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Abstract

In this paper we produce families of Riemannian metrics with positive constant σk-curvature equal to
2−k

(
n
k

)
by performing the connected sum of two given compact non degenerate n–dimensional solutions

(M1, g1) and (M2, g2) of the (positive) σk-Yamabe problem, provided 2 ≤ 2k < n. The problem is
equivalent to solve a second order fully nonlinear elliptic equation.
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1 Introduction and statement of the result

In recent years much attention has been given to the study of the Yamabe problem for σk–curvature,
briefly the σk–Yamabe problem. To introduce the analytical formulation, we first recall some background
materials from Riemmanian geometry. Given (M, g), a compact Riemannian manifold of dimension n ≥ 3,
we denote respectively by Ricg, Rg the Ricci tensor and the scalar curvature of (M, g). The Schouten
tensor of (M, g) is defined as follows

Ag := 1
n−2

(
Ricg − 1

2(n−1) Rgg
)
.

If we denote by λ1, . . . , λn the eigenvalues of the symmetric endomorphism g−1Ag, then the σk-curvature
of (M, g) is defined as the k-th symmetric elementary function of λ1, . . . , λn, namely

σk(g−1Ag) :=
∑

i1 < ...< ik

λii · . . . · λik for 1 ≤ k ≤ n and σ0(g−1Ag) := 1.

The σk–Yamabe problem on (M, g) consists in finding metrics with constant σk–curvature in the same
conformal class of g. The case k = 1 is the well known Yamabe problem, whose progressive resolution is
due to Yamabe [31], Trudinger [30], Aubin [1] and Schoen [26]. Before presenting the historical overview
of the existence results for k ≥ 2, we need to recall the following notions: a metric g on M is said to be
k–admissible if it belongs to the k–th positive cone Γ+

k , where

g ∈ Γ+
k ⇐⇒ σj(g

−1Ag) > 0 for j = 1, . . . , k.

1E-mail addresses: catino@sissa.it, mazzieri@sissa.it
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Under the assumption that g is k–admissible the σk–Yamabe problem has been solved in the case k = 2,
n = 4 by Chang, Gursky and Yang [4] [5], for locally conformally flat manifolds by Li and Li [18] (see
also Guan and Wang [10]), and for 2k > n by Gursky and Viaclovsky [12]. For 2 ≤ 2k ≤ n the problem
has been solved by Sheng, Trudinger and Wang [29] under the extra–hypothesis that the operator is
variational. We point out that for k = 1, 2 this hypothesis is always fulfilled, whereas for k ≥ 3 it has
been shown in [2] that this extra assumption is equivalent to the locally conformally flatness. Hence, the
(positive) σk–Yamabe problem still remain open for 3 ≤ k ≤ n/2 with (M, g) non locally conformally
flat. In this optic, our result may eventually be used to produce families of new solutions to this problem
showing that it is topologically unobstructed also in the remaining cases. At the end of this section we
will give a simple example which will show how to use the connected sum construction to produce a
metric in Γ+

3 with constant σ3–curvature on (S6 × T2) ] (S6 × T2), which is non locally conformally flat.

To put in perspective our work we briefly recall some results which can be found in literature for connected
sum and generalized connected sum of positive scalar curvature metrics, metrics with constant scalar
curvature and metrics in the positive cone Γ+

k . To fix the notations we recall that the connected sum of
two n–dimensional Riemannian manifolds (M1, g1) and (M2, g2) is the topological operation which consists
in removing an open ball from both M1 and M2 and identifying the leftover boundaries, obtaining a new
manifold with possibly different topology. Formally, if pi ∈ Mi and for a small enough ε > 0 we excise
the ball B(pi, ε) from Mi, i = 1, 2, the (pointwise) connected sum Mε of M1 and M2 along p1 and p2

with necksize ε is the topological manifold defined as

Mε := M1]εM2 = [M1 \B(p1, ε) ∪ M2 \B(p2, ε)]
/
∼ ,

where ∼ denotes the identification of the two boundaries ∂B(pi, ε), i = 1, 2. Of course the new manifold
Mε can be endowed with both a differentiable structure and a metric structure, as it will be explicitly
done in Section 3. Even though from a topological point of view the value of the necksize is forgettable,
it will be important to keep track of it when we will deal with the metric structure. The generalized
connected sum (or fiber sum) is the same operation where instead of removing tubular neighborhoods of
points (i.e., balls), one excises the tubular neighborhood of a submanifold which is embedded in both M1

and M2.

The first issue concerning the interaction between generalized connected sum and the scalar curvature is
due to Gromov and Lawson [7] and Schoen and Yau [28]. They proved that the generalized connected
sum of manifolds with positive scalar curvature metrics performed along submanifolds of codimension at
least 3 can be endowed with a new metric whose scalar curvature is still positive. Later this construction
has been extended to the pointwise connected sum of manifolds carrying k–admissible metrics by Guan-
Lin-Wang [8], under the assumption 2 ≤ 2k < n. As a byproduct of our construction we will be able
to reproduce this result, with the additional properties that our metrics have constant σk–curvature and
can be chosen as close as desired to the initial metrics g1 and g2. In this sense they may represent a
canonical choice among all the possible k–admissible metrics on the connected sum manifold.

Concerning the solvability of the Yamabe equation (k = 1) on the pointwise connected sum of manifolds
with constant scalar curvature, we mention the results of Joyce [14] for the compact case and Mazzeo,
Pollack and Uhlenbeck [21] for the non compact case. The generalized connected sum has been treated
by the second author in [22] and [23]. Most part of the geometric features of these issues are common to
our construction. The main differences come from the analytical nature of the problem. In fact for k = 1
the equation of interest is a second order semilinear elliptic equation, whereas for k ≥ 2 the equation
becomes fully nonlinear and in general it is not elliptic. To guarantee the ellipticity one has to assume
that the (background) metric lies either in the k–th positive or in the k–th negative cone (for a definition
of the k–th negative cone Γ−k see for example [11]). Here we just focus on the positive cone case, which
for several reasons seems to be the most natural one. In fact the general treatment of the σk–Yamabe
problem seems still far to be understood in the negative cone.

Before giving the precise statement of our result, we set up the problem and briefly describe the strategy
of the proof. Since the aim of our work is to produce metrics with constant positive σk–curvature, it is
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natural to normalize the constant to be the same as the one of the standard sphere, which is 2−k
(
n
k

)
.

Hence, we will end up with a family of metrics {g̃ε}ε parametrized in terms of the necksize which satisfy

σk
(
g̃−1
ε Ag̃ε

)
= 2−k

(
n
k

)
. (1.1)

To show the existence of these solutions we start by writing down (see Section 3) an explicit family of
approximate solution metrics {gε}ε (still parametrized by the necksize) on Mε. This metrics coincide
with gi on Mi \B(pi, ε), i = 1, 2, and are close to a model metric on the remaining piece of the connected
sum manifold, which in the following will be referred as neck region. The metric which we are going to
use as a model in the neck region is described in Section 2. Since it is a complete metric on R×Sn−1 with
zero σk–curvature, it yields a natural generalization of the scalar flat Schwarzschild metric. For these
reasons we have decided to label it as σk–Schwarzschild metric. The heuristic motivation for choosing this
model comes from the fact that for k = 1 it has been successfully employed in the analogous connected
sum constructions for consant scalar curvature metrics, and on the other hand it represents the intrinsic
counterpart of the catenoidal neck used in the famous gluing constructions of Kapouleas for constant
mean curvature surfaces [15] [16].

The next step in our strategy amounts to look for a suitable correction of the approximate solutions to
the desired exact solutions. This will be done by means of a conformal perturbation. At the end it will
turn out that for sufficiently small values of the parameter ε such a correction can actually be found
together with a very precise control on its size and this will ensure the smooth convergence of the new
solutions g̃ε to the former metrics gi on the compact subsets of Mi \ {pi}, i = 1, 2.

Having this picture in mind, we pass now to fix the notations that will be used throughout this paper
in order to exploit the conformal perturbative program mentioned above and explained in details in the
last part of Section 3. Let (M, ḡ) be a compact smooth n–dimensional Riemannian manifold without
boundary an let 2 ≤ 2k < n. Taking advantage of this second assumption, we introduce the following
formalism for the conformal change

ḡu := u
4k

n−2k ḡ,

where the conformal factor u > 0 is a positive smooth function. In this context ḡ will be referred as the
background metric. At a first time the σk–equation for the conformal factor u can be formulated as

σk
(
ḡ−1
u Aḡu

)
= 2−k

(
n
k

)
.

We recall that the Schouten tensor of ḡu is related to the one of Aḡ by the conformal transformation law

Aḡu = Aḡ − 2k
n−2ku

−1∇2u+ 2kn
(n−2k)2u

−2du⊗ du− 2k2

(n−2k)2u
−2|du|2ḡ,

where ∇2 and | · | are computed with respect to the background metric ḡ. For technical reasons, it is
convenient to set

Bḡu := n−2k
2k u

2n
n−2k ḡ−1

u ·Aḡu (1.2)

and to reformulate the σk–equation as

Nḡ(u) := σk (Bḡu)−
(
n
k

)(
n−2k

4k

)k
u

2kn
n−2k = 0. (1.3)

We notice that if two metrics ḡ and g are related by ḡ = (v/u)4k/(n−2k)g, then the nonlinear operator
enjoys the following conformal equivariance property

Nḡ (u) = (v/u)−
2kn
n−2k Ng (v). (1.4)

The linearized operator of Nḡ about u is defined as

Lḡ(u) [w] :=
d

ds

∣∣∣∣
s=0

Nḡ (u+ sw). (1.5)
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This last quantity will play a crucial role in our approach. In fact, as explained in Sections 3 and 4, most
part of the analysis in this paper is concerned with the study of the mapping properties of the linearized

operator about the approximate solutions gε’s, that we will write in the form u
4k/(n−2k)
ε ḡ. Here the key

point is to provide the linearized operator Lḡ(uε) [ · ] with invertibility and a priori estimates which are
uniform with respect to the parameter ε. In fact, if we have this and if the error term Nḡ(uε) (which
measures the failure of the approximate solutions to be exact solutions) becomes smaller and smaller as
ε → 0, we will be in the position to perform a Newton iteration scheme based on the implicit function
theorem, which will finally provide us with a correction w satisfying Nḡ(uε+w) = 0. The exact solutions
will then be recovered as g̃ε = (uε + w)4k/(n−2k)ḡ. In order to be able to exploit the linear program
(invertibility, a priori estimates, etc.), it is natural to ask the linearized operators about the initial
metrics to be somehow non degenerate. The concept of non degeneracy that we need is made precise in
the following

Definition 1.1. Let 2 ≤ 2k < n and suppose that the Riemannan manifold (M, g) is a compact n–
dimensional and k–admissible solution to the (positive) σk–Yamabe problem, in the sense that

g ∈ Γ+
k and Ng(1) = 0 in M.

Then (M, g) (as well as the metric g) is said to be non degenerate if

Lg(1) [w] = 0 in M =⇒ w ≡ 0,

where Lg(1) [ · ] is the linearized operator about the metric g.

Our main result reads:

Theorem 1. Let (M1, g1) and (M2, g2) be two compact n-dimensional k-admissible non degenerate so-
lutions to the positive σk-Yamabe problem, with 2 ≤ 2k < n. Then there exists a positive real number
ε0 > 0 only depending on n, k, and the C2–norm of the coefficients of g1 and g2 such that, for every
ε ∈ (0, ε0], the connected sum Mε = M1]εM2 can be endowed with a k–admissible non degenerate metric
g̃ε with constant σk–curvature equal to 2−k

(
n
k

)
. Moreover ‖g̃ε − gi‖Cr(Ki) → 0 for any r > 0 and any

compact set Ki ⊂Mi \ {pi}, the pi’s, i = 1, 2, being the points about which the connect sum is performed.

We want to point out that the restriction on k in terms of the dimension n perfectly agrees with the
hypothesis needed by Guan, Lin and Wang [8] to prove their gluing result for k–admissible metrics.
Moreover, the condition 2 ≤ 2k < n turns out to be optimal. In fact we will show in Section 6 that RP3

and RP4 with their standard metrics are non degenerate and 2-admissible but both the connected sums
RP3]RP3 and RP4]RP4 do not admit any 2-admissible metric.

Some comments are due concerning the non degeneracy condition introduced in Definition 1.1. On one
hand this kind of hypothesis is common to all the gluing results based on the implicit function theorem
and the perturbative approach (such as the previously mentioned works [14], [21], [22] and [23]) for the
reasons explained above. On the other hand it must be pointed out that this condition is not fulfilled by
the standard sphere Sn, since its linearized operator is given by

LSn(1) [ · ] = −
(
n−1
k−1

) (
n−2k

4k

)k−1 [
∆Sn + n

]
[ · ] .

This fact will prevent us from using Theorem 1 to attach a sphere to another given solution of the σk–
Yamabe problem. However, it is clear that this gluing is not relevant from a topological point of view.
A more interesting observation is that, for k = 1, sequences of spheres can actually be glued together
via Schwarzschild–type necks, in order to obtain complete non compact (briefly singular) solutions to
the Yamabe problem with isolated singularities on Sn, as it has been done in [27]. For 2 ≤ 2k < n
the second author proved in a joint work with Ndiaye [24] the existence of complete non compact and
conformal metrics with constant σk–curvature on Sn \ Λ where Λ is given by a finite number of points
with a symmetric disposition. In this case (as well as in [20] which is an alternative construction in the
case k = 1) the metrics on the complete ends of the manifold are perturbations of σk–Delaunay metrics
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(for a definition see [24]). The σk–Delaunay metrics, on the other hand, are periodic metrics on the
cylinder R× Sn−1 with positive constant σk–curvature, which in an appropriate limit become closer and
closer to a sequence of standard n–dimensional spheres joined together by means of (infinitely many)
σk–Schwarzschild necks. In this sense all the mentioned constructions for the singular problem ([27], [20]
and [24]) are consistent. To conclude this remark about the non compact situation, we recall that for
k = 1 another construction is available and it is the one performed in [21]. The solutions provided in
this work are the so called dipole metrics, which in other words are connected sum of cylinders R× Sn−1

endowed with σ1–Delunay metrics. In a forthcoming paper [3] we extend this result to 2 ≤ 2k < n by
taking advantage of the connected sum techniques developed in this article.

Before proceeding with the rest of the paper, we would like to illustrate with an easy example how
Theorem 1 may provide the existence of a nontrivial k–admissible metric with constant σk–curvature in
one of the cases not covered by the present literature.

Example: n = 8, k = 3. Let (Mi, gi) = (S6 × T2, g := gS6 + gT2), i = 1, 2. Clearly this metric is not
locally conformally flat and belongs to the 3 positive cone Γ+

3 , since

σ1

(
g−1Ag

)
=
(

5
42

)
18, σ2

(
g−1Ag

)
=
(

5
42

)2
105, σ3

(
g−1Ag

)
=
(

5
42

)3
56.

We verify now that (S6 × T2, g) is non degenearate in the sense of Definition 1.1. Let us assume that v
satisfies Lg(1) [v] = 0. A direct computation shows that this is equivalent to[

−∆T2 − 7
24 ∆S6 − 25

126

]
v = 0.

Using separation of variables, we have the following expansion for v

v =
∑+∞
j=0 v

j(x) φj(θ),

where x ∈ T2, θ ∈ S6 and φj are the eigenfunctions of ∆S6 satisfying −∆S6φj = λj φj for every j ∈ N.
Hence, we have

−∆T2 vj =
[

25
126 −

7
24 λj

]
vj , j ∈ N.

Recalling that spec(S6) = {i (i + 5) : i ∈ N}, we have λj ≥ 6 for j ≥ 1, which clearly implies vj ≡ 0 for
j ≥ 1. On the other hand, for j = 0 we have

−∆T2 v0 = 25
126 v

0,

but it is well known that the spectrum of the standard flat torus T2 is given by spec(T2) = { 4π2i : i ∈ N}.
This implies v0 ≡ 0 and thus the non degeneracy of (S6×T2, g) is proven. Theorem 1 can now by applied
to produce on (S6 × T2) ] (S6 × T2) a family of constant σ3–curvature metrics lying in Γ+

3 . Moreover,
since these metrics are obtained via conformal perturbation of approximate solutions which agree with
gi on Mi \ B(pi, 1), we conclude that the σ3–Yamabe metrics produced on (S6 × T2) ] (S6 × T2) are not
locally conformally flat.

The plan of the paper is the following: in Section 2 we define the σk–Schwarzschild metric. In Section 3
we construct the approximate solution metrics {gε}ε on the connected sum Mε. In Section 4 we provide
existence, uniqueness and ε–a priori estimates for solutions to the linearized problem. In Section 5 we deal
with the nonlinear analysis and we will conclude the proof of Theorem 1 by means of a Newton iteration
scheme. Finally, in Section 6 we will illustrate with two counterexamples the geometric obstruction which
prevent the extension of our gluing theorem to the case 2k ≥ n.

Acknowledgments. This project started when the second author was a post–doc at the Max-Planck-
Institut für Gravitationsphysik. The authors are partially supported by the Italian project FIRB–IDEAS
“Analysis and Beyond”.
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2 σk–Schwarzschild metric on R× Sn−1

As anticipated in the introduction, the first step in our strategy amounts to build approximate solutions
on the connected sum of (M1, g1) and (M2, g2). To do that we need to change the metric in a neighborhood
of the points that we are going to excise, obtaining a new metric in the so called neck region. In the
scalar curvature case a clever choice turns out to be the Schwarzschild metric. This is a complete scalar
flat metric conformal to the cylindrical metric gcyl on R× Sn−1. The explicit formula is given by

g := cosh
(
n−2

2 t
) 4
n−2 gcyl.

In a similar way, it is easy to construct a complete conformal metric on R×Sn−1 with zero σk–curvature,
for all 2 ≤ 2k < n. Namely

Proposition 2.1. Let gv be a metric on R × Sn−1 defined by gv = v4k/(n−2k)gcyl, v being a positive
smooth function depending only on t ∈ R. Let us define the quantity

h(t) := v2(t)−
(

2k
n−2k

)2
v̇2(t).

Then, if h0 := h(0) > 0, the family of positive solutions v = v(t) to the equation

σk(Bgv ) = 0 in R× Sn−1

is given by v(t) =
√
h0 cosh

(
n−2k

2k t− c
)
, c ∈ R.

Remark 2.2. We will refer to the metric defined by

gΣ := v
4k

n−2k

Σ gcyl,

with vΣ := cosh
(
n−2k

2k t
)
, as the σk–Schwarzschild metric.

Remark 2.3. We notice that the family of solutions v4k/(n−2k)gcyl on R×Sn−1 obtained in the proposition
above give rise to a family of complete conformal radial metrics u(|x|)4k/(n−2k)gRn on Rn \ {0} with zero
σk–curvature via the correspondence u(|x|) = |x|−(n−2k)/2kv(− log |x|).

Proof. For convenience the cylindrical metric gcyl will also be denoted by dt2 + dθ2, where dθ2 is the
standard metric on Sn−1. Moreover let us denote by Acyl the Schouten tensor of the cylindrical metric.
We have for Agv .

Agv = Acyl − 2k
n−2kv

−1∇2v + 2kn
(n−2k)2 v

−2dv ⊗ dv − 2k2

(n−2k)2 v
−2|dv|2gcyl, (2.1)

where ∇2 and | · | are computed with respect to gcyl. Since the Schouten tensor of the cylindrical metric
is explicitly given by

Acyl = − 1
2dt

2 + 1
2dθ

2.

From (1.2) we get

(Bgv )tt = −n−2k
4k v2 − vv̈ + n−k

n−2k v̇
2 = −n−2k

4k

(
n−k
k

)
h+ v

[(
n−2k

2k

)2
v − v̈

]
(Bgv )ij =

(
n−2k

4k v2 − k
n−2k v̇

2
)
δ ij = n−2k

4k h δ ij (2.2)

(Bgv )tj = 0 = (Bgv )it,

for 1 ≤ i, j ≤ n− 1. A straightforward computation yields

σk(Bgv ) =
(
n−1
k−1

) (
n−2k

4k h
)k−1

v
[(
n−2k

2k

)2
v − v̈

]
.

Since h0 := h(0) > 0 and v > 0, by continuity, the zero σk–curvature equation is equivalent to

v̈(t) =
(
n−2k

2k

)2
v(t) in R

and h(t) = h0 for all t ∈ R. The statement follows at once.
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Since in the following we will need to study the mapping properties of the linearized operator about (a
(scaled version of) the σk–Schwarzschild metric, we consider the conformal perturbation,

s 7−→ gs := (vΣ + sw)
4k

n−2k gcyl,

for s ∈ R and w ∈ C∞
(
R× Sn−1

)
. Obviously g0 = gΣ. Let now As be the Schouten tensor of the metric

gs, and let Bs be the symmetric (1, 1)–tensor defined by

Bs := n−2k
2k (vΣ + sw)

2n
n−2k g−1

s ·As. (2.3)

Notice that A0 = AgΣ
and B0 = BgΣ

.

Even thought our main purpose is to solve the equation (1.3), it will be useful to understand the features
of the linear operator given by

L0
cyl(vΣ)[w] :=

d

ds

∣∣∣∣
s=0

σk (Bs) .

To calculate the derivative of σk (Bs), we use the formula

d

ds
σk (Bs) = tr Tk−1 (Bs) ·

dBs
ds

, (2.4)

where, for an integer 0 ≤ m ≤ n, Tm (Bs) is defined as

Tm(Bs) :=
∑m
j=0 (−1)j σm−j(Bs) Bjs

and it is known as the m-th Newton transform of Bs (in the formula above we use the conventions:
B0 = In and σ0(Bs) = 1). As a consequence we get:

d

ds

∣∣∣∣
s=0

σk (Bs) =
∑k−1
j=0 (−1)j σk−1−j (B0) tr Bj0 ·

dBs
ds

∣∣∣∣
s=0

. (2.5)

To make the expression above more explicit, we need to compute the coefficients of Bs and their derivatives
at s = 0. For the coefficients of B0, from formulae (2.2), we obtain

(B0)tt = n−2k
4k

k−n
k hΣ and (B0) ij = n−2k

4k hΣ δ ij .

Replacing v by vΣ + sw in the identity (2.1), one can easily obtain the expression for As. Using (2.3)
again, it is straightforward to see that:

d (Bs)
t
t

ds

∣∣∣∣
s=0

= − vΣ ∂2
tw + 2(n−k)

n−2k ˙vΣ ∂tw −
(
n−2k

2k vΣ + v̈Σ

)
w

d (Bs)
i
j

ds

∣∣∣∣∣
s=0

= − vΣ gilθ
(
∇2
θ w
)
lj
− 2k

n−2k ˙vΣ δ
i
j ∂tw + n−2k

2k vΣ δ
i
j w (2.6)

d (Bs)
t
j

ds

∣∣∣∣
s=0

= − vΣ ∂t∂jw + n
n−2k ˙vΣ ∂jw

d (Bs)
i
t

ds

∣∣∣∣
s=0

= gilθ

(
− vΣ ∂t∂lw + n

n−2k ˙vΣ ∂lw
)

This implies, for 1 ≤ j ≤ k − 1,

tr B j
0 ·

dBs
ds

∣∣∣∣
s=0

=
(
n−2k

4k

)j
hjΣ vΣ

{(
k−n
k

)j [− ∂2
tw + 2(n−k)

n−2k

˙vΣ

vΣ
∂tw −

(
n−2k

2k +
v̈Σ

vΣ

)
w

]
+

[
−∆θ w − 2k(n−1)

n−2k

˙vΣ

vΣ
∂tw + (n−2k)(n−1)

2k w

] }
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and

σk−1−j(B0) =
(
n−2k

4k

)k−1−j
hk−1−j

Σ
1+j
k

(
n

k−1−j
)
. (2.7)

Using these in the formal expression of the derivative of σk(Bs) and using a similar computation as in
[24], we obtain

L0
cyl(vΣ)[w] = −Cn,k vΣ h

k−1
Σ

[
∂2
t + n−k

k(n−1)∆θ −
(
n−2k

2k

)2]
w, (2.8)

where Cn,k =
(
n−1
k−1

) (
n−2k

4k

)k−1
and hΣ ≡ 1.

Notice that from (2.7) one has immediately that the σk–Schwarzschild metric gΣ belongs to Γ
+

k ∩ Γ+
k−1,

for 2 ≤ 2k < n.

3 Approximate solutions and perturbative approach

In this section we construct the connected sum Mε := M1]εM2 of the two manifolds (M1, g1), (M2, g2)
obtained by excising two geodesic balls of radius ε ∈ (0, 1) centered at p1 ∈ M1 and p2 ∈ M2 and
identifying the two left over boundaries. At the same time we will define on Mε a new metric gε which
agrees with the old ones outside the balls of radius one and which is modeled on (a scaled version of) the
σk–Schwarzschild metric in the neck region.

To describe the construction we consider the diffeomorphisms given by the exponential maps

exppi : B(Opi , 1) ⊂ TpiMi −→ B(pi, 1) ⊂Mi, i = 1, 2.

Next, to fix the notation, we identify the tangent spaces TpiMi with Rn. It is well known that this
identification yields normal coordinates centered at the points pi, namely

x : B(p1, 1) −→ Rn and y : B(p2, 1) −→ Rn.

We introduce now asymptotic cylindrical coordinates on the punctured ball B∗(0, 1) = x (B∗(p1, 1))
setting t := log ε−log |x| and θ := x/|x|. In this way we have the diffeomorphism B∗(0, 1) ' (log ε,+∞)×
Sn−1. Analogously, we consider the diffeomorphism y (B∗(p2, 1)) = B∗(0, 1) ' (−∞,− log ε)×Sn−1, this
time setting t := − log ε+ log |y| and θ := y/|y|.

In order to define the differential structure of Mε, we excise a geodesic ball B(pi, ε) from Mi, obtaining
an annular region A(pi, 1, ε) := B(pi, 1) \ B(pi, ε), i = 1, 2. The asymptotic cylindrical coordinates
introduced above can be used to define a natural coordinate system on the neck region

(t, θ) : [A(p1, 1, ε) tA(p2, 1, ε)] / ∼ −→ (log ε,− log ε)× Sn−1 =: Tε,

where ∼ denotes the equivalence which identifies the boundaries of B(p1, ε) and B(p2, ε), namely

q1 ∼ q2 ⇐⇒ x/|x|(q1) = y/|y|(q2) and |x|(q1) = ε = |y|(q2).

Clearly, in this coordinates, the two identified boundaries correspond now to the set {0} × Sn−1. To
complete the definition of the differential structure of the connected sum Mε it is sufficient to consider
the old coordinate charts on Mi \B(pi, 1), i = 1, 2.

We are now ready to define on Mε the approximate solution metric gε. First of all we define gε to be
equal to the gi on Mi \B(pi, 1), i = 1, 2. To define gε in the neck region, we start by observing that the
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choice of the normal coordinate system allows us to expand the two metric g1 and g2 around p1 and p2

respectively as

g1 =
[
δαβ +O

(
|x|2
)]
dxα ⊗ dxβ and g2 =

[
δαβ +O

(
|y|2
)]
dyα ⊗ dyβ .

In terms of the (t, θ)–coordinates we get, for i = 1, 2,

gi = u
4k

n−2k

i

[
(1 + a

(i)
tt )dt⊗ dt + (gθjl + a

(i)
jl )dθj ⊗ dθl + a

(i)
tj (dt⊗ dθj + dθj ⊗ dt)

]
,

where, as usual, gθjl are the coefficients of the round metric on Sn−1, the conformal factors ui are given
by

u1 := ε
n−2k

2k e−
n−2k

2k t and u2 := ε
n−2k

2k e
n−2k

2k t

and, finally, the remainders a
(i)
· ·· verify

a
(1)
· ·· = O

(
ε2e−2t

)
and a

(2)
· ·· = O

(
ε2e2t

)
.

We choose a cut-off functions η : (log ε,− log ε) → [0, 1] to be a non increasing smooth function which
is identically equal to 1 in (log ε,−1] and 0 in [1,− log ε), and we choose another cut-off function
χ : (log ε,− log ε) → [0, 1] to be a non increasing smooth function which is identically equal to 1 in
(log ε,− log ε− 1] and which satisfies limt→− log ε χ = 0. Using these two cut-off functions, we can define
a new conformal factor uε by

uε := χ(t)u1 + χ(−t)u2

and the metric gε by

gε = u
4k

n−2k
ε

[
(1 + att)dt⊗ dt + (gθjl + ajl)dθ

j ⊗ dθl + atj(dt⊗ dθj + dθj ⊗ dt)
]
, (3.1)

where the remeinder a· ·· verifes

a· ·· = η a
(1)
· ·· + (1− η) a

(2)
· ·· = O

(
ε2 cosh(2t)

)
.

We want to point out that the conformal factor uε in (log ε+ 1,− log ε− 1)× Sn−1 is a scaled version of
the conformal factor vΣ of the σk–Schwarzschild metric, namely

uε(t) = ε
n−2k

2k cosh
(
n−2k

2k t
)

in (log ε+ 1,− log ε− 1)× Sn−1. In force of this, the approximate solution metric gε can be viewed as a

perturbation of a scaled version of gΣ = v
4k/(n−2k)
Σ gcyl, namely

gε =
(
2 ε

n−2k
2k

) 4k
n−2k gΣ +Aε, (3.2)

where

Aε = u
4k

n−2k
ε

[
attdt⊗ dt+ ajldθ

j ⊗ dθl + atj(dt⊗ dθj + dθj ⊗ dt)
]
,

and the coefficients verify Aε· ·· = u
4k

n−2k
ε a· ·· = O

(
ε
n+2k

2k cosh
(
n+2k

2k t
))

.

To simplify all the computations in the analysis we will make the following assumption

Assumption 3.1. The metric gi is conformally flat in B(pi, 1), i = 1, 2.
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Later we will show that this assumption can be removed. Now we are going to describe how the expression
of gε simplifies under the conformally flatness of the metric around the gluing locus. First of all, we observe
that for i = 1, 2 the metric gi can now be expanded around pi as

gi = u
4k

n−2k

i (1 + ci) gcyl, (3.3)

with c1 = O
(
ε2e−2t

)
and c2 = O

(
ε2e2t

)
. Thus, it is natural to define the approximate solution metric gε

as

gε = u
4k

n−2k
ε (1 + c) gcyl, (3.4)

where c := η c1 + (1− η) c2 = O
(
ε2 cosh(2t)

)
. Notice that this definition perfectly agrees with (3.1) with

ci = a
(i)
tt , a

(i)
jl = ci g

θ
jl and a

(i)
tj = 0, i = 1, 2.

To summarize, we fix a background metric ḡ defined by

ḡ :=

{
gi on Mi \B(pi, 1)

u
− 4k
n−2k

ε gε on A(p1, 1, ε) tA(p2, 1, ε)]/ ∼

In particular we notice that ḡ = (1 + c) gcyl on A(p1, 1, ε) t A(p2, 1, ε) under the Assumption 3.1. In
order to write the approximate solution gε as a conformal deformation of the background metric ḡ, it is
sufficient to extend the definition of uε setting uε ≡ 1 on Mε \ Tε. It is clear that

gε = u
4k

n−2k
ε ḡ .

To conclude the description of the approximate solutions we observe that from our definition it follows
immediately that gε → gi with respect to the Cm–topology on the compact subsets of Mi \ {pi}, for
i = 1, 2 and every m ∈ N. A consequence of this fact is the following

Lemma 3.2. Let g1 and g2 be two (k − 1)–admissible metrics on M1 and M2, respectively. Then there
exists a positive real number ε0 > 0 only depending on n, k and the C2–norm of the coefficients of the
metrics g1 and g2 such that, for every ε ∈ (0, ε0], the approximate solution gε lies in Γ+

k−1.

Proof. We argue by contradiction. We fix an index j ∈ {1, . . . , k− 1} and we suppose that there exists a
sequence of parameters {εi}i∈N and a corresponding sequence of points qi ∈Mεi , i ∈ N such that

• εi → 0, as i→ +∞,

• σj
(
g−1
εi Agεi

)
(qi) ≤ 0, i ∈ N.

Without loss of generality we can suppose, up to pass to a subsequence, that for every i ∈ N the point qi
belongs to M1 \ B(p1, εi). Depending on the behavior of the qi’s, we have to distinguish three possible
cases.

Case 1: There exists a subsequence of qi’s such that

qi −→ q∞ ∈M1 \ {p1}.

Since by construction the metrics gεi ’s converge to g1 on the compact sets of M1 \ {p1} with respect to
the C2–norm, we deduce that σj

(
g−1

1 Ag1

)
(q∞) ≤ 0, which is a contradiction.

Case 2: There exists a subsequence of qi’s such that

distg1(qi, p1) = O
(
εi
)
, as i→ +∞.

Since qi → p1, the sequence of points qi will stay definitely in the annulus A(p1, 1, εi), which is mapped
to (log εi, 0)×Sn−1 via the asymptotic cylindrical coordinates (t, θ). Setting ti := t(qi), we have that, for
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large enough i’s, (ti, θ) ∈ [−C, 0]× Sn−1, for some fixed positive constant C > 0. In this compact region
we have that the Schouten tensors Agεi ’s of the approximate solutions gεi ’s converge uniformly to the
Schouten tensor AgΣ of the σk–Schwarzschild metric gΣ, according to the conformal transformation law
(2.1). The contradiction follows from (2.7).

Case 3: There exists a subsequence of qi’s such that

distg1(qi, p1) = o (εi) as i→ +∞.

It is convenient to set αi := distg1
(qi, p1). Again, since qi → p1, the sequence of points qi will stay

definitely in the annulus A(p1, 1, εi), which is mapped to N1,εi = (log εi, 0) × Sn−1 via the asymptotic
cylindrical coordinates (t, θ). In this case we have that ti = t(qi)→ −∞, as i→ +∞. To investigate the
behavior of the Schouten tensors Agεi ’s about the points qi’s, it is preferable to translate and rescale all
of our quantities by setting

ĝεi(t, θ) := α
− 4k
n−2k

i gεi(t+ ti, θ) =
[
α−1
i uεi(t+ ti)

] 4k
n−2k (1 + c(t+ ti, θ)) gcyl

In terms of these new objects, we have by assumption that σj
(
g−1
cyl Aĝεi

)
(0, θ) ≤ 0. For any fixed positive

constant C > 0 we have now that on the compact subsets of the form [−C,C] × Sn−1 the functions
α−1
i uεi( · + ti) converge to 1 in C2–norm, we deduce that the Schouten tensors Aĝεi ’s converge uniformly

to Acyl. A straightforward computation yields

σj
(
g−1
cyl Acyl

)
= 2−j

(
n
j

)(
n−2j
n

)
> 0, (3.5)

which is a contradiction.

To introduce the analysis which follows, we recall that our ultimate goal is to show that, up to choose the
parameters ε in a suitable range, it is possible to find a smooth perturbation w of the conformal factor
uε such that

Nḡ(uε + w) = 0 , (3.6)

where the nonlinear operator is defined as in (1.3).

As mentioned in the introduction, we want to solve the fully nonlinear equation (3.6) by means of a fixed
point argument. To do that, we consider the Taylor expansion:

Nḡ(uε + w) := Nḡ(uε) + Lḡ(uε)[w] + Qḡ(uε) (w), (3.7)

where according to (1.5)

Lḡ(uε) [w] :=
d

ds

∣∣∣∣
s=0

Nḡ (uε + sw) (3.8)

represents the linearized operator of Nḡ around the approximate solution uε and

Qḡ(uε) (w) := −
∫ 1

0

[
Lḡ(uε) − Lḡ(uε + sw)

]
[w] ds

is the quadratic remainder.

Now, we are ready to study the mapping properties of Lḡ(uε). In particular we will find the functional
setting where the equation

Lḡ(uε)[w] = f inMε (3.9)

11



can be solved with ε–uniform a priori estimates. Combining this with the estimates of the error term

Eḡ(uε)(w) := −Nḡ(uε)−Qḡ(uε) (w),

we will be able to solve the fixed point problem

w = Lḡ(uε)−1 ◦ Eḡ(uε)(w) . (3.10)

To solve (3.9) we split our domain, namely the connected sum manifold Mε, into the regions Ωi,ε :=
Mi \B(pi, ε), i = 1, 2. Notice that ∂Ω1,ε = ∂Ω2,ε by construction.
As a first step we will produce solutions wi to the Dirichlet problem{

Lḡ(uε) [wi] = f Ωi,ε

wi = 0 ∂Ωi,ε

Clearly w1 and w2 have a C0–matching on the common boundary {0} × Sn−1, but to produce a (weak)
global solution on Mε, one needs to improve this matching to be at least C1. For this purpose we set

w :=

{
w1 + w1 Ω1,ε

w2 + w2 Ω2,ε

(3.11)

where wi are two corrections which verify the homogenous problem{
Lḡ(uε) [wi] = 0 Ωi,ε

wi = ψ ∂Ωi,ε

with the same Dirichlet boundary data ψ and the C1–matching condition

∂ν(w1 + w1) = −∂ν(w2 + w2),

where ν denotes the outward normal to Ω1,ε. We want to point out that in the second part of this
program, the datum will be the gap ∂ν(w1 + w2) between the normal derivatives of w1 and w2 and the
unknown will be represented by the Dirichlet boundary data ψ. The existence of such a function ψ will be
deduced from the invertibility of (the difference of) Dirichlet to Neumann maps (for a precise definition
see Section 4.3).

4 Linear analysis

The aim of this section is to provide existence, uniqueness and a priori estimates for solutions to the
linear problem

Lḡ(uε) [w] = f Mε. (4.1)

As anticipated in last part of the previous section, we start by dividing the connected sum manifold Mε

into the subdomains Ω1,ε and Ω2,ε and since the situation is symmetric we will focus for most part of the
time on the domain Ω1,ε and we will study the problem{

Lḡ(uε) [w] = f Ω1,ε

w = 0 ∂Ω1,ε

(4.2)

Most part of the work here will amount to establish uniform a priori estimates for solutions to this problem
which do not depend on the necksize parameter ε. To do that we will employ a blow–up technique which,
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in the limit, will lead us to analyze some model situations, depending on where the blow–up points are
going to concentrate. As it will be made clear in the proof of Propsition 4.4, in two of the three possible
cases, when the blow–up points concentrate on the neck region, we will take advantage of our geometric
construction, whereas in the remaining one, when the blow–up points stay away from the gluing locus,
we will exclude the blow–up phenomenon thanks to the non degeneracy condition 1.1 and Corollary 4.3,
which is the main issue of the following subsection.

4.1 A removable singularities lemma

This subsection, whose content is somehow independent of the rest of the paper, is concerned with the
proof of a removable singularities result for the linearized σk–Yamabe equation on the puctured unit ball
endowed with a conformally flat metric, see Corollary 4.3.

To begin, let u = u(s, θ), (s, θ) ∈ (0,+∞)× Sn−1, be a smooth solution to the equation

Ncyl(u) := σk (Bgu)−
(
n
k

) (
n−2k

4k

)k
u

2kn
n−2k = 0,

on (0,+∞)× Sn−1. We recall that gu = u
4k

n−2k gcyl and

Bgu = n−2k
2k g−1

cyl

[
u2Acyl − 2k

n−2ku∇
2u+ 2kn

(n−2k)2 du⊗ du− 2k2

(n−2k)2 |du|2gcyl
]
.

Suppose to have the expansion

u(s, θ) = e−
n−2k

2k s(1 + b0(s, θ)),

where b0(s, θ) = O
(
e−2s

)
. Passing from cylindrical to the flat background metric on the punctured ball,

this corresponds to the usual expansion of gu in normal coordinates centered at the removed point.

Lemma 4.1. Under this hypothesis, if 4 ≤ 2k < n, then the solution u verifies

u(s, θ) = v(s)(1 + b(s, θ)),

where v(s) = cosh−
n−2k

2k (s− s0)(1 + c(s)), for some s0 ∈ R, c(s) = O
(
e−2s

)
and b(s, θ) = O

(
e−2ks

)
.

Proof. First we observe that

du = ∂su ds+ u(1 + b0)−1∂jb0 dθ
j = ∂su ds+ u(1 + b0)−1dθb0,

∇2
cylu = ∂2

su ds⊗ ds+ ∂2
sju (ds⊗ dθj + dθj ⊗ ds) +∇2

θu,

where dθ and ∇2
θ denote the exterior differential and the Hessian computed with respect to the standard

differential structure and standard metric of Sn−1. Hence, the components of Bgu can be written as

2k
n−2k (gcylBgu)ss = − 1

2u
2 − 2k

n−2ku ∂
2
su+ 2k(n−k)

(n−2k)2 |∂su|2 − 2k2

(n−2k)2u
2(1 + b0)−2|dθb0|2

= − 1
2u

2 − 2k
n−2ku ∂

2
su+ 2k(n−k)

(n−2k)2 |∂su|2 +O
(
u2e−4s

)
,

2k
n−2k (gcylBgu)sj =

(
2k

n−2k

)2
u ∂su(1 + b0)−1∂jb0 + 2k

n−2ku
2(1 + b0)−2∂jb0∂sb0 − 2k

n−2ku
2(1 + b0)−1∂2

sjb0

=
(

2k
n−2k

)2
u ∂su ∂jb0 − 2k

n−2ku
2∂2
sjb0 +O

(
u2e−4s

)
,

2k
n−2k (gcylBgu)ij = 1

2u
2gθij − 2k

n−2ku
2(1 + b0)−1(∇2

θb0)ij + 2kn
(n−2k)2u

2(1 + b0)−2(dθb0 ⊗ dθb0)ij

− 2k2

(n−2k)2 |∂su|2gθij − 2k2

(n−2k)2u
2(1 + b0)−2|dθb0|2gθij

= 1
2

(
u2 −

(
2k

n−2k

)2|∂su|2) gθij − 2k
n−2ku

2(∇2
θb0)ij +O

(
u2e−4s

)
13



For algebraic reasons σk(Bgu) can be written as

σk(Bgu) =
∑
αl+βm=k C

lm
αβ

[
tr(Blgu)

]α [
tr(Bmgu)

]β
,

where Clmαβ are constant coefficients and we assume that α, β, l,m ∈ N, with 0 ≤ m, l ≤ k. A direct
computation shows that for every 0 ≤ l ≤ k

tr(Blgu) = [(Bgu)ss]
l +
∑n−1
i=1

(
Blgu

)i
i
+O

(
u2le−4s

)
.

Moreover, if we set

h = h(u) := u2 −
(

2k
n−2k

)2|∂su|2,
we have

2l
∑n−1
i=1

(
B l
gu

)i
i

= hl tr
(
In−1 − 4k

n−2ku
2h−1∇2

θb0 +O
(
u2h−1e−4s

))l
= hl tr

(
In−1 − 4kl

n−2ku
2h−1∇2

θb0 +O
(
u2h−1e−4s

))
= hl

(
(n− 1)− 4kl

n−2ku
2h−1∆θb0

)
+O

(
u2le−4s

)
.

In force of this considerations we obtain that

0 = Ncyl(u) = σk (Bgu)−
(
n
k

) (
n−2k

4k

)k
u

2kn
n−2k

=
[
An,k u (∂su)−1

]
· ∂s
(
hk − u

2kn
n−2k

)
+
[
P2k(u, ∂su)

]
·∆θb0 + Q(u, ∂u, ∂2u),

where An,k is a constant only depending on n and k, P2k(·, ··) is an homogeneous polynomial of degree
2k and the reminder Q(u, ∂u, ∂2u) verifies the estimate Q(u, ∂u, ∂2u) = O

(
u2ke−4s

)
. The gain e−4s is

due to the presence of (at least) quadratic terms in b0 and its derivatives. Using the eigenfunctions
decomposition, we write

b0(s, θ) = b00(s) +
∑+∞
j=1 b

j
0(s)φj(θ) and ∆θb0(s, θ) = −

∑+∞
j=1 λj b

j
0(s)φj(θ),

where −∆θ φj = λj φj , j ∈ N. Since we have

hk = O
(
e−ns

)
and u

2kn
n−2k = O

(
e−ns

)
,

k ≥ 2 and n ≥ 5, we infer from the equation above that

bj0(s) = O
(
e−4s

)
, j ≥ 1.

So we have found that u expands as

u(s, θ) = v(s)(1 + b(s, θ)),

where

v(s) := e−
n−2k

2k s(1 + b00(s)) and b(s, θ) := (1 + b00(s))−1∑+∞
j=1 b

j
0(s)φj(θ) = O

(
e−4s

)
.

We have

u(∂su)−1 = − 2k
n−2k (1 +O

(
∂sb

0
0

)
),

hk − u
2kn
n−2k = hkv − v

2kn
n−2k +O

(
v2k(∂sb

0
0)k−1(∂sb)

)
+O

(
v

2kn
n−2k

1 b
)
,

∆θb0 = (∆θb) (1 + b00),

where
hv := v2 −

(
2k

n−2k

)2
v̇2.
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Combining the new expression for u with the same formal computation used to give a first expansion for
the coefficients of Bgu , we obtain

−
[
An,k

(
2k

n−2k

) ]
· ∂s

(
hkv − v

2kn
n−2k

)
+
[
P2k(v, ∂sv)

]
·∆θb + R + S = 0, (4.3)

where
R = O

(
e−(n+2)s

)
and S = O

(
(∆θb)e

−(n−2k+2)s
)
.

This comes from the fact that the leading term of the reminders R and S are given by ∂sb
0
0 ∂s
(
hkv−v

2kn
n−2k

)
and v2kb00 ∆θb respectively. At this level, we know that ∆θb = O

(
e−4s

)
, so that S = O

(
e−(n−2k+6)

)
. If

k = 2, then R and S decay with the same velocity, namely O
(
e−(n+2)

)
. For k > 2, we have n− 2k+ 6 <

n + 2. Using again the eigenfunction decomposition, since the first term of the left hand side is radial,
we obtain that

b(s, θ) = O
(
e−6s

)
.

Hence we have obtained an improvement of the expansion for the function b which will improve the
estimate of the reminder S. Iterating this argument, we will have that, after a finite number of steps, the
decay rate of S will be comparable with the one of R, which remains fixed during the bootstrap. At the
end, both in the cases k = 2 and k > 2, we obtain

b(s, θ) = O
(
e−2ks

)
.

Moreover, projecting (4.3), we obtain

−
[
An,k

(
2k

n−2k

) ]
· ∂s
(
hkv − v

2kn
n−2k

)
+ R0 + S0 = 0, (4.4)

where R0 and S0 are given by

R0(s) :=

∫
Sn−1

Rφ0 dVSn−1 and S0(s) :=

∫
Sn−1

S φ0 dVSn−1 ,

and both of them are O
(
e−(n+2)s

)
. It is now easy to see from equation (4.4) that v(s) ' cosh−

n−2k
2k (s−s0)

for some s0 ∈ R. Plugging the ansatz v(s) = cosh−
n−2k

2k (s− s0)(1 + c(s)) into the equation (4.4) we have
that the reminder c(s) is estimated as a O

(
e−2s

)
.

We consider now a conformal perturbation of the metric gu, namely, for r ∈ R and w ∈ C2(R × Sn−1),
we consider the assignment

r 7→ gr := (u+ rw)
4k

n−2k · dt2 ⊗ dθ2 .

Obviously g0 = gr. Let now Ar be the Schouten tensor of the metric gr, and let Br be the symmetric
(1, 1)-tensor defined by

Br := n−2k
2k (u+ rw)

2n
n−2k g−1

r ·Ar .

Again A0 = Agu and B0 = Bgu . We compute

Lcyl(u)[w] :=
d

dr

∣∣∣∣
r=0

Ncyl(u+ rw) =
d

dr

∣∣∣∣
r=0

σk (Br )−
(
n
k

) (
n−2k

4k

)k d

dr

∣∣∣∣
r=0

(u+ rw)
2nk
n−2k (4.5)

To calculate the derivative of σk (Br), we use the formula

d

dr
σk (Br) = tr Tk−1 (Br) ·

dBr
dr

,
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where, for an integer 0 ≤ h ≤ n, Th (Br) is defined as

Th(Br) :=
∑h
j=0 (−1)j σh−j(Br) Bjr

and it is known as the h-th Newton transform of Br (in the formula above we use the conventions:
B0 = In and σ0(Br) = 1). As a consequence we get:

d

dr

∣∣∣∣
r=0

σk (Br) =
∑k−1
j=0 (−1)j σk−1−j (B0) tr Bj0 ·

dBr
dr

∣∣∣∣
r=0

. (4.6)

From the previous lemma we know that

u(s, θ) = v(s)(1 + b(s, θ)),

where v(s) = cosh−
n−2k

2k (s − s0)(1 + c(s)), for some s0 ∈ R, c(s) = O
(
e−2s

)
and b(s, θ) = O

(
e−2ks

)
.

Hence, the components of Bgu can be written as

2k
n−2k (gcylB0)ss = − 1

2u
2 − 2k

n−2ku ∂
2
su+ 2k(n−k)

(n−2k)2 |∂su|2 − 2k2

(n−2k)2u
2(1 + b)−2|dθb|2

= − 1
2v

2 − 2k
n−2kv v̈ + 2k(n−k)

(n−2k)2 |v̇|2 +O
(
v2e−2ks

)
,

2k
n−2k (gcylB0)sj =

(
2k

n−2k

)2
u ∂su(1 + b)−1∂jb+ 2k

n−2ku
2(1 + b)−2∂jb∂sb− 2k

n−2ku
2(1 + b)−1∂2

sjb

= O
(
v2e−2ks

)
,

2k
n−2k (gcylB0)ij = 1

2u
2gθij − 2k

n−2ku
2(1 + b)−1(∇2

θb)ij + 2kn
(n−2k)2u

2(1 + b)−2(dθb⊗ dθb)ij

− 2k2

(n−2k)2 |∂su|2gθij − 2k2

(n−2k)2u
2(1 + b)−2|dθb|2gθij

= 1
2

(
v2 −

(
2k

n−2k

)2|v̇|2) gθij +O
(
v2e−2ks

)
= 1

2hv g
θ
ij +O

(
v2e−2ks

)
It is easy to see that:

d (Br)
s
s

dr

∣∣∣∣
r=0

= − v ∂2
sw + 2(n−k)

n−2k v̇ ∂sw −
(
n−2k

2k v + v̈
)
w +Ass[w]

d (Br)
i
j

dr

∣∣∣∣∣
r=0

= − v gilθ
(
∇2
θ w
)
lj
− 2k

n−2k v̇ δ
i
j ∂sw + n−2k

2k v δ ij w +Aij [w]

d (Br)
s
j

dr

∣∣∣∣
r=0

= − v ∂s∂jw + n
n−2k v̇ + ∂jw +Asj [w]

d (Br)
i
s

dr

∣∣∣∣
r=0

= gilθ

(
− v ∂s∂lw + n

n−2k v̇ ∂lw
)

+Ais[w],

where Ass, A
i
j , A

s
j , A

i
s, i, j = 1, . . . , n − 1, are second order linear operators whose coefficients depend on

v, b and their derivatives up to order two and can be estimated as O
(
v e−2ks

)
. Hence, from (4.6), we

obtain that the linearized operator (4.5) splits in

Lcyl(u)[w] = Lcyl(v)[w] + P(v, v̇, v̈, b, ∂b, ∂2b)[w],

where P is a second order linear operators with coefficients estimated by O
(
v2k−1e−2ks

)
. Now, we recall

that from Lemma 4.1 we have
v(s) = v̄(s)(1 + c(s)),

where v̄(s) := cosh−
n−2k

2k (s− s0) for some s0 ∈ R and c(s) = O
(
e−2s

)
. Hence we can split Lcyl(v) as

Lcyl(v)[w] = Lcyl(v̄)[w] + M(v, v̇, v̈)[w], (4.7)
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where M is a second order linear operator with coefficients estimated by O
(
e−

2kn−n−2k
2k se−2s

)
and Lcyl(v̄)

is given by

Lcyl(v̄)[w] = −Cn,k v̄
k(n−2)
n−2k

(
∂2
s + ∆Sn−1 −

(
n−2

2

)2
+ n(n+2)

4 v̄
4k

n−2k
)[
v̄
n(k−1)
n−2k w

]
, (4.8)

where Cn,k =
(
n−1
k−1

) (
n−2k

4k

)k−1
. Hence it is easy to see that the coefficients of Lcyl(v̄) can be estimated

by O
(
e−

2kn−n−2k
2k s

)
. As a consequence we have that, for s ∼ +∞, the relevant part of the linearized

operator Lcyl(u) is given by Lcyl(v̄).

In force of these observations we are in the position to prove the following

Lemma 4.2. Suppose that u ∈ C2((0,+∞)× Sn−1) verifies

Ncyl(u) = 0 on (0,+∞)× Sn−1

as well as the expansion u(s, θ) = e−
n−2k

2k s(1 + b0(s, θ)) with b0(s, θ) = O
(
e−2s

)
.

Let w ∈ C2((0,+∞)× Sn−1) be such that{
Lcyl(u)[w] = 0 on (0,+∞)× Sn−1

(cosh s)−
n(k−1)

2k |w(s, θ)| ≤ C eδs,

for some positive constant C > 0 and some weight −n−2
2 < δ < n−2

2 . Then

(cosh s)−
n(k−1)

2k |w(s, θ)| ≤ C e−
n−2

2 s.

Proof. First of all we notice that the case k = 1 is well known (see for example [17]). As we have already
seen, for k ≥ 2, the relevant part of the operator Lcyl(u) at s ∼ +∞ is given by Lcyl(v̄), defined as above.
Hence, the asymptotic behavior of w coincides with the one of a function w̄ which satisfies

Lcyl(v̄)[w̄] = 0 on (0,+∞)× Sn−1

and (cosh s)−
n(k−1)

2k |w̄(s, θ)| ≤ C eδs, with C and δ as above. From (4.8) we have that z := (cosh s)−
n(k−1)

2k w̄
satisfies (

∂2
s + ∆Sn−1 −

(
n−2

2

)2
+ n(n+2)

4 cosh−2(s− s0)
)
[z] = 0 on (0,+∞)× Sn−1

and |z(s, θ)| ≤ C eδs. Projecting along the eigenfunctions of ∆Sn−1 and using standard ODE’s arguments
we obtain that

|z(s, θ)| ≤ C e−
n−2

2 s.

The statement follows at once.

Thanks to Lemma 4.2 we are now able to prove the following removable singularities result

Corollary 4.3. Let g = (1 + b0)
4k

n−2k gRn be a conformally flat metric defined on a geodesic ball B(p, 1)
verifying the equation

σk(g−1Ag) = 2−k
(
n
k

)
.

Suppose w̄ satisfies in the sense of distributions

LRn(1 + b0)[w̄] = 0 on B∗(p, 1)

with |w̄(q)| ≤ C|distg(q, p)|−µ for any q ∈ B∗(p, 1) for some positive constant C > 0 and for some weight
parameter 0 < µ < n − 2. Then w̄ is a bounded smooth function on B(p, 1) and satisfies the equation
above on the entire ball.
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Proof. First of all we observe that, using normal coordinates centered at p, we have b0(q) = O
(
|distg(q, p)|2

)
.

Passing to cylindrical coordinates and using the conformal equivariance property (1.4) in order to recover
the cylindrical background metric, we have that the equation satisfied by w̄ becomes

Lcyl(e−
n−2k

2k s(1 + b0(s, θ)))[e−
n−2k

2k sw̄(s, θ)] = 0 on (0,+∞)× Sn−1.

Letting w(s, θ) := e−
n−2k

2k sw̄(s, θ), we deduce from the decay assumption on w̄ that

|w(s, θ)| ≤ C eµse−
n−2k

2k s.

If we define δ := µ− n−2
2 , we have that −n−2

2 < δ < n−2
2 and

|w(s, θ)| ≤ C eδse
n(k−1)

2k s.

We are now in the position to apply Lemma 4.2 obtaining |w(s, θ)| ≤ Ce−n−2k
2k s. From this we get

|w̄| ≤ C on B∗(p, 1).

The standard elliptic theory is now sufficient to conclude that w̄ can be extended through the point p to
a smooth solution on B(p, 1).

4.2 Uniform a priori estimates on Ω1,ε and Ω2,ε

To state the result, we have to introduce the functional setting. For m ∈ N and δ ∈ R, we consider the
weighted Cmδ –norm defined by

‖u‖Cmδ (Ω1,ε) := ‖u‖Cm(M1\B(p1,1)) +

m∑
j=0

sup
(t,θ)∈N1,ε

(ε cosh t)δ+j |∇jgεu|gε(t, θ),

whereN1,ε := (log ε, 0)×Sn−1 and the first term is computed with respected to the metric g1. Analogously,

for β ∈ (0, 1), we introduce the weighted Hölder Cm,βδ –seminorm

[u ]Cm,βδ (Ω1,ε)
:= [u ]Cm,β(M1\B(p1,1)) + sup

(t,θ)∈Tε

{
(ε cosh t)δ+m sup

(t,θ) 6=(t′,θ′)

|∇mgεu(t, θ)−∇mgεu(t′, θ′)|gε
|distgε((t, θ), (t′, θ′))|β

}
,

where, with the standard convention, the difference between the covariant derivatives is justified up to
taking the parallel transport of one of them. The Banach space Cm,βδ (Ω1,ε) is defined by

Cm,βδ (Ω1,ε) :=
{
u ∈ Cm,βloc (Ω1,ε) : ‖u‖Cm,βδ (Ω1,ε)

:= ‖u‖Cmδ (Ω1,ε) + [u]Cm,βδ (Ω1,ε)
< +∞

}
.

We notice that the weighted Banach spaces Cm,βδ (Mε), which will be used in the global analysis, can be
defined in the same way, replacing N1,ε by Tε and M1 \Bp1,1/2 by

(
M1 \Bp1,1/2

)
∪
(
M2 \Bp2,1/2

)
. With

these definitions at hand we are now ready to prove the uniform a priori estimate for solutions to the
linear problem (4.2) on Ω1,ε.

Proposition 4.4. Suppose that δ ∈
(
−n−2k

2k , n−2k
2k

)
and let w ∈ C2,β(Ω1,ε) and f ∈ C 0,β(Ω1,ε) be two

functions satisfying {
Lḡ(uε) [w] = f Ω1,ε

w = 0 ∂Ω1,ε

Then there exist C = C(n, k, δ, β) > 0 and ε0 = ε0(n, k, δ) such that, for every ε ∈ (0, ε0], we have

‖w‖C2,β
δ (Ω1,ε)

≤ C ‖f‖C 0,β

δ−n−2k
2k

(2k−1)
(Ω1,ε)

.
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Proof. Here we just provide the uniform weighted C0–bound

‖w‖C0
δ (Ω1,ε) ≤ C ‖f‖C 0

δ−n−2k
2k

(2k−1)
(Ω1,ε) , (4.9)

since the uniform weighted C2,β–bound will follows easily from sandard scaling argument, see [25].

To prove (4.9) we argue by contradiction. Suppose that there exist a sequence (εi, wi, fi) such that

• εi −→ 0, as i→ +∞,

• ‖wi‖C0
δ (Ω1,εi

) ≡ 1, i ∈ N,

• ‖fi‖C 0

δ−n−2k
2k

(2k−1)
(Ω1,εi

) −→ 0, as i→ +∞

and {
Lḡ(uεi) [wi] = fi Ω1,εi

wi = 0 ∂Ω1,εi

To simplify the argument we introduce the function

ζε(q) :=

{
ε cosh(t(q)) B(p1, 1) \B(p1, ε)

1 M1 \B(p1, 1)

where, according to Section (3), t(q) := log ε− log(distg1(q, p1)). With this notation we oberve that the
weighted norms are equivalent to

‖u‖Cm,βδ (Ω1,ε)
:=

m∑
j=0

sup
Ω1,ε

ζδ+jε |∇jgεu|gε + sup
p 6=q
|min{ζε(p), ζε(q)}|δ+m

|∇mgεu(p)−∇mgεu(q)|gε
|distgε(p, q))|β

.

Now we consider a sequence of points qi ∈ Ω1,εi , i ∈ N, where the maximum of the weighted norm of the
functions wi is achieved, i.e.,

ζδεi(qi) |wi(qi)| = 1.

Depending on the behavior of the qi’s, we have to distinguish three possible cases.

Case 1: There exists a subsequence of qi’s such that

qi −→ q∞ ∈M1 \ {p1}.

From the conformal equivariance property we have that

fi = Lḡ(uεi) [wi] = u
− 2kn
n−2k

εi Lgεi (1) [u−1
εi wi].

From the fact that the approximate solution metrics gεi converge to g1 on the compact subsets of M1\{p1}
with respect to the Cr–topology, r ∈ N, and from the standard elliptic regularity theory, we get that the
functions wi converge in the C2–norm (computed with respect to the metric g1) on each compact subsets
of M1 \ {p1} to a function w∞ which satisfies

Lg1(1)[u−1
1 w∞] = 0 on M1 \ {p1}, (4.10)

in the sense of distributions. Moreover, in the limit point, we have |w∞(q∞)| > 0, which means that w∞
is nontrivial. Using that ‖wi‖C0

δ (Ω1,εi
) = 1 and passing to the limit on the compact subsets we obtain the

estimate
|w∞(q)| ≤ C|distg1

(p1, q)|−δ, q ∈ B∗(p1, 1),
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with δ ∈
(
−n−2k

2k , n−2k
2k

)
and C > 0 a positive constant. This is due to the fact that the weighting

functions ζεi are uniformly comparable to the Riemannian g1–distance to p1. We are going to prove that,
in force of this latter feature, the function u−1

1 w∞ can be extended to a nontrivial solution of (4.10) on the
whole M1. Using the conformal equivariance property (1.4) and the fact that, thanks to the assumption
3.1, we can always write on B(p1, 1)

g1 = (1 + b1)
4k

n−2k gRn ,

with b1(q) = O
(
|distg1(q, p1)|2

)
, we have that equation above implies

LRn(1 + b1)[(1 + b1)u−1
1 w∞] = 0 on B∗(p1, 1).

Recalling that g1 solves the σk–Yamabe equation, and that

|(1 + b1)u−1
1 w∞|(q) ≤ C|distg1

(q, p1)|−
n−2k

2k −δ

we can apply Corollary 4.3 to obtain that u−1
1 w∞ extends through p1 to a nontrivial smooth solution of

Lg1
(1)[u−1

1 w∞] = 0 on M1.

But this contradicts the non degeneracy of the metric g1 on M1 according to Definition 1.1.

Case 2: There exists a subsequence of qi’s such that

qi −→ q∞ = p1, αi/εi = O
(
1
)

as i→ +∞

where αi := ζεi(qi) ' distg1
(qi, p1). Notice that αi/εi ' cosh(ti), where ti := t(qi). Since qi → p1, the

sequence of points qi will stay definitely in the annulus A(p1, 1, εi), which is mapped to (log εi, 0)× Sn−1

via the asymptotic cylindrical coordinates (t, θ). For this reason, with abuse of notation, we can say that
wi(q) = wi(t(q), θ(q)). Hence, we have |wi(qi)| = |wi(ti, θi)| = α−δi . So, if we define

wi := αδiwi,

we have |wi(ti, θi)| = 1, |wi(t, θ)| ≤ (cosh t)−δ, for all (t, θ) ∈ (− log εi, 0]×Sn−1. For all C > 0, we observe
that the sequence of points (ti, θi) will stay definitely in a compact set of the type [−C,−1]× Sn−1 and,
up to a subsequence, they converge to a limit point (t∞, θ∞).

In order to investigate the limit problem we introduce an auxiliary function b defined on Tεi = (log εi,− log εi)×
Sn−1 in such a way that the following identity is satisfied

ḡ = (1 + b)
4k

n−2k gcyl.

It is immediate to verify that b = O
(
ε2
i

)
on the compact subset of Tεi . From the conformal equivariance

property (1.4) applied to the problem{
Lḡ(uεi) [wi] = fi (log εi, 0)× Sn−1

w = 0 {0} × Sn−1

we get[
L0
cyl

(
vΣ(1 + b)

)
− ε2k

i

(
n
k

)(
n−2k

4k

)k 2kn
n−2k

(
vΣ(1 + b)

) 2kn
n−2k−1]

[(1 + b)wi] = (1 + b)
2kn
n−2k ε

−n−2k
2k (2k−1)

i αδi fi

with wi(0, θ) = 0, for every i ∈ N and θ ∈ Sn−1. Since by hypothesis we have supposed that

‖ fi‖C 0

δ−n−2k
2k

(2k−1)
(Ω1,εi

) −→ 0
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and αi/εi = O
(
1
)
, as i→ +∞, we deduce that the right hand side of the expression above tends to zero

in C0
loc

(
(−∞, 0)× Sn−1

)
. Moreover it is easy to see that the coefficients of the linear operator on the left

hand side tends to the ones of

L0
cyl(vΣ) = −Cn,k vΣ

[
∂2
t + n−k

k(n−1)∆θ −
(
n−2k

2k

)2]
in C0

loc

(
(−∞, 0) × Sn−1

)
. By elliptic regularity we obtain the convergence of wi to a function w∞ in

C2
loc

(
(−∞, 0)× Sn−1

)
, which satisfies in the sense of distributions{[
∂2
t + n−k

k(n−1)∆θ −
(
n−2k

2k

)2]
w∞ = 0 (−∞, 0)× Sn−1

w∞ = 0 {0} × Sn−1
(4.11)

Moreover w∞ is nontrivial since, in the limit point, |w∞(t∞, θ∞)| > 0, and clearly verifies the inequality
|w∞(t, θ)| ≤ (cosh t)−δ. Expanding w∞ as

w∞(t, θ) =

+∞∑
j=0

wj∞(t)φj(θ),

where φj are the eigenfunctions of ∆θ satisfying −∆θ φj = λjφj , j ∈ N, we obtain from (4.11) that the
components wj∞ are of the form

wj∞(t) = Ae−µjt +Beµjt,

where A,B ∈ R and

µj :=
[

n−k
k(n−1)λj +

(
n−2k

2k

)2]1/2
.

Since δ ∈
(
−n−2k

2k , n−2k
2k

)
and µj ≥ n−2k

2k > |δ|, we have that A must be zero. On the other hand
the boundary condition implies that B must be zero as well. Hence, w∞ ≡ 0, which contradicts the
nontriviality.

Case 3: There exists a subsequence such that

qi −→ q∞ = p1, αi/εi → +∞ as i→ +∞,

where αi := ζεi(qi) ' distg1
(qi, p1) as before. Again, since qi → p1, the sequence of points qi will stay defi-

nitely in the annulus A(p1, 1, εi), which is mapped to N1,εi = (log εi, 0)×Sn−1 via the asymptotic cylindri-
cal coordinates (t, θ). With the same abuse of notations as in case 2, we have |wi(qi)| = |wi(ti, θi)| = α−δi .
To keep track of the nontriviality of the functions wi in the limit, it is convenient to set

ŵi(t, θ) := αδiwi(t+ ti, θ).

Clearly, we have |ŵi(0, θi)| = 1, |ŵi(t, θ)| ≤ 2 (cosh t)−δ, for all (t, θ) ∈ (log εi − ti,−ti) × Sn−1. To
study the limit problem, we first observe that in this case, due to our definitions, we have ti → −∞ and
log εi − ti → −∞ as i→ +∞. Hence, in the limit, the domain becomes R× Sn−1. We define

ûεi(t) := uεi(t+ ti) and ĝ(t, θ) := [1 + b̂(t, θ)]gcyl,

where b̂(t, θ) := b(t + ti, θ) and we recall that uεi(t + ti) = ε(n−2k)/2k cosh
(
n−2k

2k (t + ti)
)

in this region.
In particular we have that{

Lĝ(ûεi) [ŵi] = αδi fi( · + ti, ·· ) (log εi − ti,−ti)× Sn−1

ŵi = 0 {−ti} × Sn−1

Setting v̂i(t) := (εi/αi)
(n−2k)/2k cosh

(
n−2k

2k (t+ ti)
)

and using the conformal equivariance property (1.4)
we get[
L0
cyl

(
v̂i(1+b̂)

)
−α2k

i

(
n
k

)(
n−2k

4k

)k 2kn
n−2k

(
v̂i(1+b̂)

) 2kn
n−2k−1]

[(1+b̂) ŵi] = (1+b̂)
2kn
n−2kα

−n−2k
2k (2k−1)+δ

i fi( ·+ti, ·· )
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with ŵi(−ti, θ) = 0, for every i ∈ N and θ ∈ Sn−1. Since we have that the functions ŵi are uniformly
far from zero at t = 0, we are interested in the limit behavior of the coefficients of our problem on the
compact subset of R× Sn−1 of the form [−C,C]× Sn−1. In this type of region it is immediate to verify
that b̂ = O(α2

i ) and v̂i are uniformly converging to 1. Since by hypothesis we have supposed that

‖ fi‖C 0

δ−n−2k
2k

(2k−1)
(Ω1,εi

) −→ 0,

we deduce that the right hand side of the expression above tends to zero in C0
loc

(
R × Sn−1

)
. Again by

elliptic regularity we have the convergence of ŵi to a function ŵ∞ in C2
loc(R × Sn−1), which satisfies in

the sense of distributions

L0
cyl(1)[ŵ∞] = −Cn,k

[
∂2
t + n−2k+1

(n−1) ∆θ − (n−2k)2

2k

]
ŵ∞ = 0 R× Sn−1 (4.12)

Moreover, up to a subsequence, we have that θi → θ∞ ∈ Sn−1 and |ŵ∞(0, θ∞)| = 1, hence ŵ∞ is
nontrivial and clearly verifies the inequality |ŵ∞(t, θ)| ≤ 2(cosh t)−δ. Using the separation of variables
as in case 2, we have for ŵ∞ the following expansion

ŵ∞(t, θ) =

+∞∑
j=0

ŵj∞(t)φj(θ).

Hence, we infer from (4.12) that the components ŵj∞ are of the form

ŵj∞(t) = Ae−νjt +Beνjt,

where A,B ∈ R and

νj :=
[
n−2k+1
(n−1) λj + (n−2k)2

2k

]1/2
.

Since δ ∈
(
−n−2k

2k , n−2k
2k

)
and νj ≥ n−2k√

2k
> |δ|, we have that both A and B must be zero. Hence, ŵ∞ ≡ 0,

which contradicts the nontriviality.

We point out that thanks to the Fredholm alternative, see [6], the previous proposition also provides
existence and uniqueness of solutions to problem (4.2), for sufficiently small values of the parameter ε.

As an easy consequence of Proposition 4.4 we get the following

Corollary 4.5. Suppose that δ ∈
(
−n−2k

2k , n−2k
2k

)
and let w ∈ C2,β(Ω1,ε) and ψ ∈ C 2,β(∂Ω1,ε) be two

functions satisfying {
Lḡ(uε) [w] = 0 Ω1,ε

w = ψ ∂Ω1,ε

Then there exist C = C(n, k, δ, β) > 0 and ε0 = ε0(n, k, δ) such that, for every ε ∈ (0, ε0], we have

‖w‖C2,β
δ (Ω1,ε)

≤ C εδ‖ψ‖C 2,β(∂Ω1,ε) .

Proof. It is sufficient to observe that it is always possible to define the extension of ψ as ψ̃(t, θ) := χ(t)ψ(θ),
where χ is a smooth nondecreasing cut-off supported in [−1, 0] with χ(0) = 1. Now we just apply

the previous proposition to the function v := w − ψ̃. The desired estimate follows from the fact that
‖ψ̃‖C2,β

δ (Ω1,ε)
≤ 2εδ‖ψ‖C2,β(∂Ω1,ε) by construction.
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4.3 Dirichlet to Neumann map

We introduce now the Dirichlet to Neumann map for the operator Lḡ(uε) on Ω1,ε. For any Dirichlet data
ψ ∈ C 2,β(∂Ω1,ε), we consider the problem{

Lḡ(uε)w = 0 Ω1,ε

w = ψ ∂Ω1,ε

(4.13)

Thanks to Corollary 4.5 for ε sufficiently small, we have (uniform) a priori estimates, existence and
uniqueness of a solution w1(ψ) to this problem. In force of these considerations, we define the Dirichlet
to Neumann map for the problem (4.13) as

Tε : C2,β(Sn−1) −→ C1,β(Sn−1), Tε : ψ 7−→ ∂tw1(ψ)|∂Ω1,ε
=: ∂νw1(ψ)|∂Ω1,ε

,

where ∂ν will denote the outward normal derivative to Ω1,ε. It follows from the considerations above
that this is a well defined linear operator, which is uniformly bounded in ε, for ε sufficiently small.
The definition can be obviously extended to an operator (denoted in the same manner) acting between
H1(Sn−1) and L2(Sn−1). In this context we will show the following

Proposition 4.6. As ε → 0, the operators Tε converge in norm to a limit operator T0 acting between
H1(Sn−1) and L2(Sn−1). Moreover the operator T0 is determined by its values on the eigenfunctions φj
of the Laplacian on Sn−1, namely

T0 φj =
√

n−k
k(n−1)λj +

(
n−2k

2k

)2
φj j ∈ N

Proof. Let w be the solution to the homogeneous problem (4.13) with boundary datum ψ = φj . Using
the conformal equivariance property (1.4) on (γ log ε, 0)× Sn−1, with γ ∈ (0, 1), we obtain the equation[

L0
cyl

(
vΣ(1 + b)

)
− ε2k

(
n
k

)(
n−2k

4k

)k 2kn
n−2k

(
vΣ(1 + b)

) 2kn
n−2k−1]

[(1 + b)w] = 0.

Since b can be estimated in this region as b = O
(
ε2(1−γ)

)
, we have that the linear operator on the left

hand side can be written as

−Cn,k vΣ

[
∂2
t + n−k

k(n−1)∆θ −
(
n−2k

2k

)2
+ ε2(1−γ) P

]
where P is a linear second order partial differential operator with bounded coefficients. Using separation
of variables we write w as

w =

+∞∑
i=0

wi(t) · φi(θ).

Projecting along the j-th component, we obtain{
∂2
tw

j −
[
n−k
k(n−1)λj +

(
n−2k

2k

)2]
wj + ε2(1−γ)〈P w, φj〉L2(Sn−1) = 0 t ∈ [γ log ε, 0)

wj(0) = 1

As in previous subsection we let µi be the real number

µi :=
√

n−k
k(n−1)λi +

(
n−2k

2k

)2
i ∈ N.

Let χ be a positive smooth non decreasing cutoff function defined on [log ε, 0], such that χ(t) = 1 for all
t ∈ [γ log ε + 1, 0] and χ(t) = 0 for all t ∈ [log ε, γ log ε]. Multplying the equation above by χ(t)eµjt and
integrating by parts, yields

∂tw
j(0)− µj =

∫ 0

γ log ε

[
n−k
k(n−1)λj +

(
n−2k

2k

)2 − µ2
j

]
wj(t)χ(t)eµjt dt

− 2µj

∫ γ log ε+1

γ log ε

wj(t) (∂tχ)(t)eµjt dt −
∫ γ log ε+1

γ log ε

wj(t) (∂2
t χ)(t)eµjt dt

+ ε2(1−γ)

∫ 0

γ log ε

〈P w, φj〉L2(Sn−1) χ(t) eµjt dt.
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We claim that the right hand side tends to zero as ε → 0. By Proposition 4.4 we have that for every
fixed δ ∈

(
−n−2k

2k , n−2k
2k

)
and every ε ∈ (0, ε0]

|wj(t)| ≤ C e−δt t ∈ R ,

where C > 0 is a uniform positive constant. Since µj > |δ|, we get that there exist a positive constant
B = B(n, k, δ, γ) such that

|∂twj(0)− µj | ≤ B εν ,
where ν := min{2(1− γ), γ(µ0 − δ)} > 0. Now, the converge in norm of the operator Tε to T0 for ε→ 0
follows easily. Infact, using separation of variables and writing ψ as ψ =

∑+∞
j=0 ψ

jφj(θ), we get

‖(Tε − T0)ψ‖2L2(Sn−1) = ‖
∑+∞
j=0ψ

j(Tε − T0) (φj)‖2L2(Sn−1) = ‖
∑+∞
j=0ψ

j
(
∂tw

j(0)− µj
)
φj‖2L2(Sn−1)

=
∑+∞
j=0

∣∣ψj(∂twj(0)− µj)
∣∣2 ≤ B2 ε2ν‖ψ‖2H1(Sn−1) ,

which ends the proof of the proposition.

In the same way, we can define the Dirichlet to Neumann map for the problem{
Lḡ(uε)w = 0 Ω2,ε

w = ψ ∂Ω2,ε

as

Sε : C2,β(Sn−1) −→ C1,β(Sn−1), Sε : ψ 7−→ ∂twψ|∂Ω2,ε
= −∂νwψ|∂Ω2,ε

,

where ∂ν is the outward normal derivative to Ω1,ε, as before.

Proposition 4.7. As ε → 0, the operators Sε converge in norm to a limit operator S0 acting between
H1(Sn−1) and L2(Sn−1). Moreover the operator S0 is determined by its values on the eigenfunctions φj
of the Laplacian on Sn−1, namely

S0 φj = −
√

n−k
k(n−1)λj +

(
n−2k

2k

)2
φj j ∈ N.

The proof is identical to the one of Proposition 4.6.

4.4 Cauchy data matching

Let wi and wi = wi(ψ), i = 1, 2, be the solutions to the problems{
Lḡ(uε)wi = f Ωi,ε

wi = 0 ∂Ωi,ε
and

{
Lḡ(uε)wi = 0 Ωi,ε

wi = ψ ∂Ωi,ε

We define the global function w as

w :=

{
w1 + w1(ψ) Ω1,ε

w2 + w2(ψ) Ω2,ε

(4.14)

We claim that for ε sufficiently small, there exists a function ψ, such that

∂ν(w1 + w1(ψ)) = −∂ν(w2 + w2(ψ)).

This is equivalent to
∂ν w1 + ∂ν w2 = − (Tε − Sε) (ψ).

Hence, we need to invert the operator

(Tε − Sε) : C2,β(Sn−1) −→ C1,β(Sn−1)
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Lemma 4.8. There exists a positive real number ε0 = ε0(n, k, δ) > 0 such that for every ε ∈ (0, ε0] and
for every η ∈ C1,β(Sn−1) there exists a unique ψ ∈ C2,β(Sn−1) such that

(Tε − Sε)(ψ) = η.

Moreover, there exist a positive constant C = C(n, k, δ) > 0 such that

‖ψ‖C2,β(Sn−1) ≤ C ‖η‖C1,β(Sn−1).

Proof. As a first step, for ε sufficiently small, we will prove the invertibility of (Tε − Sε) as operator
acting between H1(Sn−1) and L2(Sn−1) and in this context we will provide uniform a priori estimates
for solutions to

(Tε − Sε)(ψ) = η.

The analogous result in Hölder spaces will follow from the standard elliptic theory for first order pseu-
dodifferential operators with bounded spectrum.

From Proposition 4.6 and Proposition 4.7 we deduce that the operators (Tε − Sε) converge in norm to
the linear operator T0 − S0, defined as follows

(T0 − S0)(φj) = 2µjφj µj =
√

n−k
k(n−1)λj +

(
n−2k

2k

)2
j ∈ N

where, as usual, the functions φj ’s are the eigenfunctions of ∆Sn−1 and verify −∆φj = λjφj , j ∈ N. Hence
it is sufficient to show that the limit operator (T0 − S0) is invertible and verifies the a priori estimates.
Using the Fourier expansion for η, namely η =

∑+∞
j=0 η

jφj , we have that the ansatz for ψ is given by∑+∞
j=0(ηj/2µj)φj . Now we need to verify that this function lies in H1(Sn−1), in other words we need to

test that ∑+∞
j=0(1 + λj)|(ηj/2µj)|2 < +∞.

From the definition of the µj ’s it is straightforward to deduce that there exists a positive constant
C = C(n, k) > 0 such that (1 + λj)/4µ

2
j ≤ C. Thus∑+∞

j=0(1 + λj)|(ηj/2µj)|2 ≤ C ‖η‖2L2(Sn−1).

Setting ψ :=
∑+∞
j=0(ηj/2µj)φj ∈ H1(Sn−1) we have that ψ solves the desired equation with the estimate

‖ψ‖H1(Sn−1) ≤ C1/2‖η‖L2(Sn−1).

This completes the proof.

So now we can define the function ψ as

ψ := (Tε − Sε)−1 [−∂νw1 − ∂νw2] .

Moreover, using the previous lemma and Proposition 4.4, for ε sufficiently small, we have the uniform
bound

‖ψ‖C2,β(Sn−1) ≤ C
[
‖∂νw1‖C1,β(Sn−1) + ‖ ∂νw2‖C1,β(Sn−1)

]
≤ C1 ε

−δ[ ‖w1‖C2,β
δ (Ω1,ε)

+ ‖w2‖C2,β
δ (Ω2,ε)

]
≤ C2 ε

−δ‖f‖C 0,β

δ−n−2k
2k

(2k−1)
(Mε)

,

where the positive constant C1 > 0 and C2 > 0 only depend on n, k and δ. From this estimate, together
with Proposition 4.4 and Proposition 4.5 we obtain

‖w‖C2,β
δ (Mε)

≤ ‖w1‖C2,β
δ (Ω1,ε)

+ ‖w1(ψ)‖C2,β
δ (Ω1,ε)

+ ‖w2‖C2,β
δ (Ω2,ε)

+ ‖w2(ψ)‖C2,β
δ (Ω2,ε)

≤ C3

[
‖f‖C0,β

δ−n−2k
2k

(2k−1)
(Mε)

+ εδ‖ψ‖C2,β(Sn−1)

]
≤ C4‖f‖C0,β

δ−n−2k
2k

(2k−1)
(Mε)

,
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where the positive constant C3 > 0 and C4 > 0 only depend on n, k and δ.

We collect all the results of this section in the following

Proposition 4.9. Let δ ∈
(
− n−2k

2k , n−2k
2k

)
, then there exists a real number ε0 = ε0(n, k, δ) > 0 such that

for every ε ∈ (0, ε0] and every f ∈ C0,β(Mε) there exists a unique solution w ∈ C2,β(Mε) to the problem

Lḡ(uε) [w] = f Mε.

Moreover, there exists a positive constant C = C(n, k, δ) > 0 such that for every ε ∈ (0, ε0]

‖w‖C2,β
δ (Mε)

≤ C‖f‖C 0,β

δ−n−2k
2k

(2k−1)
(Mε)

.

Remark 4.10. We point out that using standard elliptic theory it is possible to extend the estimates
above to higher order derivatives, without changing the weight parameters. The only difference is that the
constant C will possibly depend on the number of the derivatives involved.

5 Nonlinear analysis

Now we are ready to solve the fully nonlinear equation

Nḡ (uε + w) = 0. (5.1)

Thanks to Proposition 4.9, which provides invertibility for the operator Lḡ(uε), this amounts to solve the
fixed point problem

w = Lḡ(uε)−1
[
−Nḡ(uε) − Qḡ(uε)(w)

]
, (5.2)

where we recall that the quadratic remainder is given by

Qḡ(uε) (w) := −
∫ 1

0

[
Lḡ(uε)− Lḡ(uε + sw)

]
[w] ds.

We will find the fixed point w as the limit of the sequence {wi}i∈N defined by means of the following
Newton iteration scheme{

w0 := 0

wi+1 := Lḡ(uε)−1
[
−Nḡ(uε) − Qḡ(uε)(wi)

]
, i ∈ N.

(5.3)

5.1 Estimate of the proper error

As a first step we estimate the proper error term Nḡ(uε), which is supported in the neck region Tε.
It is convenient to divide this region into three subdomains T1,ε := [log ε, (2k/n) log ε] × Sn−1, T2,ε :=
[−(2k/n) log ε,− log ε] × Sn−1 and TΣ,ε := [(2k/n) log ε,−(2k/n) log ε] × Sn−1. We start by considering
the proper error on T1,ε. With the only exception of the annulus [log ε, log ε+ 1]× Sn−1 (where it is easy
to verify that the estimate that we are going to obtain is even better), on this region we can write

g1 = u
4k

n−2k

1 (1 + b1)
4k

n−2k gcyl and uε = u1

(
1 + e

n−2k
2k t

)
.

Combining these two expression with the conformal equivariance property (1.4), we obtain

Nḡ(uε) = u
2kn
n−2k

1 Ng1
(1 + e

n−2k
k t)

= u
2kn
n−2k

1

{
Lg1

(1) [e
n−2k
k t] + Qg1

(1) (e
n−2k
k t)

}
= (1 + b1)−

2kn
n−2k

{
Lcyl((1 + b1)u1) [(1 + b1)u1e

n−2k
k t] + Qcyl((1 + b1)u1) ((1 + b1)u1e

n−2k
k t)

}
,
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since Ng1
(1) = 0. Due to the fact that the coefficients of Lcyl((1 + b1)u1) [ · ] are readily estimated as

O
(
ε
n−2k

2k (2k−1)e−
n−2k

2k (2k−1)t
)
, we obtain

Nḡ(uε) ' (ε cosh t)n−2ke
n−2k
k t in T1,ε.

Using the same argument it is straightforward to verify that

Nḡ(uε) ' (ε cosh t)n−2ke−
n−2k
k t in T2,ε.

In the remaining region, namely TΣ,ε, we set gΣ,ε := u
4k/(n−2k)
ε gcyl and we write ḡ = (1 + b)4k/(n−2k)gcyl.

From the conformal equivariance (1.4), we obtain

Nḡ(uε) = ((1 + b)u−1
ε )−

2kn
n−2kNΣ,ε(1 + b)

= ((1 + b)u−1
ε )−

2kn
n−2k

{
NΣ,ε(1) + LΣ,ε(1) [b] + QΣ,ε(1) (b)

}
= (1 + b)−

2kn
n−2k

{
−
(
n
k

)(
n−2k

4k

)k
u

2kn
n−2k
ε + Lcyl(uε) [uεb] + Qcyl(uε) (uεb)

}
,

since σk(BΣ,ε) = 0. Recalling the expression of the (homogeneous) linearized operator around a σk–
Schwarzschild metric, we have

Lcyl(uε) [uεb] = −Cn,k ε
n−2k
k (k−1)uε

[
∂2
t + n−k

k(n−1)∆θ −
(
n−2k

2k

)2]
[uεb] −

(
n
k

)(
n−2k

4k

)k 2kn
n−2ku

2kn
n−2k
ε b.

Due to the fact that in TΣ,ε one has b = O(ε2e−2t) and uε = O
(
(ε cosh t)(n−2k)/2k

)
, we infer that

Nḡ(uε) ' εn−2k+2(cosh t)
n
k in TΣ,ε.

From these computations and from the definition of the weighted Hölder spaces it follows at once the
following

Lemma 5.1. There exists a positive constant A = A(n, k) > 0 such that for every δ ∈
(
− n−2k

2k , n−2k
2k

)
the proper error is estimated as

‖Nḡ(uε) ‖C0,β

δ−n−2k
2k

(2k−1)
(Mε)

≤ Aε
n−2k
n (n+2k

2k +δ).

5.2 Fixed point argument

To simplify the notations of this subsection we define the two real numbers µ = µ(n, k, δ) and ν = ν(n, k, δ)
as

µ := δ − (n−2k)(2k−1)
2k

ν := n−2k
n

(
n+2k

2k + δ
)

since δ varies in
(
− n−2k

2k , n−2k
2k

)
, we have that µ varies in

(
2k − n,− (n−2k)(k−1)

k

)
and ν varies in( 2(n−2k)

n , n−2k
k

)
.

To prove the convergence of the Newton iteration scheme (5.3) we start by estimating w1. Thanks to a
priori estimate for the linearized equation and to the estimate of the proper error term, we immediately
get

‖w1‖C2,β
δ (Mε)

≤ AC εν , (5.4)

where the positive constants A = A(n, k, δ) > 0 and C = C(n, k, δ) > 0 are the ones given in Lemma 5.1
and Proposition 4.9, respectively. Since to achieve our goal it is important to keep track of the precise
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role played by these constants in the estimate, we point out that all through this section the letters A
and C will represent the constants obtained in the estimate of Lemma 5.1 and Proposition 4.9.

We pass now to estimate the term w2. From its definition it follows at once that

‖w2‖C2,β
δ (Mε)

≤ C ‖Nḡ(uε) + Qḡ(uε) (w1)‖C0,β
µ (Mε)

(5.5)

≤ AC εν + C ‖Qḡ(uε) (w1)‖C0,β
µ (Mε)

.

Now we need to estimate the quadratic remainder. Recalling the definition of the weighted norm we have

‖Qḡ(uε) (w1)‖C0,β
µ (Mε)

:=
∑2
i=1‖Qḡ(uε) (wi)‖C0,β(Mi\B(pi,1)) + sup

Tε

(ε cosh t)µ|Qḡ(uε) (w1)|

+ sup
(t,θ)∈Tε

{
(ε cosh t)µ sup

(t,θ) 6=(t′,θ′)

|Qḡ(uε) (w1)(t, θ)−Qḡ(uε) (w1)(t′, θ′)|
|distgε((t, θ), (t′, θ′))|β

}
The first term readily estimated as∑2

i=1‖Qḡ(uε) (w1)‖C0,β(Mi\B(pi,1)) ≤ D0 ‖w1‖C2,β
δ (Mε)

≤ ACD0 ε
ν ,

where the positive constant D0 > 0 only depends on n, k and the C2–norm of the coefficients of the
metrics g1 and g2. We pass now to consider the term (ε cosh t)µ|Qḡ(uε) (w1)|. Applying the conformal
equivariance property, we get

(ε cosh t)µ|Qḡ(uε) (w1)| ≤ (ε cosh t)µ
∫ 1

0

∣∣ [Lḡ(uε) − Lḡ
(
uε(1 + su−1

ε w1)
) ]

[u−1
ε w1]

∣∣ ds
≤ (ε cosh t)µ ε

n−2k
2k (2k−1)

∫ 1

0

∣∣ [Lḡ(vΣ) − Lḡ(vΣ(1 + su−1
ε w1))

]
[u−1
ε w1]

∣∣ ds.
To estimate the right hand side on Tε, we observe that there exists a positive constant D1 > 0 only
depending on n and k such that, for j = 0, 1, 2, we have

|∇jḡ(u−1
ε w1)|ḡ ≤ D1 (ε cosh t)−δ−

n−2k
2k ‖w1‖C2

δ (Mε) ≤ ACD1 (ε cosh t)−δ−
n−2k

2k εν .

Since−δ−(n−2k)/2k < ν we infer that the coefficients of the linear operator Lḡ(vΣ)−Lḡ(vΣ(1+su−1
ε w1))

can be estimated on Tε as O
(
v2k−1

Σ

[
|u−1
ε w1| + |∇ḡ(u−1

ε w1)|ḡ + |∇2
ḡ(u
−1
ε w1)|ḡ

])
. We deduce that there

exists a positive constant D2 only depending on n and k such that∣∣ [Lḡ(vΣ) − Lḡ(vΣ(1 + su−1
ε w1))

]
[u−1
ε w1]

∣∣ ≤ D2 (cosh t)
n−2k

2k (2k−1) (ε cosh t)−2δ−n−2k
2k ‖w1‖2C2

δ (Mε)
.

We end up with

(ε cosh t)µ|Qḡ(uε) (w1)| ≤ D3 (ε cosh t)−δ−
n−2k

2k ‖w1‖2C2
δ (Mε)

.

Using the same argument one can deduce the analogous bound for the Hölder ratio, namely

(ε cosh t)µ sup
(t,θ)6=(t′,θ′)

|Qḡ(uε) (w1)(t, θ)−Qḡ(uε) (w1)(t′, θ′)|
|distgε((t, θ), (t′, θ′))|β

≤ D4 (ε cosh t)−δ−
n−2k

2k ‖w1‖2C2,β
δ (Mε)

,

for some positive constant D3 and D4 only depending on n and k. Collecting these estimates one can
conclude that the quadratic remainder Qḡ(uε) (w1) verifies

‖Qḡ(uε) (w1)‖C0,β
µ (Mε)

≤ D · (ε cosh t)−δ−
n−2k

2k ‖w1‖2C2,β
δ (Mε)

,

where the positive constant D > 0 only depends on n, k and the C2–norm of the coefficients of the metrics
g1 and g2. Continuing the estimate in (5.5), we get

‖w2‖C2,β
δ (Mε)

≤ AC εν + CD (ε cosh t)−δ−
n−2k

2k ‖w1‖2C2,β
δ (Mε)

≤ AC εν + AC2D (ε cosh t)−δ−
n−2k

2k εν ‖w1‖C2,β
δ (Mε)

= AC εν + B ‖w1‖C2,β
δ (Mε)

,
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where in the second inequality we have used (5.4) and we have set

B := AC2D (ε cosh t)−δ−
n−2k

2k εν .

Since −δ − (n − 2k)/2k < ν, there exists a real number ε0 = ε0(n, k, δ,D) > 0 such that, for every
ε ∈ (0, ε0], one can choose B ≤ 1

4 . In general we obtain for every j ≥ 1

‖wj+1‖C2,β
δ (Mε)

≤ AC εν aj+1,

where the sequence aj is inductively defined as{
a1 := 1

aj+1 := 1 + 1
4 a

2
j , j ∈ N.

Since supj aj ≤ 2, one has

‖wj+1‖C2,β
δ (Mε)

≤ 2AC εν .

Exploiting once again the definition of the weighted norm, we obtain

‖wj+1‖C2,β(Mε) ≤ E εν−δ , (5.6)

for some positive constant E = E(n, k, δ,D) > 0. From this inequality, we have that the wi’s are
equibounded in C2,β(Mε) and then, up to a subsequence, they converge in C2(Mε) to a fixed point wε
for the problem (5.2). To conclude, we have that there exists a number ε0 = ε0(n, k, δ,D) > 0 such that
for ε ∈ (0, ε0] the metrics

g̃ε := (1 + u−1
ε wε)

4k
n−2k gε,

where gε are the explicit approximate solution metrics given in Section 3, have positive constant σk–
curvature equal to 2−k

(
n
k

)
. Finally we recall that by construction the approximate solutions metrics

gε were converging to the initial metric gi with respect to the C2–topology on the compact subsets of
Mi \ {pi}, for i = 1, 2, as ε→ 0. On the other hand we have that

‖u−1
ε wε‖C2(Mε) ≤ F εν−δ−

n−2k
2k (5.7)

for some positive constant F = F (n, k, δ,D) > 0. Since ν − δ − (n − 2k)/2k > 0 we have that also the
exact solutions g̃ε tend to the initial metric gi with respect to the C2–topology on the compact subsets
of Mi \ {pi}, for i = 1, 2, as ε→ 0.

Concerning the regularity of our solution wε, so far we have obtained that it belongs to C2(Mε). On the

other hand, as observed in Remark 4.10, it is possible to obtain uniform Cm,βδ –estimates for solutions to
the linearized equation, for every m ∈ N. Since the proper error term which appears in first step of the
Newton iteration scheme is clearly smooth by construction, one can extend (5.6) to

‖wj+1‖Cm,β(Mε) ≤ E εν−δ ,

where the positive constant E may possibly depend also on m. The fact that m is arbitrary in N implies
that wε is smooth.

We observe now g̃ε lies in the positive cone Γ+
k , as stated in Theorem 1. To see this fact we just need to

show that σj(g̃
−1
ε Ag̃ε) > 0 for every j = 1, . . . , k−1, since g̃ε has constant σk–curvature equal to 2−k

(
n
k

)
.

This follows from (5.7) together with the fact that the approximate solutions gε’s belong to Γ+
k−1, for ε

small enough, see Lemma 3.2.
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To conclude, we need to discuss how to remove Assumption 3.1. Going through the proof it can be
seen that all the analysis (uniform a priori estimate, estimate of the error term, etc.) is essentially
based on blow–up techniques. For instance in the linear analysis this fact has allowed us to overcome
the computational difficulty of writing down a global expression for the linearized operator about the
approximate solution metrics gε (which due to the fully nonlinear nature of our problem is rather intricate
for k > 1), letting us concentrate only on its limit behavior around the blow–up points. As a consequence
one can realize that the only important features of our approximate solutions are the ones which become
relevant in the limit for ε → 0. It is in this limit for example that the use of the σk–Schwarzschild
metric as a model metric on the neck reveals to be a clever choice. Having this in mind and looking
at the expressions (3.4) and (3.2), it is now straightforward to verify that all the limit features of our
approximates solutions are not affected when the Assumption 3.1 is not in force, since the coefficients a’s
which measure the discrepancy from the model metric in the general construction are of the same size of
the c’s in 3.4. This shows that the linear analysis issues still hold true in the general case. Concerning the
estimate of the error term, which is the crucial step in the implementation of the Newton scheme once
the uniform a priori estimates are provided, one can see reasoning as above that the only place where the
proper error may possibly have a worse behavior is in the regions of the type [log ε, log ε+C]× Sn−1, for
some positive constant C > 0. In fact the general gε’s are close enough to the model σk-Schwarzschild
metric elsewhere and one can reproduce the desired estimate, arguing as in the proof of Lemma 5.1. On
the other hand, using the fact that Ng1

(1) = 0, one has that

Nḡ(uε) = u
2kn
n−2k

1

{
Lg1

(1) [e
n−2k
k t] + Qg1

(1) (e
n−2k
k t)

}
' ε

n−2k
k in [log ε, log ε+ C]× Sn−1.

Thus the estimates of the proper error as well are not affected by the removal of Assumption 3.1, and we
can definitely drop it out. This concludes the proof of Theorem 1.

6 Obstructions to the connected sum for 2k ≥ n

We present now briefly two counterexamples to the possibility to extend Theorem 1 in the case where
2k ≥ n.

Counterexample 1: n = 3, k = 2. Let (Mi, gi) = (RP3, gstd), i = 1, 2, where gstd is the standard metric
on RP3, i.e., the one who lifts to the round metric of S3. Clearly we have that gstd ∈ Γ+

2 and has positive
constant σ2–curvature equal to 3/4. Moreover (RP3, gstd) is non degenerate. In fact, if w is a function
defined on RP3 which verifies

Lgstd(1) [w] = 0 in RP3

then it lifts to a function w̃ defined on the universal cover S3 such that w̃(p) = w̃(−p) for every p ∈ S3

and (
∆S3 + 3

)
w̃ = 0 in S3.

This clearly implies w̃ ≡ 0, since the solutions to this equation are linear combinations of the restriction
to S3 of the coordinate functions of R4. Hence, w ≡ 0. At this point all the hypothesis of Theorem 1
are in force, with the only exception of the inequality 2k < n. On the other hand the connected sum
RP3]RP3 cannot be endowed with a 2–admissible metric. In fact such a metric would have positive Ricci
curvature, as shown in [9], and this would contradict for instance Hamilton’s theorem for 3–manifolds
[13].

Counterexample 2: n = 4, k = 2. Let (Mi, gi) = (RP4, gstd), i = 1, 2, where gstd is the standard metric
on RP4 as above. Clearly we have that gstd ∈ Γ+

2 and has positive constant σ2–curvature equal to 3/2.
The same argument as in Counterexample 1 shows that (RP4, gstd) is non degenerate. If the Theorem
1 would apply to this situation, we would end up with a locally conformally flat 2–admissible metric g̃
on the connected sum M4 := RP4]RP4, since the locally conformally flatness is clearly preserved by
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both the explicit construction of the approximate solutions and the conformal perturbation that we use
to get the exact solutions. On the other hand a conformally flat 2-admissible metric on a 4–manifold has
positive scalar curvature and fulfills the pinching conditions

2
∣∣ ◦Ricg̃ ∣∣ < (1/6) R2

g̃ .

The Margerin’s result [19] implies now that M4 is diffeomorphic to either S4 or RP4.
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