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Abstract

We focus on masonry domes which are considered architectural land-
marks either in different historical periods and in different cultural con-
texts. From a mathematical point of view, an approximation of a dome
is provided by a rotation solid whose cross-section gives the generating
curve. Obviously, a frequent generating curve is the semicircumference,
but here we want to highlight the role of parabola and catenary used as
generating curves to make the structural load lighter. At the present they
are well-studied different curves, but until the 17th century, they were
considered the same curve, even though they significantly differ from the
point of view of structural properties. Actually, catenary is the curve of a
hanging chain, which exhibits a tension strength only. When it is ”frozen”
and inverted it exhibits a compression strength only, which means that
it supports itself. Parabola does not exhibit such structural property,
but catenary may differ from a convenient parabola very slightly so that
building approximation makes a catenary appear as a parabola and this
parabola is so close to a catenary that it approximately retains its struc-
tural properties, point by point. Here, we investigate the mathematical
connection between catenary and parabola in masonry dome structure,
referring in particular to Brunelleshi’s dome in Florence, Saint Peter’s
dome in Rome and San Gaudenzio’s dome in Novara.
Keywords: catenary, funicular surface, masonry domes, Renaissance

domes

1 Introduction

Currently, we are accustomed to see buildings with curvilinear roofs of any
material, of any curvature, of any regular or irregular shape. In the ancient
centuries, instead, curvilinear coverings were provided by masonry domes
only. They were ideally generated by the rotation of an arch around its
vertical symmetry axis. In this way, cross-sections become curves, mainly
parabolas and catenaries (aside from, obviously, semicircumferences).
The most ancient still standing example of the curve (we now call) cate-
nary, used as a cross-section of a masonry vault, goes back to the so-called
Ctesiphon arch (3rd century A.D., Taq Kasra – Iraq). Previously, cor-
belled domes appeared in Minoan civilization about 1500 B.C., but true
masonry domes were found at ancient Ur (in the present Iraq) and are
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dated back to 2500 B.C. [2]. This would place knowledge of true ma-
sonry dome long before the rise of Roman Empire. Even though the true
dome was not a Roman invention, Romans were the first civilization to
overcome the challenges associated with the true dome and perfect the
form,enlarging the span of dome they could build (e.g. Caracalla’s Baths
and Diocletian’s Baths). It is worth mentioning the Pantheon dome which
has been a landmark in Rome panorama since the 1st century B.C.; re-
markably, it is not a true dome, but a corbelled dome.
Here we consider parabolas and catenaries as cross-sections of ancient
domes and from a mathematical point of view we will discuss features of
the two curves when used in architecture. We add that when a surface
is generated by the rotation of a catenary around its symmetry axis, it is
also called funicular surface.

2 Parabola vs. Catenary

The parabola curve is the graphic of any analytical function which is a
polynomial of degree two. From the point of view of classical geometry,
any parabola can be built as a conic section, as it is known since the 4th
century B.C. by the Greek mathematician Menecmus. From the point of
view of architecture, parabola has no stability property.

Instead, catenary has excellent stability properties, but its equation
is more complicated, involving a hyperbolic cosine. This curve represents
the shape of a hanging chain (or inextensible cable) of uniform mass, fixed
at the ends and subject to its own weight only. This means that analytical
expression of catenary is the solution of the differential equation providing
the equilibrium of a hanging chain (or cable).

Suppose a cable with tension T . Let To be the tension in the cable at
its lowest point. Let the origin be at this point. The horizontal force on
the cable at that point is then To. Suppose we isolate a piece of the cable
extending from the origin to the point (x, y) where the tension is T. Let
ϑ be the tangent angle at (x, y).Then for horizontal equilibrium we have
To = T cos(ϑ).
Let s be the arc length from the origin up to the point (x, y). Let w be the
weight of the cable per unit arc length. Then for the vertical equilibrium
we have ws = T sin(ϑ). Hence

dy
dx

= tan(ϑ) = T sin(ϑ)
T cos(ϑ)

= ws
T0

Differentiating, we get

d2y
dx2 = ws

T0

ds
dx

= 1
a

√
1 + (dy/dx)2

Solution of this equation provides the equation of catenary

y(x) = a cosh(x/a)

where a = To/a is the catenary constant. For increasing values of a,
catenary exhibits increasing span.
If the lowest point of the curve is in (x0, y0) then the catenary equation
becomes
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y(x) = a cosh(x−x0
a

) + (y0 − a)

If catenary is ”frozen” and inverted, the chain (or cable) exhibits a com-
pression strength only, which means that it supports itself. In 1671 Robert
Hooke announced at the Royal Society in London he had found the shape
of the optimal arch. In 1676 he published a book where he stated ”Ut
continuum pendet flexible, sic stabit continuum rigidum inversum” i.e. as
a flexible cable hangs, so, inverting it, a rigid body stands still. In Figure
1 we report a catenary and the corresponding inverted catenary.

Figure 1: Catenary and inverted catenary

Then the inverted catenary, with the highest point in (0, h), has the
following equation

y(x) = −a(cosh(x/a)− 1) + h

Given h and the intersection x with the axis of abscissas, we found the
value of a by a numerical method which computes zeros of nonlinear func-
tions.
Hooke did not provide any proof nor the analytical equation of the curve.
His assessment was based on experimental evidence only. However the
topic was so interesting that the greatest contemporary mathematicians
of that century (Leibniz, Huygens and Bernoulli brothers) studied the
catenary curve in details, competing with each other, and succeeded in
providing a complete mathematical description of the properties of this
curve related to its static equilibrium. It is worth noticing that it would
impossible to get such results by the previous classical approach of math-
ematics. The new analytical approach allowed mathematics to enlarge its
field: the analytical geometry was born. Later in [8], it was investigated
how the catenary form is the real shape of a stable arch, when it can be
drawn within its section, since catenary can sustain itself.
Even though the parabola fails to exhibit the structural properties of cate-
nary, the two curves are closely related from a mathematical point of view.
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Firstly, from a geometrical point of view, the curve traced on the plane by
the focus of a parabola rolling along a straight line, is exactly a catenary.
Then, from the analytical point of view, the equation of a catenary devel-
oped in power series provides a polynomial with even terms which provides
a parabola, if the series is truncated at the second term. In more details,
we have

a cosh(x/a) = a + 1
2a
x2 + 1

24a3 x
4 + O

(
x6
)

Moreover, we notice that even the polynomial p(x) = a+ 1
2a
x2+ 1

24a3 x
4 can

be viewed as a parabola when the variable change t = x2 is introduced. In
order to enlighten this behavior, in Figure 2 the catenary through points
(0, 34), (26, 0) is reported (in this case a = 13.4496) together with the ap-
proximating parabola p(x) given above and plotted with respect to

√
t. In

Figure 3 the same catenary is reported together with parabola interpolat-
ing at the maximum point and endpoints. In the first case the maximum
relative error between the two curves is 3% and in the second case is 7%
(in infinity norm).

Figure 2: Catenary and approximating parabola

This means that, in some circumstances, a parabola can be a
very good approximation of a catenary. So, in practice, given a
catenary it is always possible to find a parabola which, point by point,
resembles such catenary and its structural properties.
This results supports the hypothesis that a particular parabola was used
in any masonry dome built before the 17th century in such a way that the
parabolic cross-section of the rotation surface was actually resembling a
catenary and its stability properties. Indeed, it is clear that the correct
dimensioning of domes and arches was the result of empirical observa-
tions over a long period of time, when actually parabolas could be easily
computed and built.
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Figure 3: Catenary and interpolating parabola

Moreover, there is experimental evidence that still in 19th century,
catenaries as cross sections of rotation surfaces and vaults were not com-
puted using the analytical approach (reported above) but using an analog-
ical approach by oval curves, as pointed out in [10], referring to Spanish
context.

Sometimes it may be hard to distinguish between a parabola and a
catenary. In [9] a couple of significant examples are reported. In particu-
lar, here we present the example referring to Gaud̀ı’s Collegio Teresiano,
reported in Figure 4.

In the cross-sections of those arches we can seen either catenaries or
parabolas. As it was reported in [9], data are taken so that the top
becomes the minimum in (0, 1), for increasing x and y: a least squares
fitting provides the (weighted) catenary y = −0.7468 + 1.75 cosh(2.8x)
with R2 = 99.988%. Alternatively, the parabola y = 0.985 + 7.63x2

fits with R2 = 99.985%. The method used in [9] was a pseudo-inverse
algorithm; he concludes that ”No naked eye can catch the difference”
between catenary and parabola. Actually, the relative error between fitted
parabola and catenary is 0.6%.
Here we used a”trust-region-reflective” method by the function lqscurvefit

provided by MATLAB. We found as a fitting (weighted) catenary y =
−0.9462 + 1.95 cosh(2.6684x) and as a fitting parabola y = 1.0111 −
0.2771x+ 8.2194x2. Figure 5 reports our fitting catenary in solid line, the
experimental data by circles and our fitting parabola in dotted line. In
both the cases the norm of the residual is equal to 0.4% , as well as the
relative error between fitted catenary and parabola.

Again we can conclude that ”No naked eye can catch the difference”
between catenary and parabola. We remark that a fitting with a classical
form of catenary does not provide good results.
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Figure 4: Arches by Gaud̀ı in Collegio Teresiano [9]
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Figure 5: Fitting experimental data by catenary and parabola

Moreover, it is worth noticing that, in spite of appearance, our fitting
parabola in practice overlaps the already published parabola in [9]. This
is due to the fact that both parabolas are fitted curves and close to the
best approximation.

We remark that a parabola can be distinguished from a catenary by
resorting also to geometric properties of parabola itself. In particular, one
of these properties states: if a parabola has several parallel chords, their
midpoints all lie on a line which is parallel to the axis of symmetry. Now
consider Gaud̀ı’s Paelle Guel as an example: the profile of the gate has
to be considered as a catenary curve, since all the midpoints of parallel
chords lie on a curve, which differs from a line parallel to the symmetry
axis (e.g. see [7]).

3 Case Study: Santa Maria del Fiore in
Florence

The church of Santa Maria del Fiore was built according to a project by
Arnolfo di Cambio, started in 1296 and grew up during a long period in
the 14th century. The dome was built between 1420 and 1436 by Filippo
Brunelleschi, who never described his method of building.

It is made up by eight membranes, based on an octagon at 55 m
from the ground. The inner diameter of the dome is 45 m, the outer
one is 54 m (e.g. see [3]). Indeed the dome is built up by two shells
with an inner space large about 1.2 m in between. The maximum height
of intrados is 32.2 m and the maximum height of extrados is 35.75 m.
The average height is 34 m over the 55 m high drum. These numbers
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remember the Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
. . . which are characterized by property that the ratio of two consecutive
number tends to the golden ratio (that is about 1.618034) as they increase.
But Brunelleschi did not refer to Fibonacci numbers, even though he
certainly knew them, because, obviously, he did not use a meter as a unit
of measure. Actually, he used the Florentine arm = 0.5836 m. So the
inner diameter is 77 arms. The diameter was then divided into 5 parts
(each of them 15.4 arms = 8.98 m long); so that centers of the inner two
curves of the intrados were found in order to have a ”pointed fifth” arch as
a cross-section. For the extrados, instead, it was used a “pointed fourth”
arch. Figure 6, provided by [4], enlightens the building method of the
cross-section of the dome.

Figure 6: Pointed arches [4]

Here we propose that in the case of Brunelleschi’s dome, between the
intrados, built by pointed fifth arch, and the extrados, built by pointed
fourth arch, it is always possible to make a catenary run. Focusing on
the masonry arch which represents the approximated cross-section of this
dome, equilibrium can be visualized using a line of thrust, as investigated
in details in [1]. This theoretical line represents the path of the resultants
of the compressive forces through the stone structure and has the shape
of inverted catenary discussed above. For a pure compression structure,
equilibrium implies a line of thrust that lies entirely within the masonry
section. In [11] it is provided an excellent mathematical treatment of
this concept which was recently resumed and again studied in deep at
MIT (Ma, USA), where new interactive equilibrium tools were produced
[1]. In Figure 7 and Figure 8 we present our results about two possible
catenaries running between intrados and extrados of Brunelleschi’s dome.
Here we do not intend to study the optimal line of thrust, but we aim
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just at presenting how lines of thrust (i.e. catenary) can be drawn by
analytical formulas and approximated by convenient parabolas. Figure 7
reports catenary through (0,35), (24,0); Figure 8 reports catenary through
(0,33.5), (27,0). In Figure 7 an Figure 8 catenary is given in solid line, the
approximating parabola through three points (the maximum and the ends
point) is given in dashed line, the approximating parabola from the series
development is given in dotted line; its equation is y(t) = a+ 1

2a
t+ 1

24a3 t
2

where t = x2; the maximum relative error between this parabola and
related catenary is 4% in Figure 7 and 2% in Figure 8. Again we can find
a parabola which completely overlaps related catenary. We remark that
in Figure7 the approximating parabola through three points runs outside
the wall thickness; instead the approximating parabola y(t) always runs
within the wall thickness and resembles the structural property of the
catenary, point by point.

Figure 7: Catenary through (0,35), (24,0)

This means that the Brunelleschi’s choice was really effective even
though he did not know catenary jet. He probably built and tested
parabolas very close to a convenient unknown catenary and by intuition
and experience he found very nice structural stability properties of his
cross-section. Over the centuries Brunelleschi’s dome substantially main-
tained a stable configuration (exhibiting a few minor structural problems
only) and became a landmark of soundness and beauty.

9



Figure 8: Catenary through (0,33.5), (27,0)

4 Some more ancient masonry domes

4.1 St. Peter’s Dome in Rome

It was planned by Michelangelo, who worked on the construction of the
renewed basilica beginning in 1547. The dome was concluded by Giacomo
Della Porta, Michelangelo’s disciple, in 1590. The dome has a double shell
(following the example of more ancient Brunelleschi’s dome) with an inner
diameter of 42.56 m.; the height from the base to the top is 136.57 m.

As well as Brunelleschi, Michelangelo did not write anything about
his project and this was a great disadvantage when by the end of the
17th century the dome started to show a serious chance of collapsing.
In 1743 the Pope assigned to Giovanni Poleni the task of studying the
structure and solving the problem. At that time Poleni was a famed
engineer and mathematician and he knew very well the role of catenary in
structure stability; he built small models in scale of the catenary running
between the two shells of the dome. His conclusion was that the shape
of the Michelangelo’s dome was satisfactory. So the structure was simply
strengthened and even now we can admire the efficiency of that action
based on the use of catenary as a mathematical model.
This was the very first example of conscious and documented use of cate-
nary in Architecture. Indeed, many original drawings of catenaries refer-
ring to St. Peter’s dome can be found in [12] and one of them is reported
in Figure 9.
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Figure 9: Poleni’s drawing of catenary in St. Peter’s dome [12]

4.2 St. Gaudenzio’s Dome in Novara

The latest masonry dome in Italy was the St. Gaudenzio’s Dome in No-
vara, built and designed by A. Antonelli between 1841 and 1878. It has
a height from the floor level of the church to its top of 125 m, an internal
diameter of 14 m and an external diameter of 22 m. Again we find two
shells in the dome structure, but in this case the whole building exhibits
a daring complex constructive system, astonishingly light. Unfortunately,
the structure experienced many serious stability problems since the be-
ginning of its life.

Nevertheless, investigations conducted on the structure of the dome
had shown that the shape of thrust line is perfectly contained within the
masonry section of the dome, with minimal variations. In fact, the shape
of the arch of the internal cross-section becomes very similar to that of a
catenary, with the difference of an average quadratic deviation well below
1% [5].
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5 Conclusions

Within the context of mathematics, we investigated numerical and ana-
lytical relations between parabola and catenary and we have shown that,
given a catenary, it is always possible to find a parabola very close to the
catenary which inherits the stability property of catenary, point by point.
Then within the context of building structures, the Brunelleschi’s dome
was investigated in some details, using just the mathematical concepts
previously provided. At last, some dedicated comments were presented
relating St. Peter’s dome and San Gaudenzio’s dome. Our results en-
lighten how good were the ancient builders in managing mathematical
concepts, both consciously and intuitively.
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