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ON CONFORMALLY FLAT MANIFOLDS

WITH CONSTANT POSITIVE SCALAR CURVATURE
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Abstract. We classify compact conformally flat n-dimensional manifolds with constant
positive scalar curvature and satisfying an optimal integral pinching condition: they are
covered isometrically by either Sn with the round metric, S1 ×Sn−1 with the product metric
or S1 × Sn−1 with a rotationally symmetric Derdziński metric.
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1. Introduction

In this paper, we study compact conformally flat Riemannian manifolds, i.e. compact man-
ifolds whose metrics are locally conformally equivalent to the Euclidean metric. Riemannian
surfaces are always conformally flat, hence it is natural to look to the higher-dimensional
case. Kuiper [21] was the first who studied global properties of this class of manifolds. He
showed that every compact, simply connected, conformally flat manifolds is conformally dif-
feomorphic to the round sphere Sn. In the last years, much attention has been given to the
classification of conformally flat manifolds under topological and/or geometrical assumptions.
From the curvature point of view, conformal flatness is equivalent to the vanishing of the Weyl
and the Cotton tensor. In particular, the Riemann tensor can be recovered by its trace part,
namely the Ricci tensor. Schoen and Yau [26] showed that conformal flatness together with
(constant) positive scalar curvature still allows much flexibility. In contrast, conditions on
the Ricci curvature put strong restrictions on the geometry of the manifold. Tani [27] proved
that any compact conformally flat n-dimensional manifold with positive Ricci curvature and
constant positive scalar curvature is covered isometrically by Sn with the round metric. This
result, with a pointwise pinching condition on the Ricci curvature, was generalized by many
authors (for instance see [12, 24, 22, 29, 7] for results and references). In [5] Carron and Her-
zlich classify complete conformally flat manifolds of dimension n ≥ 3 with non-negative Ricci
curvature: they are either flat, or locally isometric to R×Sn−1 with the product metric; or are
globally conformally equivalent to Rn or to a spherical space form. On the other hand, classi-
fication of compact conformally flat manifolds satisfying an integral pinching condition were
obtained by Gursky [13] and Hebey and Vaugon [15, 16]. They showed that n-dimensional

spherical space form can be characterized by means of optimal Ln/2-pinching condition on
the Ricci curvature (see [23, 28] for other results in this direction).

The aim of this paper is to show a new classification result for compact conformally flat n-
dimensional manifolds with constant positive scalar curvature. A large variety of Riemannian
manifolds belong to this class: manifolds which are covered isometrically by Sn with the
round metric or by S1 × Sn−1 with the the product metric; but also quotient of Sn−k × Hk,
2k < n with the product metric. In general, by the work of Schoen [25], one can construct
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conformally flat manifolds with constant positive scalar curvature by gluing copies of metrics
of this type. Additional examples were constructed by Derdziński [10] in the class of warped
product metrics. More precisely, he showed that there exists a family of warped product
metrics (with (n− 1)-dimensional Einstein fibers) with harmonic curvature, the Ricci tensor
of which is not parallel and has less than three distinct eigenvalues at any point, and proved
that every manifold with these properties is covered isometrically by one of these examples
(see Theorem 3.2). When the fibers are isometric to Sn−1, these metrics give rise to examples
of compact conformally flat manifolds with constant positive scalar curvature that we will
call rotationally symmetric Derdziński metrics.

We prove that these metrics, together with the trivial ones, can be characterized as confor-
mally flat metrics with constant positive scalar curvature and satisfying an optimal integral
pinching condition. Let (Mn, g) be a n-dimensional Riemannian manifold. We denote by Ric
and R the Ricci and the scalar curvature, respectively and by E the trace-less Ricci tensor,
i.e. E = Ric− 1

nRg.
Our main result reads as follows:

Theorem 1.1. Let (Mn, g) be a compact conformally flat n-dimensional manifold with con-
stant positive scalar curvature. Then∫

Mn

|E|
n−2
n

(
R−

√
n(n− 1)|E|

)
≤ 0

and equality occurs if and only if (Mn, g) is covered isometrically by either Sn with the round
metric, S1×Sn−1 with the product metric or S1×Sn−1 with a rotationally symmetric Derdziński
metric.

Since E ≡ 0 on Sn with the round metric, while R ≡
√
n(n− 1)|E| on S1 × Sn−1 with

the product metric, Theorem 1.1 can be interpreted as a rigidity result for an interpolation
curvature estimate.

2. Codazzi tensors with constant trace

Let (Mn, g) be a smooth Riemannian manifold of dimension n ≥ 3 and consider a Codazzi
tensor T on Mn, i. e., a symmetric bilinear form satisfying the Codazzi equation

(∇XT )(Y, Z) = (∇Y T )(X,Z) ,

for every tangent vectors X,Y, Z. For an overview on manifolds admitting a Codazzi tensor
see [2, Chapter 16.C]. In all this section we will assume that T has constant trace. In
particular, the trace-free tensor T ′ = T − 1

ntr(T ) g is again a Codazzi tensor. In a local
coordinate system, we have

∇kT
′
ij = ∇jT

′
ik . (2.1)

Throughout the article, the Einstein convention of summing over the repeated indices will be
adopted. Taking the covariant derivative of the Codazzi equation and tracing we obtain

∆T ′ij = ∇k∇jT
′
ik

= ∇j∇kT
′
ik −RikjlT

′
kl +RjkT

′
ik ,

where we have used the commutation rules of covariant derivatives of symmetric two tensors.
Here Rikjl and Rjk denote the components of the Riemann and Ricci tensor respectively.



ON CONFORMALLY FLAT MANIFOLDS WITH CONSTANT POSITIVE SCALAR CURVATURE 3

Now, since T ′ is trace-free, from (2.1) one has ∇kT
′
ik = ∇iT

′
kk = 0. Thus, any trace-free

Codazzi tensor T ′ satisfies the following elliptic system

∆T ′ij = −RikjlT
′
kl +RjkT

′
ik . (2.2)

In particular, the following Weitzenböck formula holds

1

2
∆|T ′|2 = |∇T |2 −RikjlT

′
ijT
′
kl +RjkT

′
ijT
′
ik . (2.3)

Using (2.3), Berger and Ebin [1] showed that every Codazzi tensor T with constant trace on
a compact Riemannian manifold with non-negative sectional curvature is parallel. Morever,
if the sectional curvature are positive at some point, then T ′ must vanish.

The aim of this section is to show a vanishing theorem for Codazzi tensor with constant
trace, in the spirit of the work Gursky [14] on conformal vector fields. In this paper the author
proved a vanishing theorem for conformal vector fields on four-manifold with negative scalar
curvature and satisfying and integral pinching condition on the Ricci tensor (see also [18] for
other results in this direction). The proof of this result is an improvement of the Bochner
method [3] and strongly relies on the validity of a refined Kato-type inequality involving the
covariant derivative of the conformal vector field. As first observed by Bourguignon [4], trace-
free Codazzi tensor satisfies the following sharp inequality (for a proof, see for instance [16]).

Lemma 2.1. Let T ′ be a trace-free Codazzi tensor on a Riemannian manifold (Mn, g) and
let Ω0 = {p ∈Mn : |T ′|(p) 6= 0}. Then, on Ω0,

|∇T ′|2 ≥ n+ 2

n
|∇|T ′||2 .

From the previous equation, on Ω0, we therefore have

1

2
∆|T ′|2 ≥ n+ 2

n
|∇|T ′||2 −RikjlT

′
ijT
′
kl +RjkT

′
ijT
′
ik . (2.4)

Since we want to prove an integral estimate, we will need to apply (2.4) on the whole Mn.
To do this we use the following:

Lemma 2.2. Let T ′ be a, non-trivial, trace-free Codazzi tensor on the Riemannian manifold
(Mn, g) and let Ω0 = {p ∈ Mn : |T ′|(p) 6= 0}. Then Vol (Mn \ Ω0) = 0. In particular (2.4)
holds in an H1-sense on Mn.

Proof. The lemma follows from equation (2.2) and the unique continuation result of Kaz-
dan [20, Theorem 1.8] for solutions of elliptic system on Riemannian manifolds. �

The main result of this section is the following integral inequality on trace-free Codazzi
tensor.

Proposition 2.3. Let T ′ be a, non-trivial, trace-free Codazzi tensor on the Riemannian
manifold (Mn, g). For ε > 0, define Ωε = {p ∈Mn : |T ′|(p) ≥ ε}, and

fε =

{
|T ′|(p) if p ∈ Ωε

ε if p ∈Mn \ Ωε .

Then ∫
Mn

(
−RikjlT

′
ijT
′
kl +RjkT

′
ijT
′
ik

)
f
−n+2

n
ε ≤ 0 .
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Proof. Multiplying both side of inequality (2.4) by f
n+2
n

ε and integrating by parts, we get

0 ≥ −1

2

∫
Mn

∆|T ′|2f−
n+2
n

ε +
n+ 2

n

∫
Mn

|∇|T ′||2f−
n+2
n

ε

+

∫
Mn

(
−RikjlT

′
ijT
′
kl +RjkT

′
ijT
′
ik

)
f
−n+2

n
ε

=
1

2

∫
Mn

〈∇|T ′|2,∇
(
f
−n+2

n
ε

)
〉+

n+ 2

n

∫
Mn

|∇|T ′||2f−
n+2
n

ε

+

∫
Mn

(
−RikjlT

′
ijT
′
kl +RjkT

′
ijT
′
ik

)
f
−n+2

n
ε

= −n+ 2

n

∫
Mn

〈∇|T ′|,∇fε〉|T ′| f
− 2

n
ε +

n+ 2

n

∫
Mn

|∇|T ′||2f−
n+2
n

ε

+

∫
Mn

(
−RikjlT

′
ijT
′
kl +RjkT

′
ijT
′
ik

)
f
−n+2

n
ε .

Since fε = |T ′| on Ωε and ∇fε = 0 on Mn \ Ωε, we obtain

0 ≥ −n+ 2

n

∫
Mn

|∇fε|2 f
−n+2

n
ε +

n+ 2

n

∫
Mn

|∇|T ′||2f−
n+2
n

ε

+

∫
Mn

(
−RikjlT

′
ijT
′
kl +RjkT

′
ijT
′
ik

)
f
−n+2

n
ε

=
n+ 2

n

∫
Mn\Ωε

|∇|T ′||2f−
n+2
n

ε

+

∫
Mn

(
−RikjlT

′
ijT
′
kl +RjkT

′
ijT
′
ik

)
f
−n+2

n
ε

≥
∫
Mn

(
−RikjlT

′
ijT
′
kl +RjkT

′
ijT
′
ik

)
f
−n+2

n
ε .

This concludes the proof. �

3. Proof of Theorem 1.1

Throughout this section (Mn, g), n ≥ 3, is a compact conformally flat Riemannian manifold
with constant positive scalar curvature. To fix the notation, we recall the decomposition of
the Riemann tensor into the Weyl, the Ricci and the scalar curvature part

Rikjl = Wikjl +
1

n− 2

(
Rijgkl −Rilgjk +Rklgij −Rjkgil

)
− R

(n− 1)(n− 2)

(
gijgkl − gilgjk

)
.

Since g is conformally flat, then, if n ≥ 4, the Weyl tensor must be identically zero. On the
other hand, in dimension n = 3, the Weyl tensor is zero for algebraic reasons and conformally
flatness is equivalent to the vanishing of the Cotton tensor

Cijk = ∇kRij −∇jRik − 1
2(n−1)

(
∇kR gij −∇jR gik

)
.

Moreover, when n ≥ 4, one has (see [2, 16.3])

∇lWikjl =
n− 3

n− 2
Cijk.
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Hence, if we assume that the manifold is conformally flat, both Weyl and Cotton tensor are
identically zero. In particular we have that the Schouten tensor

Aij =
1

n− 2

(
Rij −

1

2(n− 1)
Rgij

)
is a Codazzi tensor with constant trace, since tr(A) = 1

2(n−1)R = const. This implies that

the trace-less Ricci tensor E = Ric − 1
nRg is a Codazzi tensor too. Assume that E is not

identically zero. From Proposition 2.3, we get that the following integral inequality holds∫
Mn

(
−RikjlEijEkl +RjkEijEik

)
f
−n+2

n
ε ≤ 0 , (3.1)

where

fε =

{
|E|(p) if p ∈ Ωε

ε if p ∈Mn \ Ωε .

and Ωε = {p ∈Mn : |E|(p) ≥ ε}. Since g is conformally flat, the Riemann tensor becomes

Rikjl =
1

n− 2

(
Eijgkl − Eilgjk + Eklgij − Ejkgil

)
+

R

n(n− 1)

(
gijgkl − gilgjk

)
,

and a simple computation shows

−RikjlEijEkl +RjkEijEik =
1

n− 1
R|E|2 +

n

n− 2
EijEikEjk .

Moreover, since E is trace-free, we have the sharp inequality (see for instance [19, Lemma
2.4])

EijEikEjk ≥ −
n− 2√
n(n− 1)

|E|3 (3.2)

and equality holds at some point p ∈ Mn if and only if E can be diagonalized at p with
(n−1)-eigenvalues equal to λ and one eigenvalue equals to −(n−1)λ, for some λ ∈ R. Hence,
we get

−RikjlEijEkl +RjkEijEik ≥
1

n− 1
|E|2

(
R−

√
n(n− 1)|E|

)
,

and from (3.1), we obtain∫
Mn

|E|
n−2
n

(
R−
√
n(n− 1)|E|

)
|E|

n+2
n f

−n+2
n

ε ≤
∫
Mn

(
−RikjlEijEkl+RjkEijEik

)
f
−n+2

n
ε ≤ 0 .

Now, taking the limit as ε → 0, since |E|
n+2
n f

−n+2
n

ε → 1 a.e. on Mn by Lemma 2.2, we
conclude ∫

Mn

|E|
n−2
n

(
R−

√
n(n− 1)|E|

)
≤ 0 .

Hence, we have proved the following:

Lemma 3.1. Let (Mn, g) be a compact conformally flat manifold with constant positive scalar
curvature. Then ∫

Mn

|E|
n−2
n

(
R−

√
n(n− 1)|E|

)
≤ 0

and equality occurs if and only if, at every point, either E is null or it has an eigenvalue of
multiplicity (n− 1) and another of multiplicity 1.
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Now we can conclude the proof of Theorem 1.1. By the integral pinching assumption we
have that equality in Lemma 3.1 occurs. Hence, either g is Einstein, and by conformally
flatness it has constant positive sectional curvature or, at every point, the Ricci tensor has
an eigenvalue of multiplicity (n− 1) and another of multiplicity 1. Moreover, since the Ricci
tensor is Codazzi, we have that g has harmonic curvature, i.e. ∇lRikjl ≡ 0 (see [2, Chapter
16.E]), and by the regularity result of DeTurck and Goldschmidt [11], g must be real analytic
in suitable (harmonic) local coordinates.

Now, suppose that the Ricci tensor has an eigenvalue of multiplicity (n − 1) and another
of multiplicity 1. If the Ricci tensor is parallel, by the de Rham decomposition Theorem [8],
(Mn, g) is covered isometrically by the product of Einstein manifolds. Since g is conformally
flat and has positive scalar curvature, then the only possibility is that (Mn, g) is covered
isometrically by S1 × Sn−1 with the product metric.

On the other hand, if the Ricci tensor is not parallel, we have the following classification
result of Derdziński [10, Theorem 2]:

Theorem 3.2. Let (Mn, g) be a compact Riemannian manifold with harmonic curvature.
If the Ricci tensor is not parallel and has less than three distinct eigenvalues at each point,
then (Mn, g) is covered isometrically by (S1 × Nn−1, dt2 + F 2(t)gN ), where (Nn−1, gN ) is a
compact Einstein manifold with positive scalar curvature and F is a non-constant, positive,
periodic function satisfying a precise ODE. Moreover, if g is conformally flat, then (Nn−1, gN )
is isometric to Sn−1 with the round metric.

This concludes the proof of Theorem 1.1. Finally, we recall that splitting results for Rie-
mannian manifolds admitting a Codazzi tensor with only two distinct eigenvalues were ob-
tained by Derdzinski [9], Hiepko-Reckziegel [17] (see [2, Chapter 16] for further discussion).
See also a more recent result of the author with Mantegazza and Mazzieri [6].
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