)
)

= (xω−1)−
3(n+1)

2 |det(L)|
(
θ(−x−1) ∗ θ̃q̃(−x−1) ∗ ˜̃

θq̃(−x−1)
)

= (xω−1)−
3(n+1)

2 |det(L)|η̃q̃(−x−1).
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In the proof we used the property

˜̃
θq̃(−x−1) ∗ θ̃q̃(−x−1) = θ̃q̃(−x−1) ∗ ˜̃

θq̃(−x−1)

which follows from the fact that the two theta functions do commute on the complex plane
Cω.

Remark 4.18. In the case of a one-dimensional lattice, i.e. n = 0, this function satisfies the
transformation behavior

η̃q̃(x) = (xω−1)−
3
2 | det(L)|η̃q̃(−x−1)

If we take L = Z, then we get the usual transformation behavior of the third power of the
Dedekind eta function of the form

η3(z) = (−zi)−3/2η3(−1

z
).

With these tools in hand we can finally define the slice monogenic modular discriminant
function:

Definition 4.19. Let x ∈ H and L be an n + 1-dimensional unimodular lattice. Furthermore,
fix a representative q̃ from 1

2L/L. Then the slice monogenic associated modular discriminant
can be defined as

4L,q̃(x) :=
(
η̃q̃(x)

)∗8
=
(
θ(x) ∗ θ̃q̃(x) ∗ ˜̃

θq̃(x)
)∗8

.

In view of the transformation formulas (15) and (16) we can directly establish that the slice
monogenic discriminant transforms like

4L,q̃(x) = (xω−1)−12(n+1)| det(L)|8
(
θ(−x−1) ∗ θ̃q̃(−x−1) ∗ ˜̃

θq̃(−x−1)
)∗8

= (xω−1)−12(n+1)|det(L)|44L,q̃(−x−1).

In the complex case with n = 0 and det(L) = 1 we have as usual

4(z) = z−124
(
− 1

z

)
.

4.5 Differential equations

The next theorem shows that the theta series ΘL(x,w) satisfies the following heat equation
which involves the slice derivative:

[∆w − c∂s,x]f(x,w) = 0.

Here ∆w stands for the Euclidean Laplacian ∆w :=
n∑
i=0

∂2

∂w2
i

and ∂s,x for the slice derivative with

respect to x, denoted for short ∂s, (for the definition see for example [13]). However, in contrast
to the usual heat equation, this version here involves the slice monogenic derivative instead of
the usual temporal partial derivative ∂t. Precisely, we have

Theorem 4.20. The theta series ΘL(x,w) satisfy the differential equation

[∆w − 4πω∂s]ΘL(x,w) = 0
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Proof. The proof can be done by a direct computation. Clearly, for any i = 0, . . . , n we have:

∂2

∂w2
i

ΘL(x,w) =
∑
q∈L

(2πωqi)
2 exp∗(π|q|2xω + 2π〈q, w〉ω),

so that in summary one gets that

∆wΘL(x,w) =
∑
q∈L

(2πω)2|q|2 exp∗(π|q|2xω + 2π〈q, w〉ω).

On the other hand one obtains by applying the slice monogenic derivative the expression

∂sΘ(x,w) =
∑
q∈L

(πω)|q|2 exp∗(π|q|2xω + 2π〈q, w〉ω)

which coincides with the expression in the preceding line after multiplying it with the constant
(4πω). The stated result is proven.

Remark 4.21. By a similar direct computation we obtain that also the other slice monogenic
theta series are solutions to the slice heat equation.

4.6 A monogenic generalized theta function

When we apply Fueter’s theorem to the slice monogenic theta series that we introduced before
then we obtain a generalization of theta series in the monogenic setting. To leave it simple we
explain this procedure explicitly in the quaternionic case looking at the right half-space model
working with Hr = {x ∈ H | x0 > 0} since in this setting Fueter’s theorem can be applied
directly. Again for simplicity we discuss the case w = 0 addressing monogenic generalizations
of the theta null series.

Before we can give the definition we first need to recall the definition of the following axially
monogenic exponential function.

For any integer k ≥ 2 consider the monogenic functions

fk(x) = ∆(xk) =
∼
fk(x) = −4

k−1∑
j=1

(k − j)xk−j−1xj−1,

and then, for any n ∈ N0 define

Qn(x) = − fn+2(x)

(n+ 2)(n+ 1)
, n ∈ N0.

In more explicit terms, we have

Qk(x) =

k∑
j=0

T kj x
k−jxj (19)

where

T kj := T kj (3) =
k!

(3)k

(2)k−j(1)j
(k − j)!j!

=
2(k − j + 1)

(k + 1)(k + 2)

and (a)n = a(a+ 1)...(a+ n− 1) is the Pochhammer symbol.
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For x ∈ H let

Exp(x) :=

∞∑
k=0

Qk(x)

k!

be the generalized Cauchy-Fueter regular exponential function, see [8].
In this setting we can now define

Definition 4.22. Let x ∈ Hr = {x ∈ H | x0 > 0} and let L ⊂ H be an arbitrary lattice with
|q|2 ∈ N0 for all q ∈ L. Then the attached monogenic theta function is defined by

θML (x) = ∆x

[∑
q∈L

exp∗(−π|q|2x)
]

=
∑
q∈L

Exp(−π|q|2x),

where Exp(x) is the axially monogenic exponential function introduced before.

The theta transformation formula that we derived in Theorem 4.11 for the slice monogenic
theta series will provide us with a functional equation for the monogenic theta function when
applying Fueter’s theorem to both sides of the equation. We prove:

Theorem 4.23. (Functional equation for the monogenic theta function).
For each x ∈ Hr = {x ∈ H | x0 > 0} the monogenic theta function θML (x) satisfies the functional
equation

θML (x) = |det(L)|

(
x−

n+1
2 ∆x

[
θL](x−1)

]
+ ∆x

[
x−

n+1
2

]
θL](x−1)

)
(20)

+ 2| det(L)|

( ∑
A,B⊆{1,2,...,n}

〈grad [x−
n+1
2 ]A, grad [θL](x−1)]B〉eAeB

)
,

where a Clifford algebra valued expression f is represented in its real components according to
f =

∑
A⊆{1,2,...,n}

fAeA and where 〈·, ·〉 stands for the standard scalar product on Rn+1. The term

(∆xθL(x−1)) can be explicitly expressed by the monogenic theta series,

∆x

[
θL](x−1)

]
=

1

|x|4

(
ΘM
L](x

−1)− 4x0[
∂ΘL]

∂x0
](x−1) + 4

3∑
i=1

xi[
∂ΘL]

∂xi
](x−1)

)
. (21)

Proof. To prove the formula we apply the Laplacian on both sides of the equation θL(x) =

|det(L)|x−
n+1
2 θL](x−1). It is well known that the Laplacian applied to a product of two real-

valued functions fA, gB : Rn+1 → R satisfies the product rule

∆(fA · gB) = fA(∆gB) + (∆fA)gB + 2〈grad fA, gradgB〉.

Now suppose that f and g are Rn-valued functions, represented in the form f(x) =
∑

A⊆{1,...,n}
fA(x)eA

and g(x) =
∑

B⊆{1,...,n}
gB(x)eB. Since ∆ is a scalar-valued operator the previous formula gets the

following form in the Clifford algebra valued case:

∆(f · g) = f(∆g) + (∆f)g + 2
∑

A,B⊆{1,2,...,n}

〈grad fA, gradgB〉eAeB.
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Setting f(x) = x−
n+1
2 and g(x) = θL](x−1) leads to the formula (20). Applying next the formula

∆x[f(x−1)] =
(∆xf)(x−1)

|x4|
+

1

|x|4

(
− 4

∂f

∂x0
(x−1) + 4

3∑
i=1

∂f

∂xi
(x−1)

)

which can be verified by a direct computation, leads to (21) since ΘM
L (x) = ∆xΘL(x).
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[1] L. V. Ahlfors, Möbius Transfomations in Rn expressed by 2x2-matrices of Clifford Numbers,
Complex Variables, 5 (1986), 215–224.

[2] S. Alexandrov, S. Banerjee, J. Manschot, B. Pioline, Indefinite theta series and generalized
error functions, Sel. Math. New Ser. 24 No. 5 (2018), 3927–3972.

[3] D. Alpay, F. Colombo, I. Sabadini, Slice hyperholomorphic Schur analysis Operator Theory:
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