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Abstract

We discuss an identification problem for the one-dimensional wave equation with the Robin
condition on an unknown part of the boundary. We prove that it is possible to identify both the
unknown boundary and the Robin coefficient by two pairs of additional measurements.

1 Introduction

Let Ω be a bounded simply connected domain in Rn, n ≥ 1; suppose ∂Ω = Γa ∪ Γi, where Γi and Γa

are two open connected disjoint portions of ∂Ω.
We consider the following mixed boundary value problem





utt = △u in Ω× (0, T )
u(x, 0) = φ(x) x ∈ Ω
ut(x, 0) = ψ(x) x ∈ Ω
u(x, t) = g(t) on Γa × (0, T )
∂u
∂ν

(x, t) + γu(x, t) = 0 on Γi × (0, T )

(1.1)

where ν is the exterior unit normal to ∂Ω, φ, ψ, g are assigned functions, γ > 0.
Assuming ∂Ω of class C2, it is well known [1], [2] that the initial boundary value problem (1.1) has a
unique solution u ∈ H1

(
Ω× (0, T )

)
provided g, φ and ψ are smooth enough.

In the case n = 1, the Robin condition can be interpreted as the end Γi of a vibrating string being
attached to a spring. In fact, since the vertical component of the string tension is proportional to
ux, the condition states that such component at Γi is proportional to the opposite of the vertical
displacement of the end. For n = 3, the Robin condition plays an interesting role in the context of
the acustic waves: considering the wave equation ϕtt = △ϕ for the velocity potential ϕ and assuming
that each point of the surface ∂Ω acts like a spring in response to the excess pressure ϕt, then the
condition ∂ϕt

∂ν
+ γϕt = 0 holds on ∂Ω× (0, T ) [3].

We will assume that Γi is unknown and inaccessible, while Γa is known and accessible for input
and output measurements. Then, we deal with the inverse problem of determine Γi and γ, provided

additional measurements
∂u

∂ν

∣∣∣
Σ×(0,T )

are known, where Σ ⊂ Γa is part of the accessible boundary.

This problem was considered by Isakov [4] in the case of vanishing initial data. Assuming that Γi is a

closed polygonal surface, it is proved that the additional measurement
∂u

∂ν

∣∣
Σ×(0,T ) uniquely determines

Γi and γ; if T = ∞, one can uniquely identify general smooth Γi and γ.
In this note we consider the problem (1.1) with non zero initial data φ, ψ, in the case n = 1 and we

show that Γi and γ are uniquely determined by two pairs (g,
∂u

∂ν

∣∣
Σ×(0,T ) ), (g̃,

∂ũ

∂ν

∣∣
Σ×(0,T ) ), provided

T is sufficiently large and the boundary data g, g̃ are suitably chosen.
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We also prove that in the case of non vanishing initial data a single additional measurement
∂u

∂ν

∣∣
Σ×R+

is not sufficient to identify the unkwnown boundary Γi.
Inverse problems involving Robin condition was previously considered for the elliptic equations in [5],
[6] where it is shown that uniqueness of Γi and of γ can be achieved by two couples of measurements

(
g1,

∂u1
∂ν

∣∣∣
Σ

) (
g2,

∂u2
∂ν

∣∣∣
Σ

)

In this context, a counterexample was given in [7] showing that a single additional measurement is
not sufficient to determine Γi, even if γ is known.
Finally, a parabolic equation with the same boundary conditions as in (1.1) was considered in [8]; the
authors prove that two couples of measurements guarantee as well uniqueness and stability of Γi and
of γ.
The present paper is organized as follows: in §2, we consider the direct problem and we give conditions
on the datum g in order to assure that the solution u is strictly positive for t large enough.
Relying on this property, we state in §3 the main result, that is a uniqueness theorem for the in-
verse problem and provide a counterexample showing that a unique measurement is not sufficient to
determine the unknown boundary Γi.

2 The direct problem

In the case n = 1, problem (1.1) takes the form





uxx = utt 0 < x < b, 0 < t < T
u(x, 0) = φ(x) 0 ≤ x ≤ b,
ut(x, 0) = ψ(x) 0 ≤ x ≤ b,
u(0, t) = g(t) 0 < t < T
ux(b, t) + γu(b, t) = 0 0 < t < T

(2.1)

In this section, we solve problem (2.1) for T = +∞ and show that one can always choose a boundary
datum g in such a way that the solution is strictly positive for large enough t. To this aim, we need
two lemmas.

Lemma 2.1. Let u(x, t) be the solution of the problem





uxx = utt 0 < x < b, t > 0
u(x, 0) = 0 0 ≤ x ≤ b,
ut(x, 0) = 0 0 ≤ x ≤ b,
u(0, t) = g(t) t ≥ 0
ux(b, t) + γu(b, t) = 0 t ≥ 0,

(2.2)

where b > 0, γ > 0 and the boundary datum g satisfies the following assumptions

1. g ∈ C2
(
[0,+∞)

)
;

2. g(t) ∼ g′(0) t for t→ 0+, where g′(0) > 0 and limt→+∞ g(t) =M > 0;

3. if h(t) = g(t) −M
(
1 − e−

g′(0)
M

t
)
, then limt→+∞ h′(t) = 0 and there are positive constants N , ϵ,

such that
|h′′(t)| ≤ N e−2ϵt (2.3)
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Then, if

4.
M

g′(0) + 5N
2ϵ

> b (1 + γb)
(
1 +

4

π2
(γb)2

)

there exists t0 > 0 such that
u(x, t) > 0, for 0 ≤ x ≤ b, t ≥ t0

Remark 2.2. Roughly speaking, the assumptions of the Lemma are satisfied if the boundary datum g
is increasing from zero at the origin and if g(t) =M +O(e−εt) for t→ +∞ where M is large enough
and 0 < ε ≤ g′(0)/M . Note that the convergence to the limit M should not be too rapid. Actually,
there are also examples of boundary data g for which the conclusion of the lemma holds even if g(t)
approaches a limit at infinity with a power rate.

Proof. We will solve (2.2) by Laplace transform; let us define

L
[
u(x, t)

]
(s) =

∫ +∞

0
u(x, t)e−stdt ≡ û(x, s); ĝ(s) = L[g(t)](s)

Then, (2.2) becomes





ûxx(x, s) = s2û(x, s) 0 ≤ x ≤ b, s ∈ ð′(0)
û(0, s) = ĝ(s) Re s > 0
ûx(b, s) + γû(b, s) = 0 s ∈ ð′(0)

(2.4)

By elementary calculations, the solution can be written

û(x, s) =
A(x, s)

B(s)
ĝ(s) (2.5)

where
A(x, s)

B(s)
=
s cosh s(b− x) + γ sinh s(b− x)

s cosh bs+ γ sinh bs
(2.6)

The function B(s) has simple zeroes at the points s which solve

tanh(bs) = − s

γ
, s ∈ C (2.7)

Any solution s ̸= 0 is a (possible) simple pole of (2.6). We have s = iy, y ∈ R, where y satisfies

tan(by) = −1

γ
y (2.8)

The solutions of equation (2.8) are given by a sequence

{
± yn

}
n=0,1,2,...

where
y0 = 0 and (n− 1/2)π < byn < nπ, n = 1, 2, ...

Actually, we have byn ∼ (n− 1/2)π (see e.g. [9]).
In order to obtain the solution u(x, t), we will now apply the inverse transformation. Let us write

g(t) =M(1− e−δt) + h(t)
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where
δ = g′(0)/M

Then, we have

ĝ(s) =
g′(0)

s(s+ δ)
+ ĥ(s) (2.9)

where ĥ denotes the Laplace transform of h.
Accordingly, the inverse transformation of (2.5) splits into two terms

u(x, t) = u1(x, t) + u2(x, t) (2.10)

By the residue theorem and after some calculation one gets

u1(x, t) = M
[1 + γ(b− x)

1 + γb
− δ cosh δ(b− x) + γ sinh δ(b− x)

δ cosh δb+ γ sinh δb
e−tδ

]

+ 2g′(0)

[
+∞∑

n=1

(yn cos yn(b− x) + γ sin yn(b− x)

(1 + γb) cos byn − byn sin byn
× δ cos tyn − yn sin tyn

yn(y2n + δ2)

]
(2.11)

The series in the second term at the right hand side converges absolutely and uniformly in [0, b]×R+.
In fact, one has the estimate (see appendix)

∣∣∣∣∣
(yn cos yn(b− x) + γ sin yn(b− x)

(1 + γb) cos byn − byn sin byn

∣∣∣∣∣ ≤
1

b

(
1 +

4

π2
(γb)2

)
(2.12)

Moreover, we have ∣∣∣∣∣
δ cos tyn − yn sin tyn

yn(y2n + δ2)

∣∣∣∣∣ ≤
1

y2n

Then, since byn ∈
(
(n − 1/2)π, nπ

)
, the whole term between square brackets in (2.11) is uniformly

bounded by

b
(
1 +

4

π2
(γb)2

)
×

+∞∑

n=1

1

(n− 1/2)2π2
=
b

2

(
1 +

4

π2
(γb)2

)

For any fixed σ0 > 0, the second term in (2.10) is the inverse transform

u2(x, t) =
1

2π

∫ +∞

−∞

e(σ0+iτ)tĥ(σ0 + iτ)
A(x, σ0 + iτ)

B(σ0 + iτ)
dτ (2.13)

By assumptions 2 and 3 (and by observing that h(0) = h′(0) = 0) one can show that ĥ is holomorphic
for Re s > −2ϵ, with

|ĥ(s)| ≤ N

4ϵ3
; |s2ĥ(s)| ≤ N

ϵ
for Re s ≥ −ϵ

Hence, we have the estimate

|ĥ(s)| ≤ 5N

4ϵ

1

|s|2 + ϵ2
for Re s ≥ −ϵ (2.14)

In order to evaluate the integral in (2.13), let us choose a sequence of rectangular paths ∂Qϵ,m, where

Qϵ,m = [−ϵ, σ0]× [−Rm, Rm]
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and the Rm are such that limm→∞Rm = +∞ and ∂Qϵ,m contains no poles. Let us now calculate

∫

∂Qϵ,m

est
A(x, s)

B(s)
ĥ(s) ds

with the residue theorem and take the limit for m → ∞. Then, by the bound (2.14), by using again
(2.12) and by observing that the ratio A(x, s)/B(s) is uniformly bounded if s remains at a positive
distance from the set {iyn}n=1,2,..., we obtain after some calculation

|u2(x, t)| ≤ 5N

4ϵ

[
1

b

(
1 +

4

π2
(γb)2

) ∞∑

n=1

2

y2n + ϵ2
+ e−ϵt

∫ +∞

−∞

Kϵ

|τ |2 + 2ϵ2
dτ

]

≤ 5N

4ϵ

[
K +

π

ϵ
√
2
Kϵe

−ϵt
]

(2.15)

where

K(b, γ) = b
(
1 +

4

π2
(γb)2

)
(2.16)

and Kϵ depends on γ, b and ϵ.
Now, by taking t large enough we may achieve

π

ϵ
√
2
Kϵe

−ϵt ≤ K

so that

|u2(x, t)| ≤
5N

2ϵ
K (2.17)

By the previous estimates, we finally get

u(x, t) = u1(x, t) + u2(x, t) ≥ u1(x, t)− |u2(x, t)|

≥ M

[
1 + γ(b− x)

1 + γb
− δ cosh δ(b− x) + γ sinh δ(b− x)

δ cosh δb+ γ sinh δb
e−tδ

]
−K

(
g′(0) +

5N

2ϵ

)

≥ M
( 1

1 + γb
− e−tδ

)
−K

(
g′(0) +

5N

2ϵ

)
(2.18)

Now, the Lemma follows by the identity

(1 + γb)K = b (1 + γb)
(
1 +

4

π2
(γb)2

)
(2.19)

2

Corollary 2.3. Let us choose the boundary datum g(t) =M(1− e−δt) in problem (2.2). Then, if the
condition δ b (1 + γb)

(
1 + 4

π2 (γb)
2
)
< 1 holds, the time t0 can be taken

t0 =
1

δ
log

2(1 + γb)

1− δb(1 + γb)(1 + 4
π2 (γb)2)

(2.20)

Proof. Since h = 0 in the previous theorem, the bound (2.18) holds with N = 0; by recalling that
g′(0) = δM we get

u(x, t) ≥M
( 1

1 + γb
− e−tδ − δ K

)
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Hence, u is strictly positive if

e−tδ ≤ 1

2

( 1

1 + γb
− δ K

)

that is for

t ≥ t0 =
1

δ
log

2(1 + γb)

1− δ (1 + γb)K

Then, (2.20) follows by the definition (2.16). 2

Lemma 2.4. Let u(x, t) be the solution of the problem





uxx = utt 0 < x < b, t > 0
u(x, 0) = φ(x) 0 ≤ x ≤ b,
ut(x, 0) = ψ(x) 0 ≤ x ≤ b,
u(0, t) = 0 t ≥ 0
ux(b, t) + γu(b, t) = 0 t ≥ 0,

(2.21)

where b > 0, γ > 0, φ ∈ C2([0, b]), ψ ∈ C1([0, b]). Then, if φ(0) = 0 the following estimate holds

|u(x, t)| ≤ γb ∥φ∥L∞ + b
(
∥φ′∥L∞ + 2 ∥ψ∥L∞

)
+

b2√
2

(
∥φ′′∥L∞ + ∥ψ′∥L∞

)
(2.22)

Moreover, if φ also satisfy φ′(b) + γφ(b) = 0, the estimate reduces to

|u(x, t)| ≤ 2 b ∥ψ∥L∞ +
b2√
2

(
∥φ′′∥L∞ + ∥ψ′∥L∞

)
(2.23)

which is independent of γ.

Proof. The solution can be represented by a Fourier series

u(x, t) =

∞∑

n=1

[
an cos(ynt) + bn sin(ynt)

]
sin(ynx) (2.24)

where the yn solve (2.8). Then,

u(x, 0) =

∞∑

n=1

an sin(ynx) = φ(x); ut(x, 0) =

∞∑

n=1

ynbn sin(ynx) = ψ(x)

Let us multiply both the equations by sin(ykx), k = 1, 2, ... and integrate on the interval [0, b]. Taking
account of the orthogonality relations and by defining

σk =

∫ b

0
sin2(ykx) >

b

2

we get

σk ak =

∫ b

0
φ(x) sin(ykx); σk yk bk =

∫ b

0
ψ(x) sin(ykx) (2.25)

Integrating by parts, we obtain

∫ b

0
φ(x) sin(ykx)dx = − 1

yk
φ(b) cos(ykb) +

1

yk

∫ b

0
φ′(x) cos(ykx)dx

= − 1

yk
φ(b) cos(ykb) +

1

y2k
φ′(b) sin(ykb)−

1

y2k

∫ b

0
φ′′(x) sin(ykx)dx (2.26)
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∫ b

0
ψ(x) sin(ykx)dx =

1

yk

[
ψ(0)− ψ(b) cos(ykb)

]
+

1

yk

∫ b

0
ψ′(x) cos(ykx)dx (2.27)

Now, by the inequalities

| cos(ykb)| =
γ√

γ2 + y2k

≤ γ

yk
≤ γb

(k − 1/2)π

∣∣∣
∫ b

0
φ′′(x) sin(ykx)dx

∣∣∣ ≤ ∥φ′′∥L2(0.b)
√
σk ≤

√
b σk∥φ′′∥L∞ ≤

√
2σk∥φ′′∥L∞

∣∣∣
∫ b

0
ψ′(x) cos(ykx)dx

∣∣∣ ≤ ∥ψ′∥L2(0.b)

√
b− σk ≤

√
b(b− σk)∥ψ′∥L∞ ≤ b√

2
∥ψ′∥L∞

we easily get from (2.25)-(2.27) the following estimates

|ak| ≤
(
2 γb ∥φ∥L∞ + 2 b ∥φ′∥L∞ +

√
2 b2∥φ′′∥L∞

)
× 1

(k − 1/2)2π2
(2.28)

|bk| ≤
(
4 b ∥ψ∥L∞ +

√
2 b2∥ψ′∥L∞

)
× 1

(k − 1/2)2π2
(2.29)

Then,

|u(x, t)| ≤
∞∑

k=1

(|ak|+ |bk|) (2.30)

≤ γb ∥φ∥L∞ + b ∥φ′∥L∞ +
1√
2
b2∥φ′′∥L∞ + 2 b ∥ψ∥L∞ +

1√
2
b2∥ψ′∥L∞

which is the estimate (2.22). Finally, if the initial datum φ satisfies the boundary condition at x = b,
the first two terms at the right hand side of (2.26) disappear and we get the bound (2.23). 2

We can now state the main result of this section; preliminarily, let us define

K∗(b, γ;φ,ψ) = γb ∥φ∥L∞ + b
(
∥φ′∥L∞ + 2 ∥ψ∥L∞

)
+

b2√
2

(
∥φ′′∥L∞ + ∥ψ′∥L∞

)
(2.31)

Notice that the quantity K∗ is adimensional.

Theorem 2.5. Let u(x, t) be the solution of problem (2.1) with T = ∞, where the boundary datum g
satisfies the assumptions 1-4 of lemma 2.1 and the initial data φ, ψ satisfy the assumptions of lemma
2.4. Then, if M = limt→+∞ g(t) is large enough, there is t̄ > 0 such that,

u(x, t) > 0, for 0 ≤ x ≤ b, t ≥ t̄

Proof. By linearity, the solution is the sum of the solution to problem (2.21) with the solution of
(2.2); then, by lemmas 2.1, 2.4, we get

u(x, t) ≥M
( 1

1 + γb
− e−tδ

)
−K

(
g′(0) +

5N

2ϵ

)
−K∗ (2.32)

where K is given by (2.16) and K∗ by (2.31). Then, the theorem holds provided

M

1 + γb
> K

(
g′(0) +

5N

2ϵ

)
+K∗ (2.33)

2
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Remark 2.6. As in corollary 2.3 by choosing g(t) = M(1 − e−δt), where M satisfies (2.33) with
N = 0, g′(0) = δM , one readily shows that the time t̄ can be taken

t̄ = −1

δ
log

[ 1

2(1 + γb)
− δb

2

(
1 +

4

π2
(γb)2

)
− K∗

2M

]
(2.34)

3 The inverse problem

We can now state the main result of the paper, namely that two pair of measurements on a sufficiently
large interval (0, T ) allow to uniquely identify the unknown boundary and Robin coefficient.

Theorem 3.1. Let φ ∈ C2([0,+∞)), ψ ∈ C1([0,+∞)) and define φi = φ|[0,bi], ψi = ψ|[0,bi], i = 1, 2,
0 < b1 ≤ b2. Let ui(x, t), i = 1, 2 be solution to problem (2.1) with b = bi, γ = γi, initial data φi,ψi and
boundary datum g|(0,T ), such that φi, ψi and g satisfy the assumptions of Lemmas 2.1, 2.4. Moreover,
let ũi(x, t), i = 1, 2 be solution to problem (2.1) with the same initial data, but with ũ(0, t) = g̃, where

{
g̃(t) = g(t), 0 ≤ t ≤ t̄
g̃(t) ̸= g(t), t > t̄

(3.1)

t̄ being the same as in theorem 2.5 (we may assume t̄ ≥ b1). Let T ≥ 5t̄ and assume further that

u1x(0, t) = u2x(0, t), 0 ≤ t ≤ T (3.2)

ũ1x(0, t) = ũ2x(0, t), 0 ≤ t ≤ T

Then,
b2 = b1, γ2 = γ1.

Proof. Suppose by contradiction that b2 > b1. Since u2(x, t) and ũ2(x, t) solve (2.1) in the domain
0 ≤ x ≤ b2, 0 ≤ t ≤ t̄ with the same data, they coincide on [0, b2]× [0, t̄]. In particular

u2(x, t̄) = ũ2(x, t̄), 0 ≤ x ≤ b2 (3.3)

By the assumptions u1(0, t) = u2(0, t) = g(t) for t ≥ 0 and u1x(0, t) = u2x(0, t), for 0 ≤ t ≤ T ; now,
by considering the domain of dependence at (x, t) of a solution u of the wave equation with ‘initial
data’ u(0, t), ux(0, t), we also have

u1(x, t) = u2(x, t), for 0 ≤ x ≤ b1, x ≤ t ≤ T − x.

In particular, u1(b1, t) = u2(b1, t) and u1x(b1, t) = u2x(b1, t) for b1 ≤ t ≤ T − b1 and such interval has
width larger that 2b1, being b1 ≤ t̄ ≤ 4t̄ ≤ T − b1.
By the previous identity, we readily get

u2x(b1, t) + γ1u2(b1, t) = 0, for t̄ ≤ t ≤ 4t̄ (3.4)

Obviously, an analogous relation also holds for ũ2(x, t). Let us now consider the function

λ(x, t) =
ũ2(x, t)

u2(x, t)
− 1, for t̄ ≤ t ≤ 4t̄, b1 ≤ x ≤ b2

By theorem 2.5 and by the uniqueness of the solution of problem 2.1, we have u2(x, t) > 0 for t̄ ≤ t ≤ T ,
0 ≤ x ≤ b2; hence, the above function is well defined. Moreover, λ solves the homogeneous problem





λxx − λtt = − 2
u2
(u2xλx − u2tλt) t̄ ≤ t ≤ 4t̄, b1 ≤ x ≤ b2,

λ(x, t̄) = 0 b1 ≤ x ≤ b2,
λt(x, t̄) = 0 b1 ≤ x ≤ b2,
u22(b1, t) λx(b1, t) = 0 t̄ ≤ t ≤ 4t̄,
u22(b2, t) λx(b2, t) = 0 t̄ ≤ t ≤ 4t̄.

(3.5)
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By the energy estimate, we conclude λ(x, t) ≡ 0, for t̄ ≤ t ≤ 4t̄, b1 ≤ x ≤ b2 and therefore

u2(x, t) = ũ2(x, t), t̄ ≤ t ≤ 4t̄, b1 ≤ x ≤ b2

In particular,
u2(b1, t) = ũ2(b1, t) and u2x(b1, t) = ũ2x(b1, t), t̄ ≤ t ≤ 4t̄ (3.6)

But the points (b1, t), t̄ ≤ t ≤ 4t̄ lie in the domain of influence of a solution at (0, t) for 2t̄ ≤ t ≤ 3t̄;
hence

u2(0, t) = ũ2(0, t), 2t̄ ≤ t ≤ 3t̄,

contradicting the assumption g̃(t) ̸= g(t) for t > t̄. Hence, b1 = b2; finally, by equation (3.4) one gets
γ1 = γ2. 2

We now exhibit a simple counterexample showing that a single measurement, even on an arbitrarily
long interval of time, is not enough to identify the value b. Consider the initial boundary value
problem:





uxx = utt 0 ≤ x ≤ b, t ≥ 0
u(x, 0) = 0 0 ≤ x ≤ b,
ut(x, 0) = sinx 0 ≤ x ≤ b,
u(0, t) = 0 t ≥ 0
ux(b, t) + u(b, t) = 0 t ≥ 0

(3.7)

The problem has the solution
u(x, t) = sinx sin t;

provided that
cos b sin t+ sin b sin t = 0,

i.e.

b =
3

4
π + kπ, k = 1, 2, ...

Hence, the output measurement ux(0, t) = sin t, t ≥ 0, does not allow to identify b.

4 Appendix

We prove the bound (2.12). To begin with, we have
∣∣∣∣∣
(yn cos yn(b− x) + γ sin yn(b− x)

(1 + γb) cos byn − byn sin byn

∣∣∣∣∣ ≤
√
y2n + γ2∣∣(1 + γb) cos byn − byn sin byn

∣∣ (4.1)

Moreover, by recalling that

cos(byn) = − γ

yn
sin(byn)

we also have

∣∣(1 + γb) cos byn − byn sin byn
∣∣ = | sin(byn)|

∣∣∣(1 + γb)
γ

yn
+ byn

∣∣∣

≥ byn | sin(byn)| ≥ byn sin(by1) = byn
y1√
y21 + γ2

≥ byn√
1 + 4

π2 (γb)2
(4.2)

where the last inequality follows by π/2 < by1 < π.

9



By inserting (4.3) in (4.1) we get

∣∣∣∣∣
(yn cos yn(b− x) + γ sin yn(b− x)

(1 + γb) cos byn − byn sin byn

∣∣∣∣∣ ≤
√
y2n + γ2

byn

√
1 +

4

π2
(γb)2 ≤ 1

b

(
1 +

4

π2
(γb)2

)
(4.3)
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