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STRONG COMPETITION VERSUS FRACTIONAL DIFFUSION:

THE CASE OF LOTKA-VOLTERRA INTERACTION

GIANMARIA VERZINI AND ALESSANDRO ZILIO

Abstract. We consider a system of differential equations with nonlinear Steklov
boundary conditions, related to the fractional problem

(−∆)su = f(x,u)− βu
p
i

∑

j 6=i

aiju
p
j ,

where u = (u1, . . . , uk), s ∈ (0, 1), p > 0, aij > 0 and β > 0. When k = 2

we develop a quasi-optimal regularity theory in C0,α, uniformly w.r.t. β, for
every α < αopt = min(1, 2s); moreover we show that the traces of the limiting
profiles as β → +∞ are Lipschitz continuous and segregated. Such results are
extended to the case of k ≥ 3 densities, with some restrictions on s, p and aij .

Since for competition of variational type the optimal regularity is known

to be α′
opt = s, these results mark a substantial difference with the case of

standard diffusion s = 1, where the two competitions can not be distinguished
from each other in the limit.

1. Introduction

Let us consider the following stationary differential system, involving k ≥ 2 non
negative densities ui which are subject to diffusion, reaction and competition

(1.1) (−∆)sui = fi(x, ui)− βupi
∑

j 6=i

aiju
q
j ,

settled in Hs(RN ), N ≥ 1, or in a bounded domain with suitable boundary con-
ditions. In this system, different ranges of the parameter s allow to model the
brownian diffusion (s = 1), as well as the fractional one (0 < s < 1), which arises
whenever the underlying Gaussian process is replaced by the Levy one, in order to
allow discontinuous random walks. In the latter case, the nonlocal operator

(−∆)su(x) = cN,s pv

∫

RN

u(x)− u(ξ)

|x− ξ|N+2s
dξ

denotes the s-power of the laplacian. Furthermore, the competitive nature of the
interaction is driven by the positivity of the parameters β, p, q and aij , 1 ≤ i, j ≤ k.
Among others, two types of competition are particularly relevant in the applica-
tions:

• the case p = q = 1, that is the Lotka-Volterra type competition, which is
widely used in population dynamics and ecology;
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• the case p = 1, q = 2 (and aij = aji), which turns (1.1) into the Gross-
Pitaevskii system: this system arises in the search of solitary waves as-
sociated to the cubic Schrödinger system, which is commonly accepted as
a model for Bose-Einstein condensation in multiple states, and often used
also in nonlinear optics. In great contrast with the Lotka-Volterra one, this
system has a variational structure.

In the study of (1.1), a peculiar issue is the analysis of the behavior of the densities
in the case of strong competition, i.e. when β → +∞. In such situation, one expects
the formation of self-organized patterns, in which the limiting densities are spatially
segregated, and the natural questions regard a) the common regularity shared by
families of solutions, uniformly in β and b) the properties of the limiting segregated
profile. In facing such questions, typical tools are the blow-up technique and the
monotonicity formulae of Alt-Caffarelli-Friedman and of Almgren type.

After [11, 12, 13], the case s = 1 of standard diffusion has been extensively
studied in the last decade. In particular it is known that, both in the case of
Lotka-Volterra competition [14, 5] and in the variational one [6, 21], each family of
solutions which share a common uniform bounds in the L∞ norm is precompact in
the topology of H1 ∩ C0,α for every α < 1; we highlight that this result is quasi-
optimal, in the sense that α = 1 is the maximal common regularity allowed for
this problem. Furthermore, the limiting profiles (as β → +∞) are solutions of the
segregated system

(1.2) ui (−∆ui − fi(x, ui)) = 0, uiuj = 0 for j 6= i,

they are Lipschitz continuous, and they obey to a weak reflection law which roughly
says that, on the free boundary separating two components, the corresponding
gradients are equal in magnitude (up to suitable scaling factors depending on the
matrix (aij)) and opposite in direction [25]. Remarkably, such law is the same for
both types of competition [17]. For some related results, in the case of standard
diffusion, we also refer to [16, 22] and references therein.

Coming to the anomalous diffusion case s ∈ (0, 1), for the moment only the
competition of Gross-Pitaevskii type has been considered in the literature. In such
framework, the results above were recently generalized [26, 27, 28] in the following
sense: L∞ uniform bounds imply uniform bounds in Hs ∩ C0,α (for a suitable
extension problem), for every α < αGP

opt(s). Here the optimal exponent

αGP
opt(s) = s,

at least when 0 < s ≤ 1/2; for 1/2 < s < 1 we could only show that αGP
opt(s) ≥ 2s−1,

because of the lack of a clean-up lemma appropriate to exclude self-segregation; see
[27] for further details. In any case, this result agrees with the one holding for the
standard Laplace operator, since αGP

opt(1) = 1. Moreover the limiting profiles satisfy
a natural extension to the fractional setting of the system (1.2), that is

(1.3) ui ((−∆)sui − fi(x, ui)) = 0, uiuj = 0 for j 6= i,

and the validity of an Almgren monotonicity formula across the free boundary
ensures a reflection property, as in the case s = 1.

Under the perspective just described, in this paper we address the study of
system (1.1) in the case s ∈ (0, 1) and

p = q > 0.
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We remark that such range of parameters not only includes the Lotka-Volterra
competition, but it is of interest also in the complementary case p 6= 1. Indeed,
in the case of k = 2 components, such competition appears in the modeling of
diffusion flames [7], while in the general case the change of variables Ui = upi turns
system (1.1) into the one for competing densities subject to fast fractional diffusion
(when p > 1), or to fractional diffusion in a porous medium (when p < 1) [18, 3].

As in [26, 27], we state our results for a localized extension problem [10] related
to the nonlocal system (1.1), namely the problem

(P )β

{

Lavi = 0 in B+
1

∂aνvi = fi,β(x, v1, . . . , vk)− βvpi
∑

j 6=i aijv
p
j on ∂0B+

1 ,

where we adopt the standard notations R
N+1
+ := {X = (x, y) ∈ R

N × R : y > 0},

B+
r := Br∩{y > 0} ⊂ R

N+1
+ , ∂+B+

r := ∂Br∩{y > 0}, ∂0B+
r := Br∩{y = 0} ⊂ R

N ,
and

Lav := −div (|y|a∇v) , ∂aνv := lim
y→0+

−ya∂yv,

for a := 1− 2s ∈ (−1, 1). This last condition insures that the weight ya belongs to
the Muckenhoupt A2-class [23], so that a weak version of (P )β can be formulated
in the Hilbert space

H1;a(B+
1 ) :=

{

v :

∫

B+

1

ya
(
|v|2 + |∇v|2

)
dxdy <∞

}

.

Our first main results concern the full quasi-optimal theory in the case of two
densities.

Theorem 1.1. Let p > 0, aij > 0 for any j 6= i, and the reaction terms fi,β be
continuous and map bounded sets into bounded sets, uniformly w.r.t. β > 0.

If k = 2 then, for every

α < αopt(s) = αLV
opt(s) := min(2s, 1)

and m̄ > 0, there exists a constant C = C(α, m̄) independent of β such that

‖vβ‖L∞(B+) ≤ m̄ =⇒ ‖vβ‖C0,α
(

B+

1/2

) ≤ C,

for every vβ = (v1,β , v2,β) nonnegative solution of problem (P )β.
Furthermore, any sequence of uniformly bounded, nonnegative solutions {(v1,βn

, v2,βn
)}n,

with βn → ∞, converges (up to subsequences) in
(
H1;a ∩ C0,α

) (

B+
1/2

)

to a limiting

profile (v1, v2).

Theorem 1.2. Under the assumption of the previous theorem, let furthermore
fi,β → fi as β → ∞, uniformly on compact sets, with fi Lipschitz continuous. For
any limiting profile (v1, v2):

• v1(x, 0), v2(x, 0) are Lipschitz continuous (optimal regularity of the traces);
• v1(x, 0) · v2(x, 0) = 0 (boundary segregation condition);
• Lav1 = Lav2 = 0 for y > 0;
• ∂aν (a21v1 − a12v2) = a21f1 − a12f2 for y = 0.

Remark 1.3. In the previous results B+
1/2 can be replaced by any domain Ω∩{y >

0}, where Ω ⊂ B1.
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Figure 1. On the left, a numerical approximation of a limiting
profile for problem (P )β with Lotka-Volterra competition p = q =
1 and s = 1/2, for which Lipschitz continuity of the segregated
traces is shown in Theorem 1.2. On the right, the simulation for
the analogous problem with Gross-Pitaevskii competition p = 1,
q = 2, which optimal regularity, according to [26, Theorem 1.2], is
only C0,1/2.

Remark 1.4. Throughout this paper, we restrict our discussion to nonnegative
solutions only to avoid technicalities. Reasoning as in [26], also changing sign
solutions can be considered, once the competition is suitably extended to negative
densities.

Remark 1.5. The upper bound α = 2s for the regularity of the functions vi,β
can not be removed: indeed, from any solution of (P )β we can construct another
solution having (k + 1) components, by defining vk+1,β(x, y) = y2s, fk+1,β ≡ −2s.
One may possibly expect to be able to remove such threshold by considering only
the regularity of the traces vi,β(x, 0), as suggested by Theorem 1.2.

On the other hand, the Lipschitz regularity is the natural one, at least for the
traces, since the last condition in Theorem 1.2 implies that vi(x, 0) are (proportional
to) the positive/negative parts of a regular function.

Next, we address the case of k ≥ 3 densities.

Theorem 1.6. Let k ≥ 3. Then there exists α∗ > 0 such that Theorem 1.1 holds
for any α < α∗, under the further assumption that

either p ≥ 1 or aij = 1 for every j 6= i.

Furthermore, if aij = 1,

α∗ = αopt(s) = min(2s, 1)

whenever s = 1/2 or s ∈ (0, 1/4).

Even though we can show quasi-optimality only in some cases, the above regular-
ity result is sufficient to conclude that, as β → ∞, solutions of (P )β accumulate to
limiting profiles vi which properties, apart from optimal regularity, are analogous
to those described in Theorem 1.2 for the case k = 2 (see Section 5 for further
details). In particular, going back to the segregated traces ui(x) = vi(x, 0), we can
show that

(1.4) ui

[

(−∆)s

(

ui −
∑

j 6=i

aij
aji

uj

)

−

(

fi −
∑

j 6=i

aij
aji

fj

)]

= 0, uiuj = 0 for j 6= i.
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Comparing with equation (1.3), we see that, if s < 1, the Gross-Pitaevskii compe-
tition and the Lotka-Volterra one exhibit deep differences not only from the point
of view of the optimal regularity exponent, but also from that of the differential
equations satisfied by the segregated limiting profiles. This is in great contrast with
the case s = 1 where, as we already mentioned, the two competitions can not be
distinguished from each other in the limit. Such feature is caused by the non local
nature of the diffusion operators: indeed equation (1.4) can not be directly reduced
to (1.3), since in the set {ui = 0} the corresponding fractional laplacian does not
necessarily vanish. Nonetheless, letting s → 1−, we recover the local nature of the
equation: as a consequence

ui(−∆)s



ui −
∑

j 6=i

aij
aji

uj



→ ui(−∆ui),

so that equation (1.2) arises also in this case.
To conclude, we mention that the equations just discussed –or, better, the cor-

responding ones for the extensions vi– can be used to obtain further regularity for
the limiting profiles, also in the case aij 6= 1. In particular, we have the following
result.

Theorem 1.7. Let k ≥ 3, s = 1/2, p > 1. If furthermore fi(x, t1, . . . , tk) = 0 for
|(t1, . . . , tk)| small then every segregated limiting profile vi is C

0,α, for every α < 1.

Remark 1.8. Collecting together the results of Theorems 1.6 and 1.7, we have
that for s = 1/2 the limiting profiles are C0,α, for every α < 1, when either aij = 1
or p > 1. Since for s = 1/2 we have that La = (−∆), one may then try to apply the
arguments contained in [5, Section 2] (see also [1, Section 5]). This should eventually
imply that the traces of the limiting profiles are indeed Lipschitz continuous.

2. Preliminary results

We devote this section to some results concerning the operator La and solutions
to some associated differential problem. Most of such results already appeared,
even if in slightly different form, in the literature. The interested reader may refer
to [9, 26, 27] for further details.

Lemma 2.1 ([9, Lemma 2.7]). If v is a non constant, global solution of Lav = 0
in R

N+1, with the property that

|v(X)| ≤ C (1 + |X|γ) ,

then γ ≥ min(2s, 1). If furthermore v(x,−y) = v(x, y) then γ ≥ 1 (and v is a
polynomial).

Lemma 2.2 ([27, Proposition 11]). Let v satisfy
{

Lav = 0 in R
N+1
+

∂aνv = λ on R
N

for some λ ∈ R, and
|v(X)| ≤ C (1 + |X|γ) ,

for some 0 ≤ γ < min(2s, 1). Then v is constant.

The two last results we need are based on the following comparison principle.
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Lemma 2.3 (Comparison principle). Let u, v ∈ H1;a(B+) satisfy
{

Lau ≤ 0 in B+
1

∂aνu ≤ −Mup + δ on ∂0B+
1 ,

{

Lav ≥ 0 in B+
1

∂aνv ≥ −Mvp + δ on ∂0B+
1 ,

respectively. Then u ≤ v on ∂+B+
1 implies u ≤ v on B+

1 .

Proof. Letting w = u− v, we obtain that w is a solution to






Law ≤ 0 in B+
1

∂aνw ≤ −M(up − vp) on ∂0B+
1

w ≤ 0 on ∂+B+
1 .

Testing the equation with w+ and recalling that p > 0 we find
∫

B+

1

ya|∇w+|2dxdy ≤ −M

∫

∂0B+

up − vp

u− v
(w+)2dx ≤ 0. �

Lemma 2.4. Let M > 0 be any large constant and δ > 0 be fixed and let h ∈
L∞(∂0B+

1 ) with ‖h‖L∞ ≤ δ. Any v ∈ H1;a(B+
1 ) non negative solution to

{

Lav ≤ 0 in B+
1

∂aνv ≤ −Mvp + h on ∂0B+
1

verifies

sup
∂0B+

1/2

v ≤
1 + δ

M1/p
sup

∂+B+

1

v.

Sketch of proof. The proof is similar to the one of [27, Lemma 3.2], the only differ-
ence being in the choice of the supersolution. For a ∈ (−1, 1) and p > 0 fixed, let
b = 1 + (1− a)/p > 1 and f ∈ AC(R) ∩ C∞(R) be defined as

f(x) = c

∫ x

−∞

1

(1 + t2)b/2
dt,

where c is chosen in such a way that f(+∞) = 1. Then, for some C > 0, the
estimate

(−∆)sf(x) ≥ −Cf(x)p

holds for any x < 0. For M > 0, the function fM (x) := f(M1/(2s)x) satisfies

(−∆)sfM (x) =M2s/(2s) [(−∆)sf ] (M1/(2s)x) ≥ −CMfpM (x).

Therefore, if we let
gM (x) := fM (x− 1) + fM (−x− 1)

then
(fpM (x− 1) + fpM (−x− 1))

1/p
≤ cpgM ,

for some cp > 0. It follows that, for any M > 0, it holds






(−∆)sgM (x) ≥ −CMgpM (x) in (−1, 1)

gM (x) ≥ 1
2 in R \ (−1, 1)

gM (x) ≤ CM−1/p in
(
− 1

2 ,
1
2

)
.

The lemma follows by comparison between v and the supersolution (see [10])

wδ := δ
1

M1/p
+

∫

R

y1−a gM (x− ξ)

(ξ2 + y2)1−a/2
dξ. �
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Lemma 2.5. Let λ > 0 and v ∈ H1;a
loc (R

N+1
+ ) be non negative and satisfy

{

Lav = 0 in R
N+1
+

∂aνv ≤ −λvp on R
N .

If the Hölder quotient of exponent γ of v is uniformly bounded, for some γ ∈ [0, 2s),
then v is constant.

Proof. When p ≤ 1 the lemma follows directly from Lemma 2.4: indeed, by trans-
lating and scaling,

v(x0, 0) ≤ sup
∂0Br/2(x0,0)

v ≤
1

λ1/pr2s/p
sup

∂+Br(x0,0)

v ≤ C
1 + rγ

r2s/p
→ 0 as r → ∞.

When p > 1, we start by showing that v has a bounded trace on R
N . Let us assume,

on the contrary, that v(x, 0) is not uniformly bounded from above: by the uniform
control on the Hölder seminorm, there exists a sequence {xn} ⊂ R

N such that

Mn := inf
∂0B+

1
(xn,0)

vp−1 → +∞.

But then, restricting on B+
1 (xn, 0), we have that v ≥ 0 satisfies
{

Lav = 0 in B+
1 (xn, 0)

∂aνv ≤ −Mnv on ∂B+
1 (xn, 0)

and, thanks to Lemma 2.4 (with exponent 1 instead of p) and the Hölder continuity,
we obtain

inf
∂0B+

1
(xn,0)

v ≤ sup
∂0B+

1/2
(xn,0)

v ≤
1

Mn
sup

∂+B+

1
(xn,0)

v ≤
1

Mn

(

inf
∂0B+

1
(xn,0)

v + C

)

,

a contradiction. Let now {xn} ⊂ R
N be a maximizing sequence of v(x, 0), that is

sup
x∈RN

v(x, 0) = lim
n→∞

v(xn, 0) <∞,

and let us also introduce the sequence of functions

vn(x, y) := v(x− xn, y).

The functions vn share the same uniform bound in C0,γ , so that we can pass to

the uniform limit and find a limiting function v̄ ∈ C0,γ(RN+1
+ ) which satisfies the

assumptions of the lemma, its trace on R
N achieving the global maximum at (0, 0).

Let us denote with w the unique bounded La-harmonic extension of v̄(x, 0) (which
is defined since v̄(x, 0) is bounded). We see that the odd extension across {y = 0}
of the difference w − v̄ satisfies the assumptions of Lemma 2.1, yielding v̄ ≡ w.
From the equation we deduce that

∂aν v̄(0, 0) = −λv̄(0, 0)p = −λ sup
x∈RN

v(x, 0)p ≤ 0

and the Hopf Lemma implies v̄(0, 0) = 0, that is v ≡ 0. �
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3. The blow-up argument

As we mentioned in the introduction, the proof of the a priori uniform C0,α-
bounds of solutions to problem (P )β is based on a blow-up argument. To perform
this technique, we will assume that the solutions are not a priori bounded in a
uniform way in some Hölder norms and then, through a series of lemmas, we will
show that this implies the existence of entire solutions to some limiting problem.
The scheme of the proof here presented may resemble the one contained for instance
in [14] and also [26, 27]. However, in the present situation, some of the steps, which
were adopted in the aforementioned papers, actually fail. This phenomenon is
consequence of deep differences in the interaction between competition and diffusion
features of the models. Once the blow-up procedure is completed, we will reach
different contradictions in the next section, depending on the particular choice of
k, p and aij : for the moment, in what follows we will always assume that p > 0,
aij > 0 for any j 6= i, and that the reaction terms fi,β are continuous and map
bounded sets into bounded sets, uniformly w.r.t. β > 0 (notice that these are the
common assumptions for all the statements in the introduction).

Let {vβ}β = {(v1,β , . . . , vk,β)}β denote a family of positive solutions to problem
(P )β , uniformly bounded in B+

1 . We begin the analysis by recalling the regularity
result which holds whenever β is finite. For easier notation, we write B+ = B+

1 .

Lemma 3.1. For every 0 < α < min(2s, 1), m̄ > 0 and β̄ > 0, there exists a
constant C = C(α, m̄, β̄) such that

‖vβ‖C0,α
(

B+

1/2

) ≤ C,

for every vβ solution of problem (P )β on B+, satisfying

β ≤ β̄ and ‖vβ‖L∞(B+) ≤ m̄.

Sketch of the proof. Since the functions involved are a priori in L∞(B+), we can
apply the regularity result in [27, Lemma 4.1] to obtain regularity of the solutions
in C0,α spaces for every α < min(2s, 1) (see also the proof of [19, Lemma 2.3]). �

Let the cut-off function η be smooth, with

η(X) =

{

1 X ∈ B1/2

0 X ∈ R
N+1 \B1

while η(X) ∈ (0, 1) elsewhere.

The rest of this section is devoted to the proof of the following proposition.

Proposition 3.2. If there exists 0 < α < min(2s, 1) such that

sup
β>0

|ηvβ |C0,α(B+) = +∞

then for a suitable choice of {rβ}β ⊂ R
+ and {x′β}β ⊂ R

N , the blow-up family

wi,β(X) := η(x′β , 0)
vi,β((x

′
β , 0) + rβX)

rαβ |ηvβ |C0,α(B+)

admits a convergent subsequence in the local uniform topology. Moreover the limit

w ∈ (H1;a
loc ∩ C0,α)

(

R
N+1
+

)

enjoys the following properties:

(1) each wi is a La-harmonic function of RN+1
+ ;
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(2) at least one component of w is non constant, and it attains its maximal

Hölder quotient of exponent α at a pair of points in the half-ball B+
1 ;

(3) either there exists M > 0 such that

∂aνwi = −Mwp
i

∑

j 6=i

aijw
p
j on R

N

or wiwj |y=0 = 0 for every j 6= i and

∂aνwi ≤ 0, wi∂
a
ν



wi −
∑

j 6=i

aij
aji

wj



 = 0 on R
N .

The proof is divided in several steps. First, we choose any subsequence vn := vβn

such that
sup
n∈N

|ηvn|C0,α(B+) =: sup
n∈N

Ln = +∞,

where by Lemma 3.1 both βn → ∞ and the Hölder quotients Ln are achieved, say

Ln := max
i=1,...,k

max
X′ 6=X′′∈B+

|(ηvi,n)(X
′)− (ηvi,n)(X

′′)|

|X ′ −X ′′|α

=
|(ηv1,n)(X

′
n)− (ηv1,n)(X

′′
n)|

rαn
,

where we have written rn := |X ′
n −X ′′

n |. Finally, we are in a position to define the
two blow-up sequences we will work with as

wi,n(X) := η(x′n, 0)
vi,n((x

′
n, 0) + rnX)

Lnrαn
and w̄i,n(X) :=

(ηvi,n)((x
′
n, 0) + rnX)

Lnrαn
,

both defined on the domain

τnB
+ :=

B+ − (x′n, 0)

rn
.

Accordingly, the corresponding reaction terms can be expressed as

fi,n(x, t1, . . . , tk) = r2sn
η(x′n, 0)

Lnrαn
fi,βn

(

X ′
n + rnx, t1

Lnr
α
n

η(x′n, 0)
, . . . , tk

Lnr
α
n

η(x′n, 0)

)

.

In [26, Section 6] and [27, Section 4] we have analyzed in detail the behavior of
the two blow-up sequences in the different case of variational competition. In the
following lemma we collect the initial remarks about such sequences, the proof of
which is independent of the type of competition. In particular, we have that the
domains exhaust the whole R

N+1
+ , and that the two sequences {wn}n and {w̄n}n

– of which the former satisfies an equation and the latter has uniformly bounded
Hölder quotient – are close on any compact.

Lemma 3.3. As n→ ∞ the following assertions hold

(1) rn → 0, ‖fi,n‖∞ → 0, τnB
+ → R

N+1
+ and τn∂

0B+ → R
N × {0};

(2) the sequence {wn}n satisfies

(3.1)

{

Lawi,n = 0 in τnB
+

∂aνwi,n = fi,n(x,w1,n, . . . , wk,n)−Mnw
p
i,n

∑

j 6=i aijw
p
j,n on τn∂

0B+,

where

Mn = βnr
2s
n

(
η(x′n, 0)

Lnrαn

)1−2p

;
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(3) the sequence {w̄n}n has uniformly bounded C0,α-seminorm, the oscillation
of the first component in B+

1 being always 1;
(4) for any compact K ⊂ R

N+1,

max
X∈K∩τnB+

|wn(X)− w̄n(X)| → 0

(and therefore also wn has uniformly bounded oscillation on K).

In the next series of lemmas we are going to show that both sequences converge
to the same blow-up limit. To this end, we have to exclude the case in which
the sequences are unbounded at the origin: indeed, the uniform boundedness of a
sequence at some point is enough, together with points (3) and (4) of the previous
lemma, to conclude the convergence (uniform on compact sets) of the two sequences.

Lemma 3.4. For any r > 0 there exists a constant C such that the estimate

Mn

∫

∂0B+
r

∑

j 6=i

aijw
p+1
i,n wp

j,n dx ≤ C(r)(|wi,n(0)|+ 1)

holds uniformly in n.

Proof. Let us consider the quantities

E(r) :=
1

rN+a−1






∫

B+
r

ya|∇wi,n|
2 +

∫

∂0B+
r

(

−fi,nwi,n +Mnw
p+1
i,n

∑

j 6=i

aijw
p
j,n

)





H(r) :=
1

rN+a

∫

∂+B+
r

yaw2
i,n,

where H ∈ AC(R, 2R), for any R > 0 fixed and n sufficiently large. If we test
equation (3.1) by wi,n itself in the ball B+

r , we obtain

H ′(r) =
2

rN+a

∫

∂+B+
r

yawi,n∂νwi,n =
2

r
E(r),

which can be integrated to infer

H(2R)−H(R) =

2R∫

R

2

r
E(r) dr.

On the one hand, the left hand side of of the previous identity can be estimated by
recalling that wi,n has uniformly bounded oscillation on any compact set (Lemma
3.3, (4)):

H(2R)−H(R) =

∫

∂+B+

ya
[
w2

i,n(2RX)− w2
i,n(RX)

]
dσ

=

∫

∂+B+

ya wi,n|
2RX
RX

[

wi,n|
2RX
0 + wi,n|

RX
0 + 2wi,n(0)

]

dσ

≤ C(R)(|wi,n(0)|+ 1).
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On the other hand, we obtain a lower bound of the right hand side as

2r∫

r

2

s
E(s)ds ≥ min

s∈[r,2r]
E(s)

≥
1

rN+a−1






Mn

2N+a

∫

∂0B+
r

∑

j 6=i

aijw
p+1
i,n wp

j,n dx−

∫

∂0B+

2r

|fi,n|wi,n dx






≥ C




Mn

∫

∂0B+
r

∑

j 6=i

aijw
p+1
i,n wp

j,n dx− ‖fj,n‖L∞(|wi,n(0)|+ 1)




 . �

Lemma 3.5. If w̄i,n(0) → ∞ for some i, then there exists C such that

Mnw̄
p
i,n(0) ≤ C

for a constant C independent of n. In particular, Mn → 0.

Proof. Reasoning by contradiction we assume that Mnw̄
p
i,n(0) → ∞, at least for a

subsequence. For any r > 0 fixed, Lemma 3.3 forces

Ir,n := inf
∂0B+

r

Mnw
p
i,n → ∞.

From Lemma 3.4, we directly obtain

(3.2) Mn inf
∂0B+

r

wp+1
i,n

∫

∂0B+
r

∑

j 6=i

aijw
p
j,ndx ≤ C(r)(|wi,n(0)|+ 1)

that is, since wi,n(0)/wi,n(x) → 1 uniformly in compact sets,

Ir,n

∫

∂0B+
r

∑

j 6=i

aijw
p
j,ndx ≤ C.

Let j 6= i. Since Ir,n → ∞, we deduce that wj,n → 0 in Lp(∂0B+
r ), for every r.

Therefore Lemma 3.3 implies that both {w̄j,n}n and {wj,n}n converge, uniformly

on compact sets, to an La-harmonic function wj,∞ ∈ C0,α(Rn+1
+ ) such that

wj,∞(x, 0) = 0 on R
N .

The Liouville result in Lemma 2.1 applies to the odd extension of wj,∞ across
{y = 0}, yielding

wj,∞ ≡ 0 for j 6= i.

In particular, by uniform convergence, the unitary Hölder quotient is not achieved
by any of the functions w̄j,n for j 6= i and n large enough: it follows that we must
have i = 1.

Now, let us recall that each wj,n with j 6= 1 satisfies the inequality

(3.3)

{

Lawj,n = 0 in B+
2r

∂aνwj,n ≤ ‖fj,n‖L∞(B2r) − ajiI2r,nw
p
j,n in ∂0B+

2r

so that by Lemma 2.4 we have the estimate

sup
∂0B+

r

wp
j,n ≤

C(r)

I2r,n
sup

∂+B+

2r

wp
j,n.
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On the other hand, the function w1,n satisfies a boundary condition that can be
estimated as

sup
∂0B+

r

|∂aνw1,n| ≤ ‖f1,n‖L∞(B2r) + Ir,n
∑

i 6=1

aij sup
∂0B+

r

wp
j,n

≤ ‖f1,n‖L∞(B2r) + C(r)
Ir,n
I2r,n

∑

i 6=1

sup
∂+B+

2r

wp
j,n → 0,

where we used the fact that

inf
∂0B+

2r

w̄i,n ≤ inf
∂0B+

r

w̄i,n ≤ inf
∂0B+

2r

w̄i,n + Crα =⇒ lim
n→∞

Ir,n
I2r,n

= 1.

Let us now introduce the sequences

W1,n(x, y) := w1,n(x, y)− w1,n(0, 0), W̄1,n(x, y) := w̄1,n(x, y)− w̄1,n(0, 0).

As before, we can use Lemma 3.3 to prove that both sequences converge to the
same La-harmonic function, which is globally Hölder continuous, non constant,
and which has trivial conormal derivative on R

N , in contradiction with Lemma
2.2. �

Lemma 3.6. The sequence {w̄n(0)}n∈N is bounded.

Proof. By contradiction, let {w̄n(0)}n∈N be unbounded. Then, by the previous
lemma, Mn → 0. To start with, we claim that for every j there exists a constant
λj ≥ 0 such that, up to subsequences,

Mnw̄
p
j,n → λj locally uniformly.

Indeed, if w̄j,n(0) is bounded this follows by uniform Hölder bounds, with λj = 0;
if it is unbounded, from Lemma 3.5 we obtain that Mnw̄

p
j,n(0) → λj , while

sup
∂0B+

r

|Mnw̄
p
j,n −Mnw̄

p
j,n(0)| =Mnw̄

p
j,n(0) sup

∂0B+
r

∣
∣
∣
∣

(
w̄j,n

w̄j,n(0)

)p

− 1

∣
∣
∣
∣
→ 0.

Now, let i be such that wi,n(0) is bounded. As usual, we can use Lemma 3.3 to

show that wi,n → wi,∞ ∈ C0,α(RN+1
+ ) in the local uniform topology, where, using

the claim above, wi,∞ is a solution to
{

Lawi,∞ = 0 in R
N+1
+

∂aνwi,∞ = −wp
i,∞

∑

j aijλj on R
N .

Lemma 2.5 then implies wi,∞ ≡ 0: in particular, we have that w̄1,n(0) is unbounded.
Let us then turn our attention to w1,n. Again, if j is such that w̄j,n(0) is bounded,

then by the previous discussion w̄j,n → 0 locally uniformly and

Mnw̄
p
1,n

︸ ︷︷ ︸

≤C (Lemma 3.5)

w̄p
j,n → 0.

Otherwise, if j is such that w̄j,n(0) is unbounded, then Lemma 3.4 provides

C ≥Mnw1,n(0)
pwj,n(0)

p

∫

∂0B+
r

∑

j 6=1

a1j
wp+1

1,n

w1,n(0)p(|w1,n(0)|+ 1)

wp
j,n

wj,n(0)p
dx
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so that Mnw1,n(0)
pwj,n(0)

p is uniformly bounded. Since if {wj,n(0)}n∈N is un-
bounded then also {wj,n(x)}n∈N is, for any fixed x, and the same argument shows
that Mnw1,n(x)

pwj,n(x)
p is bounded. Now,

Mn |w1,n(x)
pwj,n(x)

p − w1,n(0)
pwj,n(0)

p|

≤Mnw1,n(x)
pwj,n(x)

p

∣
∣
∣
∣
1−

wj,n(0)
p

wj,n(x)p

∣
∣
∣
∣
+Mnw1,n(0)

pwj,n(0)
p

∣
∣
∣
∣

w1,n(x)
p

w1,n(0)p
− 1

∣
∣
∣
∣
→ 0.

This shows the existence of a constant λ such that, at least up to a subsequence,

f1,n −Mnw̄
p
1,n

∑

j 6=1

a1jw̄
p
j,n → λ

uniformly on every compact subset of R
N , and the same holds true for the se-

quence {w1,n}n∈N. Thus, as usual, W1,n = w1,n − w1,n(0) converges to W1 which
is nonconstant, globally Hölder continuous of exponent α < min(1, 2s), and which
solves {

LaW1 = 0 in R
N+1
+

∂aνW1 = λ on R
N .

Invoking Lemma 2.2, we obtain a contradiction. �

The boundedness of the sequences {w̄n(0)}n∈N implies, by Lemma 3.3, the con-
vergence of both {w̄n}n∈N and {wn}n∈N to the same blow-up limit. Reasoning as
in the proof of [26, Lemma 6.13], one can show that the convergence is also strong
in the natural Sobolev space.

Lemma 3.7. There exists w ∈ (H1;a
loc ∩ C0,α)

(

R
N+1
+

)

such that, up to a subse-
quence,

wn → w in (H1;a ∩ C)(K)

for every compact K ⊂ R
N+1
+ . Furthermore, each wi is La-harmonic, and w1 is

non constant.

Depending on the behavior of the sequence Mn, the limiting functions w satisfy
a different limiting problem: first, we can exclude the case Mn → 0.

Lemma 3.8. There exists C > 0 such that Mn ≥ C.

Proof. Let us assume that there exists a subsequence Mnk
that converges to 0.

Passing to the limit in the sequence, we obtain as a limiting problem
{

Lawi = 0 in R
N+1
+

∂aνwi = 0 on R
N .

By Lemma 2.1 each wi is constant, and this is in contradiction with the fact that
w1 oscillates in the half-ball B+. �

Lemma 3.9. If Mn →M > 0, then the blow-up profiles w solve
{

Lawi = 0 in R
N+1
+

∂aνwi = −Mwp
i

∑

j 6=i aijw
p
j on R

N .

Proof. This is a direct consequence of Lemma 3.7. �

To conclude the proof of Proposition 3.2 we are left to analyze the caseMn → ∞.
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Lemma 3.10. IfMn → ∞, then the blow-up profiles w are such that wiwj |y=0 = 0,
for every j 6= i, and

(3.4)







∂aνwi ≤ 0

∂aν

(

wi −
∑

j 6=i
aij

aji
wj

)

≥ 0

wi∂
a
ν

(

wi −
∑

j 6=i
aij

aji
wj

)

= 0,

where the inequalities are understood in the sense of RN -measures.

Proof. For any nonnegative ψ ∈ C∞
0 (RN+1), we test equation (3.1) to find

0 ≤

∫

∂0Br

Mnw
p
i,n

∑

j 6=i

aijw
p
j,nψ ≤

∫

∂0Br

(fi,nψ − wi,n∂
a
νψ)−

∫

B+
r

wi,nLaψ.

Since the right hand side is bounded by local uniform convergence, we infer that

(3.5) Mn

∫

K

wp
i,nw

p
j,n dx ≤ C(K) ∀j 6= i,

for any compact set K ⊂ R
N . In particular it follows that, at the limit, wiwj |y=0 =

0 for every j 6= i. Furthermore, the first and the second inequalities in (3.4) follow
from equation (3.1) and from the fact that, for every n,

∂aν

(

wi,n −
∑

j 6=i

aij
aji

wj,n

)

= fi,n −
∑

j 6=i

aij
aji

fj,n +Mn

∑

j 6=i
h 6=i,j

aij
aji

ajhw
p
j,nw

p
h,n

(we recall that the reaction terms fi,n → 0 uniformly in R
N ). Finally, the identity

in (3.4) can be obtained by multiplying the previous equation by wi,n, once one
can estimate the terms Mnwi,nw

p
j,nw

p
h,n. To this aim, let ε > 0, and let us define

the (possibly empty) set

suppεi = {x ∈ R
N : wi(x, 0) ≥ ε}.

We observe that for any K ⊂ R
N compact set, the local uniform convergence of

the sequence {wn} implies
{

wi,n(x, 0) ≥
ε
2 ∀x ∈ K ∩ suppεi

wi,n(x, 0) ≤ 2ε ∀x ∈ K \ suppεi ,

for any n large enough. As a consequence

Mn

∫

K

wi,nw
p
j,nw

p
h,ndx ≤Mn

∫

K\suppε
i

wi,nw
p
j,nw

p
h,ndx+Mn

∫

K∩suppε
i

wi,nw
p
j,nw

p
h,ndx

≤Mn2ε

∫

K\suppε
i

wp
j,nw

p
h,ndx+Mn

∫

K∩suppε
i

wi,n2
2p (1 + ‖fj,n‖)

p

Mnεp
(1 + ‖fh,n‖)

p

Mnεp
dx

≤ C

(

ε+
1

Mn
ε−2p

)

,

where we used estimate (3.5) and Lemma 2.4 to bound the two terms. Choosing n
sufficiently large so that ε−2p ≤ εMn, we conclude by the arbitrariness of ε that

lim
n→∞

Mn

∫

K

wi,nw
p
j,nw

p
h,ndx = 0 for every i 6= j 6= h. �
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Corollary 3.11. Let aij = 1 for every i, j and w be a blow-up profile. For every
i 6= j the functions z = wi − wj are such that

{

Laz
± ≤ 0 in R

N+1
+

z±∂aνz
± ≤ 0 on R

N .

Proof. A subtraction of the equation satisfied by wi,n and wj,n yields

(wi,n − wj,n)
±∂aν (wi,n − wj,n) = (fi,n − fj,n)(wi,n − wj,n)

±

−Mn (wi,n − wj,n)
±(wp

i,n − wp
j,n)

︸ ︷︷ ︸

≥0

∑

h 6=i,j

wp
h,n. �

4. Uniform Hölder bounds

We are ready to show the almost optimal uniform Hölder bounds, in the case of
two competing species. This will be a consequence of the following lemma.

Lemma 4.1. Under the assumption of Proposition 3.2, at least three components
of the blow-up profile w are non constant, and all the constant components are
trivial.

Proof. We start by observing that each constant component has to be trivial: this
is a direct consequence of the segregation condition wiwj |y=0 = 0 in the caseMn →
∞, while, if Mn → M > 0, it is implied by the boundary condition and the fact
that at least w1 is non constant.

If w1 is the only non constant component, then we obtain a contradiction with
Lemma 2.2 since in both casesMn →M (Lemma 3.9) andMn → ∞ (Lemma 3.10),
we have ∂aνw1 = 0.

Let us now assume that only w1 and, say, w2 are non constant. Invoking again
Lemma 3.9 and 3.10, we obtain in both cases that

{

La (a21w1 − a12w2) = 0 in R
N+1
+

∂aν (a21w1 − a12w2) = 0 on R
N .

The application of Lemma 2.2 then implies

w1 = C +
a12
a21

w2,

where, up to a permutation between w1 and w2, we may assume that the constant
C is non negative. If Mn → ∞, the segregation condition w1w2|y=0 = 0 yields

(

C +
a12
a21

w2

)

w2|y=0 = 0 =⇒ C = w1 = w2 = 0,

a contradiction. In the remaining case, the function w2 solves
{
Law2 = 0 in R

N+1
+

∂aνw2 = −Mwp
2

(

C + a12

a21
w2

)p

≤ −C ′w2p
2 on R

N ,

in contradiction with Lemma 2.5. �

Proof of Theorem 1.1. The lemma above, combined with Proposition 3.2, provides
all the results in the theorem but the H1;a convergence; this last property follows
from the uniform Hölder bounds, reasoning as in the proof of Lemma 3.7. �
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Now we turn to the case of k ≥ 3 densities. We first prove uniform Hölder
bounds with small exponent, when the power p is greater or equal than 1. In
order to quantify such exponent, we need to introduce some notation. For any
ω ⊂ S

N
+ := ∂+B+

1 we consider the first eigenvalue of (the angular part of) La,
defined as

λ1(ω) = inf







∫

SN
+

|y|a|∇Tu|
2 dσ : u ≡ 0 on S

N
+ \ ω,

∫

SN
+

|y|au2 dσ = 1







(here ∇T denotes the tangential part of the gradient), and the associated charac-
teristic function

γ(t) =

√
(
N − 2s

2

)2

+ t−
N − 2s

2
.

We are ready to state the following Liouville type result.

Proposition 4.2. Under the assumption

p ≥ 1,

let w denote a blow-up limit as in Proposition 3.2, and let

ν = ν(s,N) := inf

{
γ(λ1(ω1)) + γ(λ1(ω2))

2
: ωi ⊂ S

N
+ , ω1 ∩ ω2 ∩ {y = 0} = ∅

}

.

If
|w(X)| ≤ C(1 + |X|α), for some α < ν,

then k − 1 components of w are trivial.

Remark 4.3. As shown in [26, Lemma 2.5], [27, Lemma 2.3], ν(s,N) > 0 (and
ν(s,N) ≤ s) for every 0 < s < 1, N ≥ 1.

Proof. The proof is a byproduct of arguments already exploited in [27]. The first
step consists in obtaining a monotonicity formula of Alt-Caffarelli-Friedman type,
with exponent between α and ν. In the case in which w has segregated traces on
{y = 0}, this is [27, Proposition 4]. When w satisfies a differential system, this can
be done as in [27, Proposition 5], with minor changes: namely, by replacing the

term v2i v
2
j with vp+1

i vpj (this can be done as far as p ≥ 1).
Once the validity of the monotonicity formula holds, one can deduce a related

minimal growth rate for w, which is consistent with the one in the assumption only
if all the components but one vanish. �

The result above can be improved, also removing the restriction on p, in the case
of equal competition rates.

Proposition 4.4. Under the assumption

aij = 1 for every 1 ≤ i, j ≤ k,

let w denote a blow-up limit as in Proposition 3.2, and let

µ = µ(s,N) := inf

{
γ(λ1(ω1)) + γ(λ1(ω2))

2
: ωi ⊂ S

N
+ , ω1 ∩ ω2 = ∅

}

.

If
|w(X)| ≤ C(1 + |X|α), for some α < µ,

then k − 1 components of w are trivial.
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Remark 4.5. It is immediate to check that µ(s,N) ≥ ν(s,N) for every s, N . In
particular, it is always positive. Were µ(s,N) = 1, we would find regularity up to
αopt also in the case k ≥ 3. As a matter of fact, at the end of this section we will
show that 1/2 ≤ µ(s,N) ≤ 1 for every 0 < s < 1, N ≥ 1. Furthermore, it is proved
in [1, 8] that

(4.1) µ

(
1

2
, N

)

= 1, for every N ≥ 1.

Proof. We start showing that, for any choice i 6= j, if wi(·, 0) ≤ wj(·, 0) then wi ≡ 0.
Indeed, if w solves the differential system, then

∂aνwi ≤ −Mwp
iw

p
j ≤ −Mw2p

i ,

and the claim follows by Lemma 2.5; in the case of segregated traces, then wi(·, 0) ≡
0 and one can conclude by applying Lemma 2.1 (to the odd extension of wi across
{y = 0}).

On the other hand, let us assume by contradiction that, for some i 6= j, the
functions z± := (wi − wj)

± are both nontrivial. Then they satisfy the inequalities
in Corollary 3.11, and furthermore

|z±(X)| ≤ C(1 + |X|α),

where α < µ. Under these assumptions, we can obtain a contradiction by reasoning
as in the proof of Proposition 4.2. To this aim, the only missing ingredient is the
following monotonicity formula. �

Lemma 4.6. Let z1, z2 ∈ H1;a(B+
R(x0, 0)) be continuous nonnegative functions

such that

• z1z2 = 0, zi(x0, 0) = 0;
• for every non negative φ ∈ C∞

0 (BR(x0, 0)),
∫

R
N+1

+

(Lazi)ziφ dxdy +

∫

RN

(∂aνzi)ziφ dx =

∫

R
N+1

+

ya∇zi · ∇(ziφ) dxdy ≤ 0.

Then

Φ(r) :=
2∏

i=1

1

r2µ

∫

B+
r (x0,0)

ya|∇zi|
2

|X − (x0, 0)|N−2s
dxdy

is monotone non decreasing in r for r ∈ (0, R), where µ is defined as in Proposition
4.4.

Proof. First of all we observe that, up to an even extension of the functions zi across
{y = 0}, the formula above is implied by the analogous one stated on the whole
Br. This latter formula, when s = 1/2, is nothing but the classical Alt-Caffarelli-
Friedman one [1]. On the other hand, when s 6= 1/2, its proof resemble the usual
one, as done for instance in [8] (see also [27, Section 2] for further details). �

To conclude the proof of Theorem 1.6, we provide the following rough elementary
estimate of µ(s,N) for s 6= 1/2.

Lemma 4.7. For every 0 < s < 1 and N ≥ 1 it holds

µ(s,N) ≥
1

2
.
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Proof. By trivial extension to higher dimensions of the eigenfunctions involved, it
is easy to prove that µ is decreasing with respect to N , thus we can assume N ≥ 2.

Let ω1, ω2 ⊂ S
N
+ , ω1 ∩ ω2 = ∅, and let φi ∈ H1;a(SN+ ) be the first eigenfunction

associated to λ1(ωi) enjoying the normalization
∫

SN

|y|aφ2idσ = 1 for i = 1, 2.

If R denotes the Rayleigh quotient associated to λ1, then we have that

λ2(S
N
+ ) := inf

V⊂H1;a(SN+ )
dimV≥2

max
V

R ≤ max
ϑ

R (φ1 cosϑ+ φ2 sinϑ) ≤ max(λ1(ω1), λ1(ω2)).

By monotonicity of γ we obtain that

µ(s,N) = inf
ω1∩ω2=∅

γ(λ1(ω1)) + γ(λ1(ω2))

2
≥

1

2
γ(λ2(S

N
+ )).

To conclude the proof, we show that γ(λ2(S
N
+ )) = 1. Indeed, let ψ2 be a second

eigenfunction. Then its conormal derivative on ∂SN+ is identically zero, and it can

be extended in an even way across {y = 0} to an eigenfunction of SN . Moreover,
by the well known properties of γ, we have that the function

v(X) = |X|γ(λ2(S
N
+ ))ψ2

(
X

|X|

)

is La-harmonic up to 0 (this is true, actually, because we are assuming N ≥ 2), is
y-even, and has bounded growth. By Lemma 2.1 we deduce that, up to a rotation
in the x plane, v = x1, concluding the proof. �

Proof of Theorem 1.6. The uniform Hölder bounds with exponent α∗ are obtained
by combining Lemma 4.1 with either Proposition 4.2 (with α∗ = min(2s, ν(s,N)))
or Proposition 4.4 (with α∗ = min(2s, µ(s,N))), respectively. In the second case,
the exact value of α∗ is provided by Remark 4.5 when s = 1/2, and by Lemma 4.7
when s < 1/4. �

Remark 4.8. By comparison with the nodal partition of S
N
+ associated to the

homogeneous, La-harmonic function v(x, y) = x1, we infer that

µ(s,N) ≤ 1.

5. Further properties of the segregation profiles

In this last section we deal with the proof of Theorems 1.2 and 1.7. Together
with the previous assumptions, in what follows we further suppose that the reaction
terms fi,β → fi as β → ∞, uniformly on compact sets, with fi Lipschitz continuous.

As a result of the previous sections, we have shown that L∞ uniform bounds on
a family of solutions to the problem (P )β is enough to ensure equicontinuity of the
family independently from the competition parameter β. Reasoning as in the proof
of Lemmas 3.7 and 3.10 we deduce the following result.

Proposition 5.1. Any sequence {vβn}n∈N, βn → ∞, of solutions to (P )β which is
uniformly bounded in L∞(B+) admits a subsequence which converges to a limiting
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profile v ∈ (H1;a ∩ C0,α)loc(B
+), for some α > 0. Moreover

(5.1)







Lavi = 0 in B+,

∂aνvi ≤ fi(x, v1, . . . , vk)

∂aν

(

vi −
∑

j 6=i
aij

aji
vj

)

≥ fi −
∑

j 6=i
aij

aji
fj on ∂0B+,

vi ·
[

∂aν

(

vi −
∑

j 6=i
aij

aji
vj

)

− fi +
∑

j 6=i
aij

aji
fj

]

= 0

and vi(x, 0) · vj(x, 0) ≡ 0 for every j 6= i.

After Proposition 5.1, the optimal regularity for the case of two densities is
almost straightforward.

Proof of Theorem 1.2. For a limiting profile v = (v1, v2), let w = a21v1 − a12v2.
Then Proposition 5.1 implies that

v1(x, 0) =
1

a21
w+, v2(x, 0) =

1

a12
w−,

and {

Law = 0 in B+,

∂aνw = g(w) on ∂0B+,

where

g(x, t) := a21f1

(

x,
1

a21
t+,

1

a12
t−
)

− a12f2

(

x,
1

a21
t+,

1

a12
t−
)

is Lipschitz continuous. As a consequence, standard regularity (e.g. [24, Proposition
2.8], [19, Lemma 2.1]) applies, providing that w ∈ C1,α and thus u1, u2 are Lipschitz
continuous. �

Remark 5.2. An important consequence of the argument above is that whenever
there are only two species that are segregated, under suitable growth conditions
about f1, f2 the corresponding free boundary

Γ := {x ∈ ∂0B : v1(x, 0) = v2(x, 0) = 0}

is a closed set of empty interior (in the N dimensional topology). Indeed w =
a21v1 − a12v2 satisfies a semilinear equation for which unique continuation holds,
see [20, Theorems 1.4, 4.1].

We are left to deal with the case k ≥ 3 for the half-laplacian, i.e.

s =
1

2
.

In this case, by Theorem 1.6 we already know that, when aij = 1, the traces of
the limiting profiles enjoy almost Lipschitz continuity on K ∩ {y ≥ 0}, for every
compact K ⊂ B. We are going to show that the same holds also for general aij ,
when there are no internal reaction terms in a neighborhood of the free boundary.
More precisely, we assume that the Lipschitz continuous functions fi are such that

fi(x, t1, . . . , tk) ≡ 0 whenever |(t1, . . . , tk)| < θ,

for some θ > 0 (such assumption can be weakened, but we prefer to avoid further
technicalities at this point). Finally, K ⊂ B will denote a fixed compact set.
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Remark 5.3. As before, since the components of a limiting profile v are harmonic
on B+, we have that its regularity on K is directly connected to the regularity of
the same function in K ∩ {0 ≤ y < ε} for arbitrarily small ε > 0.

Definition 5.4. For any function v ∈ H1 ∩ C(B+;Rk) which satisfies (5.1) (with
s = 1/2), we let v̂ := (v̂1, . . . , v̂k) where

v̂i(x, y) = vi(x, y)−
∑

j 6=i

aij
aji

vj(x, y).

To clarify the effect of the segregation condition, we introduce the definition of
multiplicity of boundary points.

Definition 5.5. We define the multiplicity of a point x ∈ ∂0B+ as

m(x) := ♯
{
i : HN ({vi(x, 0) > 0} ∩ ∂0Br(x, 0)) > 0.∀r > 0

}
.

We start with a result about the regularity of low multiplicity points.

Lemma 5.6. If K ∩ {y = 0} ⊂ {x : m(x) ≤ 1} then v ∈ C1,1/2(K ∩ {y ≥ 0}).

Proof. According to Remark 5.3, we will show local regularity of the functions in
B+

r (x0, 0), where r is small and m(x0) ≤ 1. We have three possibilities.
Case 1: m(x0) = 0. in this case, v|∂0Br(x0,0) ≡ 0, and the result is standard.
Case 2: m(x0) = 1 and vi(x0, 0) > 0. By continuity of vi, we can assume that

vi|∂0Br(x0,0) > 0, while by the segregation condition vj |∂0Br(x0,0) ≡ 0 for every

j 6= i. Let v̂ be as in Definition 5.4. Since in this case v̂i = vi on ∂
0Br(x0, 0), it

follows from (5.1) that
{

−∆v̂i = 0 in B+
r (x0, 0)

∂ν v̂i = f(x, 0, . . . , v̂i, . . . , 0) in ∂0B+
r (x0, 0).

The regularity of v̂i (and thus of vi) follows by the well established regularity theory
of the semilinear Steklov problem.

Case 3: m(x0) = 1 and the non trivial function vi is such that vi(x0, 0) = 0. Also
in this case we can assume vj |∂0Br(x0,0) ≡ 0 for j 6= i and, as before, vi = v̂i ≥ 0 on

∂0Br(x0, 0). By continuity of vi, we can also assume that fi = 0 in ∂0Br(x0, 0). It
follows that 





−∆v̂i = 0 in Br(x0, 0)

∂ν v̂i = 0 in ∂0Br(x0, 0) ∩ {v̂i|y=0 > 0}

∂ν v̂i ≥ 0 in ∂0Br(x0, 0).

As a consequence, v̂i is a solution to the zero thin obstacle problem, for which C1,1/2

regularity (up to the obstacle) has been obtained in [2, Theorem 5]. �

Remark 5.7. The analogous of the previous lemma holds true also when s 6= 1/2,
in which case C1,s regularity can be shown, as a consequence of [9].

Now, for X ∈ B, we introduce the the Morrey quotient associated to v as

Φ(X, r) :=
1

rN+1−2ε

∫

Br(X)∩B+

k∑

i=1

|∇vi|
2 dxdy.

It is well known that if Φ is uniformly bounded for any X ∈ K ∩ {y ≥ 0} and
r < dist(K, ∂+B+), then v is Hölder continuous of exponent 1− ε in K ∩ {y ≥ 0}.
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Thus the proof of Theorem 1.7 is based on the contradictory assumption that, for
some ε > 0, there is a sequence {(Xn, rn)}n such that Xn ∈ K, rn > 0 and

(5.2) lim
n→∞

Φ(Xn, rn) = ∞.

To reach a contradiction we will use the following technical lemma.

Lemma 5.8 ([15, Lemma 8.2]). Let Ω ⊂ R
N+1 and v ∈ H1(Ω) and let

Φ(X, r) :=
1

rN+1−2ε

∫

Br(X)∩Ω

|∇v|2dxdy.

If (Xn, rn) ⊂ Ω× R
+ is a sequence such that Φ(Xn, rn) → ∞, then rn → 0 and

(1) there exists {r′n} ⊂ R
+ such that φ(Xn, r

′
n) → ∞ and

(5.3)

∫

∂Br′n
(Xn)∩Ω

|∇v|2 ≤
N + 1− 2ε

r′n

∫

Br′n
(Xn)∩Ω

|∇v|2;

(2) if A ⊂ Ω and

dist(Xn, A) ≤ Crn

then there exists a sequence {(X ′
n, r

′
n)} such that φ(X ′

n, r
′
n) → ∞ and X ′

n ∈
A for every n.

Proof of Theorem 1.7. Using the second point of Lemma 5.8, together with Remark
5.3, we can assume without loss of generality that the contradictory assumption
(5.2) holds for ∂0B+ ∋ Xn =: (xn, 0), for every n. Lemma 5.8 also implies that
rn → 0, and that we can assume estimate (5.3) to hold for any n, with Ω = {y > 0}.
Furthermore, since v ∈ H1(B+), the function r 7→ Φ((xn, 0), r) is continuous for
r > 0 and it is uniformly bounded for r faraway from 0: as a consequence we can
assume that

Φ((xn, 0), r) ≤ CΦ((xn, 0), rn) ∀rn < r < dist(K, ∂+B+),

for some constat C. Finally, by Lemmas 5.6 and 5.8 we can assume m(xn) ≥ 2 for
n large, and thus fi(·, vi) ≡ 0 on B+

rn((xn, 0)).
Let us introduce a sequence of scaled function vn defined as

vi,n(X) :=
1

Φ((xn, 0), rn)1/2r
1−ε
n

vi((xn, 0) + rnX) for X ∈ B.

By assumptions, ‖∇vn‖L2(B+) = 1 for every n, and

(5.4)
1

rN+1−2ε

∫

B+
r

k∑

i=1

|∇vi,n|
2 ≤ C ∀1 < r < r−1

n dist(K, ∂+B+).

We divide the rest of the proof in a number of steps.
Step 1: also ‖vn‖L2(B+) is uniformly bounded. We argue by contradiction, as-

suming that ‖vn‖L2(B+) → ∞. Letting

un := ‖vn‖
−1
L2(B+)vn

we have that ‖un‖L2(B+) = 1, while ‖∇un‖L2(B+) → 0: there exists d ∈ R
k such

that

un → d in H1(B+).
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Using the segregation condition vi,n · vj,n|y=0 = 0, which passes to the strong limit,
we infer that only one among the constant di may be non trivial, say d1 > 0. But
recalling that the even extension of v̂i,n across {y = 0} is superharmonic, we find

v̂1,n(0) = 0 =⇒

∫

B+

∑

j 6=1

aij
aji

vj,n ≥

∫

B+

v1,n

a contradiction, passing to the strong limit in H1(B+).

Step 2: the sequence vn admits a nontrivial weak limit v̄ ∈ H1
loc(R

N+1
+ ). From

Step 1 and the uniform estimate (5.4) we infer the weak convergence; let us show
that v̄ is non trivial. To this end, we recall that

{

−∆vi,n = 0 in B+

vi,n∂νvi,n ≤ 0 on ∂0B+.

Testing the equation against vi,n and summing over i, we have

∫

B+

|∇vn|
2 ≤

∫

∂+B+

k∑

i=1

vi,n∂νvi,n ≤

(∫

∂+B+

|vn|
2 ·

∫

∂+B+

|∇vn|
2

)1/2

.

Were v̄ trivial, the right hand side would go to zero thanks to the compact embed-
ding of the trace operator and the uniform estimate (5.3), which is scaling invariant.
This would imply strong convergence, in contradiction with the fact that the L2

norm of ∇vn is equal to 1.
Step 3: v̄(x, 0) ≡ 0 on R

N . Let us consider the sequence v̂n (recall Definition
5.4). From (5.1) (in the case s = 1/2), we know that the pair (v̂+i , v̂

−
i ) is made of

two continuous, subharmonic, nonnegative functions such that v̂+i · v̂−i = 0 in R
N+1,

with nonpositive normal derivative on R
N . As a result, they satisfy the assumption

of the Alt-Caffarelli-Friedmann monotonicity formula (Lemma 4.6 with a = 0 and
µ = 1), from which we obtain

1

rN+1

∫

B+
r (xn,0)

|∇v̂+i |
2dxdy ·

1

rN+1

∫

B+
rn (xn,0)

|∇v̂−i |
2dxdy ≤

1

r2

∫

B+
r (xn,0)

|∇v̂+i |
2

|X − (xn, 0)|N−1
dxdy ·

1

r2

∫

B+
r (xn,0)

|∇v̂−i |
2

|X − (xn, 0)|N−1
dxdy ≤ C,

that is

1

rN+1−2ε

∫

B+
r (xn,0)

|∇v̂+i |
2dxdy ·

1

rN+1−2ε

∫

B+
r (xn,0)

|∇v̂−i |
2 ≤ Cr4ε.

Hence at most one of the two Morrey quotients can be unbounded. Moreover, by
the triangular inequality, the possibly unbounded one diverges at most at the same
rate of Φ((xn, 0), rn). Scaling to (v̂+i,n, v̂

−
i,n) we can distinguish among three different

cases:

• both ‖∇v̂+i,n‖L2(Br) and ‖∇v̂−i,n‖L2(Br) are infinitesimal. In this situation,
we have that there exists c ≥ 0 such that v̂i,n → c. Since by even extension

{

−∆v̂i,n ≥ 0 in Br

v̂i,n(0, 0) = 0
=⇒

∫

Br

v̂i,n ≤ 0

we have that v̂i,n → c ≤ 0;
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• there exists c > 0 such that ‖∇v̂+i,n‖L2(Br) ≥ c > 0 while ‖∇v̂−i,n‖L2(Br) → 0.
Testing the equation

{

−∆v̂+i,n ≤ 0 in B+
r

v̂+i,n∂ν v̂
+
i,n ≤ 0 on ∂0B+

r

with v̂+i,n we obtain that in the limit v̂+i,n ⇀ v̂i 6= 0, and thus v̂−i,n → 0

strongly in H1(Br). Using again the superharmonicity of v̂i,n as before, we
conclude that v̂i,n → 0, in contradiction with v̂i 6= 0;

• there exists c > 0 such that ‖∇v̂−i,n‖L2(Br) ≥ c > 0 while ‖∇v̂+i,n‖L2(Br) → 0.

Reasoning as in the previous case, we obtain that v̂+i,n → 0 strongly in

H1(Br), thus v̂i,n ⇀ v̂i ≤ 0.

In any case, v̂+i,n → 0 and v̂i,n ⇀ v̂i ≤ 0 in H1
loc(R

N+1
+ ) for all i, implying in

particular that vi,n|y=0 → v̄i|y=0 = 0 in H
1/2
loc (R

N ).
Conclusion. If we extend v̄ evenly across {y = 0}, we obtain a k-tuple of

harmonic functions defined on R
N+1 for which Φ(0, r) ≤ C for all r ≥ 1. From the

Morrey inequality, we have that for any X ∈ R
N+1, |X| ≥ 1,

|v̄(X)− v̄(0)| ≤ C|X|1−
N+1

2 ‖∇v̄‖L2(B2|X|).

As a result, we have

|v̄(X)− v̄(0)| ≤ C|X|1−ε

for every |X| ≥ 1, in contradiction with the fact that v is harmonic in R
N+1 and

non trivial, thanks to the classical Liouville theorem. �

Remark 5.9. More general nonlinearities should be addressable, using similar
arguments as before, once a generalization of the Caffarelli-Jerison-Kenig almost
monotonicity formula [4] to this setting were available.

Remark 5.10. The case s 6= 1/2 could follow as a generalization of the previous
proof, if not for the fact that, at the moment, no exact Alt-Caffarelli-Friedman
monotonicity formula is available, in this setting: one could only show, by Lemma
4.6 and 4.7, the C0,α continuity of the limiting profiles, for every α < 2s and α ≤ µ.
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[18] A. de Pablo, F. Quirós, A. Rodŕıguez, and J. L. Vázquez. A general fractional porous medium

equation. Comm. Pure Appl. Math., 65(9):1242–1284, 2012.
[19] S. Dipierro and A. Pinamonti. A geometric inequality and a symmetry result for elliptic

systems involving the fractional Laplacian. J. Differential Equations, 255(1):85–119, 2013.
[20] M. M. Fall and V. Felli. Unique continuation property and local asymptotics of solutions to

fractional elliptic equations. Comm. Partial Differential Equations. To appear.
[21] B. Noris, H. Tavares, S. Terracini, and G. Verzini. Uniform Hölder bounds for nonlinear
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