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Abstract

We investigate asset management in a regime switching framework when the

fund manager aims to beat a certain target for the assets under management either

in an infinite horizon or over a finite horizon. We consider both a full information

and a partial information setting. In a full information setting, the asset manager

tends to take more risk in the good state and less risk in the bad state with respect

to the constant parameter environment. Confidence risk induces the agent to in-

crease his risk exposure.
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1 Introduction

The recent financial crisis has shed some light on risk incentives and remuneration schemes.

While the academic literature has investigated the issue mostly in a constant investment

opportunity environment, the financial crisis has suggested the possibility that a non

convex remuneration scheme may induce excess risk seeking when financial markets are

bubbling. In other words, bonus compensation and irrational exuberance may create a

dangerous mix. Charles Prince (the former CEO of Citi) said it explicitly: ”As long as

the music is playing, you have got to get up and dance”.

In this paper we investigate this claim analyzing asset management in a regime switch-

ing framework when the fund manager aims to beat a certain target for the assets under

management (wealth). The asset manager gets a fixed reward either the first time a target

is reached or if the target is reached over a finite horizon. This type of reward fee models

an absolute performance remuneration scheme in an infinite and in a finite horizon.

Regime switching is modeled assuming that the drift and the volatility of the geo-

metric Brownian motion of the asset price evolves as a continuous time Markov chain

with two states. We consider both a full information and a partial information setting.

In the first case the manager observes the state of the Markov chain, in the second one

he does not observe the state of the Markov chain but forms beliefs on it through the

observation of the asset price. The regime switching setting is interesting because it

allows us to model in a simple way a mean reverting dynamics addressing some regu-

larities observed in the asset pricing-management literature, see [Cecchetti et al., 1990,

Ang and Timmermann, 2011, Guidolin and Timmermann, 2007], and in the option pric-

ing literature, see [Buffington and Elliott, 2002, Guo and Zhang, 2004, Elliott et al., 2005].

Our analysis shows that a non convex remuneration scheme may lead to excess risk taking

when the market regime switches over time.

The main goal of the paper is to analyze how a pure target driven asset allocation is

affected by the risk of switch in the state of the economy and by the estimation risk about

the state. The first issue is addressed considering the full information setting, the second

one considering the partial information setting.

2



Note that there are no transaction costs, therefore in a full information setting the

manager can redefine the strategy promptly as the state of the economy changes. However,

this possibility does not imply that the optimal portfolio coincides with the one obtained

in a constant parameter environment. As a matter of fact, in a good (bad) state the

manager may decide to overweight (underweight) the risky asset position exploiting the

momentum and fearing (waiting) a switch to the bad (good) state. This consideration

does not affect the optimal portfolio of an agent maximizing the expected utility from

terminal wealth. In fact, [Sotomayor and Cadenillas, 2009] showed that in case of an

utility function with constant relative risk aversion, the optimal portfolio is the constant

weight obtained in the constant parameter environment with state dependent parameters

(drift and variance matrix). Therefore, the regime switching does not affect the optimal

policy obtained in case of constant parameters, simply the agent switches as the state

changes always adopting the investment policy obtained in the state as if the parameters

were constant.

Considering a target driven remuneration scheme we show that the risk of a regime

switch affects the optimal investment policy obtained in the case of constant parameters.

Differently from the constant parameter setting, see [Browne, 1995, Browne, 1997], when

the agent is rewarded with a constant bonus as the assets under management touch the

target, the solution is no more a constant weight. When the assets under management

are low and the target is far away, the agent acts as a risk lover in a good state, i.e.,

he overweights the risky asset, and he takes less risk in a bad state underweighting the

risky asset with respect to the constant parameter solution. The effect is reversed when

the value of the assets approaches the barrier. Instead, when the horizon is fixed, the

asset manager always takes more risk in the good state and less risk in the bad state with

respect to the constant parameter environment.

In a partial information setting, the agent faces a confidence risk, i.e., the change of

his beliefs about the state of the economy. It is worthwhile to observe that in a two regime

switching model beliefs update and asset returns are positively correlated. In other words

confidence risk is positively correlated with market risk. As a consequence, an agent more
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risk averse than a logarithmic utility would attempt to hedge the confidence risk buying

less of the risky asset with respect to the constant parameter optimal investment strategy,

i.e., the hedging demand is negative, see [David, 1997, Honda, 2003]. In our setting we

show that the agent’s attitude towards confidence risk is similar to what we observe in a

full information setting: when there is an infinite horizon, for a small wealth the agent

overweights (underweights) the risky asset in the good (bad) state. The reverse occurs

when the wealth approaches the target. When the horizon is fixed we observe that the

agent underinvests in the bad state and overinvests in the good state and that he takes a

long position also for a belief with a small probability of the favorable state.

We also extend to the analysis to the case of a manger who is remunerated when he

beats a benchmark and to high water marks remuneration fees. The main results of our

analysis are confirmed: in both cases, the manager takes more (less) risk in a good (bad)

state.

This paper adds to the literature on incentive fees and asset management showing that

a non convex remuneration scheme leads to excess risk-seeking, see [Grinblatt and Titman, 1989,

Carpenter, 2000, Ross, 2004, Goetzmann et al., 2003, Panageas and Westerfield, 2009]. We

show that regime switching induces excess risk taking in the favorable state when the hori-

zon is fixed or is infinite and the target is far away.

The paper is organized as follows. In Section 2 we introduce the regime switching

model in a full and in a partial information environment. In Section 3 we analyze the

asset management problem when the manager goal is provided by a fixed bonus when

the target for the assets under management is reached. In Section 4 we analyze the asset

management problem when the manager goal is provided by maximizing the probability

of reaching a given target over a finite horizon. In Section 5 we extend the analysis to

the case of a manager who wants to beat a benchmark. In Section 6 we analyze portfolio

choices of a manager remunerated through a high water marks contract.
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2 The Model

Let (Ω,F , P ) be a probability space on which a standard Brownian motion Z and a two

state continuous Markov chain Y are defined. The process Y is right-continuous with

values in {0, 1} and represents the regime of the economy.

In t = 0, Y (0) has outcome 1 with probability p and 0 with probability 1 − p. The

process Y (t) starting in state i remains in the same state for an exponentially distributed

length of time and jumps to state j 6= i with intensity λij. In what follows we consider

the symmetric case and we set λ01 = λ10 = λ.

The jump times are independent and independent of Z. The regime switching and

the Brownian motion generate the information filtration F = {FZ,Y
t } where FZ,Y

t =

σ(Z(s), Y (s), s ≤ t), i.e., FZ,Y
t is the augmented σ-algebra on Ω generated by the obser-

vation of Z(s) and Y (s) up to t.

The agent can trade a riskless bond and a risky asset paying no dividend. The riskless

bond price B(t) satisfies

dB(t) = rB(t)dt, B(0) = 1

with a positive constant r, the risky asset price evolves as

dS(t) = S(t)µ(Y (t))dt+ S(t)σdZ(t), S(0) = S0.

As far as the information set is concerned, we consider two different information en-

vironments: the full information, and the partial information one.

In the main setting, the volatility of the asset price is constant σ, instead the drift

is a function of the state Y (t). More precisely, we assume µ(0) = µ0 and µ(1) = µ1. In

the partial information setting we will stick to a constant volatility in the two regimes,

instead under full information we will relax this assumption considering also the case of

switching volatility (σ(Y (t))). In the following, we denote by w(t) the wealth fraction

invested in the risky asset.

In the full information setting, the investor observes Y (t), Z(t), and S(t). In this

case, w(t) is adapted to FZ,Y
t . In the partial information setting, the agent only observes

the asset price S(t), he does not observe Y (t) and µ(Y (t)). In this case, the investor’s
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information is defined by the filtration FS = {FS
t } where FS

t = σ(S(s), s ≤ t). The

investment policy w(t) is adapted to FS
t . In both cases, the parameters σ, p, λ, µ0, µ1

are known constants.

LetX(t) the assets under management (wealth) of the manager. In the full information

setting, X(t) evolves as follows:

dX(t) = X(t)(w(t)(µ(Y (t))− r) + r)dt+ w(t)σX(t)dZ(t), X(0) = X0. (1)

In the partial information case, we can identify a σ-algebra equivalent economy with

filtered probability

π(t) = P (Y (t) = 1|FS
t ), π(0) = p.

π(t) is the probability that the current regime is state 1 given the observation S(s), s ≤ t.

As shown in [Honda, 2003], filtering techniques yield that π(t) satisfies the stochastic

differential equation

dπ(t) = λ(1− 2π(t))dt+ π(t)(1− π(t))
µ1 − µ0

σ
dZ(t) (2)

where Z(t) is the standard Brownian motion defined as

Z(t) :=

∫ t

0

dS(s)− S(s)µ̂(π(s))

S(s)σ
ds

with µ̂(π(s)) = π(t)µ1 + (1− π(t))µ0.

A σ-algebra equivalent is described by the risk-free asset, the filtered probability space

and the risky price process S(t) satisfying

dS(t) = S(t)µ̂(π(t))dt+ S(t)σdZ(t)

and the filtration FS generated by S.

A trading strategy w(t) is an adapted process and X(t) evolves as follows

dX(t) = X(t)(w(t)(µ̂(π(t))− r) + r)dt+ w(t)σX(t)dZ(t), X(0) = X0. (3)

Note the following features of the stochastic differential equation (2) governing agent’s

beliefs: a) the larger the difference between the two states (µ1 and µ0), the larger the
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volatility of beliefs, b) the larger the volatility of asset returns, the smaller the volatility

of beliefs, c) π is mean reverting, the mean reversion speed is high when the switching

probability λ is large. These features imply that the degree of confidence on a state

is mean reverting and the convergence rate is proportional to the switching probability.

Confidence on the state of the economy is extremely volatile when the mean returns in

the two states are different and the return volatility is low.

3 Fixed bonus from reaching a target

Let us analyze the asset allocation problem for a manager who is rewarded with a fixed

amount of money (normalized to one) when the assets under management X(t) reach

a certain target b provided that bankruptcy does not occur before (X(t) = 0). Let us

denote by

τb = inf{t > 0 : X(t) = b}

the first hitting time of the target b of the assets under management, and by δ the discount

factor of the manager, then the asset allocation problem can be formulated defining the

optimal value function as

V (x) := max
w

E
[
e−δτb |X(0) = x

]
. (4)

subject to (1) under full information and (3) under partial information. In the first case

w(t) is adapted to FZ,Y
t , in the second case to FS

t . Notice that the manager goes bankrupt

when the assets under management reach the zero level, i.e., the manager cannot leverage

his position.

In [Browne, 1995, Browne, 1997] the problem has been analyzed in a no switching set-

ting (constant parameters). As a benchmark for our analysis, we report the main results.

Let λ = 0 and denote by µ the constant drift of the asset price. In this environment the

Hamilton Jacobi Bellman (HJB) equation becomes

sup
w

−δV + (w(µ− r) + r)xV ′ +
σ2w2

2
x2V ′′ = 0, (5)
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with the boundary conditions

V (0) = 0, V (b) = 1.

Assuming that the HJB has a classical solution, i.e., V ′′ < 0, it holds that

w∗ =
r − µ

σ2

V ′(x)

xV ′′(x)
,

and thus the HJB equation becomes

−δV − 1

2

(r − µ)2

σ2

V ′(x)2

V ′′(x)
+ rxV ′(x) = 0, 0 < x < b. (6)

The value function becomes

V (x) =
xC

bC

with

C =
δ + 1

2
(r−µ)2

σ2 + r −
√

(δ + 1
2
(r−µ)2

σ2 + r)2 − 4δr

2r
> 0 (7)

and therefore

w∗ =
1

C − 1

r − µ

σ2
.

Note that the strategy is a constant weight as the one observed maximizing a loga-

rithmic or a power utility function from terminal wealth. So, the portfolio is the golden

rule (the strategy maximizing the expected logarithmic growth of rate) multiplied by the

constant 1/(C−1) that depends on the parameters of the model. Note that the parameter

C depends on the Sharpe ratio of the risky asset. It is easy to show that the relationship

between the Sharpe ration and the fraction of wealth invested in the risky asset is not

monotonic.

3.1 Regime Switching with full information

We denote by V 0, V 1 and w0, w1 the value function and the optimal strategy in state 0

and 1. The HJB equation for problem (4) becomes

sup
w0

−δV 0 + (w0(µ0 − r) + r)xV 0
x +

σ2(w0)2

2
x2V 0

xx − λV 0 + λV 1 = 0

sup
w1

−δV 1 + (w1(µ1 − r) + r)xV 1
x +

σ2(w1)2

2
x2V 1

xx − λV 1 + λV 0 = 0,
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the boundary conditions are

V i(0) = 0, V i(b) = 1.

If we assume that V i
xx < 0, then the optimal portfolio strategy in state i becomes

wi =
r − µi

σ2

V i
x

xV i
xx

, i = 0, 1.

An explicit solution for the value function is not available. We solve the above problem

numerically considering a finite difference technique to discretize the partial differential

equation, coupled with a fixed-point algorithm, using as guess function the solution ob-

tained in the no switching setting, in the following denoted as w0. More precisely, we

introduce a mesh {xj}Nj=0, with xj = j∆x, ∆x = b/N ; given the guess vector f i0 defined as

{f i0}j = f i
0(xj) = xjw

i
0(xj), i = 0, 1, j = 1, · · · , N − 1, for k = 0, · · · , we solve the linear

system

−δV0
k + (f0(µ0 − r) + rx). ∗ T V0

k +
σ2(f0)2

2
. ∗ DV0

k − λV0
k + λV1

k = 0

−δV1
k + (f1(µ1 − r) + rx). ∗ T V1

k +
σ2(f1)2

2
. ∗ DV1

k − λV1
k + λV0

k = 0,

where the finite difference operator D is given by

{DV}j :=
V (xj−1)− 2V (xj) + V (xj+1)

∆2x2
,

with V (x0) = 0 and V (xN) = 1. Similarly T is the upwind finite difference operator for

the first order derivative. Notice that in the above formulation f . ∗ g and (f)2 represent

the element-wise product and square operators. The iterative procedure is repeated till

the distances V0
k −V0

k−1 and V1
k −V1

k−1, computed according to the l2 norm, fall below

a 10−6 tolerance threshold. Here we set the number of grid points N + 1 equal to 2000.

In what follows, we set b = 5, µ0 = 0.04, µ1 = 0.08, r = 0.05, δ = 0.04, σ = 0.3 and

λ = 0.1. Note that there are no transaction costs, short selling is allowed, and volatility

is constant in the two states, then what is relevant in the asset allocation problem is

the absolute value of the expected excess return in the two states: |µ0 − r| = 0.01 and

|µ1− r| = 0.03. For this set of parameters, state 1 is the good one not because of a higher
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Figure 1: No Switching and Switching with Full Information: b = 5; δ = 0.04; r =

0.05; µ0 = 0.04 (left) and µ0 = 0.06 (right); µ1 = 0.08; σ = 0.3

expected return but because the absolute value of the expected excess return is higher

than the one observed in state 0. In Figure 1 we represent the fraction of the wealth

invested in the risky asset also assuming µ0 = 0.06. Note that in both cases the risky

asset in state 1 is more favorable than in state 0, the difference is that the manager short

sells the risky asset in state 0 when µ0 = 0.04 and, instead, he invests a positive amount

of wealth in both states when µ0 = 0.06.

These figures show that the optimal investment strategy is not a constant weight: the

exposure to the risky asset (|w|) decreases (increases) in the good (bad) state as wealth

increases. If we compare the optimal portfolio obtained in the regime switching setting

with full information with the one obtained in a setting with constant weights (no regime

switching, λ = 0 in the two figures), we notice that when the wealth is low the manager

invests more (less or sells short less) in the risky asset in state 1 (state 0) with respect to

the case without regime switching. This attitude is reversed when the reward target is

approaching. The departure from the constant weight strategy increases as the switching

probability increases (λ goes up). So the bias in the investment policy due to the switching

probability is asymmetric with more risk in the good state and less risk in the bad state

when the wealth is low. The opposite effect is observed when the wealth is next to the

target barrier.

It seems that a reward through a fixed bonus as the target is reached induces the agent
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Figure 2: No Switching and Switching with Full Information (λ = 0.1): b = 5; δ =

0.04; r = 0.05; µ0 = 0.08; µ1 = 0.06; σ0 = 0.5; sr0 = 0.06 and σ1 = 0.3; sr1 = 0.0333

(left) - σ0 = 0.4; sr0 = 0.075 and σ1 = 0.3; sr1 = 0.0333 (right)

to excess (less) risk taking in the good (bad) state when the barrier is far away. In this

case, in the good state the manager exploits the momentum and takes more risk fearing

a switch to the bad state. On the other hand, in case of the bad state, as the target is

far away the manager expects a switch to the good state and therefore he takes less risk.

Instead, when the wealth is close to the barrier, the probability that the barrier is reached

before a switch increases and therefore the agent’s investment attitude is reversed in both

states. Notice that when |µ1−r| = |µ0−r| the optimal investment does not depend on λ,

the optimal investment weights are constant and coincide with those obtained in case of

constant parameters. This interpretation is confirmed by the fact that this phenomenon

is magnified by an increase in the switching probability λ. A similar result is obtained in

[Panageas and Westerfield, 2009] in case of a high water mark fee, where it is shown that

the portfolio weight is increasing in the density of the jump determining the termination

of the fund.

In the full information setting, we can easily extend the analysis to the case with both

the drift and the volatility of the risky asset switching as the state changes (µi, σi, i =

0, 1). As both the drift and the volatility change in the two states, the risk-return profile

can be evaluated according to the Sharpe ratio sri = µi−r

σi
, i = 0, 1. In Figure 2 we

consider two different sets of parameters, in both cases the Sharpe ratio in state 0 is
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higher than the one in state 1. The figure shows that when the wealth is low the agent

overinvests (underinvests) in the risky asset in the state with the higher (lower) Sharpe

ratio with respect to the constant parameter setting. The reverse occurs when the wealth

approaches the target. This result confirms that when the target is far away the asset

manager invests more in the risky asset in the favorable state fearing the switch to the

bad state. This attitude is reversed when the target is approaching.

3.2 Regime Switching with partial information

Considering the stochastic differential equation for beliefs (2), for a control processes w

the generator of the above process becomes

Awg(t, x, π) = gt + (w(µ̂(π)− r) + r)xgx + λ(1− 2π)gπ

+
1

2
σ2w2x2gxx +

1

2
π2(1− π)2

(µ1 − µ0)
2

σ2
gππ + wπ(1− π)(µ1 − µ0)xgxπ (8)

where gt, gx, · · · , denote the derivatives of the function g.

Defining the optimal value function as

V (x, π) := sup
w

E
[
e−δτb |X(0) = x, π(0) = π

]
,

the HJB equation becomes

sup
w

−δV + (w(µ̂(π)− r) + r)xVx + λ(1− 2π)Vπ

σ2w2

2
x2Vxx (9)

+
π2(1− π)2

2

(µ1 − µ0)
2

σ2
Vππ + wπ(1− π)(µ1 − µ0)xVxπ = 0, 0 ≤ x ≤ b, 0 ≤ π ≤ 1

where µ̂(π) = µ0(1− π) + µ1π, with boundary conditions

V (0, π) = 0, V (b, π) = 1,

for 0 ≤ π ≤ 1. For π = 0 the above equation becomes

sup
w

−δV + (w(µ0 − r) + r)xVx + λVπ +
σ2w2

2
x2Vxx = 0, (10)

and for π = 1 it becomes

sup
w

−δV + (w(µ1 − r) + r)xVx − λVπ +
σ2w2

2
x2Vxx = 0. (11)
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Figure 3: Switching with Partial Information, no Switching, Switching with Full Infor-

mation: b = 5; δ = 0.04; λ = 0.1; r = 0.05; µ0 = 0.04; µ1 = 0.08; σ = 0.3

Assuming that the HJB (9) has a classical solution, i.e., Vxx < 0, differentiating with

respect to w, it holds

w∗ =
−(µ̂(π)− r)Vx − π(1− π)(µ1 − µ0)Vxπ

σ2xVxx

.

The partial differential equations (9)-(11) can be solved again with a finite difference

scheme associated with a fixed-point algorithm. In Figure 3 we plot the optimal invest-

ment strategy for different values of π. First of all we notice that the optimal strategy is

not a constant weight. For a given level of wealth x, the investment weight is increasing

in the probability π that the agent assigns to the state with the higher expected return.

Note that also for a low level of confidence in the favorable state (e.g. π = 0.25) the

agent is long in the risky asset and not short as we would expect being µ0 < r. It seems

that the agent aiming to reach the target over a finite horizon takes a high risk investing

in the risky asset also when the probability guess would suggest to sell it short. Again,

the rationale is that |µ1 − r| = 0.03 > |µ0 − r| = 0.01 and therefore the agent aiming

at reaching the target as soon as possible ”bets” on the most favorable state (1) also

when the probability of being in that state is small. We can conclude that confidence risk

induces the agent to take a long position hoping to be in the good state.

For π = 0 and π = 1 we can compare the optimal investment strategies obtained
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Figure 4: Switching with Partial Information comparison with a certainty equivalent drift

strategy (PI): b = 5; δ = 0.04; r = 0.05; µ0 = 0.04; µ1 = 0.08; σ = 0.3, λ = 0.01

under partial information with those obtained under full information (see the previous

subsection) and with those obtained with a constant investment opportunities set. The

comparison is provided in the second picture of Figure 3. When the wealth is low, con-

fidence risk induces the agent to invest in the risky asset more (less) than in the full

information setting in the good (bad) state, when the wealth approaches the target the

phenomenon is reversed.

According to these results, confidence risk leads to a higher (lower) risk exposure

when the wealth is low (high). Remember that confidence and market risk are positively

correlated, therefore an agent maximizing the expected utility should take less risk, instead

a pure target bonus induces the agent to take excess risk when the target is far away.

A reward through a fixed bonus induces the agent to act as a risk lover with respect to

confidence risk. When the target approaches the target the attitude changes for arguments

similar to those introduced in a full information world. The interpretation is confirmed

looking at Figure 4 where, for different values of π, we compare the optimal investment

strategy with partial information with the no switching strategy with a drift equal to

the expected drift according to the agent’s beliefs (µ̂(π) = µ0(1 − π) + µ1π) (certainty

equivalent drift strategy). The analysis confirms that the strategy obtained in the partial

information setting is more risky than the no switching one if the agent’s wealth is low,

the reverse occurs when the wealth approaches the target.
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4 Reaching a target by a deadline

In this section we analyze the optimal investment strategy for an agent maximizing the

probability of reaching a certain target for the assets under management by the end of

the horizon [0, T ]. Set b the target, the optimal value function becomes

V (x) = E [P (X(T ))|X(0) = x] .

where P (x) := 1x≥b. We assume that reaching a zero wealth corresponds to bankruptcy.

Notice that for 0 ≤ t < T and for any wealth level x ≥ xmax = xmax(t) := be−r(T−t), the

value function V (x, t) = 1, and the optimal policy consists in investing all the wealth in

the risk-free asset to reach the target level at the terminal time with probability 1.

This problem in a constant parameter setting has been addressed in [Browne, 1999].

The author shows that the problem corresponds to solve the HJB equation

sup
w

Vt + (w(µ0 − r) + r)xVx +
σ2w2

2
x2Vxx = 0, (12)

on [0, T ) × (0, xmax), with boundary condition V (t, 0) = 0 and V (t, xmax(t)) = 1 for any

t ∈ [0, T ) and terminal condition V (x, T ) = P (x). The author proves that the optimal

solution is

V (x, t) = Φ

(
Φ−1

(
x

xmax

)
+ (T − t)

(
µ− r

σ

)2
)
,

w = w(x, t) =
µ− r

σ|µ− r|
√
T − t

xmax

x
φ

(
Φ−1

(
x

xmax

))
,

where we denote by φ and Φ the density and the cumulative distribution function of a

standard normal random variable, respectively. Notice that the terminal condition causes

a discontinuity, since limt→T V (x, t) = x
xmax

6= P (x). The solution is not a constant weight,

it is time dependent and is affected through the normal density by the distance of x from

xmax.
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Figure 5: No Switching, Switching with Full Information: t = 0, b = 20, T = 1, µ0 = 0.04,

µ1 = 0.08, r = 0.05, σ = 0.3. Right: zoom of the state 1 case.

4.1 Regime Switching with full information

In a regime switching environment with full information, the HJB equation becomes

sup
w0

V 0
t + (w0(µ0 − r) + r)xV 0

x +
σ2(w0)2

2
x2V 0

xx − λV 0 + λV 1 = 0,

sup
w1

V 1
t + (w1(µ1 − r) + r)xV 1

x +
σ2(w1)2

2
x2V 1

xx − λV 1 + λV 0 = 0,

for 0 ≤ t < T, 0 ≤ x ≤ xmax = xmax(t) with terminal condition V i(T, x) = P (x), i = 0, 1.

Due to the bankruptcy condition, it must also hold V i(t, 0) = 0 for 0 ≤ t ≤ T, i = 0, 1.

Moreover, V i(t, xmax) = 1 for 0 ≤ t < T, i = 0, 1. If we assume that V i
xx < 0, i = 0, 1,

then the optimal policy is given by

wi =
r − µi

σ2

V i
x

xV i
xx

.

We solve this problem coupling a finite difference scheme with a fixed-point algorithm,

using the solution of the no switching case as guess solution at each time step tl = T − lδ,

l = 1, · · ·M , with δ = T/M . We also assume that limt→T V i(x, t) = x
xmax

for i = 0, 1, to

avoid the numerical problems related to the discontinuity of the terminal function.

In Figure 5 we plot the optimal investment strategy in a full information environment

in t = 0 for different values of λ together with the optimal investment strategy obtained

in case of no regime switching (λ = 0). First of all, we notice that the agent takes less risk
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Figure 6: No Switching (λ = 0) and Switching with Full Information (λ = 0.3): t = 0,

b = 20, T = 1, r = 0.05, µ0 = 0.08, µ1 = 0.06, σ0 = 0.5, sr0 = 0.06 and σ1 = 0.3, sr1 =

0.0333 (left) - σ0 = 0.4, sr0 = 0.075 and σ1 = 0.3, sr1 = 0.0333 (right)

(absolute value of the portfolio weight invested in the risky asset) as the wealth increases.

As a general result, we have that the agent takes more risk in state 1 for all level of wealth

(the most favorable one) and less risk in state 0 (the less favorable one) with respect to

the no switching setting. Increasing λ, the departure is amplified.

The interpretation of these results is similar to the one provided in case of a fixed

reward as the target is reached. Reaching a goal over a finite horizon induces the agent to

take excess (less) risk in the good (bad) state. The manager exploits the fact of that the

state is good and takes more risk fearing a switch to the bad state. On the other hand,

in the bad state, the manager expects a switch to the good state and therefore he takes

less risk. This interpretation is confirmed by the fact that this phenomenon is magnified

by an increase of the switching probability λ. Differently from what has been observed

in case of a reward for reaching a given target over an infinite horizon, a reward over a

finite horizon induces excess (less) risk in the good (bad) state for all levels of wealth.

The analysis is confirmed considering the more general case where both the drift and

the volatility of the risky asset switch in the two states. In Figure 6 we consider the

case where the Sharpe ratio (volatility) in state 0 is higher (lower) than the one in state

1. From this figure it is evident that the agent performs a riskier strategy in the state

characterized by the higher Sharpe ratio with respect to the strategy without switching,
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while the reverse holds true in case of the state with the lower Sharpe ratio.

4.2 Regime Switching with partial information

In this case the HJB equation becomes

sup
w

Vt + (w(µ̂(π)− r) + r)xVx + λ(1− 2π)Vπ (13)

+
σ2w2

2
x2Vxx +

π2(1− π)2

2

(µ1 − µ0)
2

σ2
Vππ + wπ(1− π)(µ1 − µ0)xVxπ = 0,

for 0 ≤ t < T, 0 ≤ x ≤ xmax and 0 ≤ π ≤ 1, with boundary condition V (t, 0, π) = 0 and

V (t, xmax, π) = 1 for 0 ≤ π ≤ 1.

Assuming that the HJB equation (13) admits a classical solution, i.e., Vxx < 0, differ-

entiating with respect to w, we obtain

w∗ =
−(µ̂(π)− r)Vx − π(1− π)(µ1 − µ0)Vxπ

σ2xVxx

,

and thus (13) becomes

Vt −
((µ̂(π)− r)Vx + π(1− π)(µ1 − µ0)Vxπ)

2

2σ2Vxx

+ rxVx + λ(1− 2π)Vπ (14)

+
π2(1− π)2

2

(µ1 − µ0)
2

σ2
Vππ = 0.

Again, we use a fixed-point algorithm coupled with a finite difference scheme to solve the

above problem.

In Figure 7 we plot the optimal investment strategy in t = 0 for λ = 0.1 and different

initial beliefs π. First of all we notice that the agent takes less risk (absolute value of

the portfolio weight invested in the risky asset) as the wealth increases. The optimal

strategies for π = 1, π = 0.75 and π = 0.5 are very close one another with a positive

investment in the risky asset. Considering the case π = 0.25 (a small probability of being

in the favorable state 1), the agent invests a positive fraction of wealth in the risky asset

when the wealth is low. This behavior contrasts with the likelihood that he assigns to

a favorable regime and therefore the agent assumes a very risky position with the hope

that his beliefs are incorrect. On the opposite, when the wealth is high enough, the agent

invests a small negative amount of wealth in the risky asset.
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Figure 7: Switching with Partial Information: t = 0, b = 20, T = 1, µ0 = 0.04, µ1 = 0.08,

r = 0.05, σ = 0.3 and λ = 0.1

To conclude, in Figure 8 we compare the no switching setting, the full information case

and the partial information one. Considering π = 0 or π = 1, we observe that the optimal

investment strategies in the partial information setting are riskier than those obtained in

the full information and in the constant parameter setting both in the bad and in the

good state. Note that also the strategy for π = 0.5 is riskier than the one obtained with

constant parameter in the good state.

We can conclude that confidence risk affects the strategy of the agent inducing him to

take excess risk overinvesting in the favorable state and underinvesting in the bad state.

The phenomenon is observed for all level of wealth. Moreover, the agent may decide to

invest a positive amount of wealth is the risky asset also when the likelihood that he

assigns to a favorable state is low.

Summing up, reaching a target over a fixed horizon induces a risky strategy in a regime

switching environment with full information (in the good state) and partial information

reinforces the excessive risk taking attitude.

5 Relative performance bonus

The analysis can be extended to a remuneration scheme based on beating a benchmark

over an infinite or a finite horizon. The main results on regime switching and risk seeking

19



Figure 8: No Switching, Switching with Full and Partial Information: t = 0, b = 20,

T = 1, µ0 = 0.04, µ1 = 0.08, r = 0.05, σ = 0.3 and λ = 0.1. Right: zoom of the state 1

case

are confirmed. Let us assume that the benchmark is driven by a logarithmic Brownian

motion with a drift switching at the same time the asset price does. The Brownian

motion of the benchmark is correlated with the one of the asset price. note that we are

in an incomplete market setting, i.e., the manager cannot use the stock to replicate the

benchmark.

The benchmark dynamics is provided by

dP (t) = P (t)α(Y (t))dt+ P (t)βdZ(t) + P (t)γdẐ(t) P (0) = P0.

with zero correlation between the Brownian motions Z and Ẑ. We follow [Browne, 1999b]

assuming that the asset manager receives a fixed bonus (normalized to one) the first time

the assets under management outperform the benchmark by a multiplicative constant η.

The analysis can be developed considering the setting of Section 3: we look for the

optimal investment strategy to beat the benchmark by a fraction η before bankruptcy

that occurs for X(t) = 0. Let

τη = inf{t > 0 : X(t) ≥ (1 + η)P (t)} = inf{t > 0 : R(t) ≥ 1 + η},

and R := X
P

the process of the assets under management normalized by the benchmark,
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then the asset allocation problem can be formulated as follows

max
w

E
[
e−δτη |R(0) = X0/P0

]
.

Assuming no switch and a drift for the risky asset S equal to µ0 and for the benchmark P

equal to α0, the problem has been solved in [Browne, 1999b]. In this setting, the evolution

of the process R(t) becomes

dR = R
(
r − α0 + β2 + γ2 + w(t) (µ0 − r − σβ)

)
dt+R(wσ − β)dZ(t)−RγdẐ(t).

The optimal investment strategy is a constant weight

w = −µ0 − r − σβ

Cσ2
+

β

σ
,

where C is the unique root which belongs to the interval (−1, 0) of the cubic equation

γ2

2
C3 +

(
Â+

γ2

2

)
C2 +

(
−δ + Â− B̂

)
C − B̂ = 0

where

Â = r − α0 + γ2 +
µ0 − r

σ
β, B̂ =

1

2

(
µ0 − r − σβ

σ

)2

see [Browne, 1999b, Section 6] for details.

Assuming a regime switching model with full information, the HJB equation becomes

sup
w0

−(δ + λ)V 0 +
(
r−α0+β2+γ2+w0 (µ0−r−σβ)

)
xV 0

x +
(w0σ − β)2 + γ2

2
x2V 0

xx + λV 1 = 0,

sup
w1

−(δ + λ)V 1 +
(
r−α1+β2+γ2+w1 (µ1−r−σβ)

)
xV 1

x +
(w1σ − β)2 + γ2

2
x2V 1

xx + λV 0 = 0.

These equations can be solved concurrently with our fixed-point iterative method. In

Figure 9 we show the optimal strategies considering different values of λ. If we consider

Figure 9, it can be observed that the optimal investment strategy is similar to the one

obtained in Section 3: it is not a constant weight, when the wealth is low the agent

invests more (less) in the risky asset in state 1 (0) with respect to the case without regime

switching. This attitude is reversed when the reward target is approaching.
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Figure 9: Switching with Full Information: η = 0.2; δ = 0.04; r = 0.03; µ0 = 0.06; µ1 =

0.08; σ = 0.3; α0 = 0.045; α1 = 0.085; β = 0.3; γ = 0.4

Under partial information, the analysis becomes more complex. As a matter of fact,

the agent observes both P (t) and S(t) and uses this information to form his beliefs π(t)

on the probability of being in state 1. π(t) satisfies the stochastic differential equation

dπ(t) = λ(1− 2π(t))dt + π(t)(1− π(t))

(
µ1 − µ0

σ
+

β

γ2 + β2
(α1 − α0)

)
dZ(t)

+ π(t)(1− π(t))
γ

γ2 + β2
(α1 − α0)dẐ(t),

where Z(t) and Ẑ(t) are independent standard Brownian motions. The HJB equation

becomes

sup
w

−δV + (r − α̂(π) + β2 + γ2 + w(µ̂(π)− r − σβ))xVx + λ(1− 2π)Vπ

+
1

2
π2(1− π)2

((
µ1 − µ0

σ
+

β

β2 + γ2
(α1 − α0)

)2

+

(
γ

β2 + γ2
(α1 − α0)

)2
)
Vππ

+ π(1− π)

((
µ1 − µ0

σ
+

β

β2 + γ2
(α1 − α0)

)
(wσ − β)− γ2

β2 + γ2
(α1 − α0)

)
xVxπ

+
1

2

(
(σw − β)2 + γ2

)
x2Vxx

with boundary conditions

V (0, π) = 0, V (1 + η, π) = 1,

for 0 ≤ π ≤ 1.
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This equation can be solved with the proposed finite difference iterative method ob-

taining results similar to those shown in Section 3, i.e., confidence risk induces excess risk

seeking with respect to the full information investment strategy. Instead, considering the

case of a fixed bonus if the manager beats the benchmark by a fraction η by a terminal

date T , we obtain results similar to those obtained in Section 4.

6 High water marks remuneration scheme

[Panageas and Westerfield, 2009] address the manager’s optimal investment problem when

he is remunerated by a high-water mark contract: the manager receives a fraction of the

increase in fund value in excess of the last recorded maximum, the so-called high-water

mark, if such an increase took place. Mathematically, assuming that the fund manager

can invest in a risk-free and in a risky asset, and that k is the fraction of the maxi-

mum increase that the manager receives as compensation, the asset management problem

becomes

max
w

E

[∫ min{τ,+∞}

0

e−(δ+η)tkdH(t)

]
,

where τ is the (random) bankruptcy time, η is the constant intensity of the Poisson process

that models the termination time of the fund, and H(t) is the running maximum of the

wealth X(t), which evolves as follows

dX(t) = X(t)(w(t)(µ(Y (t))− r) + r)dt+ w(t)σX(t)dZ(t)− kdHt, X(0) = X0.

In [Panageas and Westerfield, 2009], the HJB equation is given by

sup
w

−(δ + η)V + (w(µ− r) + r)xV ′ +
σ2w2

2
x2V ′′ = 0,

where we denote with ′ the derivative with respect to x (here V = V (x, h) for any

0 ≤ x ≤ h and h ≥ 0). The HJB equation is coupled with boundary conditions V (0, h) = 0

for any h ≥ 0, i.e., for any value of the maximum process, due to the bankruptcy condition,

and V ′(h, h) = 1 + 1
k
∂V
∂h

(h, h). [Panageas and Westerfield, 2009] provide a closed form

solution for this problem. We can provide a formulation of the problem in the full and
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Figure 10: No Switching and Switching with Full Information and different values of

λ (left) and Switching with both Full and Partial Information (λ = 0.1) (right): δ =

0.04; η = 0.1; r = 0.05; µ0 = 0.06; µ1 = 0.08; σ = 0.3; k = 0.2; h = 20.

partial information case proceeding as above, solving it numerically. In Figure 10 we

compare the no switching case with the full information one. As expected, in the good

state (1), the agent invests more in the risky asset as λ increases, while the reverse happens

in the bad state (0).

The result is similar to what we have observed in case of a bonus. It seems that a

reward related to the maximum dynamics induces the agent to excess (less) risk taking in

the good (bad) state for any level of wealth. In this case, in the good state the manager

exploits the momentum and takes more risk fearing a switch to the bad state or the end

of the fund. On the other hand, in case of the bad state, the manager expects a switch

to the good state and therefore he takes less risk.

7 Conclusions

There are some anecdotes on how a non convex remuneration may affect management

decisions in a non constant environment. The claim is that a manager remunerated

through a bonus when a target is reached will take risk in excess in a bull market.

In this paper we have demonstrated this claim showing that in a two state regime

switching environment the manager’s risk exposure is high in a good state and is low
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in a bad state. In the good state the manager exploits the momentum and takes more

risk fearing a switch to the bad state. On the other hand, in case of the bad state, the

manager expects a switch to the good state and therefore he takes less risk. The effect

is for all level of wealth in case of a bonus over a finite horizon or a high water markets

remuneration, when the horizon is infinite this effect is observed only when the target is

far away. Contrary to what is observed in case of the maximization of the expected utility,

confidence risk induces the agent to takes more risk in a partial information environment.
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