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A PARTIALLY HINGED RECTANGULAR PLATE

AS A MODEL FOR SUSPENSION BRIDGES

ALBERTO FERRERO AND FILIPPO GAZZOLA

Abstract. A plate model describing the statics and dynamics of a suspension bridge is suggested. A

partially hinged plate subject to nonlinear restoring hangers is considered. The whole theory from linear

problems, through nonlinear stationary equations, ending with the full hyperbolic evolution equation is

studied. This paper aims to be the starting point for more refined models.

1. Introduction

Due to the videos available on the web [34], the Tacoma Narrows Bridge collapse is certainly the
most impressive failure of the history of bridges. But, unfortunately, it is not an isolated event, many
other bridges collapsed in the past, see [3, 15]. According to [14], around 400 recorded bridges failed for
several different reasons and the ones who failed after year 2000 are more than 70. Strong aerodynamic
instability is manifested, in particular, in suspension bridges which usually have fairly long spans. Hence
reliable mathematical models appear necessary for a precise description of the instability and of the
structural behavior of suspension bridges under the action of dead and live loads.
On one hand, realistic models appear too complicated to give helpful hints when making plans. On

the other hand, simplified models do not describe with sufficient accuracy the complex behavior of
actual bridges. We refer to [10] for a survey of some existing models.
A one-dimensional simply supported beam suspended by hangers was suggested as a model for sus-

pension bridges in [19, 27, 28]. It is assumed that when the hangers are stretched there is a restoring
force which is proportional to the amount of stretching but when the beam moves in the opposite
direction, the hangers slacken and there is no restoring force exerted on it. If u = u(x, t) denotes the
vertical displacement of the beam (of length L) in the downward direction, the following fourth order
nonlinear equation is derived

(1) utt + uxxxx + γu+ = f(x, t) , x ∈ (0, L) , t > 0 ,

where u+ = max{u, 0}, γu+ represents the force due to the hangers, and f represents the forcing term
acting on the bridge, including its own weight per unit length. For time periodic f , McKenna-Walter
[27] prove the existence of multiple periodic solutions of (1). Moreover, in [28] they normalize (1) by
taking γ = 1 and f ≡ 1: then by seeking traveling waves u(x, t) = 1 + w(x− ct) they end up with the
ODE

w′′′′(s) + kw′′(s) + ψ(w(s)) = 0 (s ∈ R, k = c2) ,

where

(2) ψ(w) = [w + 1]+ − 1 ,

a term which takes into account both the restoring force due to the hangers and external forces including
gravity.
Soon after the Tacoma Narrows Bridge collapse [32, 34], three engineers were assigned to investigate

and report to the Public Works Administration. The Report [4] considers ...the crucial event in the
collapse to be the sudden change from a vertical to a torsional mode of oscillation, see [32, p.63]. But
if one views the bridge as a beam as in (1), there is no way to highlight torsional oscillations. A model
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suggested by McKenna [25] considers the cross section of the bridge as a rod, free to rotate about its
center which behaves as a forced oscillator subject to the forces exerted by the two lateral hangers.
After normalization, the force is taken again as in (2). In order to smoothen the force by maintaining
the asymptotically linear behavior at 0, McKenna-Tuama [26] also consider ψ(w) = c(eaw−1) for some
a, c > 0. Then, after adding some damping and forcing, [25, 26] were able to numerically replicate in a
cross section the sudden transition from standard and expected vertical oscillations to destructive and
unexpected torsional oscillations. More recently, Arioli-Gazzola [5] reconsidered this model and studied
its isolated version (energy conservation) with nonlinear restoring forces due to the hangers: they were
able to display a sudden appearance of torsional oscillations. This phenomenon was explained using
the stability of a fixed point of a suitable Poincaré map. The full bridge was then modeled in [5] by
considering a finite number of parallel rods linked to the two nearest neighbors rods with attractive
linear forces representing resistance to longitudinal and torsional stretching; this discretization of a
suspension bridge is justified by the positive distance between hangers. The sudden appearance of
torsional oscillations was highlighted also within the multiple rods model.
The nonlinear behavior of suspension bridges is by now well established, see e.g. [7, 10, 17, 31]. After

replacing the nonlinear term ψ(w) in (2) by a fairly general superlinear term h(w), traveling waves of
(1) display self-excited oscillations, see [6, 12, 13]: the solution may blow up in finite time with wide
oscillations. So, a reliable model for suspension bridges should be nonlinear and it should have enough
degrees of freedom to display torsional oscillations. In this respect, Lazer-McKenna [20, Problem 11]
suggest to study the following equation

(3) ∆2u+ c2∆u+ h(u) = 0 in R
n

where h is “like” ψ in (2). The purpose of the present paper is to set up the full theory for (3) in a
bounded domain (representing the roadway) and to study the corresponding evolution problem similar
to (1).
A long narrow rectangular thin plate hinged at two opposite edges and free on the remaining two

edges well describes the roadway of a suspension bridge which, at the short edges, is supported by the
ground. Let L denote its length and 2ℓ denote its width; a realistic assumption is that 2ℓ ∼= L

100 . For
simplicity, we take L = π so that, in the sequel,

Ω = (0, π)× (−ℓ, ℓ) ⊂ R
2 .

Our purpose is to provide a reliable model and to study the corresponding Euler-Lagrange equations.
Since several energies are involved, we reach this task in several steps. We first recall the derivation of
the bending elastic energy of a deflected plate, according to the Kirchhoff-Love [16, 22] theory. Then
we consider the action of both dead and live loads described by some forcing term f ; the equilibrium
position of the plate u is then the minimum of a convex energy functional and is the unique solution of

(4) ∆2u = f(x, y) in Ω

under suitable boundary conditions. We set up the correct variational formulation of (4) (Theorem 1)
and when f depends only on the longitude, f = f(x), we are able to determine the explicit form of u
by separating variables (Theorem 2). In order to analyze the oscillating modes of the bridge, we also
consider the eigenvalue problem

(5) ∆2w = λw in Ω

where λ is the eigenvalue and w = w(x, y) is the eigenfunction. We characterize in detail the spectrum
and the corresponding eigenfunctions (Theorem 4). The eigenvalues exhibit some weakness on the long
edges and manifest a tendency to display a torsional component, see Figure 3.
Then we introduce into the model the elastic restoring force due to the hangers which is confined in

a proper subset ω of Ω such as two small rectangles close to the horizontal edges, see Figure 1. The
restoring force h = h(x, y, u) is superlinear with respect to u, which yields a superquadratic potential
energy

∫
ωH(x, y, u). A particular form of h is suggested to describe the precise behavior of hangers,
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Figure 1. The plate Ω and its subset ω (dark grey) where the hangers act.

see (15) below. The equilibrium position is then given by the unique solution of

(6) ∆2u+ h(x, y, u) = f(x, y) in Ω .

Finally, if the force f is variable in time, so is the the equilibrium position and also the kinetic energy
of the structure comes into the energy balance. This leads to the fourth order wave equation

(7) utt +∆2u+ h(x, y, u) = f(x, y, t) in Ω× (0, T )

where (0, T ) is an interval of time. Well-posedness of an initial-boundary-value-problem is shown in
Theorem 6. Our future target is to reproduce within our plate model the same oscillating behavior
visible at the Tacoma Bridge [34]. This paper should be considered as a first necessary step in order to
reach more challenging results.
This paper is organized as follows. In Section 2 we describe the physical model and we derive the

PDE’s which have to be solved. In Section 3 we state our main results: existence, uniqueness, and
qualitative behavior of the solutions of the PDE’s. The remaining sections of the paper are devoted to
the proofs of these results.

2. The physical model

2.1. A linear model for a partially hinged plate. The bending energy of the plate Ω involves
curvatures of the surface. Let κ1 and κ2 denote the principal curvatures of the graph of a smooth
function u representing the vertical displacement of the plate in the downward direction, then a simple
model for the bending energy of the deformed plate Ω is

(8) EB(u) =
E d3

12(1− σ2)

∫

Ω

(
κ21
2

+
κ22
2

+ σκ1κ2

)
dxdy

where d denotes the thickness of the plate, σ the Poisson ratio defined by σ = λ
2(λ+µ) and E the Young

modulus defined by E = 2µ(1+σ), with the so-called Lamé constants λ, µ that depend on the material.
For physical reasons it holds that µ > 0 and usually λ > 0 so that

(9) 0 < σ <
1

2
.

Moreover, it always holds true that σ > −1 although some exotic materials have a negative Poisson
ratio, see [18]. For metals the value of σ lies around 0.3, see [22, p.105], while for concrete 0.1 < σ < 0.2.
For small deformations the terms in (8) are taken as approximations being purely quadratic with

respect to the second order derivatives of u. More precisely, for small deformations u, one has

(κ1 + κ2)
2 ≈ (∆u)2 , κ1κ2 ≈ det(D2u) = uxxuyy − u2xy ,

and therefore
κ21
2

+
κ22
2

+ σκ1κ2 ≈
1

2
(∆u)2 + (σ − 1) det(D2u).
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Then, if f denotes the external vertical load acting on the plate Ω and if u is the corresponding (small)
deflection of the plate in the vertical direction, by (8) we have that the total energy ET of the plate
becomes

(10) ET (u) = EB(u)−
∫

Ω
fu dxdy =

E d3

12(1− σ2)

∫

Ω

(
1

2
(∆u)2 + (σ − 1) det(D2u)

)
dxdy−

∫

Ω
fu dxdy.

By replacing the load f with Ed3

12(1−σ2)
f and up to a constant multiplier, the energy ET may be written

as

(11) ET (u) =

∫

Ω

(
1

2
(∆u)2 + (1− σ)(u2xy − uxxuyy)− fu

)
dxdy .

Note that for σ > −1 the quadratic part of the functional (11) is positive. This variational formulation
appears in [8], while a discussion for a boundary value problem for a thin elastic plate in a somehow old
fashioned notation is made by Kirchhoff [16], see also [11, Section 1.1.2] for more details and references.
The unique minimizer u of ET , satisfies the Euler-Lagrange equation (4). We now turn to the

boundary conditions to be associated to (4). We seek the ones representing the physical situation of a
plate modeling a bridge. Due to the connection with the ground, the plate Ω is assumed to be hinged
on its vertical edges and hence

(12) u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 ∀y ∈ (−ℓ, ℓ) .
The deflection of the fully hinged rectangular plate Ω (that is u = uνν = 0 on ∂Ω) under the action of a
distributed load has been solved by Navier [30] in 1823, see also [23, Section 2.1]. The general problem
of a load on the rectangular plate Ω with two opposite hinged edges was considered by Lévy [21],
Zanaboni [35], and Nadai [29], see also [23, Section 2.2] for the analysis of different kinds of boundary
conditions on the remaining two edges y = ±ℓ. In the plate Ω, representing the roadway of a suspension
bridge, the horizontal edges y = ±ℓ are free and the boundary conditions there become (see e.g. [33,
(2.40)])

(13) uyy(x,±ℓ) + σuxx(x,±ℓ) = 0 , uyyy(x,±ℓ) + (2− σ)uxxy(x,±ℓ) = 0 ∀x ∈ (0, π) .

In Section 1 we show how these boundary conditions arise. Note that free boundaries yield small
stretching energy for the plate; this is the reason why we take c = 0 in (3).
Summarizing, the whole set of boundary conditions for a rectangular plate Ω = (0, π) × (−ℓ, ℓ)

modeling a suspension bridge is (12)-(13) and the boundary value problem reads

(14)





∆2u = f in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−ℓ, ℓ)
uyy(x,±ℓ) + σuxx(x,±ℓ) = uyyy(x,±ℓ) + (2− σ)uxxy(x,±ℓ) = 0 for x ∈ (0, π) .

2.2. A nonlinear model for a dynamic suspension bridge. Assume that the bridge is suspended
by hangers whose action is concentrated in the union of two thin strips parallel to the two horizontal
edges of the plate Ω, i.e. in a set of the type ω := (0, π)× [(−ℓ,−ℓ+ ε) ∪ (ℓ− ε, ℓ)] with ε > 0 small.
In order to describe the action of the hangers we introduce a continuous function g : R → R satisfying

g ∈ C1(0,+∞), g(s) = 0 for any s 6 0, g′(0+) > 0, g′(s) > 0 for any s > 0 .

Then, the restoring force due to the hangers takes the form

(15) h(x, y, u) = Υ(y)g(u+ γx(π − x))

where Υ is the characteristic function of (−ℓ,−ℓ+ε)∪(ℓ−ε, ℓ) and γ > 0. This choice of h is motivated
by the fact that the action of the hangers is larger around the central part of the bridge x = π/2, than
on its sides x = 0 and x = π where the bridge is supported. This parabolic behavior is a consequence
of the prestressing procedure and appears quite visible in certain bridges such as the Deer Isle Bridge,
see Figure 2.
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Figure 2. The Deer Isle Bridge.

More generally we may consider a force h satisfying the following assumptions:

(16) h : Ω× R → R is a Carathéodory function,

(17) s 7→ h(·, ·, s) is nondecreasing in R , ∃s ∈ R , h(·, ·, s) = 0 ,

and h is locally Lipschitzian with respect to s, i.e.

(18) LI := sup
(x,y)∈Ω, s1,s2∈I, s1 6=s2

∣∣∣∣
h(x, y, s1)− h(x, y, s2)

s1 − s2

∣∣∣∣ < +∞

for any bounded interval I ⊂ R.
The force h admits a potential energy given by

∫
ΩH(x, y, u) dxdy where H(x, y, s) :=

∫ s
s h(x, y, τ)dτ

for any s ∈ R. The total static energy of the bridge is obtained by adding this potential energy to the
elastic energy of the plate (11):

(19) ET (u) =

∫

Ω

(
1

2
(∆u)2 + (1− σ)(u2xy − uxxuyy) +H(x, y, u)− fu

)
dxdy .

The Euler-Lagrange equation is obtained by minimizing this convex functional:

(20)





∆2u+ h(x, y, u) = f in Ω

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−ℓ, ℓ)
uyy(x,±ℓ) + σuxx(x,±ℓ) = uyyy(x,±ℓ) + (2− σ)uxxy(x,±ℓ) = 0 for x ∈ (0, π) .

Finally, assume that the external force also depends on time, f = f(x, y, t). If m denotes the mass
of the plate, then the corresponding deformation u has a kinetic energy given by the integral

m

2|Ω|

∫

Ω
u2t dxdy .

By the time scaling t 7→
√
m|Ω|−1t, we can set m|Ω|−1 = 1. This term should be added to the nonlinear

static energy (19):

(21) Eu(t) :=
∫

Ω

1

2
u2t dxdy +

∫

Ω

(
1

2
(∆u)2 + (1− σ)(u2xy − uxxuyy) +H(x, y, u)− fu

)
dxdy .

This represents the total energy of a nonlinear dynamic bridge. As for the action, one has to take the
difference between kinetic energy and potential energy and integrate on an interval [0, T ]:

A(u) :=

∫ T

0

[∫

Ω

1

2
u2t dxdy −

∫

Ω

(
1

2
(∆u)2 + (1− σ)(u2xy − uxxuyy) +H(x, y, u)− fu

)
dxdy

]
dt .

The equation of the motion of the bridge is obtained by taking critical points of the functional A:

utt +∆2u+ h(x, y, u) = f in Ω× (0, T ) .
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Due to internal friction, we add a damping term and obtain
(22)



utt+δut+∆2u+h(x, y, u)=f in Ω×(0, T )
u(0, y, t)=uxx(0, y, t)=u(π, y, t)=uxx(π, y, t)=0 for (y, t)∈(−ℓ, ℓ)×(0, T )
uyy(x,±ℓ, t)+σuxx(x,±ℓ, t)=uyyy(x,±ℓ, t)+(2− σ)uxxy(x,±ℓ, t)=0 for (x, t)∈(0, π)×(0, T )
u(x, y, 0)=u0(x, y) , ut(x, y, 0)=u1(x, y) for (x, y)∈Ω

where δ is a positive constant. Notice that this equation also arises in different contexts, see e.g. [9,
(17)], and is sometimes called the Swift-Hohenberg equation.

3. Main results

Our first purpose is to minimize the energy functional ET , defined in (11), on the space

H2
∗ (Ω) :=

{
w ∈ H2(Ω); w = 0 on {0, π} × (−ℓ, ℓ)

}
.

We also define

H(Ω) := the dual space of H2
∗ (Ω)

and we denote by 〈·, ·〉 the corresponding duality. Since we are in the plane, H2(Ω) ⊂ C0(Ω) so that
the condition on {0, π} × (−ℓ, ℓ) introduced in the definition of H2

∗ (Ω) is satisfied pointwise and

(23) Lp(Ω) ⊂ H(Ω) ∀1 6 p 6 ∞ .

If f ∈ L1(Ω) then the functional ET is well-defined in H2
∗ (Ω), while if f ∈ H(Ω) we need to replace∫

Ω fu with 〈f, u〉 although we will not mention this in the sequel. The first somehow standard statement
is the connection between minimizers of the energy function ET and solutions of (14). It shows that
the variational setting is correct and it allows to derive the boundary conditions.

Theorem 1. Assume (9) and let f ∈ H(Ω). Then there exists a unique u ∈ H2
∗ (Ω) such that

(24)

∫

Ω
[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dxdy = 〈f, v〉 ∀v ∈ H2

∗ (Ω) ;

moreover, u is the minimum point of the convex functional ET . Finally, if f ∈ L2(Ω) then u ∈ H4(Ω),
and if u ∈ C4(Ω) then u is a classical solution of (14).

Since we have in mind a long narrow rectangle, that is ℓ ≪ π, it is reasonable to assume that the
forcing term does not depend on y. So, we now assume that

(25) f = f(x) , f ∈ L2(0, π).

In this case, we may solve (14) following [23, Section 2.2] although the boundary conditions (13) require
some additional effort. A similar procedure can be used also for some forcing terms depending on y
such as e±yf(x) or yf(x), see [23]. We extend the source f as an odd 2π-periodic function over R and
we expand it in Fourier series

(26) f(x) =

+∞∑

m=1

βm sin(mx) , βm =
2

π

∫ π

0
f(x) sin(mx) dx ,

so that {βm} ∈ ℓ2 and the series converges in L2(0, π) to f . Then we define the constants

(27) A = A(m, ℓ) :=
σ

1− σ

βm
m4

(1 + σ) sinh(mℓ)− (1− σ)mℓ cosh(mℓ)

(3 + σ) sinh(mℓ) cosh(mℓ)− (1− σ)mℓ
,

(28) B = B(m, ℓ) := σ
βm
m4

sinh(mℓ)

(3 + σ) sinh(mℓ) cosh(mℓ)− (1− σ)mℓ
,

and we prove
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Theorem 2. Assume (9) and that f satisfies (25)-(26). Then the unique solution of (14) is given by

u(x, y) =

+∞∑

m=1

[
βm
m4

+A cosh(my) +Bmy sinh(my)

]
sin(mx)

where the constants A and B are defined in (27) and (28).

When ℓ → 0, the plate Ω tends to become a one dimensional beam of length π. We wish to analyze
the behavior of the solution and of the energy in this limit situation. To this end, we re-introduce the
constants appearing in (10) that were normalized in (11). Let f ∈ L2(Ω) be as in (25) and let uℓ be a
solution of the problem

(29)





E d3

12(1−σ2)
∆2uℓ = f in Ω

uℓ(0, y) = uℓxx(0, y) = uℓ(π, y) = uℓxx(π, y) = 0 for y ∈ (−ℓ, ℓ)
uℓyy(x,±ℓ) + σuℓxx(x,±ℓ) = uℓyyy(x,±ℓ) + (2− σ)uℓxxy(x,±ℓ) = 0 for x ∈ (0, π)

whose total energy is given by (10). Obviously, uℓ = 12(1−σ2)
Ed3

u, where u is the unique solution of (14)
found in Theorem 2. If we view the plate as a parallelepiped-shaped beam (0, π)× (ℓ, ℓ)× (−d/2, d/2)
we are led to the problem

(30) EIψ′′′′ = 2ℓf in (0, π) , ψ(0) = ψ′′(0) = ψ(π) = ψ′′(π) = 0 .

Here the forcing term 2ℓf represents a force per unit of length and I = d3ℓ
6 =

∫
(−ℓ,ℓ)×(−d/2,d/2) z

2dydz is

the moment of inertia of the section of the beam with respect to its middle line parallel to the y-axis.

Then (30) reduces to Ed3

12 ψ
′′′′ = f , the function ψ is independent of ℓ but the corresponding total energy

of the beam depends on ℓ:

ET (ψ) =
E d3ℓ

12

∫ π

0
(ψ′′(x))2dx− 2ℓ

∫ π

0
f(x)ψ(x) dx = −

(
6π

E d3

+∞∑

m=1

β2m
m4

)
ℓ .

Then we prove

Theorem 3. Assume (9) and let f ∈ L2(Ω) be a vertical load per unit of surface depending only on x,
see (25)-(26). Let uℓ and ψ be respectively as in (29) and (30). Then

(31) lim
ℓ→0

sup
(x,y)∈Ω

∣∣∣uℓ(x, y)− ψ(x)
∣∣∣ = 0 and ET (u

ℓ) = ET (ψ) + o(ℓ) as ℓ→ 0 .

Theorem 3 states that, when ℓ→ 0, the solution and the energy of the plate are “almost the same” as
for the beam. However, one cannot neglect the o(ℓ) term if one wishes to display torsional oscillations.
Next, we study the oscillating modes of the rectangular plate; we consider the eigenvalue problem

(32)





∆2w = λw in Ω

w(0, y) = wxx(0, y) = w(π, y) = wxx(π, y) = 0 for y ∈ (−ℓ, ℓ)
wyy(x,±ℓ) + σwxx(x,±ℓ) = wyyy(x,±ℓ) + (2− σ)wxxy(x,±ℓ) = 0 for x ∈ (0, π) .

Similar to (24), problem (32) admits the following variational formulation: a nontrivial function w ∈
H2

∗ (Ω) is an eigenfunction of (32) if
∫

Ω
[∆w∆v + (1− σ)(2wxyvxy − wxxvyy − wyyvxx)− λwv] dxdy = 0 for all v ∈ H2

∗ (Ω) .

In such a case we say that λ is an eigenvalue for problem (32).
In Section 7 we prove that for all ℓ > 0 and σ ∈ (0, 12) there exists a unique µ1 ∈ (1− σ, 1) such that

(33)
√
1− µ1

(
µ1 + 1− σ

)2
tanh(ℓ

√
1− µ1) =

√
1 + µ1

(
µ1 − 1 + σ

)2
tanh(ℓ

√
1 + µ1) .

The number λ = µ21 is the least eigenvalue.
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Theorem 4. Assume (9). Then the set of eigenvalues of (32) may be ordered in an increasing sequence
{λk} of strictly positive numbers diverging to +∞ and any eigenfunction belongs to C∞(Ω). The set of
eigenfunctions of (32) is a complete system in H2

∗ (Ω).
Moreover, the least eigenvalue of (32) is λ1 = µ21, where µ1 ∈ (1 − σ, 1) is the unique solution of

(33); the least eigenvalue µ21 is simple and the corresponding eigenspace is generated by the positive
eigenfunction
{
[µ1 + 1− σ] cosh(

√
1 + µ1ℓ) cosh(

√
1− µ1y) + [µ1 − 1 + σ] cosh(

√
1− µ1ℓ) cosh(

√
1 + µ1y)

}
sinx

defined for any (x, y) ∈ Ω.

In fact, we obtain a stronger statement describing the whole spectrum and characterizing the eigen-
functions, see Theorem 15 in Section 7. In Proposition 16 we also show that if ℓ is small enough
(ℓ 6 0.44), then the first two eigenvalues are simple. In Figure 3 we display the qualitative behavior of
the first two ”longitudinal” eigenfunctions and of the first two ”torsional” eigenfunctions. It appears

Figure 3. Qualitative behavior of some eigenfunctions of (32).

that the maximum and minimum of these eigenfunctions are attained on the boundary and that every
mode has a tendency to display a torsional behavior: as expected, the “weak” part of the plate are
the two long free edges. Note also that in the limit case σ = 0, excluded by assumption (9), the first
eigenvalue is λ1 = 1 and the first eigenfunction is sinx.
We now turn to the nonlinear model. With a simple minimization argument one can prove

Theorem 5. Assume (9), (16)-(18) and let f ∈ H(Ω); then there exists a unique weak solution u ∈
H2

∗ (Ω) of (20). This solution is the unique minimizer of the problem

min
v∈H2

∗
(Ω)

ET (v)

where ET is the nonlinear static energy defined in (19).

Since the proof of Theorem 5 is standard, we omit it.
Our last result proves well-posedness for the evolution problem (22). If T > 0 we say that

(34) u ∈ C0([0, T ];H2
∗ (Ω)) ∩ C1([0, T ];L2(Ω)) ∩ C2([0, T ];H(Ω))

is a solution of (22) if it satisfies the initial conditions and if

(35)
〈u′′(t), v〉+ δ(u′(t), v)L2 + (u(t), v)H2

∗

+ (h(·, ·, u(t)), v)L2 = (f(t), v)L2

∀v ∈ H2
∗ (Ω) , ∀t ∈ (0, T ) .

If T = +∞ then the interval [0, T ] should be read as [0,+∞). Then we have

Theorem 6. Assume (9), (16)-(18). Let T > 0 (including the case T = +∞), let f ∈ C0([0, T ];L2(Ω))
and let δ > 0; let u0 ∈ H2

∗ (Ω) and u1 ∈ L2(Ω). Then

(i) there exists a unique solution of (22);
(ii) if f ∈ L2(Ω) is independent of t, then T = +∞ and the unique solution u of (22) satisfies

u(t) → u in H2
∗ (Ω) and u′(t) → 0 in L2(Ω) as t→ +∞

where u is the unique solution of the stationary problem (20).
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4. Proof of Theorem 1

Let D2w denote the Hessian matrix of a function w ∈ H2(Ω). Thanks to the Intermediate Derivatives
Theorem, see [1, Theorem 4.15], the space H2(Ω) is a Hilbert space if endowed with the scalar product

(u, v)H2 :=

∫

Ω

(
D2u ·D2v + uv

)
dxdy for all u, v ∈ H2(Ω) .

On the closed subspace H2
∗ (Ω) we may also define a different scalar product.

Lemma 7. Assume (9). On the space H2
∗ (Ω) the two norms

u 7→ ‖u‖H2 , u 7→ ‖u‖H2
∗

:=

[∫

Ω

[
(∆u)2 + 2(1− σ)(u2xy − uxxuyy)

]
dxdy

]1/2

are equivalent. Therefore, H2
∗ (Ω) is a Hilbert space when endowed with the scalar product

(36) (u, v)H2
∗

:=

∫

Ω
[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dxdy .

Proof. We first get rid of the L2-norm. Take any u ∈ H2
∗ (Ω) so that u ∈ C0(Ω) and for all (x, y) ∈ Ω

we have

|u(x, y)| =

∣∣∣∣
∫ x

0
ux(t, y)dt

∣∣∣∣ 6
∫ π

0
|ux(t, y)|dt 6

√
π

[∫ π

0
(ux(t, y))

2dt

]1/2

6
√
π

[
−
∫ π

0
uxx(t, y)u(t, y)dt

]1/2
6

√
π

[∫ π

0
(uxx(t, y))

2dt

]1/4 [∫ π

0
(u(t, y))2dt

]1/4

where we used an integration by parts and twice Hölder’s inequality. This inequality, readily yields
‖u‖L2 6 C‖D2u‖L2 for some C > 0 and proves that the H2(Ω)-norm is equivalent to the norm
u 7→ ‖D2u‖L2 on the space H2

∗ (Ω). Next, we notice that

(1− σ)‖D2u‖2L2 6 ‖u‖2H2
∗

=

∫

Ω
[u2xx + u2yy + 2(1− σ)u2xy + 2σuxxuyy]dxdy 6 (1 + σ)‖D2u‖2L2

so that the norms u 7→ ‖D2u‖L2 andH2
∗ (Ω) are equivalent. These two equivalences prove the lemma. �

By combining Lemma 7 with the Lax-Milgram Theorem, we infer that for any f ∈ H(Ω) there exists
a unique u ∈ H2

∗ (Ω) satisfying (24). This proves the first part of Theorem 1.

Our next purpose is to study the regularity of the just found solution of (24).

Lemma 8. Assume (9) and 1 < p <∞; let f ∈ Lp(Ω) and let u ∈ H2
∗ (Ω) be a (weak) solution of (14).

Then u ∈W 4,p(Ω) and there exists a constant C(ℓ, σ, p) depending only on ℓ, σ and p such that

(37) ‖u‖W 4,p 6 C(ℓ, σ, p)‖f‖Lp .

Proof. By (23) and Lemma 7, the assumptions make sense. The next step is to show that the boundary
conditions satisfy the complementing conditions, see [2, p.633] for the definition. On the vertical edges
we have Navier boundary conditions for which this property is well-known, see [11, Section 2.3]. On the
horizontal edges, the polynomials R2 → R in the variables α, β associated to the boundary conditions
(13) are independent of x and y and read B1(α, β) = σα2 + β2 and B2(α, β) = (2 − σ)α2β + β3. Let
ν = (ν1, ν2) denote the unit normal to ∂Ω and let τ = (τ1, τ2) be any vector tangent to ∂Ω so that
ν1 = τ2 = 0 and ν2 = sign y while τ1 is arbitrary. Then B1(τ + tν) = t2 + στ21 and B2(τ + tν) =
(sign y)t[t2 + (2− σ)τ21 ]; therefore

B1(x, y, τ + tν) = 2i|τ1|t+ (σ + 1)τ21 mod (t− i|τ |)2 ,
B2(x, y, τ + tν) = (sign y)

[
−(σ + 1)τ21 t+ 2i|τ1|3

]
mod (t− i|τ |)2 .

Since σ 6= 1, the polynomials

B̃1(t) := 2i|τ1|t+ (σ + 1)τ21 and B̃2(t) := (sign y)
[
−(σ + 1)τ21 t+ 2i|τ1|3

]
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are linearly independent: indeed,

−(sign y)(σ + 1)|τ1|
2i

B̃1(t) = (sign y)

[
−(σ + 1)τ21 t+ i

(σ + 1)2|τ1|3
2

]

with (σ+1)2

2 6= 2. This proves that also (13) satisfies the complementing conditions.
The lack of smoothness of ∂Ω is not a serious difficulty. By odd extension, we can view the problem

in Ω as the restriction of a problem in (−π, 2π)× (−ℓ, ℓ). Then classical elliptic local regularity results
[2, Theorem 15.1] yield (37). We also refer to [24] for more general regularity results in nonsmooth
domains. �

Finally, we show that smooth weak solutions and classical solutions coincide. Note first that, for all
u ∈ H2

∗ (Ω) we have

(38) u(0, y) = u(π, y) = uy(0, y) = uy(π, y) = uyy(0, y) = uyy(π, y) = 0 for y ∈ (−ℓ, ℓ) .
Then, by adapting the Gauss-Green formula

∫

Ω
∆u∆v dx dy =

∫

Ω
∆2uv dx dy +

∫

∂Ω

[
∆u vν − v (∆u)ν

]
ds

to our situation, and with some integration by parts, we obtain that if u ∈ C4(Ω) ∩ H2
∗ (Ω) satisfies

(24), then
∫

Ω
(∆2u− f)v dxdy +

∫ ℓ

−ℓ
[uxx(π, y)vx(π, y)− uxx(0, y)vx(0, y)] dy(39)

+

∫ π

0

{
[uyyy(x,−ℓ) + (2− σ)uxxy(x,−ℓ)] v(x,−ℓ)− [uyy(x,−ℓ) + σuxx(x,−ℓ)] vy(x,−ℓ)

}
dx

+

∫ π

0

{
[uyy(x, ℓ) + σuxx(x, ℓ)] vy(x, ℓ)− [uyyy(x, ℓ) + (2− σ)uxxy(x, ℓ)] v(x, ℓ)

}
dx = 0

for any v ∈ H2
∗ (Ω). If we choose v ∈ C2

c (Ω) in (39), then all the boundary terms vanish and we deduce
that ∆2u = f in Ω. Hence we may drop the double integral in (39). By arbitrariness of v, the coefficients
of the terms vx(π, y), vx(0, y), v(x,−ℓ), vy(x,−ℓ), vy(x, ℓ), and v(x, ℓ) must vanish identically and we
obtain (12)-(13); this conclusion may also be reached with particular choices of v but we omit here the
tedious computations.
We have so proved that if u ∈ C4(Ω)∩H2

∗ (Ω) satisfies (24) then it is a classical solution of (14). For
the converse implication let u ∈ C4(Ω) be a classical solution of (14) and let v ∈ H2

∗ (Ω). Then (39)
holds true and moreover exploiting (38) and integrating by parts we also recover the validity of (24)
for all v ∈ H2

∗ (Ω).

5. Proof of Theorem 2

Consider the function

(40) φ(x) :=
+∞∑

m=1

βm
m4

sin(mx)

and note that it solves the ODE

φ′′′′(x) = f(x) in (0, π) , φ(0) = φ′′(0) = φ(π) = φ′′(π) = 0 .

Moreover, φ′′ ∈ H2(0, π) is given by

(41) φ′′(x) = −
+∞∑

m=1

βm
m2

sin(mx)

and the series (41) converges in H2(0, π) and, hence, uniformly.
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We now introduce the auxiliary function v(x, y) := u(x, y)− φ(x); if u solves (14), then v satisfies

(42)





∆2v = 0 in Ω

v = vxx = 0 on {0, π} × (−ℓ, ℓ)
vyy + σvxx = −σφ′′ on (0, π)× {−ℓ, ℓ}
vyyy + (2− σ)vxxy = 0 on (0, π)× {−ℓ, ℓ} .

We seek solutions of (42) by separating variables, namely we seek functions Ym = Ym(y) such that

v(x, y) =

+∞∑

m=1

Ym(y) sin(mx)

solves (42). Then

∆2v(x, y) =

+∞∑

m=1

[Y ′′′′
m (y)− 2m2Y ′′

m(y) +m4Ym(y)] sin(mx)

and the equation in (42) yields

(43) Y ′′′′
m (y)− 2m2Y ′′

m(y) +m4Ym(y) = 0 for y ∈ (−ℓ, ℓ) .

The solutions of (43) are linear combinations of {cosh(my), sinh(my), y cosh(my), y sinh(my)} but, due
to the symmetry of Ω and to the uniqueness of the solution v to (42), we know that Ym is even with
respect to y. Hence, we seek functions Ym of the form

(44) Ym(y) = A cosh(my) +Bmy sinh(my)

where A = A(m, ℓ) and B = B(m, ℓ) are constants to be determined by imposing the boundary
conditions in (42) and the coefficient m is highlighted on the term y sinh(my) for later simplifications.
By differentiating we obtain

Y ′
m(y) = m[(A+B) sinh(my) +Bmy cosh(my)] , Y ′′

m(y) = m2[(A+ 2B) cosh(my) +Bmy sinh(my)] ,

(45) Y ′′′
m (y) = m3[(A+ 3B) sinh(my) +Bmy cosh(my)] .

The two boundary conditions on (0, π)× {−ℓ, ℓ}, see (42), become respectively

+∞∑

m=1

[Y ′′
m(±ℓ)− σm2Ym(±ℓ)] sin(mx) = −σφ′′(x) ,

+∞∑

m=1

[Y ′′′
m (±ℓ)− (2− σ)m2Y ′

m(±ℓ)] sin(mx) = 0 ,

for all x ∈ (0, π), and, by (41),

Y ′′
m(ℓ)− σm2Ym(ℓ) = σ

βm
m2

, Y ′′′
m (ℓ)− (2− σ)m2Y ′

m(ℓ) = 0 ,

the condition for y = −ℓ being automatically fulfilled since Ym is even. By plugging these information
into the explicit form (45) of the derivatives we find the system





(1− σ) cosh(mℓ)A+
(
2 cosh(ml) + (1− σ)mℓ sinh(mℓ)

)
B = σ βm

m4

(1− σ) sinh(mℓ)A+
(
(1− σ)mℓ cosh(mℓ)− (1 + σ) sinh(mℓ)

)
B = 0 ,

and we finally obtain (27)-(28).
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6. Proof of Theorem 3

Let u ∈ H2
∗ (Ω) be the solution of (14), see Theorem 2. By (27)-(28) we have

|A cosh(my)| 6 C
βm
m3

and Bmy sinh(my) 6 C
βm
m3

for any y ∈ (−ℓ, ℓ), ℓ ∈ (0, 1) and m > 1 for some constant C > 0 depending on σ but independent of
y, ℓ and m. Moreover we also have

(46) lim
ℓ→0

A(m, ℓ) =
σ2

1− σ2
βm
m4

, lim
ℓ→0

B(m, ℓ) =
σ

2(1 + σ)

βm
m4

for any m ∈ N .

This implies that for any N ∈ N

lim sup
ℓ→0

sup
(x,y)∈Ω

∣∣∣∣u(x, y)−
1

1− σ2
φ(x)

∣∣∣∣6lim sup
ℓ→0

sup
y∈(−ℓ,ℓ)

+∞∑

m=1

∣∣∣∣A cosh(my)− σ2

1− σ2
βm
m4

+Bmy sinh(my)

∣∣∣∣

6 lim
ℓ→0

N∑

m=1

[∣∣∣∣A− σ2

1− σ2
βm
m4

∣∣∣∣ cosh(mℓ) +
σ2

1− σ2
βm
m4

(cosh(mℓ)− 1) +Bmℓ sinh(mℓ)

]
+ C

+∞∑

m=N+1

βm
m3

6 C
+∞∑

m=N+1

βm
m3

.

Letting N → +∞, we obtain

(47) lim
ℓ→0

sup
(x,y)∈Ω

∣∣∣∣u(x, y)−
1

1− σ2
φ(x)

∣∣∣∣ = 0 .

Let us now recall a well-known result about Fourier series which will be repeatedly used in the sequel.

Lemma 9. Let {am}, {bm} ∈ ℓ2 and let

a(x) =

+∞∑

m=1

am sin(mx) , b(x) =

+∞∑

m=1

bm sin(mx) .

Then a, b ∈ L2(0, π) and

∫ π

0
a(x)b(x) dx =

π

2

+∞∑

m=1

ambm ,

∫ π

0
a(x)2 dx =

π

2

+∞∑

m=1

a2m .

By differentiating the solution u we find

uxx(x, y) = −
+∞∑

m=1

[
βm
m2

+Am2 cosh(my) +Bm3y sinh(my)

]
sin(mx) ,

uyy(x, y) =

+∞∑

m=1

m2[(A+ 2B) cosh(my) +Bmy sinh(my)] sin(mx) ,

uxy(x, y) =
+∞∑

m=1

m2[(A+B) sinh(my) +Bmy cosh(my)] cos(mx) ,

and therefore

∆u(x, y) =
+∞∑

m=1

[
−βm
m2

+ 2Bm2 cosh(my)

]
sin(mx) .
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Then, by Lemma 9, we obtain

∫

Ω
|∆u|2 =

π

2

+∞∑

m=1

∫ ℓ

−ℓ

[
−βm
m2

+ 2Bm2 cosh(my)

]2
dy(48)

= π
+∞∑

m=1

[
β2m
m4

ℓ+ 2B2m4ℓ− 4
Bβm
m

sinh(mℓ) +B2m3 sinh(2mℓ)

]
.

Moreover, Lemma 9 also yields

∫

Ω
uxxuyy = −π

2

+∞∑

m=1

∫ ℓ

−ℓ
[βm +Am4 cosh(my) +Bm5y sinh(my)](49)

×[(A+ 2B) cosh(my) +Bmy sinh(my)] dy

= −π
+∞∑

m=1

[
βm

m [(A+B) sinh(mℓ) +Bmℓ cosh(mℓ)] + B(2A+B)m3

4 mℓ cosh(2mℓ)

+(2A
2+2AB−B2

8 + B2

4 m
2ℓ2)m3 sinh(2mℓ) + A(A+2B)

2 m4ℓ− B2

6 m
6ℓ3
]

and
∫

Ω
u2xy =

π

2

+∞∑

m=1

m4

∫ ℓ

−ℓ
[(A+B) sinh(my) +Bmy cosh(my)]2 dy(50)

= π
+∞∑

m=1

m3
[
2A2+2AB+B2

8 sinh(2mℓ) + B(2A+B)
4 mℓ cosh(2mℓ) + B2

4 m
2ℓ2 sinh(2mℓ)

+B2

6 m
3ℓ3 − (A+B)2

2 mℓ
]
.

Finally, by (26) and a further application of Lemma 9,

∫

Ω
fu =

π

2

+∞∑

m=1

βm

∫ ℓ

−ℓ

[
βm

m4 +A cosh(my) +Bmy sinh(my)
]
dy(51)

= π
+∞∑

m=1

βm

[
βm

m4 ℓ+
A−B
m sinh(mℓ) +Bℓ cosh(mℓ)

]
.

Collecting (48)-(51) we obtain

ET (u)=π

+∞∑

m=1

{
−β

2
mℓ

2m4
+
σ + 1

2
B2m4ℓ−σβm(A+B)

m
sinh(mℓ) +

B2m3

2
sinh(2mℓ)− σβmBℓ cosh(mℓ)

+
1− σ

2

[
A(A+B)m3 sinh(2mℓ)+B2m5ℓ2 sinh(2mℓ)+B(2A+B)m4ℓ cosh(2mℓ)

]}
=:

+∞∑

m=1

a(m, ℓ) .

With a direct computation one can see that by (27) and (28) we get

|a(m, ℓ)|
ℓ

6 C
β2m
m3

for any ℓ ∈ (0, 1) and m > 1

for some constant C > 0 depending on σ but independent of ℓ and m.
This implies that for any N ∈ N we have

N∑

m=1

a(m, ℓ)

ℓ
−

+∞∑

m=N+1

C
β2m
m3

6

+∞∑

m=1

a(m, ℓ)

ℓ
6

N∑

m=1

a(m, ℓ)

ℓ
+

+∞∑

m=N+1

C
β2m
m3

.
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Letting ℓ→ 0 we obtain

N∑

m=1

lim
ℓ→0

(
a(m, ℓ)

ℓ

)
−

+∞∑

m=N+1

C
β2m
m3

6 lim inf
ℓ→0

+∞∑

m=1

a(m, ℓ)

ℓ

6 lim sup
ℓ→0

+∞∑

m=1

a(m, ℓ)

ℓ
6

N∑

m=1

lim
ℓ→0

(
a(m, ℓ)

ℓ

)
+

+∞∑

m=N+1

C
β2m
m3

.

Letting N → +∞, by (46), we deduce that

lim
ℓ→0

ET (u)

ℓ
= lim

ℓ→0

+∞∑

m=1

a(m, ℓ)

ℓ
=

+∞∑

m=1

lim
ℓ→0

a(m, ℓ)

ℓ
= − π

2(1− σ2)

+∞∑

m=1

β2m
m4

and, in turn,

(52) ET (u) = −
(

π

2(1− σ2)

+∞∑

m=1

β2m
m4

)
ℓ+ o(ℓ) as ℓ→ 0 .

Consider now uℓ and ψ as in (29) and (30); recall that uℓ = 12(1−σ2)
Ed3

u where u solves (14) and that

ψ = 12
Ed3

φ. Then, from (47) we deduce the first of (31). Moreover, from (52) we obtain

ET (u
ℓ) =

12(1− σ2)

E d3

∫

Ω

[
1

2
(∆uℓ)2 + (σ − 1)det(D2uℓ)− fuℓ

]
dxdy

=
12(1− σ2)

E d3

[
−
(

π

2(1− σ2)

+∞∑

m=1

β2m
m4

)
ℓ+ o(ℓ)

]

and the second of (31) follows.

7. Proof of Theorem 4

By Lemma 7 the bilinear form (36) is continuous and coercive; standard spectral theory then shows
that the eigenvalues of (32) may be ordered in an increasing sequence of strictly positive numbers
diverging to +∞ and that the corresponding eigenfunctions form a complete system in H2

∗ (Ω). The
eigenfunctions are smooth in Ω: this may be obtained by making an odd extension as in Lemma 8 and
with a bootstrap argument. This proves the first part of Theorem 4.
Take an eigenfunction w of (32) and consider its Fourier expansion with respect to the variable x:

(53) w(x, y) =

+∞∑

m=1

hm(y) sin(mx) for (x, y) ∈ (0, π)× (−ℓ, ℓ) .

Since w ∈ C∞(Ω), the Fourier coefficients hm = hm(y) are smooth functions and solve the ordinary
differential equation

(54) h′′′′m (y)− 2m2h′′m(y) + (m4 − λ)hm(y) = 0

for some λ > 0. The eigenfunction w in (53) satisfies (12), while by imposing (13) we obtain the
boundary conditions on hm

(55) h′′m(±ℓ)− σm2hm(±ℓ) = 0 , h′′′m(±ℓ) + (σ − 2)m2h′m(±ℓ) = 0 .

Put µ =
√
λ > 0 and consider the characteristic equation α4 − 2m2α2 +m4 − µ2 = 0 related to (54).

By solving this algebraic equation we find

(56) α2 = m2 ± µ .

Three cases have to be distinguished.
• The case 0 < µ < m2. By (56) we infer

(57) α = ±β or α = ±γ with
√
m2 − µ =: γ < β :=

√
m2 + µ .
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Hence, possible nontrivial solutions of (54)-(55) have the form

(58) hm(y) = a cosh(βy) + b sinh(βy) + c cosh(γy) + d sinh(γy) (a, b, c, d ∈ R) .

By computing the derivatives of hm and imposing the conditions (55) we find the two systems

(59)





(β2 −m2σ) cosh(βℓ)a+ (γ2 −m2σ) cosh(γℓ)c = 0

(β3 −m2(2− σ)β) sinh(βℓ)a+ (γ3 −m2(2− σ)γ) sinh(γℓ)c = 0 ,



(β2 −m2σ) sinh(βℓ)b+ (γ2 −m2σ) sinh(γℓ)d = 0

(β3 −m2(2− σ)β) cosh(βℓ)b+ (γ3 −m2(2− σ)γ) cosh(γℓ)d = 0 .

There exists a nontrivial solution hm of (54) of the form (58) if and only if there exists a nontrivial
solution of at least one of the two systems (59). The first system in (59) admits a nontrivial solution
(a, c) if and only if

(β2 −m2σ)(γ3 −m2(2− σ)γ) cosh(βℓ) sinh(γℓ) = (γ2 −m2σ)(β3 −m2(2− σ)β) sinh(βℓ) cosh(γℓ) .

By (57), this is equivalent to

(60)
γ

(γ2 −m2σ)2
tanh(ℓγ) =

β

(β2 −m2σ)2
tanh(ℓβ) .

Recalling that both β and γ depend on µ, we prove

Lemma 10. Assume (9). For any m > 1 there exists a unique µ = µm ∈ (0,m2) such that (60) holds;
moreover we also have µm ∈ ((1− σ)m2,m2).

Proof. Consider the function ηm(t) := t
(t2−m2σ)2

· tanh(ℓt) for any t ∈ [0,+∞) \ {√σm}. Then

η′m(t) =
(−3t2 −m2σ) sinh(ℓt) cosh(ℓt) + ℓt(t2 −m2σ)

(t2 −m2σ)3 cosh2(ℓt)
∀t ∈ [0,+∞) \ {

√
σm} .

For any t >
√
σm we have

η′m(t) <
−3t2 sinh(ℓt) cosh(ℓt) + ℓt3

(t2 −m2σ)3 cosh2(ℓt)
< − 2ℓt3

(t2 −m2σ)3 cosh2(ℓt)
< 0 .

This shows that ηm is decreasing in (
√
σm,+∞) and, if β > γ >

√
σm then ηm(β) < ηm(γ) so that

(60) cannot hold. We have proved that if γ and β satisfy (60) then necessarily γ ∈ [0,
√
σm).

Since β =
√

2m2 − γ2, identity (60) is equivalent to

(61)

√
2m2 − γ2 (γ2 −m2σ)2

[(2− σ)m2 − γ2]2
tanh(ℓ

√
2m2 − γ2) = γ tanh(ℓγ) .

Then we define

gm(t) :=

√
2m2 − t2 (m2σ − t2)2

[(2− σ)m2 − t2]2
tanh(ℓ

√
2m2 − t2) ∀t ∈ [0,

√
σm] .

The function t 7→ [m2σ − t2]/[(2− σ)m2 − t2] is nonnegative and decreasing and hence so is its square.
It then follows that gm is decreasing in [0,

√
σm] and gm(

√
σm) = 0. On the other hand, the map

t 7→ t tanh(ℓt) is increasing in [0,
√
σm] and vanishes at t = 0. This proves that there exists a unique

γm ∈ (0,
√
σm) satisfying (61). The statements of the lemma now follow by putting µm = m2−γ2m. �

In the next result we prove that the sequence {µm} found in Lemma 10 is increasing.

Lemma 11. Assume (9). For any m > 1, let µm be as in Lemma 10. Then µm < µm+1 for all m > 1.
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Proof. By (57), the equation (60) reduces to

(62) Φ(m,µ) :=

√
m2 − µ

m2 + µ

(
µ+ (1− σ)m2

µ− (1− σ)m2

)2
tanh(ℓ

√
m2 − µ)

tanh(ℓ
√
m2 + µ)

= 1 .

We consider Φ as a function defined in the region of the plane {(m,µ) ∈ R
2; (1− σ)m2 < µ < m2}. In

this region, the three maps

(m,µ) 7→
√
m2 − µ

m2 + µ
, (m,µ) 7→

(
µ+ (1− σ)m2

µ− (1− σ)m2

)2

, (m,µ) 7→ tanh(ℓ
√
m2 − µ)

tanh(ℓ
√
m2 + µ)

,

are all positive, strictly increasing with respect to m, and strictly decreasing with respect to µ. There-
fore, the function m 7→ µm, implicitly defined by Φ(m,µm) = 1, is strictly increasing. �

Similarly, the second system in (59) has nontrivial solutions (b, d) if and only if

(β2 −m2σ)(γ3 −m2(2− σ)γ) sinh(βℓ) cosh(γℓ) = (γ2 −m2σ)(β3 −m2(2− σ)β) cosh(βℓ) sinh(γℓ) .

By (57), this is equivalent to

(63)
β

(β2 −m2σ)2
coth(ℓβ) =

γ

(γ2 −m2σ)2
coth(ℓγ) .

Recalling that both β and γ depend on µ, we prove

Lemma 12. Assume (9). Then there exists a unique µ = µm ∈ (0,m2) satisfying (63) if and only if

(64) ℓm
√
2 coth(ℓm

√
2) >

(
2− σ

σ

)2

.

Moreover in such a case we have µm ∈ ((1− σ)m2,m2).

Proof. The function ηm(t) := t
(t2−m2σ)2

· coth(ℓt) is strictly decreasing for t ∈ (
√
σm,+∞) because it

is the product of two positive and strictly decreasing functions. In particular, if β > γ >
√
σm then

ηm(β) < ηm(γ) so that (63) cannot hold. This proves that if γ and β satisfy (63) then necessarily
γ ∈ (0,

√
σm).

By (57) identity (63) is equivalent to

(65)

√
2m2 − γ2 (γ2 −m2σ)2

[(2− σ)m2 − γ2]2
coth(ℓ

√
2m2 − γ2) = γ coth(ℓγ) .

Then we define

(66) gm(t) =

√
2m2 − t2 (m2σ − t2)2

[(2− σ)m2 − t2]2
coth(ℓ

√
2m2 − t2) ∀t ∈ [0,

√
σm] .

We have

g′m(t) =
ℓt(m2σ − t2)2

[(2− σ)m2 − t2]2 sinh2(ℓ
√
2m2 − t2)

(67)

− 8(1− σ)m2(2m2 − t2) + (m2σ − t2)[(2− σ)m2 − t2]√
2m2 − t2 [(2− σ)m2 − t2]3

(m2σ − t2) t coth(ℓ
√

2m2 − t2)

<
t(m2σ − t2)2 [(2− σ)m2 − t2][ℓ

√
2m2 − t2 − sinh(ℓ

√
2m2 − t2) cosh(ℓ

√
2m2 − t2)]√

2m2 − t2[(2− σ)m2 − t2]3 sinh2(ℓ
√
2m2 − t2)

< 0

for any t ∈ (0,
√
σm). Therefore gm is decreasing in (0,

√
σm) with gm(0) =

√
2m( σ

2−σ )
2 coth(ℓm

√
2)

and gm(
√
σm) = 0. On the other hand, the map t 7→ t coth(ℓt) is increasing in (0,

√
σm) and tends to

1/ℓ as t→ 0+. This proves that there exists a unique γm ∈ (0,
√
σm) satisfying (65) if and only if (64)

holds. The proof of the lemma now follows by putting µm = m2 − (γm)2. �
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Note also that (64) holds if and only if m is large enough, that is,

(68) ∃mσ > 1 such that (64) holds if and only if m > mσ .

In particular, if ℓ
√
2 coth(ℓ

√
2) > ( σ

2−σ )
2 then mσ = 1. We now prove that the sequence {µm}, found

in Lemma 12, is increasing.

Lemma 13. Assume (9). For any m > 1, let µm as in the statement of Lemma 12. Then µm < µm+1

for any m > mσ, see (68).

Proof. Let m > mσ; by Lemma 12 we know that µm < m2 and µm+1 > (1− σ)(m+1)2. Therefore, we
may restrict our attention to the case where (1−σ)(m+1)2 < m2 and µm, µm+1 ∈ ((1−σ)(m+1)2,m2)
since otherwise the statement follows immediately. For

(m,µ) ∈ A := {(m,µ) ∈ R
2; m > mσ, (1− σ)(m+ 1)2 < µ < m2} ,

consider the functions

Γ(m,µ) :=

√
µ+m2 [µ− (1− σ)m2]2

[µ+ (1− σ)m2]2
coth(ℓ

√
µ+m2) , K(m,µ) :=

√
m2 − µ coth(ℓ

√
m2 − µ) .

On the interval µ < s < µ
1−σ , both the positive maps

s 7→
√
µ+ s [µ− (1− σ)s]2

[µ+ (1− σ)s]2
and s 7→ coth(ℓ

√
µ+ s)

have strictly negative derivatives. Moreover, if gm is as in (66), then Γ(m,µ) = gm(
√
m2 − µ) and (67)

proves that µ 7→ Γ(m,µ) has strictly positive derivative. Summarizing,

(69)
∂Γ

∂m
(m,µ) < 0 and

∂Γ

∂µ
(m,µ) > 0 ∀(m,µ) ∈ A .

It is also straightforward to verify that

(70)
∂K

∂m
(m,µ) > 0 and

∂K

∂µ
(m,µ) < 0 ∀(m,µ) ∈ A .

Finally, put

(71) Ψ(m,µ) :=
K(m,µ)

Γ(m,µ)
∀(m,µ) ∈ A .

The function m 7→ µm is implicitly defined by Ψ(m,µm) = 1, see (63) and (57). By (69)-(70) we infer

∂Ψ

∂m
(m,µ) > 0 and

∂Ψ

∂µ
(m,µ) < 0 ∀(m,µ) ∈ A .

This proves that the map m 7→ µm is strictly increasing. �

We finally compare µm with µm.

Lemma 14. Assume (9). Let µm and µm be, respectively, as in Lemmas 10 and 12. Then for any
m > mσ we have µm < µm.

Proof. Let Φ and Ψ be as in (62) and (71); then Φ(m,µ) < Ψ(m,µ) for all (m,µ) ∈ A. Since µm

is implicitly defined by Ψ(m,µm) = 1, we have Φ(m,µm) < 1. Moreover, in Lemma 11 we saw that
µ 7→ Φ(m,µ) is strictly decreasing. Hence, Φ(m,µm) < 1 = Φ(m,µm) implies µm < µm. �

• The case µ = m2. By (56) we infer that possible nontrivial solutions of (54)-(55) have the form

hm(y) = a cosh(
√
2my) + b sinh(

√
2my) + c+ dy (a, b, c, d ∈ R) .
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By differentiating hm and by imposing the boundary conditions (55) we get

(72)





(2− σ) cosh(
√
2mℓ)a− σc = 0

σ sinh(
√
2mℓ)a = 0 ,




(2− σ) sinh(
√
2mℓ)b− σℓd = 0

√
2mσ cosh(

√
2mℓ)b+ (σ − 2)d = 0 .

The first system in (72) has the unique solution a = c = 0 under the assumption (9). The second
system in (72) admits a nontrivial solution (b, d) if and only if

(73) tanh(
√
2mℓ) =

(
σ

2− σ

)2 √
2mℓ .

By (9) the equation tanh(s) =
(

σ
2−σ

)2
s admits a unique solution s > 0. But if m∗ := s/ℓ

√
2 is not an

integer, then (73) admits no solution. If m∗ ∈ N, then the second system in (72) admits a nontrivial
solution (b, d) 6= (0, 0) whenever m = m∗. If m ∈ N does not satisfy (73), then the second system in
(72) only admits the trivial solution b = d = 0.
• The case µ > m2. By (56) we infer that

(74) α = ±β or α = ±iγ with
√
µ−m2 = γ < β =

√
µ+m2 .

Therefore, possible nontrivial solutions of (54) have the form

hm(y) = a cosh(βy) + b sinh(βy) + c cos(γy) + d sin(γy) (a, b, c, d ∈ R) .

Differentiating hm and imposing the boundary conditions (55) yields the two systems:

(75)





(β2 −m2σ) cosh(βℓ)a− (γ2 +m2σ) cos(γℓ)c = 0

(β3 −m2(2− σ)β) sinh(βℓ)a+ (γ3 +m2(2− σ)γ) sin(γℓ)c = 0 ,

(76)





(β2 −m2σ) sinh(βℓ)b− (γ2 +m2σ) sin(γℓ)d = 0

(β3 −m2(2− σ)β) cosh(βℓ)b− (γ3 +m2(2− σ)γ) cos(γℓ)d = 0 .

Due to the presence of trigonometric sine and cosine, for any integer m there exists a sequence
ζmk ↑ +∞ such that ζmk > m2 for all k ∈ N and such that if µ = ζmk for some k then one of the above
systems admits a nontrivial solution.

Not only the above arguments prove all the statements of Theorem 4, but they also prove the following
result.

Theorem 15. Assume (9) and consider the eigenvalue problem (32). Then:
(i) for any m > 1 there exists a sequence of eigenvalues λk,m ↑ +∞ such that λk,m > m4 for all

k > 1; the corresponding eigenfunctions are of the kind
[
a cosh

(
y

√
λ
1/2
k,m +m2

)
+b sinh

(
y

√
λ
1/2
k,m +m2

)
+c cos

(
y

√
λ
1/2
k,m −m2

)
+d sin

(
y

√
λ
1/2
k,m −m2

)]
sin(mx)

for suitable constants a, b, c, d, depending on m and k;
(ii) if the unique positive solution m of (73) is an integer m∗ ∈ N, then λ = m4

∗ is an eigenvalue with
corresponding eigenfunction

[
σℓ sinh(

√
2m∗y) + (2− σ) sinh(

√
2m∗ℓ) y

]
sin(m∗x) ;
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(iii) for any m > 1, there exists an eigenvalue λm ∈ ((1−σ)2m4,m4) with corresponding eigenfunction

(√λm − (1− σ)m2

) cosh
(
y
√
m2 +

√
λm

)

cosh
(
ℓ
√
m2 +

√
λm

) +
(√

λm + (1− σ)m2
) cosh

(
y
√
m2 −

√
λm

)

cosh
(
ℓ
√
m2 −

√
λm

)


 sin(mx) ;

(iv) for any m > 1, satisfying (64), there exists an eigenvalue λm ∈ (λm,m
4) with corresponding

eigenfunction

(√λm − (1− σ)m2

) sinh
(
y
√
m2 +

√
λm
)

sinh
(
ℓ
√
m2 +

√
λm
) +

(√
λm + (1− σ)m2

) sinh
(
y
√
m2 −

√
λm
)

sinh
(
ℓ
√
m2 −

√
λm
)


 sin(mx) ;

(v) There are no eigenvalues other than the ones characterized in (i)− (iv).

Note that the eigenfunctions in (iii) are even with respect to y whereas the eigenfunctions in (iv) are
odd. In the next result we give a precise description of the first two eigenvalues when ℓ is small enough.

Proposition 16. Assume (9) and consider the eigenvalue problem (32). If ℓ 6 1
5 then the first two

eigenvalues are simple and they coincide with the numbers λ1, λ2 defined by Lemma 10. Therefore,

(77) (1− σ)2 < λ1 < 1 < 16(1− σ)2 < λ2 < 16 .

Proof. By (9) we know that (64) may hold only if ℓm
√
2 coth(ℓm

√
2) > 9. In turn, since ℓ 6 1

5 , this
necessarily yields m > 31. From Theorem 15 we readily obtain (77). In order to prove the statement
it is therefore enough to show that all the other eigenvalues found in Theorem 15 are larger than or
equal to 16 for ℓ 6 1

5 .

We start by showing that for ℓ 6 1
5 the numbers µ corresponding to the case µ > m2 are larger than

or equal to 4. We take m = 1 since if m > 2 we immediately obtain µ > 4 and we are done.
When m = 1 system (75) admits a nontrivial solution if and only if

(β2 − σ)(γ3 + (2− σ)γ) cosh(βℓ) sin(γℓ) + (γ2 + σ)(β3 − (2− σ)β) sinh(βℓ) cos(γℓ) = 0 .

This may happen only if the two terms sin(γℓ) and cos(γℓ) have opposite sign: this yields

γ

5
> γℓ >

π

2
=⇒ γ >

5π

2
=⇒ µ > 1 +

(
5π

2

)2

> 4 .

Consider now the system (76) with m = 1. Put

h(µ, σ, ℓ) :=

(µ+ 1− σ)2
√
µ− 1 sinh(ℓ

√
µ+ 1) cos(ℓ

√
µ− 1)− (µ− 1 + σ)2

√
µ+ 1 sin(ℓ

√
µ− 1) cosh(ℓ

√
µ+ 1)

so that, by (74), (76) admits a nontrivial solution if and only if

(78) h(µ, σ, ℓ) = 0.

We prove that µ > 4 by showing that

(79) h(µ, σ, ℓ) > 0 ∀µ ∈ (1, 4) , σ ∈
(
0,

1

2

)
, ℓ ∈

(
0,

1

5

]
.

It is readily verified that hσ(µ, σ, ℓ) < 0 so that (79) is satisfied provided that

(80) h

(
µ,

1

2
, ℓ

)
> 0 ∀µ ∈ (1, 4) , ℓ ∈

(
0,

1

5

]
.

By differentiating we obtain

hℓ

(
µ,

1

2
, ℓ

)
=
µ

2

[
4
√
µ2 − 1 cosh(ℓ

√
µ+ 1) cos(ℓ

√
µ− 1)− (4µ2 − 3) sinh(ℓ

√
µ+ 1) sin(ℓ

√
µ− 1)

]
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and by the inequality s cosh s > sinh s, valid for any s > 0, we get

hℓ

(
µ,

1

2
, ℓ

)
>
µ

2
ℓ
√
µ− 1 cos(ℓ

√
µ− 1) sinh(ℓ

√
µ+ 1)

[
4

ℓ2
− (4µ2 − 3)

tan(ℓ
√
µ− 1)

ℓ
√
µ− 1

]
.

Since the map x 7→ tanx
x is increasing in (0, π/2) and ℓ

√
µ− 1 <

√
3/5, we have that

hℓ

(
µ,

1

2
, ℓ

)
>
µ

2
ℓ
√
µ− 1 cos(ℓ

√
µ− 1) sinh(ℓ

√
µ+ 1)

(
100− 61 · tan(

√
3/5)√

3/5

)
> 0

for 1 < µ < 4 and ℓ 6 1
5 so that (80) follows and completes the proof in the case µ > m2.

By (9) the equation tanh(s) =
(

σ
2−σ

)2
s admits a unique positive solution s > 8. Hence, if µ = m2

is the square root of an eigenvalue, then by (73) we have

m =
s

ℓ
√
2
> 20

√
2 =⇒ µ > 800 .

We have so shown that, in any case, µ > 4; hence, λ > 16. �

If ℓ 6 0.44, (64) implies m > 14. Moreover, numerical computations show that (79), and hence
Proposition 16, are true for all ℓ 6 0.44.

8. Proof of Theorem 6

In order to prove existence of solutions of (22), we perform a Galerkin-type procedure directly on
the nonlinear problem (22). Uniqueness of solutions of (22) is obtained from suitable estimates coming
from an energy identity. We start by proving global existence for solutions of (22).

Lemma 17. Assume (9), let T ∈ (0,+∞), δ > 0, f ∈ C0([0, T ];L2(Ω)) and let h satisfy (16)-(18); let
u0 ∈ H2

∗ (Ω) and u1 ∈ L2(Ω). Then (22) admits a solution.

Proof. We divide the proof in several steps.
Step 1. We construct a sequence of solutions of approximated problems in finite dimensional spaces.

By Theorem 4 we may consider an orthogonal complete system {wk}k>1 ⊂ H2
∗ (Ω) of eigenfunctions

of (32) such that ‖wk‖L2 = 1. Let {λk}k>1 be the corresponding eigenvalues and, for any k > 1, put
Wk := span{w1, . . . , wk}. For any k > 1 let

uk0 :=
k∑

i=1

(u0, wi)L2wi =
k∑

i=1

λ−1
i (u0, wi)H2

∗

wi and uk1 =
k∑

i=1

(u1, wi)L2 wi

so that uk0 → u0 in H2
∗ (Ω) and uk1 → u1 in L2(Ω) as k → +∞. For any k > 1 we seek a solution

uk ∈ C2([0, T ];Wk) of the variational problem

(81)

{
(u′′(t), v)L2 + δ(u′(t), v)L2 + (u(t), v)H2

∗

+ (h(·, ·, u(t)), v)L2 = (f(t), v)L2

u(0) = uk0 , u′(0) = uk1 .

for any v ∈Wk and t ∈ (0, T ). If we put uk(t) =
∑k

i=1 g
k
i (t)wi and g

k(t) := (gk1 (t), . . . , g
k
k(t))

T then the

vector valued function gk solves

(82)

{
(gk(t))′′ + δ(gk(t))′ + Λkg

k(t) + Φk(g
k(t)) = Fk(t) ∀t ∈ (0, T )

gk(0) = ((u0, w1)L2 , . . . , (u0, wk)L2)T , (gk)′(0) = ((u1, w1)L2 , . . . , (u1, wk)L2)T

where Λk := diag(λ1, . . . , λk), Φk : Rk → R
k is the map defined by

Φk(y1, . . . , yk) :=



(
h
(
·, ·,

k∑

j=1

yjwj

)
, w1

)

L2

, . . . ,
(
h
(
·, ·,

k∑

j=1

yjwj

)
, wk

)

L2




T

and Fk(t) := ((f(t), w1)L2 , . . . , (f(t), wk)L2)T ∈ C0([0, T ];Rk).
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From (18) we deduce that Φk ∈ Liploc(R
k;Rk) and hence (82) admits a unique local solution. We

have shown that the function uk(t) =
∑k

j=1 g
k
j (t)wj ∈ C2([0, τk);H

2
∗ (Ω)) is a local solution in some

maximal interval of continuation [0, τk), τk ∈ (0, T ], of the problem

(83)

{
u′′k(t) + δu′k(t) + Luk(t) + Pk(h(·, ·, uk(t))) = Pk(f(t)) for any t ∈ [0, τk)

uk(0) = uk0 , u′k(0) = uk1

where L : H2
∗ (Ω) → H(Ω) is implicitly defined by 〈Lu, v〉 := (u, v)H2

∗

for any u, v ∈ H2
∗ (Ω) and

Pk : H2
∗ (Ω) →Wk is the orthogonal projection onto Wk.

Step 2. In this step we prove a uniform bound on the sequence {uk}.
Testing (83) with u′k(t) and integrating over (0, t) we obtain

‖uk(t)‖2H2
∗

+ ‖u′k(t)‖2L2 + 2

∫

Ω
H(x, y, uk(x, y, t)) dxdy = ‖uk0‖2H2

∗

+ ‖uk1‖2L2

(84)

+ 2

∫

Ω
H(x, y, uk0(x, y)) dxdy − 2δ

∫ t

0
‖u′k(s)‖2L2ds+ 2

∫ t

0
(f(s), u′k(s))L2ds for any t ∈ [0, τk) .

The embedding H2
∗ (Ω) ⊂ C0(Ω) yields a constant C > 0 such that

(85) ‖v‖C0(Ω) 6 C‖v‖H2
∗
(Ω) for any v ∈ H2

∗ (Ω) .

Since ‖uk0‖H2
∗

6 ‖u0‖H2
∗

, by (17) and (85) we deduce that
∫
ΩH(x, y, uk0(x, y)) dxdy is bounded with

respect to k. Hence, by Hölder and Young inequalities and the fact that δ > 0, we obtain

‖uk(t)‖2H2
∗

+ ‖u′k(t)‖2L2 6 C for any t ∈ [0, τk) and k > 1(86)

for some constant C independent of k > 1 and t ∈ (0, τk). This uniform estimate shows that the
solution uk is globally defined in [0, T ] and that the sequence {uk} is bounded in C0([0, T ];H2

∗ (Ω)) ∩
C1([0, T ];L2(Ω)).
Step 3. We prove that {uk} admits a strongly convergent subsequence in C0([0, T ];H2

∗ (Ω)) ∩
C1([0, T ];L2(Ω)).
In what follows, any subsequence of {uk} will be denoted in the same way. By (86) we deduce that

{uk} is bounded and equicontinuous in C0([0, T ];L2(Ω)) and moreover for any t ∈ [0, T ], {uk(t)} is
precompact in L2(Ω) thanks to the compact embedding H2

∗ (Ω) ⋐ L2(Ω).
By applying the Ascoli-Arzelà Theorem to the sequence {uk} we deduce that, up to subsequences,

there exists u ∈ C0([0, T ];L2(Ω)) such that uk → u strongly in C0([0, T ];L2(Ω)).
For any n > m > 1 define un,m := un − um, un,m0 = un0 − um0 , un,m1 := un1 − um1 so that

(87)

{
u′′n,m(t) + δu′n,m(t) + Lun,m(t) + Pn

(
h(·, ·, un(t))

)
− Pm

(
h(·, ·, um(t))

)
= (Pn − Pm)(f(t))

un,m(0) = un,m0 , u′n,m(0) = un,m1 .

By compactness it follows that, up to subsequences, Pn

(
h(·, ·, un)

)
→ h(·, ·, u) in C0([0, T ];L2(Ω)) as

n→ +∞. Moreover we also have that Pnf → f in C0([0, T ];L2(Ω)) as n→ +∞. Hence, as n,m→ ∞,

Ψn,m := −Pn

(
h(·, ·, un)

)
+ Pm

(
h(·, ·, um)

)
+ (Pn − Pm)f → 0 in C0([0, T ];L2(Ω)) .

Testing (87) with u′n,m and integrating over (0, t), up to enlarging n, we obtain

‖u′n,m(t)‖2L2 + ‖un,m(t)‖2H2
∗

= ‖un,m1 ‖2L2 + ‖un,m0 ‖2H2
∗

− 2δ

∫ t

0
‖u′n,m(s)‖2L2ds+ 2

∫ t

0
(Ψn,m(s), u′n,m(s))L2ds

6 ‖un,m1 ‖2L2 + ‖un,m0 ‖2H2
∗

+ T
2δ‖Ψn,m‖2C0([0,T ];L2) → 0 as n,m→ ∞
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for any t ∈ [0, T ]. This shows that {uk} is a Cauchy sequence in C0([0, T ];H2
∗ (Ω)) ∩ C1([0, T ];L2(Ω)).

But we have seen before that uk → u in C0([0, T ];L2(Ω)) so that u belongs to the same space and, up
to subsequences,

uk → u in C0([0, T ];H2
∗ (Ω)) ∩ C1([0, T ];L2(Ω)) as k → +∞ ,

thus completing the proof of the claim.
Step 4. We take the limit in (83) and we prove the existence of a solution of (22).

Let ϕ ∈ C∞
c (0, T ), let v ∈ H2

∗ (Ω) and let vk = Pkv. Then by (83) we have that for any k > 1

−
∫ T

0
(u′k(t), vk)L2 ϕ′(t) dt

=

∫ T

0

[
−δ(u′k(t), vk)L2 − (uk(t), vk)H2

∗

− (h(·, ·, uk(t)), vk)L2 + (f(t), vk)L2

]
ϕ(t) dt .

Letting k → +∞ we obtain that u′′ ∈ C0([0, T ];H(Ω)) and u′′ = −Lu − δu′ − h(·, ·, u) + f . Moreover
uk0 = uk(0) → u(0) in H2

∗ (Ω) and u
k
1 = u′k(0) → u′(0) in L2(Ω) so that u(0) = u0 and u′(0) = u1. We

proved that u is a solution of (22). �

In the next lemma we provide an energy identity for the nonlinear problem (22) and, by exploiting
it, we show uniqueness of the solution.

Lemma 18. Assume (9), let T ∈ (0,+∞), δ > 0, f ∈ C0([0, T ];L2(Ω)) and let h satisfy (16)-(18);
let u0 ∈ H2

∗ (Ω) and u1 ∈ L2(Ω). Then (22) admits a unique solution u which, moreover, satisfies the
following identity

‖u′(t)‖2L2 + ‖u(t)‖2H2
∗

+ 2δ

∫ t

0
‖u′(s)‖2L2ds+ 2

∫

Ω
H(x, y, u(x, y, t)) dxdy(88)

= ‖u1‖2L2 + ‖u0‖2H2
∗

+ 2

∫

Ω
H(x, y, u0(x, y)) dxdy + 2

∫ t

0
(f(s), u′(s))L2ds

for any t ∈ [0, T ].

Proof. We first consider the case where h ≡ 0: the existence of a solution of (22) is a consequence of
Lemma 17. Let us prove uniqueness. Take two solutions u1, u2 of (22) and their difference v = u1−u2.
Consider the function ṽ(t) =

∫ t
0 v(s) ds so that ṽ ∈W 1,∞(0, T ;H2

∗ (Ω)) ∩W 2,∞(0, T ;L2(Ω)) and
{
ṽ′′(t) + δṽ′(t) + Lṽ = 0

ṽ(0) = ṽ′(0) = 0 .

We use ṽ′ ∈ L∞(0, T ;H2
∗ (Ω)) as a test function to obtain after integration over (0, t)

‖ṽ′(t)‖2L2 + ‖ṽ(t)‖2H2
∗

= −2δ

∫ t

0
‖ṽ′(s)‖2L2ds 6 0 .

from which it immediately follows that ṽ = 0 and hence v = 0. This proves uniqueness of the solution
of (22) under the assumption h ≡ 0: let u be the unique solution of (22). By the proof of Lemma 17 we
infer that the sequence {uk} introduced in the Galerkin procedure, converges itself, without extracting
a subsequence, strongly to u in C0([0, T ];H2

∗ (Ω))∩C1([0, T ];L2(Ω)). Applying (84) in our situation we
obtain

‖uk(t)‖2H2
∗

+ ‖u′k(t)‖2L2 + 2δ

∫ t

0
‖u′k(s)‖2L2ds = ‖uk0‖2H2

∗

+ ‖uk1‖2L2 + 2

∫ t

0
(f(s), u′k(s))L2ds

for any t ∈ [0, T ]. Letting k → +∞ and exploiting the strong convergence of {uk}, we infer that

‖u′(t)‖2L2 + ‖u(t)‖2H2
∗

+ 2δ

∫ t

0
‖u′(s)‖2L2ds = ‖u1‖2L2 + ‖u0‖2H2

∗

+ 2

∫ t

0
(f(s), u′(s))L2ds(89)

for all t ∈ [0, T ].
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Consider now the case where h 6≡ 0 and let us first prove (88). Since u ∈ C0([0, T ];H2
∗ (Ω)) by the

embedding H2
∗ (Ω) ⊂ C0(Ω) we know that u ∈ C0(Ω × [0, T ]) and hence by (16)-(18) we deduce that

h(·, ·, u) ∈ C0([0, T ];L2(Ω)). Then by (89) we obtain

‖u′(t)‖2L2 + ‖u(t)‖2H2
∗

+ 2δ

∫ t

0
‖u′(s)‖2L2ds(90)

= ‖u1‖2L2 + ‖u0‖2H2
∗

+ 2

∫ t

0
(h(·, ·, u(s)), u′(s))L2ds+ 2

∫ t

0
(f(s), u′(s))L2ds

It remains to show that

(91)

∫ t

0
(h(·, ·, u(s)), u′(s))L2ds =

∫

Ω
H(x, y, u(x, y, t)) dxdy −

∫

Ω
H(x, y, u0(x, y)) dxdy .

For proving this it is sufficient to construct the sequence uk(t) :=
∑k

j=1(u(t), wj)L2wj where {wj} is
the orthogonal complete system introduced in the proof of Lemma 17. For any k > 1 we have that
uk ∈ C2([0, T ];H2

∗ (Ω)) and hence (91) trivially holds with uk in place of u. Letting k → +∞ and
exploiting the fact that uk → u in C0([0, T ];H2

∗ (Ω)) ∩C1([0, T ];L2(Ω)) the identity (91) also holds for
u.
Finally we prove uniqueness of solutions of (22). Let u, v two solutions of (22) and define w := u− v.

Then w solves the problem
{
w′′(t) + δw′(t) + Lw(t) = h(·, ·, v(t))− h(·, ·, u(t)) in [0, T ]

w(0) = 0 , w′(0) = 0 .

Let I ⊂ R be an interval satisfying ‖u‖C0(Ω×[0,T ]), ‖v‖C0(Ω×[0,T ]) ∈ I. Applying (90) to w and using

(18) we obtain

‖w′(t)‖2L2 + ‖w(t)‖2H2
∗

6
√
2ℓπLIC

(∫ t

0
‖w(s)‖2H2

∗

ds+

∫ t

0
‖w′(s)‖2L2ds

)

where C is the constant defined in (85). Standard Gronwall estimates then implies w ≡ 0 thus com-
pleting the proof of the lemma. �

In the last part of this section we consider problem (22) with f ∈ L2(Ω) independent of t. We want
to study the behavior of the solution u(·, t) of (22) as t → +∞: its global existence and uniqueness is
an easy consequence of Lemmas 17 and 18. Consider the energy function

Eu(t) :=
1

2
‖u′(t)‖2L2 +

1

2
‖u(t)‖2H2

∗

− (f, u(t))L2 +

∫

Ω
H(x, y, u(x, y, t)) dxdy .

By (88) we have that

Eu(t) =
1

2
‖u1‖2L2 +

1

2
‖u0‖2H2

∗

+

∫

Ω
H(x, y, u0(x, y)) dxdy − (f, u0)L2 − δ

∫ t

0
‖u′(s)‖2L2ds

so that Eu is nonincreasing in [0,+∞) and in particular it is bounded from above.
On the other hand by Hölder and Young inequalities, continuous embedding H2

∗ (Ω) ⊂ L2(Ω), (17) it
follows the existence of two constants C1, C2 > 0 such that

C1(‖u′(t)‖2L2 + ‖u(t)‖2H2
∗

) 6 Eu(t) + C2‖f‖2L2 for any t > 0 .

Then

(92) sup
t>0

(
‖u(t)‖H2

∗

+ ‖u′(t)‖L2 + ‖u′′(t)‖H
)
< +∞ .

This bound allows us to study the long-time behavior of the global solution.
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Lemma 19. Assume (9), let f ∈ L2(Ω), h satisfy (16)-(18) and δ > 0; let u0 ∈ H2
∗ (Ω) and u1 ∈ L2(Ω).

Then the unique global solution u of (22) satisfies:

u(t) → u in H2
∗ (Ω) and u′(t) → 0 in L2(Ω) as t→ +∞

where u is the unique solution of the stationary problem (20).

Proof. By (90) and boundedness of Eu we have that
∫ +∞

0 ‖u′(s)‖2L2ds < +∞ and hence there exists a
sequence tn ↑ +∞ such that

lim
n→+∞

∫ tn+1

tn

‖u′(s)‖2L2ds = 0 and lim
n→+∞

(
‖u′(tn)‖L2 + ‖u′(tn + 1)‖L2

)
= 0 .(93)

For any v ∈ H2
∗ (Ω) we then have

(94) lim
n→+∞

∫ tn+1

tn

〈u′′(s), v〉 ds = lim
n→+∞

[
(u′(tn + 1), v)L2 − (u′(tn), v)L2

]
= 0 .

Note that (93) and (94) yield

lim
n→+∞

∫ tn+1

tn

[
〈u′′(s), v〉+ δ(u′(s), v)L2

]
ds = 0 ∀v ∈ H2

∗ (Ω)

which, in turn, implies that

∀v ∈ H2
∗ (Ω) ∃tvn ∈ (tn, tn + 1) such that lim

n→+∞

[
〈u′′(tvn), v〉+ δ(u′(tvn), v)L2

]
= 0 .

Fix v ∈ H2
∗ (Ω) and note that, by (92), the sequence {u(tvn)} is bounded in H2

∗ (Ω) so that

u(tvn)⇀ uv ∈ H2
∗ (Ω)

up to a subsequence. In turn, by compact embedding, u(tvn) → uv in L
2(Ω). Take a function w ∈ H2

∗ (Ω)
such that w 6= v and consider the corresponding sequence {twn }. Then u(twn ) ⇀ uw in H2

∗ (Ω) and
u(twn ) → uw in L2(Ω). By (90), Hölder inequality and Fubini-Tonelli Theorem, we obtain

‖u(tvn)− u(twn )‖2L2 =

∫

Ω

∣∣∣∣∣

∫ tw
n

tv
n

u′(s)ds

∣∣∣∣∣

2

6 (twn − tvn)

∫ tw
n

tv
n

‖u′(s)‖2L2ds 6
1

δ
|Eu(tvn)− Eu(twn )| → 0

as n→ +∞, showing that the limit uv is independent of v, let us simply denote it by u. Summarizing,
we have proved that

∀v ∈ H2
∗ (Ω) (u, v)H2

∗

+ (h(·, ·, u), v)L2 − (f, v)L2

= lim
n→+∞

[
〈u′′(tvn), v〉+ δ(u′(tvn), v)L2 + (u(tvn), v)H2

∗

+ (h(·, ·, u(tvn)), v)L2 − (f, v)L2

]
= 0 .

This shows that u is the unique solution to (20).
By subtracting the weak form of (20) from (35) we obtain

〈u′′(t), v〉+ δ(u′(t), v)L2 + (u(t)− u, v)H2
∗

+ (h(·, ·, u(t))− h(·, ·, u), v)L2 = 0

for all v ∈ H2
∗ (Ω). In fact, (92) enables us to take v = v(t) := u(t)−u as test function; then, integrating

by parts over (tn, tn + 1) and using (17) and (93), we infer that

lim
n→+∞

∫ tn+1

tn

‖u(s)− u‖2H2
∗

ds = 0 .

By combining this fact with (93) we infer that there exists tn ∈ [tn, tn + 1] such that

u(tn) → u in H2
∗ (Ω) , u′(tn) → 0 in L2(Ω)

and therefore

lim
n→+∞

Eu(tn) = ET (u) = I := min
v∈H2

∗
(Ω)

ET (v) .

But t 7→ Eu(t) is decreasing so that, in fact, we also have limt→+∞ Eu(t) = I.
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Moreover Eu(t) = 1
2‖u′(t)‖2L2 + ET (u(t)) > 1

2‖u′(t)‖2L2 + I and passing to the limit as t → +∞ we
infer

I = lim
t→+∞

Eu(t) > I + lim sup
t→+∞

1

2
‖u′(t)‖2L2 .

This proves that u′(t) → 0 in L2(Ω) as t→ +∞. In turn, this implies that

lim
t→+∞

ET (u(t)) = lim
t→+∞

Eu(t)− lim
t→+∞

1

2
‖u′(t)‖2L2 = I = ET (u) .

Direct methods of calculus of variations then allow to conclude that u(t) → u in H2
∗ (Ω), on the whole

flow. �

The proof of Theorem 6 follows from Lemmas 17, 18, 19.
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[4] O.H. Ammann, T. von Kármán, G.B. Woodruff, The failure of the Tacoma Narrows Bridge, Federal Works

Agency (1941)
[5] G. Arioli, F. Gazzola, A new mathematical explanation of the Tacoma Narrows Bridge collapse, preprint
[6] E. Berchio, A. Ferrero, F. Gazzola, P. Karageorgis, Qualitative behavior of global solutions to some nonlinear

fourth order differential equations, J. Diff. Eq. 251, 2696-2727 (2011)
[7] J.M.W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges, Earthquake

Engineering & Structural Dynamics 23, 1351-1367 (1994)
[8] K. Friedrichs, Die randwert und eigenwertprobleme aus der theorie der elastischen platten (anwendung der

direkten methoden der variationsrechnung), Math. Ann. 98, 205-247 (1927)
[9] P. Galenko, D. Danilov, V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,

Phys. Rev. E 79, 051110 (11 pp.) (2009)
[10] F. Gazzola, Nonlinearity in oscillating bridges, preprint
[11] F. Gazzola, H.-Ch. Grunau, G. Sweers, Polyharmonic boundary value problems, LNM 1991, Springer (2010)
[12] F. Gazzola, R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations,

Nonlinear Analysis 74, 6696-6711 (2011)
[13] F. Gazzola, R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential

equations, Arch. Rat. Mech. Anal. 207, 717-752 (2013)
[14] D. Imhof, Risk assessment of existing bridge structure, PhD Dissertation, University of Cambridge (2004).

See also http://www.bridgeforum.org/dir/collapse/type/ for the update of the Bridge failure database
[15] T. Kawada, History of the modern suspension bridge: solving the dilemma between economy and stiffness,

ASCE Press (2010)
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